1
|
Castranova D, Kenton MI, Kraus A, Dell CW, Park JS, Galanternik MV, Park G, Lumbantobing DN, Dye L, Marvel M, Iben J, Taimatsu K, Pham V, Willms RJ, Blevens L, Robertson TF, Hou Y, Huttenlocher A, Foley E, Parenti LR, Frazer JK, Narayan K, Weinstein BM. The axillary lymphoid organ - an external, experimentally accessible immune organ in the zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605139. [PMID: 39091802 PMCID: PMC11291151 DOI: 10.1101/2024.07.25.605139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics in vivo, the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac. Noninvasive high-resolution imaging of transgenically marked immune cells can be carried out in the lobes of living animals, and the ALO is readily accessible to external treatment. This newly discovered tissue provides a superb model for dynamic live imaging of immune cells and their interaction with pathogens and surrounding tissues, including blood and lymphatic vessels.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Madeleine I. Kenton
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Aurora Kraus
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Christopher W. Dell
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jong S. Park
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gilseung Park
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel N. Lumbantobing
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Louis Dye
- Microscopy and Imaging Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Miranda Marvel
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Kiyohito Taimatsu
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Van Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Reegan J. Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Blevens
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lynne R. Parenti
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - J. Kimble Frazer
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Bhavna R, Sonawane M. A deep learning framework for quantitative analysis of actin microridges. NPJ Syst Biol Appl 2023; 9:21. [PMID: 37268613 DOI: 10.1038/s41540-023-00276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/03/2023] [Indexed: 06/04/2023] Open
Abstract
Microridges are evolutionarily conserved actin-rich protrusions present on the apical surface of squamous epithelial cells. In zebrafish epidermal cells, microridges form self-evolving patterns due to the underlying actomyosin network dynamics. However, their morphological and dynamic characteristics have remained poorly understood owing to a lack of computational methods. We achieved ~95% pixel-level accuracy with a deep learning microridge segmentation strategy enabling quantitative insights into their bio-physical-mechanical characteristics. From the segmented images, we estimated an effective microridge persistence length of ~6.1 μm. We discovered the presence of mechanical fluctuations and found relatively greater stresses stored within patterns of yolk than flank, indicating distinct regulation of their actomyosin networks. Furthermore, spontaneous formations and positional fluctuations of actin clusters within microridges were associated with pattern rearrangements over short length/time-scales. Our framework allows large-scale spatiotemporal analysis of microridges during epithelial development and probing of their responses to chemical and genetic perturbations to unravel the underlying patterning mechanisms.
Collapse
Affiliation(s)
- Rajasekaran Bhavna
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India.
- Department of Data Science and Engineering, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India.
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India
| |
Collapse
|
3
|
Lu TQ, van Loon AP, Sagasti A. How to wrinkle a cell: Emerging mechanisms of microridge morphogenesis. Curr Opin Cell Biol 2022; 76:102088. [DOI: 10.1016/j.ceb.2022.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
|
4
|
Abstract
Actin is a conserved cytoskeletal protein with essential functions. Here, we review the state-of-the-art reagents, tools and methods used to probe actin biology and functions in zebrafish embryo and larvae. We also discuss specific cell types and tissues where the study of actin in zebrafish has provided new insights into its functions.
Collapse
|
5
|
van Loon AP, Erofeev IS, Maryshev IV, Goryachev AB, Sagasti A. Cortical contraction drives the 3D patterning of epithelial cell surfaces. J Cell Biol 2020; 219:133677. [PMID: 32003768 PMCID: PMC7054995 DOI: 10.1083/jcb.201904144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Cellular protrusions create complex cell surface topographies, but biomechanical mechanisms regulating their formation and arrangement are largely unknown. To study how protrusions form, we focused on the morphogenesis of microridges, elongated actin-based structures that are arranged in maze-like patterns on the apical surfaces of zebrafish skin cells. Microridges form by accreting simple finger-like precursors. Live imaging demonstrated that microridge morphogenesis is linked to apical constriction. A nonmuscle myosin II (NMII) reporter revealed pulsatile contractions of the actomyosin cortex, and inhibiting NMII blocked apical constriction and microridge formation. A biomechanical model suggested that contraction reduces surface tension to permit the fusion of precursors into microridges. Indeed, reducing surface tension with hyperosmolar media promoted microridge formation. In anisotropically stretched cells, microridges formed by precursor fusion along the stretch axis, which computational modeling explained as a consequence of stretch-induced cortical flow. Collectively, our results demonstrate how contraction within the 2D plane of the cortex can pattern 3D cell surfaces.
Collapse
Affiliation(s)
- Aaron P van Loon
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ivan V Maryshev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
6
|
Srivastava A, Mistri A, Mittal S, Mittal AK. Alterations in the epidermis of the carp, Labeo rohita (Cyprinidae: Cypriniformes), infected by the bacteria, Aeromonas hydrophila: A scanning electron microscopic, histopathological and immunohistochemical investigation. JOURNAL OF FISH DISEASES 2020; 43:941-953. [PMID: 32618004 DOI: 10.1111/jfd.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
This study was carried out to comprehend the pathogenicity of the bacteria in the epidermis of Labeo rohita inoculated with Aeromonas hydrophila. Alterations in the histopathology of the epidermis were examined using scanning electron microscopy, light microscopy and the localization of iNOS and caspase 3 + ve cells by means of immunohistochemical methods. Skin samples obtained from infected fish at different intervals 2, 4, 6, 8 and 10 days showed significant changes in the cellular components of the epidermis. Epithelial cells often appeared hypertrophied with fragmented and loosely arranged microridges, and in the process of exfoliation. Mucous goblet cells increased significantly in density. Club cells showed degenerative changes, often with simultaneous confluence of adjacent cells and release of their contents. Increase in density of iNOS and caspase 3 + ve cells indicates inflammatory response and apoptosis. This study could provide valuable information on the pathogenesis of the disease, and disease outbreaks in farmed fish. Further, it could provide useful guidelines for fish farmers to take preventive measures for the control of the disease.
