1
|
Hipp MS, Hartl FU. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J Mol Biol 2024; 436:168615. [PMID: 38759929 DOI: 10.1016/j.jmb.2024.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.
Collapse
Affiliation(s)
- Mark S Hipp
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, the Netherlands; School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Olgenblum GI, Hutcheson BO, Pielak GJ, Harries D. Protecting Proteins from Desiccation Stress Using Molecular Glasses and Gels. Chem Rev 2024; 124:5668-5694. [PMID: 38635951 PMCID: PMC11082905 DOI: 10.1021/acs.chemrev.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 04/20/2024]
Abstract
Faced with desiccation stress, many organisms deploy strategies to maintain the integrity of their cellular components. Amorphous glassy media composed of small molecular solutes or protein gels present general strategies for protecting against drying. We review these strategies and the proposed molecular mechanisms to explain protein protection in a vitreous matrix under conditions of low hydration. We also describe efforts to exploit similar strategies in technological applications for protecting proteins in dry or highly desiccated states. Finally, we outline open questions and possibilities for future explorations.
Collapse
Affiliation(s)
- Gil I. Olgenblum
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Brent O. Hutcheson
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, Department of Biochemistry & Biophysics, Integrated
Program for Biological & Genome Sciences, Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel Harries
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Wu P, Zehnder J, Schröder N, Blümmel PEW, Salmon L, Damberger FF, Lipps G, Allain FHT, Wiegand T. Initial Primer Synthesis of a DNA Primase Monitored by Real-Time NMR Spectroscopy. J Am Chem Soc 2024; 146:9583-9596. [PMID: 38538061 PMCID: PMC11009956 DOI: 10.1021/jacs.3c11836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Primases are crucial enzymes for DNA replication, as they synthesize a short primer required for initiating DNA replication. We herein present time-resolved nuclear magnetic resonance (NMR) spectroscopy in solution and in the solid state to study the initial dinucleotide formation reaction of archaeal pRN1 primase. Our findings show that the helix-bundle domain (HBD) of pRN1 primase prepares the two substrates and then hands them over to the catalytic domain to initiate the reaction. By using nucleotide triphosphate analogues, the reaction is substantially slowed down, allowing us to study the initial dinucleotide formation in real time. We show that the sedimented protein-DNA complex remains active in the solid-state NMR rotor and that time-resolved 31P-detected cross-polarization experiments allow monitoring the kinetics of dinucleotide formation. The kinetics in the sedimented protein sample are comparable to those determined by solution-state NMR. Protein conformational changes during primer synthesis are observed in time-resolved 1H-detected experiments at fast magic-angle spinning frequencies (100 kHz). A significant number of spectral changes cluster in the HBD pointing to the importance of the HBD for positioning the nucleotides and the dinucleotide.
Collapse
Affiliation(s)
- Pengzhi Wu
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Johannes Zehnder
- Laboratory
of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Nina Schröder
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Pascal E. W. Blümmel
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Loïc Salmon
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Fred. F. Damberger
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Georg Lipps
- Institute
of Chemistry and Bioanalytics, University
of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland
| | - Frédéric H.-T. Allain
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Laboratory
of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Isanta-Navarro J, Peoples LM, Bras B, Church MJ, Elser JJ. Elemental and macromolecular plasticity of Chlamydomonas reinhardtii (Chlorophyta) in response to resource limitation and growth rate. JOURNAL OF PHYCOLOGY 2024; 60:418-431. [PMID: 38196398 DOI: 10.1111/jpy.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green alga Chlamydomonas reinhardtii adjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed that Chlamydomonas exhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential of Chlamydomonas in a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure.
Collapse
Affiliation(s)
- Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Logan M Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
5
|
Noor E, Liebermeister W. Optimal enzyme profiles in unbranched metabolic pathways. Interface Focus 2024; 14:20230029. [PMID: 38344407 PMCID: PMC10853694 DOI: 10.1098/rsfs.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 05/09/2024] Open
Abstract
How to optimize the allocation of enzymes in metabolic pathways has been a topic of study for many decades. Although the general problem is complex and nonlinear, we have previously shown that it can be solved by convex optimization. In this paper, we focus on unbranched metabolic pathways with simplified enzymatic rate laws and derive analytic solutions to the optimization problem. We revisit existing solutions based on the limit of mass-action rate laws and present new solutions for other rate laws. Furthermore, we revisit a known relationship between flux control coefficients and enzyme abundances in optimal metabolic states. We generalize this relationship to models with density constraints on enzymes and metabolites, and present a new local relationship between optimal reaction elasticities and enzyme amounts. Finally, we apply our theory to derive simple kinetics-based formulae for protein allocation during bacterial growth.
Collapse
Affiliation(s)
- Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
6
|
McColl TJ, Clarke DC. Kinetic modeling of leucine-mediated signaling and protein metabolism in human skeletal muscle. iScience 2024; 27:108634. [PMID: 38188514 PMCID: PMC10767222 DOI: 10.1016/j.isci.2023.108634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Skeletal muscle protein levels are governed by the relative rates of muscle protein synthesis (MPS) and breakdown (MPB). The mechanisms controlling these rates are complex, and their integrated behaviors are challenging to study through experiments alone. The purpose of this study was to develop and analyze a kinetic model of leucine-mediated mTOR signaling and protein metabolism in the skeletal muscle of young adults. Our model amalgamates published cellular-level models of the IRS1-PI3K-Akt-mTORC1 signaling system and of skeletal-muscle leucine kinetics with physiological-level models of leucine digestion and transport and insulin dynamics. The model satisfactorily predicts experimental data from diverse leucine feeding protocols. Model analysis revealed that total levels of p70S6K are a primary determinant of MPS, insulin signaling substantially affects muscle net protein balance via its effects on MPB, and p70S6K-mediated feedback of mTORC1 signaling reduces MPS in a dose-dependent manner.
Collapse
Affiliation(s)
- Taylor J. McColl
- Department of Biomedical Physiology and KinesiologySimon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - David C. Clarke
- Department of Biomedical Physiology and KinesiologySimon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
7
|
Sepp A, Muliaditan M. Application of quantitative protein mass spectrometric data in the early predictive analysis of membrane-bound target engagement by monoclonal antibodies. MAbs 2024; 16:2324485. [PMID: 38700511 PMCID: PMC10936618 DOI: 10.1080/19420862.2024.2324485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 05/06/2024] Open
Abstract
Model-informed drug discovery advocates the use of mathematical modeling and simulation for improved efficacy in drug discovery. In the case of monoclonal antibodies (mAbs) against cell membrane antigens, this requires quantitative insight into the target tissue concentration levels. Protein mass spectrometry data are often available but the values are expressed in relative, rather than in molar concentration units that are easier to incorporate into pharmacokinetic models. Here, we present an empirical correlation that converts the parts per million (ppm) concentrations in the PaxDb database to their molar equivalents that are more suitable for pharmacokinetic modeling. We evaluate the insight afforded to target tissue distribution by analyzing the likely tumor-targeting accuracy of mAbs recognizing either epidermal growth factor receptor or its homolog HER2. Surprisingly, the predicted tissue concentrations of both these targets exceed the Kd values of their respective therapeutic mAbs. Physiologically based pharmacokinetic (PBPK) modeling indicates that in these conditions only about 0.05% of the dosed mAb is likely to reach the solid tumor target cells. The rest of the dose is eliminated in healthy tissues via both nonspecific and target-mediated processes. The presented approach allows evaluation of the interplay between the target expression level in different tissues that determines the overall pharmacokinetic properties of the drug and the fraction that reaches the cells of interest. This methodology can help to evaluate the efficacy and safety properties of novel drugs, especially if the off-target cell degradation has cytotoxic outcomes, as in the case of antibody-drug conjugates.
