1
|
You SO, Yoon HS, Kim HS, Park JS, Lee SH. Temporal Changes in the Local Expression of Central
Hormone-Regulating Factors in Rat Testis. Dev Reprod 2024; 28:21-28. [PMID: 38654975 PMCID: PMC11034993 DOI: 10.12717/dr.2024.28.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Present study aimed to investigate the temporal changes in expression of some reproductive hormones in testis, originally found in hypothalamus and pituitary. Rats were sacrificed on postnatal day 23 (PND23; immature), pubertal (PND53) and PND 81 (young adult). The testicular RNAs were extracted, and semi-quantitative PCRs for gonadotropin-releasing hormone (GnRH), kisspeptin 1 (KiSS1), pituitary adenylate cyclase-activating polypeptide (PACAP), LH subunits and LH receptor were performed. Transcript levels of GnRH and KiSS1 at PND23 were significantly higher than levels of PND53 and PND81 (p <0.001). PACAP mRNA level at PND23 was significantly lower than those of PND53 and PND81 (p <0.001). The mRNA levels of both testis type and pituitary type luteinizing hormone β subunit (tLHβ and pLHβ, respectively) at PND23 were significantly lower than levels of PND53 and PND81 (p <0.001). The mRNA level of glycoprotein hormone common alpha subunit (Cgα) at PND23 was significantly lower than those of PND53 and PND81 (p <0.001). Present study revealed the intratesticular expression of KiSS1 and GnRH showed a very similar trend while the expression of PACAP in the testis showed reversed pattern. The expressions of LHβ subunits (tLHβ and pLHβ) were very low during immature stage then increased significantly during puberty and early adulthood. Our attempt to study the local role(s) of intratesticular factors will be helpful to achieve precise understanding on the testis physiology and pathology.
Collapse
Affiliation(s)
- Si-On You
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| | - Han-Seo Yoon
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| | - Hye-Soo Kim
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| | - Jin-Soo Park
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| |
Collapse
|
2
|
Levi M, Shalgi R, Ben-Aharon I. Pretreatment with gonadotropin-releasing hormone antagonist protects against chemotherapy-induced testicular damage 'in mice. Ther Adv Med Oncol 2022; 14:17588359221113274. [PMID: 36225594 PMCID: PMC9549199 DOI: 10.1177/17588359221113274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Testicular toxicity following chemotherapy is of increasing importance with the continuous improvement of survival rates. Gonadotropin-releasing hormone (GnRH) was suggested to protect testis against such toxicity; however, its suppressive quality and mechanism of action are still unclear. We examined whether and how pretreatment with GnRH antagonist protects against the testicular damage caused by chemotherapy. Methods Mature male mice were injected subcutaneously eight times in 2-day intervals with either saline or GnRH antagonist (Cetrotide; 1 g/mg), followed by an intraperitoneal injection with either saline or cyclophosphamide (CTX;100 mg/kg BW) and sacrificed 2 weeks or 3 months later. Testicular weight, epididymis weight, epididymal sperm count and sperm motility were measured. Serum anti-Müllerian hormone (AMH) was measured by enzyme-linked immunosorbent assay. Immunohistochemistry (Ki-67), immunofluorescence (PCNA, CD34), terminal transferase-mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) and computerized analysis were performed to examine testicular proliferation, apoptosis and vascularization. Quantitative real-time PCR was used to assess the amount of spermatogonial reserve (Id4 and Gfra1 mRNAs). Results Pretreatment with GnRH antagonist transiently reduced testicular weight, epididymal weight, germinal proliferation and sperm count; it also abolished the permanent long-term effect of CTX on these parameters and prevented cyclophosphamide-induced testicular toxicity characterized by apoptosis and serum AMH increase and irreversible loss of spermatogonial reserve. Conclusions Our findings imply that pretreatment with GnRH antagonist temporarily reduces spermatogenesis and may be used as pretreatment for reducing chemotherapeutic testicular toxicity.
Collapse
Affiliation(s)
- Mattan Levi
- Department of Cell and Developmental Biology,
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- IVF Lab Director, IVF unit, Meir Medical
Center, 59 Tchernichovsky st. Kfar Saba 4428163, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology,
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Ben-Aharon
- Division of Oncology, Rambam Health Care
Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa,
Israel
| |
Collapse
|
3
|
Koller J, Herzog H, Zhang L. The distribution of Neuropeptide FF and Neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control. Neuropeptides 2021; 90:102198. [PMID: 34534716 DOI: 10.1016/j.npep.2021.102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
Neuropeptide FF (NPFF) and Neuropeptide VF (NPVF) are part of the extended RFamide peptide family characterized by their common arginine (R) and amidated phenylalanine (F)-motif at the carboxyl terminus. Both peptides signal through their respective high affinity G-protein coupled receptors, NPFFR2 and NPFFR1, but also show binding affinity for the other receptor due to their sequence similarity. NPFF and NPVF are highly conserved throughout evolution and can be found across the whole animal kingdom. Both have been implicated in a variety of biological mechanisms, including nociception, locomotion, reproduction, and response to pain and stress. However, more recently a new major functional role in the control of energy homeostasis has been discovered. In this article we will summarise the current knowledge on the distribution of NPFF, NPVF, and their receptors in central and peripheral tissues, as well as how this relates to the regulation of food intake and energy balance, which will help to better understand their role in these processes and thus might help finding treatments for impaired energy homeostasis disorders, such as obesity or anorexia.
Collapse
Affiliation(s)
- Julia Koller
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, UNSW Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lei Zhang
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
de Villiers C, van der Horst G, Chauke C, Magwebu Z. The expression of type I and II gonadotropin-releasing hormone receptors transcripts in Vervet monkey (Chlorocebus aethiops) spermatozoa. Gen Comp Endocrinol 2021; 310:113819. [PMID: 34015343 DOI: 10.1016/j.ygcen.2021.113819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
Gonadotropin-Releasing Hormone (GnRH), acting via the GnRH receptor (GnRHR), and a member of G-protein coupled receptor (GPCR), plays an essential role in the control of reproduction while operating primarily at the hypothalamic level of the gonadotropic axis. GnRH and its receptor are co-expressed in certain specific cells, suggesting an autocrine regulation of such cells. In the male reproductive system, two forms of GnRH (I and II) and its receptors (GnRHR) are present in the human and non-human primate (NHP) testis, prostate, epididymis, seminal vesicle, and human spermatozoa. In humans, the GnRHR-II receptor gene is disrupted by a frameshift in exon 1 and a stop codon in exon 2, rendering the receptor non-functional, whereas a fully functional GnRHR-II receptor is present in New-World and Old-World monkeys. There is no evidence of the existence of a GnRH receptor in NHP sperm. Since the NHP has a phylogenetic relationship to man and is often used as models in reproductive physiology, this present study aimed to determine GnRHR-I and GnRHR-II in Vervet monkey (Chlorocebus aethiops) spermatozoa. A total of 24 semen samples were obtained from four adult Vervet monkeys through electro-ejaculation and utilized for genotyping and gene expression analysis of GnRHR-I and II. Here we report that both receptors were successfully identified in the Vervet monkey sperm with the abundance of GnRHR-I gene expression compared to GnRHR-II. In comparison to the human, there is no evidence of such a stop codon at position 179 in exon 2 of the Vervet GnRHR-II. These findings suggest that both receptors are transcriptionally functional in Vervet spermatozoa.