Collapse
Affiliation(s)
- Ayan Srivastava
- Skin Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arup Mistri
- Skin Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Swati Mittal
- Skin Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar Mittal
- Skin Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Mandal A, Mondal NS, Patra A, Das S, Dey S, Mondal AK, Ghosh AR. Time dependent ultrastructural alterations on the skin, eye, barbel and fins of the spawn of Clarias batrachus (Linn. 1758) exposed to UV-B radiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110268. [PMID: 32036099 DOI: 10.1016/j.ecoenv.2020.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Present study highlighted the ultramicroscopic (SEM) alterations of the skin, eye, barbel, and fins of spawn of an air-breathing teleost (Clarias batrachus, Linn. 1758) induced by UV-B radiation (280-320 nm) at a dose (@4.07 × 10-20J/photon/m2) under the time-frame of 5, 10 and 15 min/d in the laboratory condition for the periods of 5 and 10 days. Limnological parameters revealed no significant changes throughout the period of experimentation which were measured by PCS Testr 35 Multi-Parameter. Morphometric analysis revealed that during the extended exposure period of 10 days the spawn size and weight were reduced as analysed through Specific Growth Rate (SGR). SGR values in terms of weight for 5 and 10 days under 3 time-frames were 17.12%, 12.52%, 11.46% and 9.09%, 6.43%, 6.09% respectively, which revealed a declined trend along with the exposure days. In the skin of C. batrachus, the compact regular orientation of the stratified epithelial cells and mucous cells became distorted and the microridges and double-ridged structures showed destruction and fragmentations. The body striations and microfolds became shrinked and swollen and finally degenerated to form a mass. The distribution of mucous cells throughout the epidermis was disorganised and releasing secretory contents on the surface through small pores. Appearance of huge quantity of biogenic semi-hexagonal plate like crystals (guanine platelets) on the skin surface of the body was the most significant observations during UV-B radiation. In the developmental phases the eyeball showed shrinkage loosing normal regular concave structure and to become a dome-shaped one. The supportive connective infoldings became loosened. The choroid coat displayed deformities and the iris deformed the pupil. The fibroblast on the epithelium and melanocytes depicted dispersed arrangement. The pairs of ventral barbels near the mouth depicted the presence of taste buds that became severely damaged exposing the sensory as well as neuroepithelial cells. Compact regular arrangement of the SECs was completely destroyed leaving long and deep channels inbetween them; the disintegrated concentric MRs also showed a mass.
Collapse
Affiliation(s)
- Arghya Mandal
- Ectoxicology Lab, Department of Environmental Science, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Niladri Sekhar Mondal
- Ectoxicology Lab, Department of Environmental Science, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Atanu Patra
- Ectoxicology Lab, Department of Environmental Science, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Subhas Das
- Ectoxicology Lab, Department of Environmental Science, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Sukhendu Dey
- Ectoxicology Lab, Department of Environmental Science, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Arnab Kumar Mondal
- Ectoxicology Lab, Department of Environmental Science, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Apurba Ratan Ghosh
- Ectoxicology Lab, Department of Environmental Science, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
8
|
Bhat MY, Channa A, Paray BA, Al-Sadoon MK, Rather IA. Morphological study of the gastrointestinal tract of the snow trout, Schizothorax esocinus (Actinopterygii: Cypriniformes). ZOOLOGIA 2019. [DOI: 10.3897/zoologia.36.e31791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study aimed to investigate the macroscopic structure of the gastrointestinal tract (GIT) of Schizothorax esocinus Heckel, 1838. The surface architecture of the buccopharynx, oesophagus and the entire intestinal tract of S. esocinus has been examined under scanning electron microscope (SEM) after fixing in 2.5% glutaraldehyde buffered with 0.1 M sodium cacodylate at pH 7.3 for 18–48 hours and post-fixation for two hours at room temperature in 1% osmium tetra oxide buffered at pH 7.3 with 0.1 M cacodylate. The mucosal surface of buccopharynx, esophagus, intestinal bulb, and intestine reveal prominent longitudinal major or primary mucosal folds which are further subdivided into the series of irregular and well-circumscribed folds called minor or secondary folds. However, in the intestinal bulb and intestine, the longitudinal major or primary folds themselves form wavy or zigzagging patterns along the mucosal surface. The fine structure of the surface epithelium further shows that the apical surfaces of the epithelial cells are ped with finger-print like microridges, arranged in various patterns and regularly spaced. The rectal mucosa, on the other hand, displays a highly irregular type of major mucosal folds. The separation can’t be seen between major mucosal folds. A thin film of mucous spread over the mucosal folds and the numerous pores through which mucous cells release their content has also been noted along the rectal mucosa. This investigation suggests the possible role of different digestive organs in relation to feeding, digestion, storage, absorption, and various other physiological processes, thereby providing a knowledge necessary to the understanding of pathological or physiological alterations in both aquaculture and natural environment.