Collapse
Affiliation(s)
- Armin Sepp
- Simcyp Division, Certara UK Ltd, Sheffield, UK
| | - Morris Muliaditan
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| |
Collapse
|
8
|
Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol 2023; 24:797-815. [PMID: 37524848 PMCID: PMC10592246 DOI: 10.1038/s41580-023-00640-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.
Collapse
Affiliation(s)
- Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
9
|
Westerhoff HV. On paradoxes between optimal growth, metabolic control analysis, and flux balance analysis. Biosystems 2023; 233:104998. [PMID: 37591451 DOI: 10.1016/j.biosystems.2023.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
In Microbiology it is often assumed that growth rate is maximal. This may be taken to suggest that the dependence of the growth rate on every enzyme activity is at the top of an inverse-parabolic function, i.e. that all flux control coefficients should equal zero. This might seem to imply that the sum of these flux control coefficients equals zero. According to the summation law of Metabolic Control Analysis (MCA) the sum of flux control coefficients should equal 1 however. And in Flux Balance Analysis (FBA) catabolism is often limited by a hard bound, causing catabolism to fully control the fluxes, again in apparent contrast with a flux control coefficient of zero. Here we resolve these paradoxes (apparent contradictions) in an analysis that uses the 'Edinburgh pathway', the 'Amsterdam pathway', as well as a generic metabolic network providing the building blocks or Gibbs energy for microbial growth. We review and show that (i) optimization depends on so-called enzyme control coefficients rather than the 'catalytic control coefficients' of MCA's summation law, (ii) when optimization occurs at fixed total protein, the former differ from the latter to the extent that they may all become equal to zero in the optimum state, (iii) in more realistic scenarios of optimization where catalytically inert biomass is compensating or maintenance metabolism is taken into consideration, the optimum enzyme concentrations should not be expected to equal those that maximize the specific growth rate, (iv) optimization may be in terms of yield rather than specific growth rate, which resolves the paradox because the sum of catalytic control coefficients on yield equals 0, (v) FBA effectively maximizes growth yield, and for yield the summation law states 0 rather than 1, thereby removing the paradox, (vi) furthermore, FBA then comes more often to a 'hard optimum' defined by a maximum catabolic flux and a catabolic-enzyme control coefficient of 1. The trade-off between maintenance metabolism and growth is highlighted as worthy of further analysis.
Collapse
Affiliation(s)
- Hans V Westerhoff
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, A-Life, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands; School of Biological Sciences, Medicine and Health, University of Manchester, Manchester, United Kingdom; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
10
|
Tanouye FT, Alves JR, Spinozzi F, Itri R. Unveiling protein-protein interaction potential through Monte Carlo simulation combined with small-angle X-ray scattering. Int J Biol Macromol 2023; 248:125869. [PMID: 37473888 DOI: 10.1016/j.ijbiomac.2023.125869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Protein interactions are investigated under different conditions of lysozyme concentration, temperature and ionic strength by means of in-solution small angle X-Ray scattering (SAXS) experiments and Monte Carlo (MC) simulations. Initially, experimental data were analysed through a Hard-Sphere Double Yukawa (HSDY) model combined with Random Phase Approximation (RPA), a closure relationship commonly used in the literature for monodisperse systems. We realized by means of MC that the HSDY/RPA modelling fails to describe the protein-protein pair potential for moderated and dense systems at low ionic strength, mainly due to inherent distortions of the RPA approximation. Our SAXS/MC results thus show that lysozyme concentrations between 2 (diluted) and 20 mg/mL (not crowded) present similar protein-protein pair potential preserving the values of surface net charge around 7 e, protein diameter of 28 Å, decay range of attractive well potential of 3 Å and a depth of the well potential varying from 1 to 5 kBT depending on temperature and salt addition. Noteworthy, we here propose a novel method to analyse the SAXS data from interacting proteins through MC simulations, which overcomes the deficiencies presented by the use of a closure relationship. Furthermore, this new methodology of combining SAXS with MC simulations gives a step forward to investigate more complex systems as those composed of a mixture of proteins of distinct species presenting different molecular weights (and hence sizes) and surface net charges at low, moderate and very dense systems.
Collapse
Affiliation(s)
| | | | - Francesco Spinozzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Italy
| | | |
Collapse
|
11
|
Nishi K, Yoshii A, Abell L, Zhou B, Frausto R, Ritterhoff J, McMillen TS, Sweet I, Wang Y, Gao C, Tian R. Branched-chain keto acids inhibit mitochondrial pyruvate carrier and suppress gluconeogenesis in hepatocytes. Cell Rep 2023; 42:112641. [PMID: 37310861 PMCID: PMC10592489 DOI: 10.1016/j.celrep.2023.112641] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/06/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Branched-chain amino acid (BCAA) metabolism is linked to glucose homeostasis, but the underlying signaling mechanisms are unclear. We find that gluconeogenesis is reduced in mice deficient of Ppm1k, a positive regulator of BCAA catabolism, which protects against obesity-induced glucose intolerance. Accumulation of branched-chain keto acids (BCKAs) inhibits glucose production in hepatocytes. BCKAs suppress liver mitochondrial pyruvate carrier (MPC) activity and pyruvate-supported respiration. Pyruvate-supported gluconeogenesis is selectively suppressed in Ppm1k-deficient mice and can be restored with pharmacological activation of BCKA catabolism by BT2. Finally, hepatocytes lack branched-chain aminotransferase that alleviates BCKA accumulation via reversible conversion between BCAAs and BCKAs. This renders liver MPC most susceptible to circulating BCKA levels hence a sensor of BCAA catabolism.
Collapse
Affiliation(s)
- Kiyoto Nishi
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga 520-2182, Japan
| | - Akira Yoshii
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Lauren Abell
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Ricardo Frausto
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Timothy S McMillen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Ian Sweet
- University of Washington Medicine Diabetes Institute, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Signature Program in Cardiovascular and Metabolic Diseases, Duke-NUS School of Medicine, Singapore, Singapore
| | - Chen Gao
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0575, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
13
|
Fell DA, Taylor DC, Weselake RJ, Harwood JL. Metabolic Control Analysis of triacylglycerol accumulation in oilseed rape. Biosystems 2023; 227-228:104905. [PMID: 37100112 DOI: 10.1016/j.biosystems.2023.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
The increasing global demand for vegetable oils will only be met if there are significant improvements in the productivity of the major oil crops, such as oilseed rape. Metabolic engineering offers the prospect of further gains in yield beyond that already achieved by breeding and selection but requires guidance as to the changes that need to be made. Metabolic Control Analysis, through measurement and estimation of flux control coefficients, can indicate which enzymes have the most influence on a desired flux. Some experiments have previously reported flux control coefficients for oil accumulation in the seeds of oilseed rape, and others have measured control coefficient distributions for multi-enzyme segments of oil synthesis in seed embryo metabolism measured in vitro. In addition, other reported manipulations of oil accumulation contain results that are exploited further here to calculate previously unknown flux control coefficients. These results are then assembled within a framework that allows an integrated interpretation of the controls on oil accumulation from the assimilation of CO2 to deposition of oil in the seed. The analysis shows that the control is distributed to an extent that the gains from amplifying any single target are necessarily limited, but there are candidates for joint amplification that are likely to act synergistically to produce much more significant gains.