Collapse
Affiliation(s)
- Charon de Villiers
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa.
| | - Gerhard van der Horst
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Chesa Chauke
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
| | - Zandisiwe Magwebu
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
5
|
Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism 2018; 86:3-17. [PMID: 29223677 DOI: 10.1016/j.metabol.2017.11.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Reproduction is controlled by the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons play a central role in this axis through production of GnRH, which binds to a membrane receptor on pituitary gonadotrophs and stimulates the biosynthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Multiple factors affect GnRH neuron migration, GnRH gene expression, GnRH pulse generator, GnRH secretion, GnRH receptor expression, and gonadotropin synthesis and release. Among them anosmin is involved in the guidance of the GnRH neuron migration, and a loss-of-function mutation in its gene leads to a failure of their migration from the olfactory placode to the hypothalamus, with consequent anosmic hypogonadotropic hypogonadism (Kallmann syndrome). There are also cases of hypogonadotropic hypogonadim with normal sense of smell, due to mutations of other genes. Another protein, kisspeptin plays a crucial role in the regulation of GnRH pulse generator and the pubertal development. GnRH is the main hypothalamic regulator of the release of gonadotropins. Finally, FSH and LH are the essential hormonal regulators of testicular functions, acting through their receptors in Sertoli and Leydig cells, respectively. The main features of the male HPG axis will be described in this review.
Collapse
Affiliation(s)
- Athina Kaprara
- Unit of Reproductive Endocrinology, Medical School, Aristotle University of Thessaloniki, Greece.
| | | |
Collapse
|
6
|
Olea GB, Aguirre MV, Lombardo DM. Anatomical, histological and immunohistochemical study of testicular development in Columba livia (Aves: Columbiformes). Acta Histochem 2018; 120:446-455. [PMID: 29776745 DOI: 10.1016/j.acthis.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/30/2022]
Abstract
In this work, testicular ontogeny is analyzed at the anatomical, histological and immunohistochemical levels; the latter through the detection of GnRHR and PCNA in the testicles of embryos, neonates and juveniles of Columba livia. We analyzed 150 embryos, 25 neonates and 5 juveniles by means of observations under a stereoscopic magnifying glass and scanning electron microscope (SEM). The histological analysis was performed using hematoxylin-eosin staining techniques and the PAS reaction. For the immunohistochemical analysis, the expression of GnRHR and PCNA in embryos corresponding to stages 41, 43 and in neonates of 2, 5, 7 and 75 days post-hatch was revealed in testicular histological preparations. That gonadal outline is evident in stage 18. In stage 29, the testes are constituted of a medulla in which the PGCs are surrounded by the Sertoli cells, constituting the seminiferous tubules. From stage 37 a greater organization of the tubules is visualized and at the time of hatching the testicle is constituted of the closed seminiferous tubules, formed of the PGCs and Sertoli cells. The Leydig cells are evident outside the tubules. In the juvenile stages, the differentiation of germline cells and the organization of small vessels that irrigate the developing testicle begin to be visible. In the analyzed stages, the immunodetection of the GnRHR receptor and PCNA revealed specific marking in the plasma membrane and in the perinuclear zone for GnRHR and in the nucleus of the germline cells in juvenile testicles for PCNA. These results can be used as a basis for further study of endocrine regulation events during testicular ontogeny in avian species.
Collapse
Affiliation(s)
- G B Olea
- Universidad Nacional del Nordeste, Facultad de Medicina, Laboratorio de Investigaciones Bioquímicas y Médicas (LIBIM) - CONICET, Moreno 1240, Corrientes, C.P. 3400, Argentina
| | - M V Aguirre
- Universidad Nacional del Nordeste, Facultad de Medicina, Laboratorio de Investigaciones Bioquímicas y Médicas (LIBIM) - CONICET, Moreno 1240, Corrientes, C.P. 3400, Argentina
| | - D M Lombardo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Chorroarin 280, Buenos Aires (CABA), C.P. 1428, Argentina.
| |
Collapse
|
7
|
Active immunization against GnRH in pre-pubertal domestic mammals: testicular morphometry, histopathology and endocrine responses in rabbits, guinea pigs and ram lambs. Animal 2018; 12:784-793. [DOI: 10.1017/s1751731117002129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
8
|
Busby ER, Sherwood NM. Gonadotropin-releasing hormone receptor (Gnrhr) gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice. PLoS One 2017; 12:e0174452. [PMID: 28346489 PMCID: PMC5367835 DOI: 10.1371/journal.pone.0174452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/09/2017] [Indexed: 11/27/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.
Collapse
Affiliation(s)
- Ellen R. Busby
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
9
|
Testicular Dnmt3 expression and global DNA methylation are down-regulated by gonadotropin releasing hormones in the ricefield eel Monopterus albus. Sci Rep 2017; 7:43158. [PMID: 28225069 PMCID: PMC5320511 DOI: 10.1038/srep43158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, DNA methyltransferase 3 (Dnmt3) homologues are responsible for de novo DNA methylation and play important roles in germ cell development. In the present study, four dnmt3 genes, dnmt3aa, dnmt3ab, dnmt3ba and dnmt3bb.1, were identified in ricefield eels. Real-time quantitative PCR analysis showed that all four dnmt3 mRNAs were detected broadly in tissues examined, with testicular expression at relatively high levels. In the testis, immunostaining for all four Dnmt3 forms was mainly localized to spermatocytes, which also contained highly methylated DNA. All three forms of Gonadotropin-releasing hormone (Gnrh) in the ricefield eel were shown to decrease the expression of dnmt3 genes in the in vitro incubated testicular fragments through cAMP and IP3/Ca2+ pathways. Moreover, in vivo treatment of male fish with three forms of Gnrh decreased significantly the testicular Dnmt3 expression at both mRNA and protein levels, and the global DNA methylation levels. These results suggest that the expression of Dnmt3 and global DNA methylation in the testis of ricefield eels are potentially down-regulated by Gnrh, and reveal a novel regulatory mechanism of testicular Dnmt3 expression in vertebrates.
Collapse
|
10
|
Bulldan A, Shihan M, Goericke-Pesch S, Scheiner-Bobis G. Signaling events associated with gonadotropin releasing hormone-agonist-induced hormonal castration and its reversal in canines. Mol Reprod Dev 2016; 83:1092-1101. [DOI: 10.1002/mrd.22751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed Bulldan
- Institute for Veterinary Physiology and Biochemistry; Giessen Germany
| | - Mazen Shihan
- Institute for Veterinary Physiology and Biochemistry; Giessen Germany
| | - Sandra Goericke-Pesch
- Clinic for Obstetrics, Gynecology, and Andrology of Large and Small Animals, Justus-Liebig-University; Giessen Germany
| | | |
Collapse
|
11
|
Terashima R, Laoharatchatathanin T, Kurusu S, Kawaminami M. Augmentation of gonadotropin-releasing hormone receptor expression in the post-lactational mammary tissues of rats. J Reprod Dev 2016; 62:495-499. [PMID: 27349532 PMCID: PMC5081737 DOI: 10.1262/jrd.2016-035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a neurohormone of the hypothalamus controlling pituitary gonadotropin secretion and hence gametogenesis. While it has also been believed that GnRH is synthesized and functions in various peripheral tissues, the expression of GnRH receptor (GnRH-R) in peripheral tissues is not well-described. We previously found that annexin A5, which is increased in the pituitary gonadotropes by GnRH, is dramatically increased in rat mammary epithelial cells after weaning, suggesting that local GnRH is responsible for this increase. Annexin A5 is a member of the annexin family of proteins and is thought to be involved in various regulatory mechanisms, including apoptosis. In the present study, we examined GnRH-R expression in the mammary tissues after weaning. Although GnRH-R mRNA was not detected in the mammary tissues during lactation, it was dramatically increased after weaning. Forced weaning at mid-lactation (day 10) also promoted the expression of GnRH-R transcripts in mammary tissues within 2 days. Furthermore, western blotting analysis with anti-GnRH-R showed that the expression of an immuno-positive 60-kDa protein, whose size was equivalent to that of rat GnRH-R, was confirmed to increase after weaning. These findings clarified the induction of GnRH-R in the mammary tissues after weaning and suggest that GnRH is involved in the involution and tissue remodeling of post-lactating rat mammary tissues.