Collapse
|
9
|
Microridges are apical epithelial projections formed of F-actin networks that organize the glycan layer. Sci Rep 2019; 9:12191. [PMID: 31434932 PMCID: PMC6704121 DOI: 10.1038/s41598-019-48400-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/29/2019] [Indexed: 11/16/2022] Open
Abstract
Apical projections are integral functional units of epithelial cells. Microvilli and stereocilia are cylindrical apical projections that are formed of bundled actin. Microridges on the other hand, extend laterally, forming labyrinthine patterns on surfaces of various kinds of squamous epithelial cells. So far, the structural organization and functions of microridges have remained elusive. We have analyzed microridges on zebrafish epidermal cells using confocal and electron microscopy methods including electron tomography, to show that microridges are formed of F-actin networks and require the function of the Arp2/3 complex for their maintenance. During development, microridges begin as F-actin punctae showing signatures of branching and requiring an active Arp2/3 complex. Using inhibitors of actin polymerization and the Arp2/3 complex, we show that microridges organize the surface glycan layer. Our analyses have unraveled the F-actin organization supporting the most abundant and evolutionarily conserved apical projection, which functions in glycan organization.
Collapse
|
10
|
Baumgartner EA, Compton ZJ, Evans S, Topczewski J, LeClair EE. Identification of regulatory elements recapitulating early expression of L-plastin in the zebrafish enveloping layer and embryonic periderm. Gene Expr Patterns 2019; 32:53-66. [PMID: 30940554 PMCID: PMC6655599 DOI: 10.1016/j.gep.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 12/18/2022]
Abstract
We have cloned and characterized an intronic fragment of zebrafish lymphocyte cytosolic protein 1 (lcp1, also called L-plastin) that drives expression to the zebrafish enveloping layer (EVL). L-plastin is a calcium-dependent actin-bundling protein belonging to the plastin/fimbrin family of proteins, and is necessary for the proper migration and attachment of several adult cell types, including leukocytes and osteoclasts. However, in zebrafish lcp1 is abundantly expressed much earlier, during differentiation of the EVL. The cells of this epithelial layer migrate collectively, spreading vegetally over the yolk. L-plastin expression persists into the larval periderm, a transient epithelial tissue that forms the first larval skin. This finding establishes that L-plastin is activated in two different embryonic waves, with a distinct regulatory switch between the early EVL and the later leukocyte. To better study L-plastin expressing cells we attempted CRISPR/Cas9 homology-driven recombination (HDR) to insert a self-cleaving peptide (Cre-P2A-EGFP-CAAX) downstream of the native lcp1 promoter. This produced a stable zebrafish line expressing Cre recombinase in EVL nuclei and green fluorescence in EVL cell membranes. In vivo tracking of these labeled cells provided enhanced views of EVL migration behavior, membrane extensions, and mitotic events. Finally, we experimentally dissected key elements of the targeted lcp1 locus, discovering a ∼300 bp intronic sequence sufficient to drive EVL expression. The lcp1: Cre-P2A-EGFP-CAAX zebrafish should be useful for studying enveloping layer specification, gastrulation movements and periderm development in this widely used vertebrate model. In addition, the conserved regulatory sequences we have isolated predict that L-plastin orthologs may have a similar early expression pattern in other vertebrate embryos.
Collapse
Affiliation(s)
| | | | - Spencer Evans
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, USA
| | - Jacek Topczewski
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, USA; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland
| | | |
Collapse
|
11
|
Depasquale JA. Actin Microridges. Anat Rec (Hoboken) 2018; 301:2037-2050. [DOI: 10.1002/ar.23965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/03/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
|
12
|
DePasquale JA. Comparison of microridges in juvenile and adult sunfish,
Lepomis gibbosus. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
|
14
|
aPKC regulates apical localization of Lgl to restrict elongation of microridges in developing zebrafish epidermis. Nat Commun 2016; 7:11643. [PMID: 27249668 PMCID: PMC4895443 DOI: 10.1038/ncomms11643] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/15/2016] [Indexed: 12/05/2022] Open
Abstract
Epithelial cells exhibit apical membrane protrusions, which confer specific functions to epithelial tissues. Microridges are short actin protrusions that are laterally long and form a maze-like pattern in the apical domain. They are widely found on vertebrate squamous epithelia including epidermis and have functions in mucous retention, membrane storage and abrasion resistance. It is largely unknown how the formation of these laterally long actin projections is regulated. Here, we show that antagonistic interactions between aPKC and Lgl–regulators of apical and basolateral domain identity, respectively,–control the length of microridges in the zebrafish periderm, the outermost layer of the epidermis. aPKC regulates the levels of Lgl and the active form of non-muscle myosinII at the apical cortex to prevent actin polymerization-dependent precocious fusion and elongation of microridges. Our data unravels the functional significance of exclusion of Lgl from the apical domain in epithelial cells. Squamous epithelia present actin-rich microridges on the apical surface, but the mechanism of their formation is not known. Here the authors show that, in zebrafish epidermis, the exclusion of the basolateral regulator Lgl from the apical domain by atypical protein kinase C prevents precocious elongation and fusion of microridges.