Collapse
Affiliation(s)
| | - David C Taylor
- National Research Council of Canada 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - John L Harwood
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
14
|
Titanium dioxide nanoparticle-based hydroxyl and superoxide radical production for oxidative stress biological simulations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Gao T, Korb JP, Lukšič M, Mériguet G, Malikova N, Rollet AL. Ion influence on surface water dynamics and proton exchange at protein surfaces - A unified model for transverse and longitudinal NMR relaxation dispersion. J Mol Liq 2022; 367:120451. [PMID: 37790165 PMCID: PMC10544814 DOI: 10.1016/j.molliq.2022.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In all biologically relevant media, proteins interact in the presence of surrounding ions, and such interactions are water-mediated. Water molecules play a crucial role in the restructuring of proteins in solution and indeed in their biological activity. Surface water dynamics and proton exchange at protein surfaces is investigated here using NMR relaxometry, for two well-known globular proteins, lysozyme and bovine serum albumin, with particular attention to the role of surface ions. We present a unified model of surface water dynamics and proton exchange, accounting simultaneously for the observed longitudinal and transverse relaxation rates. The most notable effect of salt (0.1 M) concerns the slow surface water dynamics, related to rare water molecules embedded in energy wells on the protein surface. This response is protein-specific. On the other hand, the proton exchange time between labile protein-protons and water-protons at the protein surface seems to be very similar for the two proteins and is insensitive to the addition of salts at the concentration studied.
Collapse
Affiliation(s)
- Tadeja Gao
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Jean-Pierre Korb
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Guillaume Mériguet
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Natalie Malikova
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Anne-Laure Rollet
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| |
Collapse
|
16
|
Øvrebø JI, Ma Y, Edgar BA. Cell growth and the cell cycle: New insights about persistent questions. Bioessays 2022; 44:e2200150. [PMID: 36222263 DOI: 10.1002/bies.202200150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
Before a cell divides into two daughter cells, it typically doubles not only its DNA, but also its mass. Numerous studies in cells ranging from yeast to mammals have shown that cellular growth, stimulated by nutrients and/or growth factor signaling, is a prerequisite for cell cycle progression in most types of cells. The textbook view of growth-regulated cell cycles is that growth signaling activates the transcription of G1 Cyclin genes to induce cell proliferation, and also stimulates anabolic metabolism and cell growth in parallel. However, genetic knockout tests in model organisms indicate that this is not the whole story, and new studies show that additional, "smarter" mechanisms help to coordinate the cell cycle with growth itself. Here we summarize recent advances in this field, and discuss current models in which growth signaling regulates cell proliferation by targeting core cell cycle regulators via non-transcriptional mechanisms.
Collapse
Affiliation(s)
- Jan Inge Øvrebø
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Yiqin Ma
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Bruce A Edgar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Ramos Y, Almeida A, Carpio J, Rodríguez‐Ulloa A, Perera Y, González LJ, Wiśniewski JR, Besada V. Gel electrophoresis/electroelution sorting fractionator combined with filter aided sample preparation for deep proteomic analysis. J Sep Sci 2022; 45:1784-1796. [DOI: 10.1002/jssc.202100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yassel Ramos
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Alexis Almeida
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Jenis Carpio
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Arielis Rodríguez‐Ulloa
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Yasser Perera
- China‐Cuba Biotechnology Joint Innovation Center (CCBJIC) Yongzhou Zhong Gu Biotechnology Co., Ltd Hunan Province China
- Molecular Oncology Group Pharmacology Department, Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Luis J. González
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group Department of Proteomics and Signal Transduction Max‐Planck‐Institute of Biochemistry Martinsried Germany
| | - Vladimir Besada
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| |
Collapse
|
18
|
Boutin JA. [Melatonin: A short clarification for the over-enthusiasts]. Med Sci (Paris) 2022; 38:89-95. [PMID: 35060893 DOI: 10.1051/medsci/2021115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melatonin is a naturally occurring molecule derived from tryptophan. Melatonin is a key player in relaying the circadian rhythm between our environment and our body. It has also a key role in rhythming the seasons (more production during long nights and less during short ones) as well as in the reproduction cycles of the mammals. Melatonin is often and surprisingly presented as a molecule with multiple therapeutic properties that can fix (or help to fix) many health issues, such as diseases (cancer, ageing, virus-induced affections including COVID-19, etc…) or toxicological situations (metals, venoms, chemical such as adriamycin [doxorubicin], methotrexate or paclitaxel). The mechanistics behind those wonders is still missing and this is puzzling. In the present commentary, the main well-established biological properties are presented and briefly discussed with the aim of delineating the borders between facts and wishful thinking.
Collapse
Affiliation(s)
- Jean A Boutin
- PHARMADEV, Pharmacochimie et biologie pour le développement, UUM 152, Faculté de pharmacie, Rue des Maraîchers, 31000 Toulouse, France
| |
Collapse
|
19
|
Taymaz-Nikerel H, Lara AR. Vitreoscilla Haemoglobin: A Tool to Reduce Overflow Metabolism. Microorganisms 2021; 10:microorganisms10010043. [PMID: 35056491 PMCID: PMC8779101 DOI: 10.3390/microorganisms10010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Overflow metabolism is a phenomenon extended in nature, ranging from microbial to cancer cells. Accumulation of overflow metabolites pose a challenge for large-scale bioprocesses. Yet, the causes of overflow metabolism are not fully clarified. In this work, the underlying mechanisms, reasons and consequences of overflow metabolism in different organisms have been summarized. The reported effect of aerobic expression of Vitreoscilla haemoglobin (VHb) in different organisms are revised. The use of VHb to reduce overflow metabolism is proposed and studied through flux balance analysis in E. coli at a fixed maximum substrate and oxygen uptake rates. Simulations showed that the presence of VHb increases the growth rate, while decreasing acetate production, in line with the experimental measurements. Therefore, aerobic VHb expression is considered a potential tool to reduce overflow metabolism in cells.