Collapse
Affiliation(s)
- Ryota Terashima
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | | | | | | |
Collapse
|
12
|
Presence of gonadotropin-releasing hormone-like peptide in the central nervous system and reproductive organs of the male blue swimming crab, Portunus pelagicus, and its effect on spermatogenesis. Cell Tissue Res 2016; 365:265-77. [DOI: 10.1007/s00441-016-2375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 02/01/2016] [Indexed: 02/02/2023]
|
13
|
Desaulniers AT, Cederberg RA, Mills GA, Ford JJ, Lents CA, White BR. LH-Independent Testosterone Secretion Is Mediated by the Interaction Between GNRH2 and Its Receptor Within Porcine Testes. Biol Reprod 2015; 93:45. [PMID: 26134865 DOI: 10.1095/biolreprod.115.128082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/17/2015] [Indexed: 11/01/2022] Open
Abstract
Unlike classic gonadotropin-releasing hormone 1 (GNRH1), the second mammalian isoform (GNRH2) is an ineffective stimulant of gonadotropin release. Species that produce GNRH2 may not maintain a functional GNRH2 receptor (GNRHR2) due to coding errors. A full-length GNRHR2 gene has been identified in swine, but its role in reproduction requires further elucidation. Our objective was to examine the role of GNRH2 and GNRHR2 in testicular function of boars. We discovered that GNRH2 levels were higher in the testis than in the anterior pituitary gland or hypothalamus, corresponding to greater GNRHR2 abundance in the testis versus the anterior pituitary gland. Moreover, GNRH2 immunostaining was most prevalent within seminiferous tubules, whereas GNRHR2 was detected in high abundance on Leydig cells. GNRH2 pretreatment of testis explant cultures elicited testosterone secretion similar to that of human chorionic gonadotropin stimulation. Treatment of mature boars with GNRH2 elevated testosterone levels similar to those of GNRH1-treated males, despite minimal GNRH2-induced release of luteinizing hormone (LH). When pretreated with a GNRHR1 antagonist (SB-75), subsequent GNRH2 treatment stimulated low levels of testosterone secretion despite a pattern of LH release similar to that in the previous trial, suggesting that SB-75 inhibited testicular GNRHR2s. Given that pigs lack testicular GNRHR1, these data may indicate that GNRH2 and its receptor are involved in autocrine or paracrine regulation of testosterone secretion. Notably, our data are the first to suggest a biological function of a novel GNRH2-GNRHR2 system in the testes of swine.
Collapse
Affiliation(s)
- Amy T Desaulniers
- University of Nebraska- Lincoln, Department of Animal Science, Lincoln, Nebraska
| | - Rebecca A Cederberg
- University of Nebraska- Lincoln, Department of Animal Science, Lincoln, Nebraska
| | - Ginger A Mills
- University of Nebraska- Lincoln, Department of Animal Science, Lincoln, Nebraska
| | - J Joe Ford
- US Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - Clay A Lents
- US Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - Brett R White
- University of Nebraska- Lincoln, Department of Animal Science, Lincoln, Nebraska
| |
Collapse
|
14
|
Ciaramella V, Chianese R, Pariante P, Fasano S, Pierantoni R, Meccariello R. Expression analysis of gnrh1 and gnrhr1 in spermatogenic cells of rat. Int J Endocrinol 2015; 2015:982726. [PMID: 25861269 PMCID: PMC4377535 DOI: 10.1155/2015/982726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/02/2015] [Indexed: 01/31/2023] Open
Abstract
Hypothalamic Gonadotropin Releasing Hormone (GnRH), via GnRH receptor (GnRHR), is the main actor in the control of reproduction, in that it induces the biosynthesis and the release of pituitary gonadotropins, which in turn promote steroidogenesis and gametogenesis in both sexes. Extrabrain functions of GnRH have been extensively described in the past decades and, in males, local GnRH activity promotes the progression of spermatogenesis and sperm functions at several levels. The canonical localization of Gnrh1 and Gnrhr1 mRNA is Sertoli and Leydig cells, respectively, but ligand and receptor are also expressed in germ cells. Here, we analysed the expression rate of Gnrh1 and Gnrhr1 in rat testis (180 days old) by quantitative real-time PCR (qPCR) and by in situ hybridization we localized Gnrh1 and Gnrhr1 mRNA in different spermatogenic cells of adult animals. Our data confirm the testicular expression of Gnrh1 and of Gnrhr1 in somatic cells and provide evidence that their expression in the germinal compartment is restricted to haploid cells. In addition, not only Sertoli cells connected to spermatids in the last steps of maturation but also Leydig and peritubular myoid cells express Gnrh1.
Collapse
Affiliation(s)
- Vincenza Ciaramella
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Paolo Pariante
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Via Medina 40, 80133 Napoli, Italy
- *Rosaria Meccariello:
| |
Collapse
|
15
|
Boekelheide K, Schoenfeld HA, Hall SJ, Weng CC, Shetty G, Leith J, Harper J, Sigman M, Hess DL, Meistrich ML. Gonadotropin-Releasing Hormone Antagonist (Cetrorelix) Therapy Fails to Protect Nonhuman Primates (Macaca arctoides) From Radiation-Induced Spermatogenic Failure. ACTA ACUST UNITED AC 2013; 26:222-34. [PMID: 15713828 DOI: 10.1002/j.1939-4640.2005.tb01089.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Treatment of men of reproductive age with radiation or alkylating agents often produces prolonged azoospermia. We previously demonstrated that suppression of testosterone (T) with gonadotropin-releasing hormone (GnRH) analogs restored spermatogenesis following atrophy induced by radiation or chemotherapy in rats. This study tested whether GnRH antagonist therapy could reverse radiation-induced testicular injury in primates with a similar protocol. Adult male stump-tailed macaques were given either 6.7 Gy radiation to the testis alone, 6.7 Gy radiation combined with GnRH-antagonist treatment starting on the day of exposure, or daily injections of the GnRH antagonist Cetrorelix for 3 months alone and were monitored for 18 months. Cetrorelix alone produced a 20-40-week fully reversible suppression of serum T, but although spermatogenic recovery was incomplete, 40%-90% of tubules contained differentiating germ cells. Following radiation alone, testis volumes were reduced to approximately 28% and sperm counts to less than 1% of pretreatment values. A biopsy at 18 months after radiation showed that only 3.0% of seminiferous tubule cross sections had germ cells. In irradiated animals that received GnRH antagonist, testis volumes were reduced to 18% of pretreatment volume, and at 18 months, only 1.9% of seminiferous tubule cross sections contained germ cells. Inhibin B values were reduced to 10% and 3% of pretreatment levels in the radiation-only and the radiation plus GnRH antagonist groups, respectively. Species differences exist in the testicular response to radiation, GnRH antagonist therapy, or both, so that rescue protocols that were successful in rodents might not work in primates.