Collapse
|
15
|
Shute L, Huebner E, Anderson WG. Microscopic identification of novel cell types in the integument of larval lake sturgeon, Acipenser fulvescens. J Morphol 2015; 277:86-95. [PMID: 26440535 DOI: 10.1002/jmor.20480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/12/2015] [Accepted: 08/23/2015] [Indexed: 11/10/2022]
Abstract
Osmoregulation, respiration, nutrient/mineral transport, and defense mechanisms are all evident in the integument of fish. The role of the integument in these physiological processes is particularly important during early life history in larval fishes, as functional systems such as the gills and gastrointestinal tract are not fully developed. Using a variety of microscopy techniques, we describe the morphology of keratinocytes, mitochondria rich cells, ciliated cells and mucous cells of the skin, yolk sac, and gills. The cytology we observed was similar to previous studies describing the integument of larval fish, however, we have also identified two novel cell types on the integument of larval Lake Sturgeon, Acipenser fulvescens, between 9 and 34 days post fertilization. Our detailed analysis included a multifaceted microscopy approach using scanning electron, transmission electron, and light microscopy to elucidate the histology of the tissue and cellular morphology in addition to quantification and distribution of these novel cell types. The first cell type had a characteristic ampullary shape with a central cavity and a pore opening at the surface. The second, located on the free surface of the epidermis, had an uneven plasma membrane surface. Based on the abundance of secretory vesicles, organelles necessary for protein synthesis, and the lack of neural connection in both cell types, we propose these cells to be involved in the release of semiochemicals that may act as a pheromone, alarm substance, or chemical defense mechanism.
Collapse
Affiliation(s)
- Lauren Shute
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada, Manitoba, R3T 2N2
| | - Erwin Huebner
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada, Manitoba, R3T 2N2
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada, Manitoba, R3T 2N2
| |
Collapse
|
16
|
Lam PY, Mangos S, Green JM, Reiser J, Huttenlocher A. In vivo imaging and characterization of actin microridges. PLoS One 2015; 10:e0115639. [PMID: 25629723 PMCID: PMC4309568 DOI: 10.1371/journal.pone.0115639] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/25/2014] [Indexed: 11/19/2022] Open
Abstract
Actin microridges form labyrinth like patterns on superficial epithelial cells across animal species. This highly organized assembly has been implicated in mucus retention and in the mechanical structure of mucosal surfaces, however the mechanisms that regulate actin microridges remain largely unknown. Here we characterize the composition and dynamics of actin microridges on the surface of zebrafish larvae using live imaging. Microridges contain phospho-tyrosine, cortactin and VASP, but not focal adhesion kinase. Time-lapse imaging reveals dynamic changes in the length and branching of microridges in intact animals. Transient perturbation of the microridge pattern occurs before cell division with rapid re-assembly during and after cytokinesis. Microridge assembly is maintained with constitutive activation of Rho or inhibition of myosin II activity. However, expression of dominant negative RhoA or Rac alters microridge organization, with an increase in distance between microridges. Latrunculin A treatment and photoconversion experiments suggest that the F-actin filaments are actively treadmilling in microridges. Accordingly, inhibition of Arp2/3 or PI3K signaling impairs microridge structure and length. Taken together, actin microridges in zebrafish represent a tractable in vivo model to probe pattern formation and dissect Arp2/3-mediated actin dynamics in vivo.
Collapse
Affiliation(s)
- Pui-ying Lam
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States of America
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Steve Mangos
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Julie M. Green
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States of America
- * E-mail:
| |
Collapse
|
17
|
Composition and formation of flame cell caps: A substratum for the attachment of micro-organisms to sea horse epidermis. ACTA ACUST UNITED AC 2011. [DOI: 10.1017/s0269727000010356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SynopsisThe epidermis of the sea horseHippocampus kudais characterised by flame cone cells, each of which protrudes 20-40 μm above the surface and is covered by a prominent mucous cap. Unlike normal surface cells, the mucoid caps can support epiphytic microbial growth.Histochemically the mucous cap is a neutral mucopolysaccharide-protein complex possessing 1,2 glycol groups and SH-groups; acid mucopolysaccharides are absent. The acid mucopolysaccharide glycocalyx of unmodified surface cells is absent from the mucous cap surface.Ultrastructurally two types of vesicle can be distinguished in flame cells. Type I is oval (0·3 × 0·6 um) with contents of medium electron density and occurs principally in mature flame cells. Type II, seen only in developing cells, is spherical (0·4 μm) and contains rod-like subunits characteristic of the cap mucous. Secretion is mediated by channels formed by smooth endoplasmic reticulum. Unmodified surface cells also secrete their vesicular contents, which resemble the Type I vesicles of flame cells and are similar to the goblet mucous vesicles of other fish, through similar channels.Flame cell mucous caps, by virtue of their histochemistry, possible provide a suitable substratum for the adhesion and growth of epiphytes which in turn may afford protection against cnidarian nematocysts.
Collapse
|
18
|
Fleming TP. The ultrastructure of the sperm funnel and non-glandular vas deferens of Tubifex tubifex (Annelida: Oligochaeta). J Zool (1987) 2010. [DOI: 10.1111/j.1469-7998.1981.tb04598.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Matsumoto R, Sugimoto M. Dermal matrix proteins initiate re-epithelialization but are not sufficient for coordinated epidermal outgrowth in a new fish skin culture model. Cell Tissue Res 2006; 327:249-65. [PMID: 17043792 DOI: 10.1007/s00441-006-0310-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/17/2006] [Indexed: 12/18/2022]
Abstract
We have established a new culture system to study re-epithelialization during fish epidermal wound healing. In this culture system, fetal bovine serum (FBS) stimulates the epidermal outgrowth of multi-cellular layers from scale skin mounted on a coverslip, even when cell proliferation is blocked. The rate of outgrowth is about 0.4 mm/h, and at 3 h after incubation, the area occupied by the epidermal sheet is nine times larger than the area of the original scale skin. Cells at the bottom of the outgrowth show a migratory phenotype with lamellipodia, and "purse string"-like actin bundles have been found over the leading-edge cells with polarized lamellipodia. In the superficial cells, re-development of adherens junctions and microridges has been detected, together with the appearance and translocation of phosphorylated p38 MAPK into nuclear areas. Thus, this culture system provides an excellent model to study the mechanisms of epidermal outgrowth accompanied by migration and re-differentiation. We have also examined the role of extracellular matrix proteins in the outgrowth. Type I collagen or fibronectin stimulates moderate outgrowth in the absence of FBS, but development of microridges and the distribution of phosphorylated p38 MAPK are attenuated in the superficial cells. In addition, the leading-edge cells do not have apparent "purse string"-like actin bundles. The outgrowth stimulated by FBS is inhibited by laminin. These results suggest that dermal substrates such as type I collagen and fibronectin are able to initiate epidermal outgrowth but require other factors to enhance such outgrowth, together with coordinated alterations in cellular phenotype.