Collapse
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, İstanbul 34060, Turkey;
| | - Alvaro R. Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
- Correspondence:
| |
Collapse
|
20
|
Jiskoot W, Hawe A, Menzen T, Volkin DB, Crommelin DJA. Ongoing Challenges to Develop High Concentration Monoclonal Antibody-based Formulations for Subcutaneous Administration: Quo Vadis? J Pharm Sci 2021; 111:861-867. [PMID: 34813800 DOI: 10.1016/j.xphs.2021.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
Although many subcutaneously (s.c.) delivered, high-concentration antibody formulations (HCAF) have received regulatory approval and are widely used commercially, formulation scientists are still presented with many ongoing challenges during HCAF development with new mAb and mAb-based candidates. Depending on the specific physicochemical and biological properties of a particular mAb-based molecule, such challenges vary from pharmaceutical attributes e.g., stability, viscosity, manufacturability, to clinical performance e.g., bioavailability, immunogenicity, and finally to patient experience e.g., preference for s.c. vs. intravenous delivery and/or preferred interactions with health-care professionals. This commentary focuses on one key formulation obstacle encountered during HCAF development: how to maximize the dose of the drug? We examine methodologies for increasing the protein concentration, increasing the volume delivered, or combining both approaches together. We discuss commonly encountered hurdles, i.e., physical protein instability and solution volume limitations, and we provide recommendations to formulation scientists to facilitate their development of s.c. administered HCAF with new mAb-based product candidates.
Collapse
Affiliation(s)
- W Jiskoot
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; Leiden Academic Center for Drug Research (LACDR), Leiden University, 2300 RA Leiden, the Netherlands
| | - Andrea Hawe
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
21
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
22
|
Janc T, Korb JP, Lukšič M, Vlachy V, Bryant RG, Mériguet G, Malikova N, Rollet AL. Multiscale Water Dynamics on Protein Surfaces: Protein-Specific Response to Surface Ions. J Phys Chem B 2021; 125:8673-8681. [PMID: 34342225 DOI: 10.1021/acs.jpcb.1c02513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins function in crowded aqueous environments, interacting with a diverse range of compounds, and among them, dissolved ions. These interactions are water-mediated. In the present study, we combine field-dependent NMR relaxation (NMRD) and theory to probe water dynamics on the surface of proteins in concentrated aqueous solutions of hen egg-white lysozyme (LZM) and bovine serum albumin (BSA). The experiments reveal that the presence of salts (NaCl or NaI) leads to an opposite ion-specific response for the two proteins: an addition of salt to LZM solutions increases water relaxation rates with respect to the salt-free case, while for BSA solutions, a decrease is observed. The magnitude of the change depends on the ion identity. The developed model accounts for the non-Lorentzian shape of the NMRD profiles and reproduces the experimental data over four decades in Larmor frequency (10 kHz to 110 MHz). It is applicable up to high protein concentrations. The model incorporates the observed ion-specific effects via changes in the protein surface roughness, represented by the surface fractal dimension, and the accompanying changes in the surface water residence times. The response is protein-specific, linked to geometrical aspects of the individual protein surfaces, and goes beyond protein-independent Hofmeister-style ordering of ions.
Collapse
Affiliation(s)
- Tadeja Janc
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jean-Pierre Korb
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert G Bryant
- Chemistry Department, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Natalie Malikova
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France
| | | |
Collapse
|
23
|
Dashnaw CM, Koone JC, Abdolvahabi A, Shaw BF. Measuring how two proteins affect each other's net charge in a crowded environment. Protein Sci 2021; 30:1594-1605. [PMID: 33928693 DOI: 10.1002/pro.4092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Theory predicts that the net charge (Z) of a protein can be altered by the net charge of a neighboring protein as the two approach one another below the Debye length. This type of charge regulation suggests that a protein's charge and perhaps function might be affected by neighboring proteins without direct binding. Charge regulation during protein crowding has never been directly measured due to analytical challenges. Here, we show that lysine specific protein crosslinkers (NHS ester-Staudinger pairs) can be used to mimic crowding by linking two non-interacting proteins at a maximal distance of ~7.9 Å. The net charge of the regioisomeric dimers and preceding monomers can then be determined with lysine-acyl "protein charge ladders" and capillary electrophoresis. As a proof of concept, we covalently linked myoglobin (Zmonomer = -0.43 ± 0.01) and α-lactalbumin (Zmonomer = -4.63 ± 0.05). Amide hydrogen/deuterium exchange and circular dichroism spectroscopy demonstrated that crosslinking did not significantly alter the structure of either protein or result in direct binding (thus mimicking crowding). Ultimately, capillary electrophoretic analysis of the dimeric charge ladder detected a change in charge of ΔZ = -0.04 ± 0.09 upon crowding by this pair (Zdimer = -5.10 ± 0.07). These small values of ΔZ are not necessarily general to protein crowding (qualitatively or quantitatively) but will vary per protein size, charge, and solvent conditions.
Collapse
Affiliation(s)
- Chad M Dashnaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Jordan C Koone
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Alireza Abdolvahabi
- Mass Spectrometry Core Facility, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Bryan F Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| |
Collapse
|
24
|
Kucher S, Elsner C, Safonova M, Maffini S, Bordignon E. In-Cell Double Electron-Electron Resonance at Nanomolar Protein Concentrations. J Phys Chem Lett 2021; 12:3679-3684. [PMID: 33829785 DOI: 10.1021/acs.jpclett.1c00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is an established technique to site-specifically monitor conformational changes of spin-labeled biomolecules. Emerging in-cell EPR approaches aiming to address spin-labeled proteins in their native environment still struggle to reach a broad applicability and to target physiologically relevant protein concentrations. Here, we present a comparative in vitro and in-cell double electron-electron resonance (DEER) study demonstrating that nanomolar protein concentrations are at reach to measure distances up to 4.5 nm between protein sites carrying commercial gadolinium spin labels.
Collapse
Affiliation(s)
- Svetlana Kucher
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Christina Elsner
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Mariya Safonova
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Stefano Maffini
- Max Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Enrica Bordignon
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
25
|
Tavella TA, da Silva NSM, Spillman N, Kayano ACAV, Cassiano GC, Vasconcelos AA, Camargo AP, da Silva DCB, Fontinha D, Salazar Alvarez LC, Ferreira LT, Peralis Tomaz KC, Neves BJ, Almeida LD, Bargieri DY, Lacerda MVGD, Lemos Cravo PV, Sunnerhagen P, Prudêncio M, Andrade CH, Pinto Lopes SC, Carazzolle MF, Tilley L, Bilsland E, Borges JC, Maranhão Costa FT. Violacein-Induced Chaperone System Collapse Underlies Multistage Antiplasmodial Activity. ACS Infect Dis 2021; 7:759-776. [PMID: 33689276 PMCID: PMC8042658 DOI: 10.1021/acsinfecdis.0c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.