Collapse
Affiliation(s)
- Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E504, Providence, RI 02912, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Anjum S, Krishna A, Sridaran R, Tsutsui K. Localization of gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin and GnRH receptor and their possible roles in testicular activities from birth to senescence in mice. ACTA ACUST UNITED AC 2012; 317:630-44. [PMID: 23027641 DOI: 10.1002/jez.1765] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/11/2012] [Accepted: 07/23/2012] [Indexed: 11/05/2022]
Abstract
The changes in distribution and concentration of neuropeptides, gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin, and gonadotropin-releasing hormone receptor (GnRH-R) were evaluated and compared with reproductive parameters, such as cytochrome P450 side-chain cleavage (P450 SCC) enzyme activity, androgen receptors (AR) in the testis and serum testosterone levels, from birth to senescence in mice. The results showed the localization of these molecules mainly in the interstitial and germ cells as well as showed significant variations in immunostatining from birth to senescence. It was found that increased staining of testicular GnRH-R coincided with increased steroidogenic activity during pubertal and adult stages, whereas decreased staining coincides with decreased steroidogenic activity during senescence. Similar changes in immunostaining were confirmed by Western/slot blot analysis. Thus, these results suggest a putative role of GnRH during testicular pubertal development and senescence. Treatment with a GnRH agonist ([DTrp(6), Pro(9)-NEt] GnRH) to mice from prepubertal to pubertal period showed a significant increase in steroidogenic activity of the mouse testis and provided further support to the role of GnRH in testicular pubertal maturation. The significant decline in GnRH-R during senescence may be due to a significant increase in GnIH synthesis during senescence causing the decrease in GnRH-R expression. It is considered that significant changes in the levels of GnRH-R may be responsible for changes in steroidogenesis that causes either pubertal activation or senescence in testis of mice. Furthermore, changes in the levels of GnRH-R may be modulated by interactions among GnRH, GnIH, and kisspeptin in the testis.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | | | |
Collapse
|
17
|
Chianese R, Ciaramella V, Scarpa D, Fasano S, Pierantoni R, Meccariello R. Anandamide regulates the expression of GnRH1, GnRH2, and GnRH-Rs in frog testis. Am J Physiol Endocrinol Metab 2012; 303:E475-87. [PMID: 22669247 DOI: 10.1152/ajpendo.00086.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gonadotropin-releasing hormone (either GnRH1 or GnRH2) exerts a local activity in vertebrate testis, including human testis. Relationships between endocannabinoid (eCB) and GnRH systems in gonads have never been elucidated in any species so far. To reveal a cross-talk between eCBs and GnRH at testicular level, we characterized the expression of GnRH (GnRH1 and GnRH2) as well as GnRH receptor (GnRH-R1, -R2, and -R3) mRNA in the testis of the anuran amphibian Rana esculenta during the annual sexual cycle; furthermore, the corresponding transcripts were localized inside the testis by in situ hybridization. The possible endogenous production of the eCB, anandamide (AEA), was investigated in testis by analyzing the expression of its biosynthetic enzyme, Nape-pld. Incubations of testis pieces with AEA were carried out in the postreproductive period (June) and in February, when a new spermatogenetic wave takes place. In June, AEA treatment significantly decreased GnRH1 and GnRH-R2 mRNA, stimulated the transcription of GnRH2 and GnRH-R1, and did not affect GnRH-R3 expression. In February, AEA treatment upregulated GnRH2 and GnRH-R3 mRNA, downregulated GnRH-R2, and did not affect GnRH1 and GnRH-R1 expression. These effects were mediated by type 1 cannabinoid receptor (CB1) since they were fully counteracted by SR141716A (Rimonabant), a selective CB1 antagonist. In conclusion, eCB system modulates GnRH activity in frog testis during the annual sexual cycle in a stage-dependent fashion.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale sez F. Bottazzi, Seconda Università di Napoli, via Costantinopoli 16, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Smith AW, Asa CS, Edwards BS, Murdoch WJ, Skinner DC. Predominant suppression of follicle-stimulating hormone β-immunoreactivity after long-term treatment of intact and castrate adult male rats with the gonadotrophin-releasing hormone agonist deslorelin. J Neuroendocrinol 2012; 24:737-47. [PMID: 22172059 PMCID: PMC5559102 DOI: 10.1111/j.1365-2826.2011.02271.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) agonists are used to treat gonadal steroid-dependent disorders in humans and to contracept animals. These agonists are considered to work by desensitising gonadotrophs to GnRH, thereby suppressing follicle-stimulating hormone (FSH) and luteinising hormone (LH) secretion. It is not known whether changes occur in the cellular composition of the pituitary gland after chronic GnRH agonist exposure. Adult male Sprague-Dawley rats were treated with a sham, deslorelin, or deslorelin plus testosterone implant for 41.0 ± 0.6 days. In a second experiment, rats were castrated and treated with deslorelin and/or testosterone. Pituitary sections were labelled immunocytochemically for FSHβ and LHβ, or gonadotrophin α subunit (αGSU). Deslorelin suppressed testis weight by two-thirds and reduced plasma FSH and LH in intact rats. Deslorelin decreased the percentage of gonadotrophs, although the effect was specific to the FSHβ-immunoreactive (-ir) cells. Testosterone did not reverse the deslorelin-induced reduction in the overall gonadotroph population. However, in the presence of testosterone, the proportion of gonadotrophs that was FSHβ-ir increased in the remaining gonadotrophs. There was no effect of treatment on the total LHβ-ir cell population, although the loss of FSHβ in bi-hormonal cells increased the proportion of mono-hormonal LHβ-ir gonadotrophs. The castration-induced plasma LH and FSH increases were suppressed by deslorelin, testosterone or both. Castration increased both LH-ir and FSH-ir without increasing the overall gonadotroph population, thus increasing the proportion of bi-hormonal cells. Deslorelin suppressed these increases. Testosterone increased FSH-ir in deslorelin-treated castrate rats. Deslorelin did not affect αGSU immunoreactivity, suggesting that the gonadotroph population per se is not eliminated by deslorelin, although the ability of gonadotrophs to synthesise FSHβ is compromised. We hypothesise that the FSH dominant suppression may be central to the long-term contraceptive efficacy of deslorelin in the male.
Collapse
Affiliation(s)
- Arik W. Smith
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| | - Cheryl S. Asa
- Research Department, Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63110, USA
| | - Brian S. Edwards
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| | - William J. Murdoch
- Reproductive Biology Program and Department of Animal Science, University of Wyoming, 1000 E Univ. Ave., Dept. 3684, Laramie, WY 82071, USA
| | - Donal C. Skinner
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| |
Collapse
|
19
|
Abstract
Gonadotrophin-releasing hormone (GnRH) is a hypothalamic hormone transported by the hypophyseal portal bloodstream to the pituitary gland, where it binds to GnRH receptors. However, GnRH receptors are expressed in multiple extrapituitary tissues, although their physiological relevance is not fully understood. GnRH agonists are employed extensively in steroid deprivation therapy, especially to suppress testosterone in prostate cancer. Because GnRH agonist treatment is associated with increased coronary heart disease and myocardial infarction, we investigated the impact of GnRH on cardiomyocyte contractile function. Cardiomyocytes were isolated from mouse hearts and mechanical and intracellular Ca(2+) properties were evaluated, including peak shortening amplitude (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90) ), maximal velocity of shortening/relengthening (± dLdt), electrically-stimulated rise in Fura-2 fluorescence intensity (ΔFFI) and Ca(2+) decay. GnRH (1 ng/ml) increased PS, ± dL/dt, resting FFI and ΔFFI, and prolonged TPS, TR(90) and Ca(2+) decay time, whereas 1 pg/ml GnRH affected all these cardiomyocyte variables, except TPS, resting FFI and ΔFFI. A concentration of 1 fg/ml GnRH and the GnRH cleavage product, GnRH-[1-5] (300 pg/ml), had no effect on any cardiomyocyte parameter. The 1 pg/ml GnRH-elicited responses were attenuated by the GnRH receptor antagonist cetrorelix (10 μm), the protein kinase A (PKA) inhibitor H89 (1 μm) but not the protein kinase C inhibitor chelerythrine chloride (1 μm). These data revealed that GnRH is capable of regulating cardiac contractile function via a GnRH receptor/PKA-dependent mechanism. If present in the human heart, dysfunction of such a system may play an important role in cardiac pathology observed in men treated with GnRH agonists for prostate cancer.