Collapse
Affiliation(s)
- Reiko Matsumoto
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, Japan
| | | |
Collapse
|
20
|
Alibardi L. Structural and Immunocytochemical Characterization of Keratinization in Vertebrate Epidermis and Epidermal Derivatives. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:177-259. [PMID: 17098057 DOI: 10.1016/s0074-7696(06)53005-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents comparative aspects of epidermal keratinization in vertebrates, with emphasis on the evolution of the stratum corneum in land vertebrates. The epidermis of fish does not contain proteins connected with interkeratin matrix and corneous cell envelope formation. Mucus-like material glues loose keratin filaments. In amphibians a cell corneous envelope forms but matrix proteins, aside from mucus/glycoproteins, are scarce or absent. In reptiles, birds, and mammals specific proteins associated with keratin become relevant for the production of a resistant corneous layer. In reptiles some matrix, histidine-rich and sulfur-rich corneous cell envelope proteins are produced in the soft epidermis. In avian soft epidermis low levels of matrix and cornified proteins are present while lipids become abundant. In mammalian keratinocytes, interkeratin proteins, cornified cell envelope proteins, and transglutaminase are present. Topographically localized areas of dermal-epidermal interactions in amniote skin determine the formation of skin derivatives such as scales, feathers, and hairs. New types of keratin and associated proteins are produced in these derivatives. In reptiles and birds beta-keratins form the hard corneous material of scales, claws, beaks, and feathers. In mammals, small sulfur-rich and glycine-tyrosine-rich proteins form the corneous material of hairs, horns, hooves, and claws. Molecular studies on reptilian beta-keratins show they are glycine-rich proteins. They have C- and N-terminal amino acid regions homologous to those of mammalian proteins and a central core with homology to avian scale/feather keratins. These findings suggest that ancient reptiles already possessed some common genes that later diversified to produce some keratin-associated protein in extant reptiles and birds, and others in mammals. The evolution of these small proteins represents the more recent variation of the process of cornification in vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Department of Experimental and Evolutionary Biology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
21
|
Sharma A, Anderson KI, Müller DJ. Actin microridges characterized by laser scanning confocal and atomic force microscopy. FEBS Lett 2005; 579:2001-8. [PMID: 15792810 DOI: 10.1016/j.febslet.2005.02.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/03/2005] [Accepted: 02/21/2005] [Indexed: 11/25/2022]
Abstract
We have characterized the cell surface of zebrafish stratified epithelium using a combined approach of light and atomic force microscopy under conditions which simulate wound healing. Microridges rise on average 100 nm above the surface of living epithelial cells, which correlate to bundles of cytochalasin B-insensitive actin filaments. Time-lapse microscopy revealed the bundles to form a highly dynamic network on the cell surface, in which bundles and junctions were severed and annealed on a time scale of minutes. Atomic force microscopy topographs further indicated that actin bundle junctions identified were of two types: overlaps and integrated end to side T- and Y-junctions. The surface bundle network is found only on the topmost cell layer of the explant, and never on individual locomoting cells. Possible functions of these actin bundles include cell compartmentalization of the cell surface, resistance to mechanical stress, and F-actin storage.
Collapse
Affiliation(s)
- Amita Sharma
- BIOTEC and Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | |
Collapse
|
22
|
Abstract
The normal structure and function of the piscine integument reflects the adaptation of the organism to the physical, chemical, and biological properties of the aquatic environment, and the natural history of the organism. Because of the intimate contact of fish with the environment, cutaneous disease is relatively more common in fish than in terrestrial vertebrates and is one of the primary disease conditions presented to the aquatic animal practitioner. However, cutaneous lesions are generally nonspecific and may be indicative of disease that is restricted to the integument or a manifestation of systemic disease. Regardless, a gross and microscopic examination of the integument is simple to perform, but is highly diagnostic and should always be included in the routine diagnostic effort of the aquatic animal practitioner, especially since various ancillary diagnostic procedures are either not practical or lack predictive value in fish. The purpose of this article is to provide an overview of normal cutaneous biology prior to consideration of specific cutaneous diseases in fish.