Collapse
Affiliation(s)
- Tatyana Almeida Tavella
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Noeli Soares Melo da Silva
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Natalie Spillman
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Ana Carolina Andrade Vitor Kayano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Gustavo Capatti Cassiano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Adrielle Ayumi Vasconcelos
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Antônio Pedro Camargo
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Djane Clarys Baia da Silva
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Kaira Cristina Peralis Tomaz
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
| | - Ludimila Dias Almeida
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Cidade Universitária “Armando Salles Oliveira”, São Paulo 05508-000, Brazil
| | | | - Pedro Vitor Lemos Cravo
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Carolina Horta Andrade
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Stefanie Costa Pinto Lopes
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Leann Tilley
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Elizabeth Bilsland
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Júlio César Borges
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| |
Collapse
|
26
|
Subramanian K, Petzold H, Seelbinder B, Hersemann L, Nüsslein I, Kreysing M. Optical plasticity of mammalian cells. JOURNAL OF BIOPHOTONICS 2021; 14:e202000457. [PMID: 33345429 DOI: 10.1002/jbio.202000457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Transparency is widespread in nature, ranging from transparent insect wings to ocular tissues that enable you to read this text, and transparent marine vertebrates. And yet, cells and tissue models in biology are usually strongly light scattering and optically opaque, precluding deep optical microscopy. Here we describe the directed evolution of cultured mammalian cells toward increased transparency. We find that mutations greatly diversify the optical phenotype of Chinese Hamster Ovary cells, a cultured mammalian cell line. Furthermore, only three rounds of high-throughput optical selection and competitive growth are required to yield fit cells with greatly improved transparency. Based on 15 monoclonal cell lines derived from this directed evolution experiment, we find that the evolved transparency frequently goes along with a reduction of nuclear granularity and physiological shifts in gene expression profiles. In the future this optical plasticity of mammalian cells may facilitate genetic clearance of living tissues for in vivo microscopy.
Collapse
Affiliation(s)
- Kaushikaram Subramanian
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Heike Petzold
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benjamin Seelbinder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Ina Nüsslein
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence, PoL | Physics of Life, Biotechnology Center of the TU Dresden, Dresden, Germany
| |
Collapse
|
27
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
28
|
Han Z, Porter AE. In situ Electron Microscopy of Complex Biological and Nanoscale Systems: Challenges and Opportunities. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.606253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In situ imaging for direct visualization is important for physical and biological sciences. Research endeavors into elucidating dynamic biological and nanoscale phenomena frequently necessitate in situ and time-resolved imaging. In situ liquid cell electron microscopy (LC-EM) can overcome certain limitations of conventional electron microscopies and offer great promise. This review aims to examine the status-quo and practical challenges of in situ LC-EM and its applications, and to offer insights into a novel correlative technique termed microfluidic liquid cell electron microscopy. We conclude by suggesting a few research ideas adopting microfluidic LC-EM for in situ imaging of biological and nanoscale systems.
Collapse
|
29
|
Guo WH, Qi X, Yu X, Liu Y, Chung CI, Bai F, Lin X, Lu D, Wang L, Chen J, Su LH, Nomie KJ, Li F, Wang MC, Shu X, Onuchic JN, Woyach JA, Wang ML, Wang J. Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry. Nat Commun 2020; 11:4268. [PMID: 32848159 PMCID: PMC7450057 DOI: 10.1038/s41467-020-17997-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton's Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy.
Collapse
Affiliation(s)
- Wen-Hao Guo
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoli Qi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xin Yu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yang Liu
- Division of Cancer Medicine, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Fang Bai
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianwei Chen
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lynn Hsiao Su
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Krystle J Nomie
- Division of Cancer Medicine, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael L Wang
- Division of Cancer Medicine, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Abstract
Darwin's theory of evolution emphasized that positive selection of functional proficiency provides the fitness that ultimately determines the structure of life, a view that has dominated biochemical thinking of enzymes as perfectly optimized for their specific functions. The 20th-century modern synthesis, structural biology, and the central dogma explained the machinery of evolution, and nearly neutral theory explained how selection competes with random fixation dynamics that produce molecular clocks essential e.g. for dating evolutionary histories. However, quantitative proteomics revealed that selection pressures not relating to optimal function play much larger roles than previously thought, acting perhaps most importantly via protein expression levels. This paper first summarizes recent progress in the 21st century toward recovering this universal selection pressure. Then, the paper argues that proteome cost minimization is the dominant, underlying 'non-function' selection pressure controlling most of the evolution of already functionally adapted living systems. A theory of proteome cost minimization is described and argued to have consequences for understanding evolutionary trade-offs, aging, cancer, and neurodegenerative protein-misfolding diseases.
Collapse
|
31
|
Mass spectrometry-based methods for structural biology on a proteome-wide scale. Biochem Soc Trans 2020; 48:945-954. [DOI: 10.1042/bst20190794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022]
Abstract
Mass spectrometry (MS) has long been used to study proteins mainly via sequence identification and quantitation of expression abundance. In recent years, MS has emerged as a tool for structural biology. Intact protein structural analysis has been enabled by the development of methods such as native MS, top-down proteomics, and ion mobility MS. Other MS-based structural methods include affinity purification MS, chemical cross-linking, and protein footprinting. These methods have enabled the study of protein–protein and protein–ligand interactions and regions of conformational change. The coupling of MS with liquid chromatography has permitted the analysis of complex samples. This bottom-up proteomics workflow enables the study of protein structure in the native cellular environment and provides structural information across the proteome. It has been demonstrated that the crowded environment of the cell affects protein binding interactions and affinities. Performing studies in this complex environment is essential for understanding the functional roles of proteins. MS-based structural methods permit analysis of samples such as cell lysates, intact cells, and tissue to provide a more physiological view of protein structure. This mini-review discusses the various MS-based methods that can be used for proteome-wide structural studies and highlights some of their application.
Collapse
|
32
|
Grebennikov D, Bouchnita A, Volpert V, Bessonov N, Meyerhans A, Bocharov G. Spatial Lymphocyte Dynamics in Lymph Nodes Predicts the Cytotoxic T Cell Frequency Needed for HIV Infection Control. Front Immunol 2019; 10:1213. [PMID: 31244829 PMCID: PMC6579925 DOI: 10.3389/fimmu.2019.01213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022] Open
Abstract
The surveillance of host body tissues by immune cells is central for mediating their defense function. In vivo imaging technologies have been used to quantitatively characterize target cell scanning and migration of lymphocytes within lymph nodes (LNs). The translation of these quantitative insights into a predictive understanding of immune system functioning in response to various perturbations critically depends on computational tools linking the individual immune cell properties with the emergent behavior of the immune system. By choosing the Newtonian second law for the governing equations, we developed a broadly applicable mathematical model linking individual and coordinated T-cell behaviors. The spatial cell dynamics is described by a superposition of autonomous locomotion, intercellular interaction, and viscous damping processes. The model is calibrated using in vivo data on T-cell motility metrics in LNs such as the translational speeds, turning angle speeds, and meandering indices. The model is applied to predict the impact of T-cell motility on protection against HIV infection, i.e., to estimate the threshold frequency of HIV-specific cytotoxic T cells (CTLs) that is required to detect productively infected cells before the release of viral particles starts. With this, it provides guidance for HIV vaccine studies allowing for the migration of cells in fibrotic LNs.