Collapse
Affiliation(s)
- F Dong
- College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | |
Collapse
|
20
|
Chianese R, Chioccarelli T, Cacciola G, Ciaramella V, Fasano S, Pierantoni R, Meccariello R, Cobellis G. The contribution of lower vertebrate animal models in human reproduction research. Gen Comp Endocrinol 2011; 171:17-27. [PMID: 21192939 DOI: 10.1016/j.ygcen.2010.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/11/2010] [Accepted: 12/16/2010] [Indexed: 01/16/2023]
Abstract
Many advances have been carried out on the estrogens, GnRH and endocannabinoid system that have impact in the reproductive field. Indeed, estrogens, the generally accepted female hormones, have performed an unsuspected role in male sexual functions thanks to studies on non-mammalian vertebrates. Similarly, these animal models have provided important contributions to the identification of several GnRH ligand and receptor variants and their possible involvement in sexual behavior and gonadal function regulation. Moreover, the use of non-mammalian animal models has contributed to a better comprehension about the endocannabinoid system action in several mammalian reproductive events. We wish to highlight here how non-mammalian vertebrate animal model research contributes to advancements with implications on human health as well as providing a phylogenetic perspective on the evolution of reproductive systems in vertebrates.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, via Costantinopoli 16, 80138 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zerani M, Catone G, Quassinti L, Maccari E, Bramucci M, Gobbetti A, Maranesi M, Boiti C, Parillo F. In vitro effects of gonadotropin-releasing hormone (GnRH) on Leydig cells of adult alpaca (Lama pacos) testis: GnRH receptor immunolocalization, testosterone and prostaglandin synthesis, and cyclooxygenase activities. Domest Anim Endocrinol 2011; 40:51-9. [PMID: 20961724 DOI: 10.1016/j.domaniend.2010.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 08/28/2010] [Accepted: 08/29/2010] [Indexed: 10/19/2022]
Abstract
The main objective of this study was to examine the modulatory in vitro effects of gonadotropin-releasing hormone (GnRH) on isolated Leydig cells of adult alpaca (Lama pacos) testis. We first evaluated the presence of GnRH receptor (GnRHR) and cyclooxygenase (COX) 1 and COX2 in alpaca testis. We then studied the in vitro effects of buserelin (GnRH analogue), antide (GnRH antagonist), and buserelin plus antide or inhibitor of phospholipase C (compound 48/80) and COXs (acetylsalicylic acid) on the production of testosterone, PGE(2), and PGF(2α) and on the enzymatic activities of COX1 and COX2. Immunoreactivity for GnRHR was detected in the cytoplasm of Leydig cells and in the acrosomal region of spermatids. COX1 and COX2 immunosignals were noted in the cytoplasm of spermatogonia, spermatocytes, spermatids, Leydig cells, and Sertoli cells. Western blot analysis confirmed the GnRHR and COX1 presence in alpaca testis. The in vitro experiments showed that buserelin alone increased (P < 0.01) and antide and buserelin plus acetylsalicylic acid decreased (P < 0.01) testosterone and PGF(2α) production and COX1 activity, whereas antide and compound 48/80 counteracted buserelin effects. Prostaglandin E(2) production and COX2 activity were not affected by buserelin or antide. These data suggest that GnRH directly up-regulates testosterone production in Leydig cells of adult alpaca testis with a postreceptorial mechanism that involves PLC, COX1, and PGF(2α).
Collapse
Affiliation(s)
- M Zerani
- Scuola di Scienze Mediche Veterinarie, Università di Camerino, I-62024 Matelica, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McGuire NL, Bentley GE. A functional neuropeptide system in vertebrate gonads: Gonadotropin-inhibitory hormone and its receptor in testes of field-caught house sparrow (Passer domesticus). Gen Comp Endocrinol 2010; 166:565-72. [PMID: 20074575 DOI: 10.1016/j.ygcen.2010.01.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/04/2010] [Accepted: 01/08/2010] [Indexed: 11/20/2022]
Abstract
UNLABELLED Previously, the expression and action of GnIH (Gonadotropin-inhibitory hormone) has been characterized in the hypothalamus and pituitary, respectively. The action of this neurohormone is to inhibit the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. Several hormone systems identified in the vertebrate brain and classified as neurohormones are synthesized in and have a localized action on the gonads as well. Here we present several lines of evidence for the expression and action of GnIH and its receptor (GnIHR) in the testis of house sparrow (Passer domesticus). EXPRESSION: Transcripts for GnIH and GnIHR isolated from house sparrow testis were initially identified by PCR, then sequenced and found to be homologous to transcripts from European starling (96% to GnIH, 98% to GnIHR), Gambel's white-crowned sparrow (94% to GnIH) and Japanese quail (90% to GnIHR) brains. Further investigation using in situ hybridization confirmed the presence of GnIH precursor mRNA in the interstitium of the testis and GnIHR mRNA in the interstitium and on spermatocytes. ACTION The effect of this system on the secretion of testosterone by the testis was investigated using gonadal culture. Testosterone secretion was significantly decreased by 1 microM and 10 microM GnIH in gonadotropin-stimulated testis cultures. In summary, these results indicate the GnIH/GnIHR system is expressed in the testis of house sparrows and its function is to reduce gonadotropin-stimulated testosterone production.
Collapse
Affiliation(s)
- Nicolette L McGuire
- Laboratory of Reproductive Neuroendocrinology, Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720-3140, USA.
| | | |
Collapse
|
23
|
Wu S, Wilson MD, Busby ER, Isaac ER, Sherwood NM. Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice. Endocrinology 2010; 151:1142-52. [PMID: 20068010 DOI: 10.1210/en.2009-0598] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in the GnRH receptor gene (GNRHR) can result in hypogonadotropic hypogonadism in humans. Unlike most mammals, mice lack a second form of GnRH (GnRH2) and a type 2 GnRH receptor. To determine whether the GnRH receptor is critical at all stages of reproduction and whether this receptor has additional physiological functions in developing and adult mice, we have generated mice from an embryonic stem cell line containing a retroviral vector with multiple stop codons inserted into intron 1 of the Gnrhr gene. This gene trap insertion resulted in the disruption of exon 2 and exon 3 of the Gnrhr gene. The insertion also contained a lacZ gene that was used as a reporter for GnRH receptor expression in these mice. This model has a similar phenotype to the clinical syndrome of hypogonadotropic hypogonadism. Null Gnrhr mice had small sexual organs, low levels of FSH, LH, and steroid hormones, failure of sexual maturation, infertility, and inability to respond to exogenous GnRH. However, the defective GnRH receptor did not prevent morula/blastocyst development, implantation, masculinization of fetal male mice, or maintenance of early pregnancy. The phenotype of this null Gnrhr mouse was more severe than models in the literature, including the N-ethyl-N-nitrosourea-induced Gnrhr mutant, the kisspeptin (Kiss1) knockout, and the kisspeptin receptor (Gpr54) knockout. In terms of gonadal morphology, adult gene trap-Gnrhr null mice demonstrate a complete cessation of reproduction and serve as an important model for understanding GnRH/GnRHR physiology.