Collapse
Affiliation(s)
- J M Groff
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
23
|
Lamche G, Burkhardt-Holm P. Nonylphenol provokes a vesiculation of the Golgi apparatus in three fish epidermis cultures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2000; 47:137-148. [PMID: 11023692 DOI: 10.1006/eesa.2000.1957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aim of this work was to study the effects of nonylphenol and waste water on the cell ultrastructure of fish skin. Therefore, besides a recently established primary cell culture and a cell line, an epidermal tissue culture of fish was developed and tested. In all three systems a prominent vesiculation of the Golgi apparatus was observed after exposure to nonylphenol, which has not been described before and therefore strongly suggests an effect that might indicate exposure to nonylphenol and/or related substances. The Epithelial papulosum cyprini cell line was the most sensitive to nonylphenol, followed by the primary cell culture of epidermis cells and then the explant tissue culture. The vesiculation of the Golgi apparatus was accompanied by degenerative changes in the two cell cultures only. The lack of degenerative changes in the cells of the tissue culture was discussed with respect to the presence of differentiated cells that might better be able to protect themselves by mucous or by an activated xenobiotic metabolism. In a second type experiment, a waste water sample containing small concentrations of nonylphenol was applied to the cultures. It did not lead to a vesiculation of the Golgi apparatus, probably because the nonylphenol concentrations in the waste water were too low to induce the vesiculation. The cultures exposed to waste water revealed unspecific degenerative cellular changes. Additionally, explant cultures were prepared from fish that had survived a 6-month exposure to polluted river water. In these cultures a higher number of mitochondria containing myelin bodies were observed when compared to control cultures. Consequently, exposure to polluted water containing a mixture of substances in vitro and in vivo was found to lead to degenerative alterations in the ultrastructure of the cells.
Collapse
Affiliation(s)
- G Lamche
- Centre for Fish and Wildlife Health, Institute of Animal Pathology, Laenggassstrasse 122, Bern, CH-3012, Switzerland
| | | |
Collapse
|
24
|
Quilhac A, Sire JY. Spreading, proliferation, and differentiation of the epidermis after wounding a cichlid fish, Hemichromis bimaculatus. Anat Rec (Hoboken) 1999; 254:435-51. [PMID: 10096676 DOI: 10.1002/(sici)1097-0185(19990301)254:3<435::aid-ar15>3.0.co;2-d] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A large superficial wound has been experimentally provoked in the cichlid fish Hemichromis bimaculatus to study the interactions between the epidermal cells and the substrate on which they spread, on the one hand, and the restoration of the subepidermal tissues and the epithelial-mesenchymal interactions preceding scale regeneration, on the other hand. The re-epithelialization process, e.g., migration, spreading, differentiation, and proliferation of the epidermal cells, has been followed step by step, using light, scanning and transmission electron microscopy, and tritiated thymidine incorporation, until complete reorganization of the healing epidermis. Wound healing is fast (500 microm/hr) and proceeds centripetally from the wound margins. The epidermal cells spread on a wound surface which is composed of two different matrices: the remains of basement membrane materials covering the scale-pockets, and collagen fibrils of cut dermal strips. Even though both matrices favour cell spreading and attachment, migrating cells show a different behaviour. The re-epithelialization of the wound follows an orderly sequence similar to amphibian and mammalian wound healing, i.e., a "leap frog" mechanism of cell locomotion involving three epidermal layers. The basal layer cells, which spread on the substrate, and the superficial layer cells which protect the epidermis, differentiate first. Whatever the type of substrate over which the epithelium spreads (basement membrane material or collagen fibrils), the epidermal basal layer cells differentiate as soon as they become attached. The incorporation of tritiated thymidine has revealed that there is no proliferation in the healing epidermis until after complete closure of the wound, but that the rapid re-epithelialization of the large surface requires the recruitment of epidermal cells at the wound margins. The present study offers new data on the dynamics of re-epithelialisation and on the resistance of cichlid skin to such wounds. It is also clearly shown that the epidermal basal layer cells differentiate rapidly, a step which is interpreted as the first stage of epithelial-mesenchymal interactions that will lead to scale regeneration.
Collapse
Affiliation(s)
- A Quilhac
- UMR 8570, Université Paris 7, CNRS, MNHN, Collège de France
| | | |
Collapse
|
25
|
Uehara K, Miyoshi M, Miyoshi S. Function of the cytoskeleton in cells with microridges from the oral epithelium of the carp Cyprinus carpio. Cell Tissue Res 1994. [DOI: 10.1007/bf00354783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Uehara K, Miyoshi M, Miyoshi S. Cytoskeleton in microridges of the oral mucosal epithelium in the carp, Cyprinus carpio. Anat Rec (Hoboken) 1991; 230:164-8. [PMID: 1714256 DOI: 10.1002/ar.1092300203] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microridges produce a characteristic fingerprint-like pattern on the surface of fish oral mucosa. The cytoskeleton in these microridges was examined by immunofluorescence microscopy and transmission electron microscopy after detergent extraction and decoration with myosin subfragment 1. The effect of cytochalasin B on microridges was probed with scanning electron microscopy. Immunofluorescence microscopy revealed that actin filaments were present throughout the periphery of the epithelial cells and were especially localized beneath the free surface of the epithelium. In thin sections treated with Triton X-100, the majority of filaments in the microridges and their bases were found to be actin filaments and a plexus of keratin filaments that underlay the network of actin filaments. A part of the plexus of keratin filaments entered the microridges. After extraction with Triton X-100 and decoration with myosin subfragment 1, decorated actin filaments were found in the microridge cores, connected to the keratin filaments. The keratin filaments aggregated in the pattern of microridges and a few of them protruded into the microridges. Treatment with cytochalasin B caused microridges to disappear or to become thinner and lower or to change short or microvillus-like microridges. When most microridges disappeared, the surface of the superficial cells was prominently swollen, but the cell boundaries were fastened, and the microridges in the periphery were preserved. On the basis of these observations, the possible roles of actin and keratin filaments in the maintenance and the formation of microridges are discussed.