Collapse
Affiliation(s)
- Dmitry Grebennikov
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia.,Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anass Bouchnita
- Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Vitaly Volpert
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.,Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France.,INRIA Team Dracula, INRIA Lyon La Doua, Villeurbanne, France
| | - Nikolay Bessonov
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
33
|
Szekeres GP, Kneipp J. SERS Probing of Proteins in Gold Nanoparticle Agglomerates. Front Chem 2019; 7:30. [PMID: 30766868 PMCID: PMC6365451 DOI: 10.3389/fchem.2019.00030] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/14/2019] [Indexed: 01/23/2023] Open
Abstract
The collection of surface-enhanced Raman scattering (SERS) spectra of proteins and other biomolecules in complex biological samples such as animal cells has been achieved with gold nanoparticles that are introduced to the sample. As a model for such a situation, SERS spectra were measured in protein solutions using gold nanoparticles in the absence of aggregating agents, allowing for the free formation of a protein corona. The SERS spectra indicate a varied interaction of the protein molecule with the gold nanoparticles, depending on protein concentration. The concentration-dependent optical properties of the formed agglomerates result in strong variation in SERS enhancement. At protein concentrations that correspond to those inside cells, SERS signals are found to be very low. The results suggest that in living cells the successful collection of SERS spectra must be due to the positioning of the aggregates rather than the crowded biomolecular environment inside the cells. Experiments with DNA suggest the suitability of the applied sample preparation approach for an improved understanding of SERS nanoprobes and nanoparticle-biomolecule interactions in general.
Collapse
Affiliation(s)
- Gergo Peter Szekeres
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.,School of Analytical Sciences Adlershof, Berlin, Germany
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.,School of Analytical Sciences Adlershof, Berlin, Germany
| |
Collapse
|
34
|
Wortel MT, Noor E, Ferris M, Bruggeman FJ, Liebermeister W. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS Comput Biol 2018; 14:e1006010. [PMID: 29451895 PMCID: PMC5847312 DOI: 10.1371/journal.pcbi.1006010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/12/2018] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM) and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.
Collapse
Affiliation(s)
- Meike T. Wortel
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Systems Bioinformatics Section, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Elad Noor
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Michael Ferris
- Computer Sciences Department and Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Frank J. Bruggeman
- Systems Bioinformatics Section, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Wolfram Liebermeister
- INRA, UR1404, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Affiliation(s)
- Agata H. Bryk
- Biochemical Proteomics Group,
Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group,
Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
36
|
Mohamed MS, Torabi A, Paulose M, Kumar DS, Varghese OK. Anodically Grown Titania Nanotube Induced Cytotoxicity has Genotoxic Origins. Sci Rep 2017; 7:41844. [PMID: 28165491 PMCID: PMC5292953 DOI: 10.1038/srep41844] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/30/2016] [Indexed: 01/17/2023] Open
Abstract
Nanoarchitectures of titania (TiO2) have been widely investigated for a number of medical applications including implants and drug delivery. Although titania is extensively used in the food, drug and cosmetic industries, biocompatibility of nanoscale titania is still under careful scrutiny due to the conflicting reports on its interaction with cellular matter. For an accurate insight, we performed in vitro studies on the response of human dermal fibroblast cells toward pristine titania nanotubes fabricated by anodic oxidation. The nanotubes at low concentrations were seen to induce toxicity to the cells, whereas at higher concentrations the cell vitality remained on par with controls. Further investigations revealed an increase in the G0 phase cell population depicting that majority of cells were in the resting rather than active phase. Though the mitochondrial set-up did not exhibit any signs of stress, significantly enhanced reactive oxygen species production in the nuclear compartment was noted. The TiO2 nanotubes were believed to have gained access to the nuclear machinery and caused increased stress leading to genotoxicity. This interesting property of the nanotubes could be utilized to kill cancer cells, especially if the nanotubes are functionalized for a specific target, thus eliminating the need for any chemotherapeutic agents.
Collapse
Affiliation(s)
- M Sheikh Mohamed
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585 Japan
| | - Aida Torabi
- Nanomaterials and Devices Laboratory, Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - Maggie Paulose
- Nanomaterials and Devices Laboratory, Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - D Sakthi Kumar
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, 350-8585 Japan
| | - Oomman K Varghese
- Nanomaterials and Devices Laboratory, Department of Physics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
37
|
Price MN, Arkin AP. A Theoretical Lower Bound for Selection on the Expression Levels of Proteins. Genome Biol Evol 2016; 8:1917-28. [PMID: 27289091 PMCID: PMC4943197 DOI: 10.1093/gbe/evw126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We use simple models of the costs and benefits of microbial gene expression to show that changing a protein's expression away from its optimum by 2-fold should reduce fitness by at least [Formula: see text], where P is the fraction the cell's protein that the gene accounts for. As microbial genes are usually expressed at above 5 parts per million, and effective population sizes are likely to be above 10(6), this implies that 2-fold changes to gene expression levels are under strong selection, as [Formula: see text], where Ne is the effective population size and s is the selection coefficient. Thus, most gene duplications should be selected against. On the other hand, we predict that for most genes, small changes in the expression will be effectively neutral.
Collapse
Affiliation(s)
- Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab
| | - Adam P Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab
| |
Collapse
|
38
|
Rakus D, Gizak A, Wiśniewski JR. Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles. J Proteome Res 2016; 15:2479-90. [PMID: 27302655 DOI: 10.1021/acs.jproteome.5b01149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantitative mapping, given in biochemically interpretable units such as mol per mg of total protein, of tissue-specific proteomes is prerequisite for the analysis of any process in cells. We applied label- and standard-free proteomics to characterize three types of striated muscles: white, red, and cardiac muscle. The analysis presented here uncovers several unexpected and novel features of striated muscles. In addition to differences in protein expression levels, the three muscle types substantially differ in their patterns of basic metabolic pathways and isoforms of regulatory proteins. Importantly, some of the conclusions drawn on the basis of our results, such as the potential existence of a "fibroblast-cardiomyocyte lactate shuttle" and the "hexokinase paradox" point to the necessity of reinterpretation of some basic aspects of striated muscle metabolism. The data presented here constitute a powerful database and a resource for future studies of muscle physiology and for the design of pharmaceutics for the treatment of muscular disorders.