Collapse
Affiliation(s)
- Sheng Wu
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
24
|
Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev 2009; 30:883-925. [PMID: 19887492 DOI: 10.1210/er.2009-0016] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Masculinization depends on adequate production of testosterone by the fetal testis within a specific "masculinization programming window." Disorders resulting from subtle deficiencies in this process are common in humans, and environmental exposures/lifestyle could contribute causally because common therapeutic and environmental compounds can affect steroidogenesis. This evidence derives mainly from rodent studies, but because there are major species differences in regulation of steroidogenesis in the fetal testis, this may not always be a guide to potential effects in the human. In addition to direct study of the effects of compounds on steroidogenesis, information also derives from study of masculinization disorders that result from mutations in genes in pathways regulating steroidogenesis. This review addresses this issue by critically reviewing the comparative timing of production and regulation of steroidogenesis in the fetal testis of humans and of rodents and its susceptibility to disruption; where there is limited information for the fetus, evidence from effects on steroidogenesis in the adult testis is considered. There are a number of fundamental regulatory differences between the human and rodent fetal testis, most notably in the importance of paracrine vs. endocrine drives during masculinization such that inactivating LH receptor mutations block masculinization in humans but not in rodents. Other large differences involve the steroidogenic response to estrogens and GnRH analogs and possibly phthalates, whereas for other compounds there may be differences in sensitivity to disruption (ketoconazole). This comparison identifies steroidogenic targets that are either vulnerable (mitochondrial cholesterol transport, CYP11A, CYP17) or not (cholesterol uptake) to chemical interference.
Collapse
Affiliation(s)
- Hayley M Scott
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | |
Collapse
|
25
|
GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A 2009; 106:11703-8. [PMID: 19567835 DOI: 10.1073/pnas.0903449106] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a condition characterized by failure to undergo puberty in the setting of low sex steroids and low gonadotropins. IHH is due to abnormal secretion or action of the master reproductive hormone gonadotropin-releasing hormone (GnRH). Several genes have been found to be mutated in patients with IHH, yet to date no mutations have been identified in the most obvious candidate gene, GNRH1 itself, which encodes the preprohormone that is ultimately processed to produce GnRH. We screened DNA from 310 patients with normosmic IHH (nIHH) and 192 healthy control subjects for sequence changes in GNRH1. In 1 patient with severe congenital nIHH (with micropenis, bilateral cryptorchidism, and absent puberty), a homozygous frameshift mutation that is predicted to disrupt the 3 C-terminal amino acids of the GnRH decapeptide and to produce a premature stop codon was identified. Heterozygous variants not seen in controls were identified in 4 patients with nIHH: 1 nonsynonymous missense mutation in the eighth amino acid of the GnRH decapeptide, 1 nonsense mutation that causes premature termination within the GnRH-associated peptide (GAP), which lies C-terminal to the GnRH decapeptide within the GnRH precursor, and 2 sequence variants that cause nonsynonymous amino-acid substitutions in the signal peptide and in GnRH-associated peptide. Our results establish mutations in GNRH1 as a genetic cause of nIHH.
Collapse
|
26
|
Di Cristo C, De Lisa E, Di Cosmo A. GnRH in the brain and ovary of Sepia officinalis. Peptides 2009; 30:531-7. [PMID: 18692104 DOI: 10.1016/j.peptides.2008.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 06/29/2008] [Accepted: 07/10/2008] [Indexed: 11/20/2022]
Abstract
We have cloned from brain, ovary and eggs of the cephalopod Sepia officinalis a 269-bp PCR product, which shares 100% sequence identity with the open reading frame of GnRH isoform isolated from Octopus vulgaris. Similar to Octopus, this sequence encodes a peptide that is organized as a preprohormone from which, after enzymatic cleavage, a dodecapeptide is released. Apart from its length, this peptide shares all the common features of vertebrate GnRHs. Reverse transcriptase-polymerase chain reaction (RT-PCR) analyses followed by sequencing have confirmed that the same peptide transcript is also present in the ovary, as well as in eggs released in the mantle cavity. The use of an antibody made specifically against the oct-GnRH has revealed that the peptide is localized in the dorso-lateral basal and olfactory lobes, the two neuropeptidergic centers controlling the activity of the gonadotropic optic gland. Immunoreactive nerve endings are also present on the glandular cells of the optic glands. These results confirm the fact that, regardless of the evolutionary distances among animal phyla, GnRH is an ancient peptide present also in invertebrates, and also reinforce the notion that, despite the name "gonadotropin releasing-hormone" was attributed according to its role in vertebrates, probably this family of peptides always had a role in the broad context of animal reproduction. The divergence and spread of several different isoforms of this peptide among animals seem to be balanced, in both invertebrates and vertebrates, by the class-specificity of the GnRH isoform involved in reproductive processes.
Collapse
Affiliation(s)
- Carlo Di Cristo
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| | | | | |
Collapse
|
27
|
Skinner DC, Albertson AJ, Navratil A, Smith A, Mignot M, Talbott H, Scanlan-Blake N. Effects of gonadotrophin-releasing hormone outside the hypothalamic-pituitary-reproductive axis. J Neuroendocrinol 2009; 21:282-92. [PMID: 19187469 PMCID: PMC2669307 DOI: 10.1111/j.1365-2826.2009.01842.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is a hypothalamic decapeptide with an undisputed role as a primary regulator of gonadal function. It exerts this regulation by controlling the release of gonadotrophins. However, it is becoming apparent that GnRH may have a variety of other vital roles in normal physiology. A reconsideration of the potential widespread action that this traditional reproductive hormone exerts may lead to the generation of novel therapies and provide insight into seemingly incongruent outcomes from current treatments using GnRH analogues to combat diseases such as prostate cancer.
Collapse
Affiliation(s)
- D C Skinner
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Litichever N, Gershon E, Dekel N, Koch Y. Hormonal Regulation of GnRH and LHβ mRNA Expression in Cultured Rat Granulosa Cells. J Mol Neurosci 2009; 39:78-85. [DOI: 10.1007/s12031-009-9185-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 02/01/2009] [Indexed: 10/21/2022]
|
29
|
Lin YM, Liu MY, Poon SL, Leu SF, Huang BM. Gonadotrophin-releasing hormone-I and -II stimulate steroidogenesis in prepubertal murine Leydig cells in vitro. Asian J Androl 2009; 10:929-36. [PMID: 18958357 DOI: 10.1111/j.1745-7262.2008.00434.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To study the effect and mechanism of gonadotrophin-releasing hormone (GnRH) on murine Leydig cell steroidogenesis. METHODS Purified murine Leydig cells were treated with GnRH-I and -II agonists, and testosterone production and steroidogenic enzyme expressions were determined. RESULTS GnRH-I and -II agonists significantly stimulated murine Leydig cell steroidogenesis 60%-80% in a dose- and time-dependent manner (P < 0.05). The mRNA expressions of steroidogenic acute regulatory (StAR) protein, P450scc, 3beta-hydroxysteroid dehydrogenase (HSD), but not 17alpha-hydroxylase or 17beta-HSD, were significantly stimulated by both GnRH agonists with a 1.5- to 3-fold increase (P < 0.05). However, only 3beta-HSD protein expression was induced by both GnRH agonists, with a 1.6- to 2-fold increase (P < 0.05). CONCLUSION GnRH directly stimulated murine Leydig cell steroidogenesis by activating 3b-HSD enzyme expression.