Collapse
Affiliation(s)
- K Uehara
- First Department of Oral Anatomy, Fukuoka Dental College, Japan
| | | | | |
Collapse
|
27
|
Actin filaments in microridges of the oral mucosal epithelium in the carp Cyprinus carpio. Cell Tissue Res 1990. [DOI: 10.1007/bf00313519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Zaccone G, Fasulo S, Ainis L, Contini A. Localization of calmodulin positive immunoreactivity in the surface epidermis of the brown trout, Salmo trutta. HISTOCHEMISTRY 1989; 91:13-6. [PMID: 2925445 DOI: 10.1007/bf00501904] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calmodulin is a Ca2+-dependent modulatory protein which is required in the general regulation of a large number of key processes of cellular metabolism. In the present study, the localization of calmodulin positive immunoreactivity in the epidermis of the brown trout, Salmo trutta was investigated using a specific mouse monoclonal antibody to calmodulin of IgG2 class. The immunoreaction was found only in the superficial epithelial cells that constitute the main histological site for the production of calmodulin positive substances. Because of its distribution, this protein might have a physiological significance in the activation of the microvillar skeleton and in the control of the permeability of the skin epithelium.
Collapse
Affiliation(s)
- G Zaccone
- Department of Animal Biology and Marine Ecology, Messina University, Italy
| | | | | | | |
Collapse
|
29
|
Markl J, Franke WW. Localization of cytokeratins in tissues of the rainbow trout: fundamental differences in expression pattern between fish and higher vertebrates. Differentiation 1988; 39:97-122. [PMID: 2468546 DOI: 10.1111/j.1432-0436.1988.tb00086.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using a panel of antibodies against different cytokeratins in immunofluorescence microscopy on frozen tissue sections and two-dimensional gel electrophoresis of cytoskeletal proteins from these tissues, we have studied the tissue distribution of cytokeratins in a fish, the rainbow trout Salmo gairdneri. We have distinguished at least 14 different cytokeratin polypeptides in only a limited number of tissues, thus demonstrating the great complexity of the cytokeratin pattern in a fish species. The simplest cytokeratin pattern was that present in hepatocytes, comprising one type-II (L1) and two type-I (L2, L3) polypeptides that appear to be related to mammalian cytokeratins 8 and 18, respectively. Two or all three cytokeratins of this group were also identified in several other epithelial tissues, such as kidney. Epithelia associated with the digestive tract contained, in addition, other major tissue-specific cytokeratins, such as components D1-D3 (stomach, intestine and swim bladder) and B1 and B2 (biliary tract). With the exception of D1, all these polypeptides were also found in a cultured cell line (RTG-2). Epidermal keratinocytes contained D1 and six other major cytokeratins, termed E1-E6. The most complex cytokeratin pattern was that found in the gill epithelium. Surprisingly, antibodies specific for cytokeratins of the L1-L3 group also reacted with certain cell-sheet-forming tissues that are not considered typical epithelia and in higher vertebrates express primarily, if not exclusively, vimentin. Such tissues were (a) endothelia, including the pillar cells of the "gill filaments", (b) scale-associated cells, and (c) the ocular lens epithelium, and also several nonepithelial cell types, such as (d) fibroblasts and other mesenchymal cells, (e) chondrocytes, (f) certain vascular smooth muscle cells, and (g) astroglial cells of the optic nerve. The differences between the patterns of cytokeratin expression in this fish species and those of higher vertebrates are discussed. It is concluded that the diversity of cytokeratins has already been established in lower vertebrates such as fish, but that the tissue-expression pattern of certain cytokeratins has been restricted during vertebrate evolution. We discuss the value of antibodies specific for individual cytokeratin polypeptides as marker molecules indicating cell and tissue differentiation in fish histology, embryology, and pathology.
Collapse
Affiliation(s)
- J Markl
- Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg
| | | |
Collapse
|
30
|
Uehara K, Miyoshi M, Miyoshi S. Microridges of oral mucosal epithelium in carp, Cyprinus carpio. Cell Tissue Res 1988; 251:547-53. [PMID: 3365750 DOI: 10.1007/bf00214002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The surface of carp oral mucosa is characterized by various patterns of microridges about 0.3 micron wide, 0.1 micron high, and of various lengths. To elucidate the derivation and function of these microridges, the oral epithelium was examined by light- and electron microscopy. Microridges were present only on the surfaces of the superficial cells. Therefore, microridges on renewed superficial cells have been discarded, and the various patterns of microridges found on the cell surface appear to indicate the progress of their development. In thin sections, the outer leaflet of the plasma membranes of microridges stained strongly with ruthenium red, and the underlying cytoplasm was packed with many fine filaments. The superficial cells contained many secretory vesicles that were PAS-positive but Alcian blue-negative at pH 2.5 and pH 1.0. However, after sulfation the vesicles gave a positive reaction with toluidine blue. These vesicles are secreted by exocytosis at the free surface of the cells. After release, the membranes of the vesicles are thought to be utilized for formation of microridges. On the basis of these observations, the possible function of microridges is discussed.
Collapse
Affiliation(s)
- K Uehara
- First Department of Oral Anatomy, Fukuoka Dental College, Japan
| | | | | |
Collapse
|
31
|
Bereiter-Hahn J. Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta Biotheor 1985; 34:139-48. [PMID: 3933229 DOI: 10.1007/bf00046779] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shape and locomotion of tissue cells depend on the interaction of elements of the cytoskeleton, adhesion to the substrate and an intracellular hydrostatic pressure. The existence of this pressure becomes obvious from increase in cell volume on cessation of contractile forces and from observations with ultrasound acoustic microscopy. Wherever such an internal pressure is established, it is involved in generation of shape and driving force of cell locomotion. Therefore each hypothesis on cell shape and locomotion must consider this property of a living cell. Apparently different types of locomotion depend on differences in substrate adhesion and/or cytoskeleton organization.