Collapse
Affiliation(s)
- Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University , Wroclaw 50-205, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University , Wroclaw 50-205, Poland
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Martinsried 82152, Germany
| |
Collapse
|
39
|
Wiśniewski JR, Vildhede A, Norén A, Artursson P. In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. J Proteomics 2016; 136:234-47. [PMID: 26825538 DOI: 10.1016/j.jprot.2016.01.016] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/28/2015] [Accepted: 01/25/2016] [Indexed: 12/14/2022]
Abstract
Hepatocytes play a pivotal role in human homeostasis. They are essential in regulation of glucose and lipid levels in blood and play a central role in metabolism of amino acids, lipids, drugs and xenobiotic-compounds. In addition, hepatocytes produce a major portion of proteins circulating in the blood. Hepatocytes were isolated from liver tissue obtained from surgical resections. Proteins were extracted and processed using filter aided sample preparation protocol and were analyzed by LC-MS/MS using high accuracy mass spectrometry. Proteins were quantified by the 'Total Protein Approach' and 'Proteomic Ruler'. We report a comprehensive proteomic analysis of purified human hepatocytes and the human hepatoma cell line HepG2. The complete dataset comprises 9400 proteins and provides a comprehensive and quantitative depiction of the proteomes of hepatocytes and HepG2 cells at the protein titer and copy number dimensions. We describe basic cell organization and in detail energy metabolism pathways and metabolite transport. We provide quantitative insights into protein synthesis and drug and xenobiotics catabolism. Our data delineate differences between the native human hepatocytes and HepG2 cells by providing for the first time quantitative data at protein concentrations and copy numbers.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Anna Vildhede
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Agneta Norén
- Department of Surgery, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
40
|
Palinkas A, Bulik S, Bockmayr A, Holzhütter HG. Sequential metabolic phases as a means to optimize cellular output in a constant environment. PLoS One 2015; 10:e0118347. [PMID: 25786979 PMCID: PMC4365075 DOI: 10.1371/journal.pone.0118347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/14/2015] [Indexed: 11/25/2022] Open
Abstract
Temporal changes of gene expression are a well-known regulatory feature of all cells, which is commonly perceived as a strategy to adapt the proteome to varying external conditions. However, temporal (rhythmic and non-rhythmic) changes of gene expression are also observed under virtually constant external conditions. Here we hypothesize that such changes are a means to render the synthesis of the metabolic output more efficient than under conditions of constant gene activities. In order to substantiate this hypothesis, we used a flux-balance model of the cellular metabolism. The total time span spent on the production of a given set of target metabolites was split into a series of shorter time intervals (metabolic phases) during which only selected groups of metabolic genes are active. The related flux distributions were calculated under the constraint that genes can be either active or inactive whereby the amount of protein related to an active gene is only controlled by the number of active genes: the lower the number of active genes the more protein can be allocated to the enzymes carrying non-zero fluxes. This concept of a predominantly protein-limited efficiency of gene expression clearly differs from other concepts resting on the assumption of an optimal gene regulation capable of allocating to all enzymes and transporters just that fraction of protein necessary to prevent rate limitation. Applying this concept to a simplified metabolic network of the central carbon metabolism with glucose or lactate as alternative substrates, we demonstrate that switching between optimally chosen stationary flux modes comprising different sets of active genes allows producing a demanded amount of target metabolites in a significantly shorter time than by a single optimal flux mode at fixed gene activities. Our model-based findings suggest that temporal expression of metabolic genes can be advantageous even under conditions of constant external substrate supply.
Collapse
Affiliation(s)
- Aljoscha Palinkas
- FB Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
- * E-mail:
| | - Sascha Bulik
- Institute of Biochemistry, University Medicine—Charite, Chariteplatz 1 Sitz: Virchowweg 6, 10117 Berlin, Germany
| | - Alexander Bockmayr
- FB Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Hermann-Georg Holzhütter
- Institute of Biochemistry, University Medicine—Charite, Chariteplatz 1 Sitz: Virchowweg 6, 10117 Berlin, Germany
| |
Collapse
|
41
|
Rakus D, Gizak A, Deshmukh A, Wiśniewski JR. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle. J Proteome Res 2015; 14:1400-11. [PMID: 25597705 DOI: 10.1021/pr5010357] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Slow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches. Here we describe a simple analytical and computational approach to estimate titers of enzymes of basic metabolic pathways and proteins of the contractile machinery in the skeletal muscles. Proteomic analysis of mouse slow and fast muscles allowed estimation of the titers of enzymes involved in the carbohydrate, lipid, and energy metabolism. Notably, we observed that differences observed between the two muscle types occur simultaneously for all proteins involved in a specific process such as glycolysis, free fatty acid catabolism, Krebs cycle, or oxidative phosphorylation. These differences are in a good agreement with the well-established biochemical picture of the muscle types. We show a correlation between maximal activity and the enzyme titer, suggesting that change in enzyme concentration is a good proxy for its catalytic potential in vivo. As a consequence, proteomic profiling of enzyme titers can be used to monitor metabolic changes in cells. Additionally, quantitative data of structural proteins allowed studying muscle type specific cell architecture and its remodeling. The presented proteomic approach can be applied to study metabolism in any other tissue or cell line.
Collapse
Affiliation(s)
- Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University , Wroclaw 50-205, Poland
| | | | | | | |
Collapse
|
42
|
Wiśniewski JR, Hein MY, Cox J, Mann M. A "proteomic ruler" for protein copy number and concentration estimation without spike-in standards. Mol Cell Proteomics 2014; 13:3497-506. [PMID: 25225357 PMCID: PMC4256500 DOI: 10.1074/mcp.m113.037309] [Citation(s) in RCA: 572] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 09/08/2014] [Indexed: 12/12/2022] Open
Abstract
Absolute protein quantification using mass spectrometry (MS)-based proteomics delivers protein concentrations or copy numbers per cell. Existing methodologies typically require a combination of isotope-labeled spike-in references, cell counting, and protein concentration measurements. Here we present a novel method that delivers similar quantitative results directly from deep eukaryotic proteome datasets without any additional experimental steps. We show that the MS signal of histones can be used as a "proteomic ruler" because it is proportional to the amount of DNA in the sample, which in turn depends on the number of cells. As a result, our proteomic ruler approach adds an absolute scale to the MS readout and allows estimation of the copy numbers of individual proteins per cell. We compare our protein quantifications with values derived via the use of stable isotope labeling by amino acids in cell culture and protein epitope signature tags in a method that combines spike-in protein fragment standards with precise isotope label quantification. The proteomic ruler approach yields quantitative readouts that are in remarkably good agreement with results from the precision method. We attribute this surprising result to the fact that the proteomic ruler approach omits error-prone steps such as cell counting or protein concentration measurements. The proteomic ruler approach is readily applicable to any deep eukaryotic proteome dataset-even in retrospective analysis-and we demonstrate its usefulness with a series of mouse organ proteomes.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- From the ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marco Y Hein
- From the ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jürgen Cox
- From the ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Mann
- From the ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
43
|
Spectroscopic and thermodynamic properties of recombinant heat shock protein A6 from Camelus dromedarius. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 44:17-26. [DOI: 10.1007/s00249-014-0997-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022]
|
44
|
Schmitt S, Schulz S, Schropp EM, Eberhagen C, Simmons A, Beisker W, Aichler M, Zischka H. Why to compare absolute numbers of mitochondria. Mitochondrion 2014; 19 Pt A:113-23. [PMID: 24969531 DOI: 10.1016/j.mito.2014.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023]
Abstract
Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.
Collapse
Affiliation(s)
- Sabine Schmitt
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Sabine Schulz
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Eva-Maria Schropp
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Alisha Simmons
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Wolfgang Beisker
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology-Institute of Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany.
| |
Collapse
|
45
|
Vélez Pérez JA, Guzmán O, Navarro-García F. Steric contribution of macromolecular crowding to the time and activation energy for preprotein translocation across the endoplasmic reticulum membrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012725. [PMID: 23944508 DOI: 10.1103/physreve.88.012725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Indexed: 06/02/2023]
Abstract
Protein translocation from the cytosol to the endoplasmic reticulum (ER) or vice versa, an essential process for cell function, includes the transport of preproteins destined to become secretory, luminal, or integral membrane proteins (translocation) or misfolded proteins returned to the cytoplasm to be degraded (retrotranslocation). An important aspect in this process that has not been fully studied is the molecular crowding at both sides of the ER membrane. By using models of polymers crossing a membrane through a pore, in an environment crowded by either static or dynamic spherical agents, we computed the following transport properties: the free energy, the activation energy, the force, and the transport times for translocation and retrotranslocation. Using experimental protein crowding data for the cytoplasm and ER sides, we showed that dynamic crowding, which resembles biological environments where proteins are translocated or retrotranslocated, increases markedly all the physical properties of translocation and retrotranslocation as compared with translocation in a diluted system. By contrast, transport properties in static crowded systems were similar to those in diluted conditions. In the dynamic regime, the effects of crowding were more notorious in the transport times, leading to a huge difference for large chains. We indicate that this difference is the result of the synergy between the free energy and the diffusivity of the translocating chain. That synergy leads to translocation rates similar to experimental measures in diluted systems, which indicates that the effects of crowding can be measured. Our data also indicate that effects of crowding cannot be neglected when studying translocation because protein dynamic crowding has a relevant steric contribution, which changes the properties of translocation.