Collapse
Affiliation(s)
- Yung-Ming Lin
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, China
| | | | | | | | | |
Collapse
|
30
|
Hong IS, Cheung AP, Leung PCK. Gonadotropin-releasing hormones I and II induce apoptosis in human granulosa cells. J Clin Endocrinol Metab 2008; 93:3179-85. [PMID: 18477660 DOI: 10.1210/jc.2008-0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The direct effects of GnRH-I or GnRH-II on apoptosis in human granulosa cells are unknown and, if present, can be influenced by FSH. Apoptosis involves activation of the intracellular proteolytic cascade of caspases. We therefore evaluated the roles of GnRH-I and -II, and the effects of FSH, on apoptosis in human granulosa cells and on caspases. METHODS Human immortalized granulosa cells treated with GnRH-I or GnRH-II or nothing were cultured with and without antide (a GnRH-I antagonist), a broad-spectrum caspase inhibitor or selective caspase-8, -3, or -7 inhibitor, or FSH in replicates for 72 h. Apoptotic changes were evaluated by terminal deoxynucleotidyl-transferase-mediated biotin-dUTP nick-end labeling (TUNEL) assays, immunoblotting, and expression levels of caspases and compared by ANOVA. RESULTS GnRH-I and -II induced TUNEL-positive apoptotic cells and increased cleavage activities of caspase-8, -3, and -7 by 48 h and peaked at 72 h, changes that were blocked by FSH cotreatment. Antide also effectively blocked these TUNEL-positive changes and expression levels of caspase-3 induced by GnRH-I or -II. Activation of caspase-8, -3, and -7 was inhibited by the corresponding caspase inhibitor. Caspase-8 inhibitor also abolished cleavages of caspase-3 and -7 induced by GnRH-I and -II. CONCLUSION GnRH-I and -II induce apoptosis in human granulosa cells through GnRH-I receptors, which mediate the proteolytic caspase cascade involving caspase-8 (the initiator) and caspase-3 and -7 (the effectors). FSH protects human granulosa cells from apoptosis induced by GnRH-I or -II. This raises potentially important roles of GnRH-I and GnRH-II in regulating follicle development and atresia together with FSH.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Obstetrics and Gynecology, University of British Columbia, 2H-30, 4490 Oak Street, Vancouver, British Columbia, Canada V6H 3V5
| | | | | |
Collapse
|
31
|
Ubuka T, McGuire NL, Calisi RM, Perfito N, Bentley GE. The control of reproductive physiology and behavior by gonadotropin-inhibitory hormone. Integr Comp Biol 2008; 48:560-9. [PMID: 20607134 PMCID: PMC2895338 DOI: 10.1093/icb/icn019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) controls the reproductive physiology and behavior of vertebrates by stimulating synthesis and release of gonadotropin from the pituitary gland. In 2000, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), was discovered in quail and found to be an inhibiting factor for gonadotropin release. GnIH homologs are present in the brains of vertebrates, including birds, mammals, amphibians, and fish. These peptides, categorized as RF amide-related peptides (RFRPs), possess a characteristic LPXRF-amide (X = L or Q) motif at their C-termini. GnIH/RFRP precursor mRNA encodes a polypeptide that is possibly cleaved into three mature peptides in birds and two in mammals. The names of these peptides are GnIH, GnIH-related peptide-1 (GnIH-RP-1) and GnIH-RP-2 in birds, and RFRP-1 and RFRP-3 in mammals. GnIH/RFRP is synthesized in neurons of the paraventricular nucleus of the hypothalamus in birds and the dorsomedial hypothalamic area in mammals. GnIH neurons project to the median eminence, thus providing a functional neuroanatomical infrastructure to regulate anterior pituitary function. In quail, GnIH inhibits gonadal activity by decreasing synthesis and release of gonadotropin. The widespread distribution of GnIH/RFRP immunoreactive fibers in all animals tested suggests various actions within the brain. In accordance, GnIH/RFRP receptor mRNA is also expressed widely in the brain and the pituitary. GnIH/RFRP immunoreactive axon terminals are in probable contact with GnRH neurons in birds and mammals, and we recently demonstrated expression of GnIH receptor mRNA in GnRH-I and GnRH-II neurons in European starlings. Thus, GnIH/RFRP may also inhibit gonadotropin synthesis and release by inhibiting GnRH neurons in addition to having direct actions on the pituitary gland. Intracerebroventricular administration of GnIH/RFRP further inhibits reproductive behaviors in songbirds and rodents, possibly via direct actions on the GnRH system. The expression of GnIH/RFRP is regulated by melatonin which is an internal indicator of day length in vertebrates. Stress stimuli also regulate the expression of GnIH/RFRP in songbirds and rodents. Accordingly, GnIH/RFRP may serve as a transducer of environmental information and social interactions into endogenous physiology and behavior of the animal. Recently, it was shown that GnIH/RFRP and its receptor are also expressed in the gonads of birds, rodents and primates. In sum, the existing data suggest that GnIH/RFRP is an important mediator of reproductive function acting at the level of the brain, pituitary, and the gonad in birds and mammals.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | | | | | | | | |
Collapse
|
32
|
Tello JA, Wu S, Rivier JE, Sherwood NM. Four functional GnRH receptors in zebrafish: analysis of structure, signaling, synteny and phylogeny. Integr Comp Biol 2008; 48:570-87. [DOI: 10.1093/icb/icn070] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Bentley GE, Ubuka T, McGuire NL, Chowdhury VS, Morita Y, Yano T, Hasunuma I, Binns M, Wingfield JC, Tsutsui K. Gonadotropin-inhibitory hormone and its receptor in the avian reproductive system. Gen Comp Endocrinol 2008; 156:34-43. [PMID: 18031743 DOI: 10.1016/j.ygcen.2007.10.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 11/19/2022]
Abstract
Many hormones that are classified as neuropeptides are synthesized in vertebrate gonads in addition to the brain. Receptors for these hormones are also expressed in gonadal tissue; thus there is potential for a highly localized autocrine or paracrine effect of these hormones on a variety of gonadal functions. In the present study we focused on gonadotropin-inhibitory hormone (GnIH), a neuropeptide that was first discovered in the hypothalamus of birds. We present different lines of evidence for the synthesis of GnIH and its receptor in the avian reproductive system including gonads and accessory reproductive organs by studies on two orders of birds: Passeriformes and Galliformes. Binding sites for GnIH were initially identified via in vivo and in vitro receptor fluorography, and were localized in ovarian granulosa cells along with the interstitial layer and seminiferous tubules of the testis. Furthermore, species-specific primers produced clear PCR products of GnIH and GnIH receptor (GnIH-R) in songbird and quail gonadal and other reproductive tissues, such as oviduct, epididymis and vas deferens. Sequencing of the PCR products confirmed their identities. Immunocytochemistry detected GnIH peptide in ovarian thecal and granulosa cells, testicular interstitial cells and germ cells and pseudostratified columnar epithelial cells in the epididymis. In situ hybridization of GnIH-R mRNA in testes produced a strong reaction product which was localized to the germ cells and interstitium. In the epididymis, the product was also localized in the pseudostratified columnar epithelial cells. In sum, these results indicate that the avian reproductive system has the capability to synthesize and bind GnIH in several tissues. The distribution of GnIH and its receptor suggest a potential for autocrine/paracrine regulation of gonadal steroid production and germ cell differentiation and maturation.
Collapse
Affiliation(s)
- George E Bentley
- Laboratory of Reproductive Neuroendocrinology, Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schirman-Hildesheim TD, Gershon E, Litichever N, Galiani D, Ben-Aroya N, Dekel N, Koch Y. Local production of the gonadotropic hormones in the rat ovary. Mol Cell Endocrinol 2008; 282:32-8. [PMID: 18248883 DOI: 10.1016/j.mce.2007.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gonadotropic hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are synthesized by and released from the anterior pituitary in response to the hypothalamic gonadotropin-releasing hormone (GnRH) signaling. In the female, LH and FSH affect folliculogenesis, ovarian steroid production, oocyte maturation, ovulation and corpus luteum formation. We have recently studied the expression of GnRH and its receptor in the rat ovary and found organ-specific, estrous cycle-dependant, fluctuations. Subsequently, we wished to determine whether rat ovaries also express gonadotropic hormones. Using RT-PCR, we detected LHbeta, FSHbeta and the common alpha-subunit mRNA's in intact follicles, theca cells, corpora lutea and in meiotically competent and incompetent oocytes. Granulosa cells, however, express mRNA's for LHbeta and the common alpha-subunit, but not for FSHbeta. We cloned and sequenced the ovarian LHbeta transcript and found it to be longer (2.3kb) than the one produced by pituitary gonadotropes (0.8kb), due to a longer 5'-UTR. We studied the regulation of ovarian LHbeta mRNA in sexually immature female rats administered with pregnant mare serum gonadotropin (PMSG) and in adult cyclic rats. PMSG administration caused a significant decrease in LHbeta mRNA expression, detected by real-time PCR. Similarly, LHbeta mRNA levels were lower on estrous morning versus proestrous evening. Interestingly, ovarian content of LH remained unchanged following hypophysectomy, although ovarian weight was immensely reduced. Taken together, it seems probable that ovarian LH is heterologously/homologously regulated by pituitary, and possibly also by local gonadotropins. Thus, these findings may imply the existence of a local GnRH-gonadotropin axis in the mammalian ovary that may be involved in the management of processes that lead to ovulation.