Collapse
|
32
|
Fuchs E, Marchuk D. Type I and type II keratins have evolved from lower eukaryotes to form the epidermal intermediate filaments in mammalian skin. Proc Natl Acad Sci U S A 1983; 80:5857-61. [PMID: 6193525 PMCID: PMC390174 DOI: 10.1073/pnas.80.19.5857] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have traced the evolutionary origins of keratin-like sequences to the genomes of lower eukaryotes. The proteins encoded by these genes have evolved to form the intermediate filaments that comprise the backbone of vertebrate skin cells. Two related but distinct types of keratins encoded by two separate multigene subfamilies are expressed in the epidermal keratinocytes of vertebrate species from fish to human. Both at the level of protein and at the level of DNA, these two classes of keratins are coordinately conserved throughout vertebrate evolution, indicating the central role that both types of keratins must play in the assembly and structure of the 8-nm filament.
Collapse
|
33
|
Patzner RA, Hanson V, Adam H. Fine Structure of the Surface of Small Mucous Cells in the Epidermis of the HagfishMyxine glutinosa(Cyclostomata). ACTA ZOOL-STOCKHOLM 1982. [DOI: 10.1111/j.1463-6395.1982.tb00776.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Kunzenbacher I, Bereiter-Hahn J, Osborn M, Weber K. Dynamics of the cytoskeleton of epidermal cells in situ and in culture. Cell Tissue Res 1982; 222:445-57. [PMID: 7044557 DOI: 10.1007/bf00213224] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cytoskeleton of primary tissue-culture cells from the epidermis of Xenopus laevis tadpoles was investigated by phase-contrast, immunofluorescence, and electron microscopy. The connection between the arrangement of different types of filaments and the mechanical properties of the epidermis is discussed. The bilayered epidermis attains stability from thick bundles of tonofilaments interconnecting the basal desmosomes. Twisting of tonofilaments around each other can explain the occurrence of elastic filamentous curls forming a meshwork braced between rows of "small desmosomes" in the apical region of the epidermis. Actin is arranged as a diffuse meshwork and sometimes forms bundles intermingling with tonofilament bundles. Surface membranes and rows of "small desmosomes" are delineated by actin and contain alpha-actinin. Actin raises the tension for rounding and spreading of cells. Microtubules stabilize already well-developed lamellae.
Collapse
|
35
|
Hietanen J. Acantholytic cells in pemphigus. A scanning and transmission electron microscopic study. Acta Odontol Scand 1982; 40:257-73. [PMID: 6960626 DOI: 10.3109/00016358209024069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Scanning electron microscopy (SEM) was performed on oral scrapings from seven patients with pemphigus vulgaris and one with pemphigus vegetans as well as on skin samples from one of those with pemphigus vulgaris. The unstained, fixed, critical-point dried cells were identified with the aid of a light microscope. On the basis of the surface appearance, three main types of acantholytic cells were identified: smooth-surfaced, wrinkled, and microvillous. The acantholytic cells were rounded to ovoid and some showed either a central bulging or a concavity. Small, rounded to ovoid holes or indentations (diameter 0.1-0.3 mumol) were observed on most cell surfaces. The surfaces of acantholytic cells were occasionally occupied by a few micro-organisms. Neutrophilic polymorphonuclear leucocyte/acantholytic cell rosettes were studied by SEM. No gap between acantholytic cell and surrounding leucocytes could be demonstrated. It is postulated that neutrophils may mediate the cytolysis of antibody-coated acantholytic cells. Oral scrapings from one patient with pemphigus vulgaris were collected for transmission electron microscopy (TEM). The acantholytic cells were rounded or ovoid and usually had centrally placed nuclei. Tonofilaments were either randomly distributed or concentrically arranged around the nucleus. In other acantholytic cells there was a halo containing vesicles of varying size around the nucleus. TEM findings suggest that acantholytic cells represent dead or dying cells. Both TEM and SEM findings suggest that when acantholytic cells first separate they may show variable numbers of microvilli, which are probably lost in older acantholytic cells.
Collapse
|
36
|
Blose SH, Meltzer DI. Visualization of the 10-NM filament vimentin rings in vascular endothelial cells in situ: close resemblance to vimentin cytoskeletons found in monolayers in vitro. Exp Cell Res 1981; 135:299-309. [PMID: 7030754 DOI: 10.1016/0014-4827(81)90166-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Walker ER, Fidler SF, Hinton DE. Morphology of the buccopharyngeal portion of the gill in the fathead minnow Pimephales promelas (Rafinesque). Anat Rec (Hoboken) 1981; 200:67-81. [PMID: 7258695 DOI: 10.1002/ar.1092000107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Buccopharyngeal epithelium covering gill arches and gill rakers of the fathead minnow was studied by light microscopic, scanning, and transmission electron microscopic techniques. Mature mucous cells in goblet pattern and nonmucus containing cells were in the apical one-third of the tissue. The latter cells contributed to a surface microridge system which overlapped apices of goblet cells. The bottom of the epithelium was comprised of a continuous row of darkly stained basal epithelial cells. In this region, two to three epithelial cells of similar staining characteristics were piled up forming apical columns which partially encircled nests of lightly stained cells. A basal lamina and thick basement lamella of about 20 piles of orthogonally arranged collagen supported the epithelium. Numerous taste buds were seen in gill arches and rakers. Taste bud cellular components included marginal cells, light receptor cells, dark receptor cells, and basal cells. These were identical in all taste buds. Taste bud surface morphology differed between gill arch and raker. Pores of the former were depressed, while those of the latter were raised. Thick microvilli of taste pores were apical extensions of light cells, while smaller, more numerous microvilli were projections from dark cells.
Collapse
|