Collapse
Affiliation(s)
- José Antonio Vélez Pérez
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, México.
| | | | | |
Collapse
|
46
|
An agent-based model of cellular dynamics and circadian variability in human endotoxemia. PLoS One 2013; 8:e55550. [PMID: 23383223 PMCID: PMC3559552 DOI: 10.1371/journal.pone.0055550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 12/30/2012] [Indexed: 01/01/2023] Open
Abstract
As cellular variability and circadian rhythmicity play critical roles in immune and inflammatory responses, we present in this study an agent-based model of human endotoxemia to examine the interplay between circadian controls, cellular variability and stochastic dynamics of inflammatory cytokines. The model is qualitatively validated by its ability to reproduce circadian dynamics of inflammatory mediators and critical inflammatory responses after endotoxin administration in vivo. Novel computational concepts are proposed to characterize the cellular variability and synchronization of inflammatory cytokines in a population of heterogeneous leukocytes. Our results suggest that there is a decrease in cell-to-cell variability of inflammatory cytokines while their synchronization is increased after endotoxin challenge. Model parameters that are responsible for IκB production stimulated by NFκB activation and for the production of anti-inflammatory cytokines have large impacts on system behaviors. Additionally, examining time-dependent systemic responses revealed that the system is least vulnerable to endotoxin in the early morning and most vulnerable around midnight. Although much remains to be explored, proposed computational concepts and the model we have pioneered will provide important insights for future investigations and extensions, especially for single-cell studies to discover how cellular variability contributes to clinical implications.
Collapse
|
47
|
Vardeman CF, Stocker KM, Gezelter JD. The Langevin Hull: Constant pressure and temperature dynamics for non-periodic systems. J Chem Theory Comput 2011; 7:834-842. [PMID: 21547015 DOI: 10.1021/ct100670m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a new isobaric-isothermal (NPT) algorithm which applies an external pressure to the facets comprising the convex hull surrounding the system. A Langevin thermostat is also applied to the facets to mimic contact with an external heat bath. This new method, the "Langevin Hull", can handle heterogeneous mixtures of materials with different compressibilities. These systems are problematic for traditional affine transform methods. The Langevin Hull does not suffer from the edge effects of boundary potential methods, and allows realistic treatment of both external pressure and thermal conductivity due to the presence of an implicit solvent. We apply this method to several different systems including bare metal nanoparticles, nanoparticles in an explicit solvent, as well as clusters of liquid water. The predicted mechanical properties of these systems are in good agreement with experimental data and previous simulation work.
Collapse
Affiliation(s)
- Charles F Vardeman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | | | | |
Collapse
|
48
|
The principle of sufficiency and the evolution of control: using control analysis to understand the design principles of biological systems. Biochem Soc Trans 2010; 38:1210-4. [DOI: 10.1042/bst0381210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Control analysis can be used to try to understand why (quantitatively) systems are the way that they are, from rate constants within proteins to the relative amount of different tissues in organisms. Many biological parameters appear to be optimized to maximize rates under the constraint of minimizing space utilization. For any biological process with multiple steps that compete for control in series, evolution by natural selection will tend to even out the control exerted by each step. This is for two reasons: (i) shared control maximizes the flux for minimum protein concentration, and (ii) the selection pressure on any step is proportional to its control, and selection will, by increasing the rate of a step (relative to other steps), decrease its control over a pathway. The control coefficient of a parameter P over fitness can be defined as (∂N/N)/(∂P/P), where N is the number of individuals in the population, and ∂N is the change in that number as a result of the change in P. This control coefficient is equal to the selection pressure on P. I argue that biological systems optimized by natural selection will conform to a principle of sufficiency, such that the control coefficient of all parameters over fitness is 0. Thus in an optimized system small changes in parameters will have a negligible effect on fitness. This principle naturally leads to (and is supported by) the dominance of wild-type alleles over null mutants.
Collapse
|
49
|
Mao L, Römer I, Nebrich G, Klein O, Koppelstätter A, Hin SC, Hartl D, Zabel C. Aging in Mouse Brain Is a Cell/Tissue-Level Phenomenon Exacerbated by Proteasome Loss. J Proteome Res 2010; 9:3551-60. [DOI: 10.1021/pr100059j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Mao
- Institute for Human Genetics, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Irmgard Römer
- Institute for Human Genetics, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Grit Nebrich
- Institute for Human Genetics, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Oliver Klein
- Institute for Human Genetics, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andrea Koppelstätter
- Institute for Human Genetics, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sascha C. Hin
- Institute for Human Genetics, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Daniela Hartl
- Institute for Human Genetics, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Claus Zabel
- Institute for Human Genetics, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
50
|
Bar-Even A, Noor E, Lewis NE, Milo R. Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci U S A 2010; 107:8889-94. [PMID: 20410460 PMCID: PMC2889323 DOI: 10.1073/pnas.0907176107] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon fixation is the process by which CO(2) is incorporated into organic compounds. In modern agriculture in which water, light, and nutrients can be abundant, carbon fixation could become a significant growth-limiting factor. Hence, increasing the fixation rate is of major importance in the road toward sustainability in food and energy production. There have been recent attempts to improve the rate and specificity of Rubisco, the carboxylating enzyme operating in the Calvin-Benson cycle; however, they have achieved only limited success. Nature employs several alternative carbon fixation pathways, which prompted us to ask whether more efficient novel synthetic cycles could be devised. Using the entire repertoire of approximately 5,000 metabolic enzymes known to occur in nature, we computationally identified alternative carbon fixation pathways that combine existing metabolic building blocks from various organisms. We compared the natural and synthetic pathways based on physicochemical criteria that include kinetics, energetics, and topology. Our study suggests that some of the proposed synthetic pathways could have significant quantitative advantages over their natural counterparts, such as the overall kinetic rate. One such cycle, which is predicted to be two to three times faster than the Calvin-Benson cycle, employs the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle. Although implementing such alternative cycles presents daunting challenges related to expression levels, activity, stability, localization, and regulation, we believe our findings suggest exciting avenues of exploration in the grand challenge of enhancing food and renewable fuel production via metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
| | | | - Nathan E. Lewis
- Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel; and
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412
| | - Ron Milo
- Departments of Plant Sciences and
| |
Collapse
|