Collapse
|
35
|
Transcripts of testicular gonadotropin-releasing hormone, steroidogenic enzymes, and intratesticular testosterone levels in infertile men. Fertil Steril 2007; 90:1761-8. [PMID: 18082732 DOI: 10.1016/j.fertnstert.2007.08.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/30/2007] [Accepted: 08/30/2007] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the expressions of testicular GnRH and steroidogenic enzymes and their correlations with intratesticular T levels (ITT) and serum hormonal parameters in infertile men. DESIGN Prospective case study. SETTING University reproductive laboratory and clinics. PATIENT(S) Thirty-four azoospermic men. INTERVENTION(S) The mRNA transcript levels of GnRH-I, GnRH-II, GnRH-R, and five steroidogenic enzymes in the testes of azoospermic men were determined by quantitative real time polymerase chain reaction. The ITT level was determined by radioimmunoassay. MAIN OUTCOME MEASURE(S) Transcript levels of genes and ITT determination. RESULT(S) The mRNA transcript levels of GnRH-I, GnRH-II, GnRH-R, cytochrome P450 side-chain cleavage (CYP11A1), and 3beta-hydroxy-steroid dehydrogenase type 2 enzyme (HSD3B2) as well as the ITT levels were significantly increased in patients with spermatogenic failure, especially in men with Sertoli cell-only syndrome. GnRH-I and -II mRNA transcript levels positively correlated with HSD3B2 mRNA transcript levels, ITT levels, and serum FSH levels. CONCLUSION(S) Increased testicular GnRH transcripts, steroidogenic enzyme transcripts, and ITT levels are associated with spermatogenic failure in infertile men. Testicular GnRH is involved in the regulation of human spermatogenesis and steroidogenesis.
Collapse
|
36
|
Singh P, Krishna A, Sridaran R. Localization of gonadotrophin-releasing hormone I, bradykinin and their receptors in the ovaries of non-mammalian vertebrates. Reproduction 2007; 133:969-81. [PMID: 17616726 DOI: 10.1530/rep-06-0106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GnRH I and its receptors have been demonstrated in the ovaries of various vertebrates, but their physiological significance in reproductive cascade is fragmentary. Bradykinin is a potent GnRH stimulator in the hypothalamus. In the present study, the presence of GnRH I and its receptor, and bradykinin and its receptor in the ovaries of non-mammalian vertebrates were investigated to understand their physiological significance. GnRH I immunoreactivity in the ovaries of fish, frog, reptile and bird were mainly found in the oocyte of early growing follicles and granulosa cells and theca cells of previtellogenic follicles. Vitellogenic follicles showed mild GnRH immunoreactivity. GnRH I-receptor and bradykinin were localized in the same cell types of the ovaries of these vertebrates. The presence of GnRH I, GnRH I-receptor and bradykinin in the ovaries of these vertebrates was confirmed by immunoblotting. The presence of GnRH I mRNA was demonstrated in the ovary of vertebrates using RT-PCR. The ovaries of reptiles and birds showed significantly higher intensity of immunoreactivity for GnRH I-receptor as compared with the fish and amphibian. This may have a correlation with the higher yolk content in the ovary of reptile and bird. These results suggest the possibility of GnRH I and bradykinin as important regulators of follicular development and vitellogenesis in the vertebrate ovary.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
37
|
Kim MO, Lee JH, Park MS, Lee HL, Bahk JY. Gonadotropin Releasing Hormone (GnRH) and GnRH Receptor in Normal Bladder Epithelia and Their Role in Bladder Epithelial Proliferation. Korean J Urol 2007. [DOI: 10.4111/kju.2007.48.2.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Myoung Ock Kim
- Department of Biology, Gyeongsang National University, Jinju, Korea
| | - Jeong-Hee Lee
- Department of Pathology, Gyeongsang National University, Jinju, Korea
| | - Moon Seok Park
- Department of Biology, Gyeongsang National University, Jinju, Korea
| | - Hye Lyoung Lee
- Department of Biology, Gyeongsang National University, Jinju, Korea
| | - Jong Yoon Bahk
- Department of Urology, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
38
|
Bowen A, Khan S, Berghman L, Kirby JD, Wettemann RP, Vizcarra JA. Immunization of pigs against chicken gonadotropin-releasing hormone-II and lamprey gonadotropin-releasing hormone-III: Effects on gonadotropin secretion and testicular function1. J Anim Sci 2006; 84:2990-9. [PMID: 17032793 DOI: 10.2527/jas.2006-235] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this experiment was to evaluate the effects of active immunization against 2 GnRH isoforms on gonadotropin secretion and testicular function in pigs. Synthetic chicken (c) GnRH-II and lamprey (l) GnRH-III peptides, with the common pGlu-His-Trp-Ser sequence at the N-terminal omitted, were conjugated to BSA. Forty-eight male piglets were randomly assigned to 1 of 4 treatments. Pigs on treatment 1 were actively immunized against cGnRH-II, whereas pigs on treatment 2 were actively immunized against lGnRH-III. Control pigs on treatment 3 were actively immunized against the carrier protein (BSA), and pigs on treatment 4 were castrated and actively immunized against BSA. The BSA conjugate was emulsified in Freund's Incomplete Adjuvant and diethylaminoethyldextran. Primary immunization was given at 13 wk of age (WOA) with booster immunizations given at 16 and 19 WOA. Body weight and plasma samples were collected weekly beginning at 11 WOA. Treatments did not affect BW during the experimental period. Antibody titers were increased in animals immunized against cGnRH-II and lGnRH-III (P < 0.001). Cross-reactivity of the antibodies to mammalian GnRH or between cGnRH-II and lGnRH-III was minimal. Concentrations of testosterone were maximal in control boars (treatment 3) and minimal in control barrows (treatment 4) and immunized pigs (treatment x week; P < 0.01). Immunized animals had concentrations of LH (P < 0.001) and FSH (treatment x week; P < 0.03) that were less than control barrows and similar to control boars. At the end of the experiment, intact (noncastrated) pigs were exsanguinated. Testes were removed immediately; Leydig cells were isolated and treated with 0, 1, or 10 ng/mL of LH. There was an LH x GnRH treatment effect on testosterone concentrations (P < 0.03), indicating that Leydig cells were sensitive to the immunization protocol and doses of LH. Taken together, these data suggest that immunization against GnRH isoforms decreased gonadotropin secretion compared with control barrows. Additionally, immunization against cGnRH-II and lGnRH-III reduced the ability of Leydig cells to respond to LH challenges.
Collapse
Affiliation(s)
- A Bowen
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Gonadotropin releasing hormone (GnRH) is a hypothalamic neuronal secretory decapeptide that plays a pivotal role in mammalian reproduction. GnRH and its analogues are used extensively in the treatment of hormone dependent diseases and assisted reproductive technology. Fourteen structural variants and three different forms of GnRH, named as hypothalamic GnRH or GnRH-I, mid brain GnRH or GnRH-II and GnRH-III across various species of protochordates and vertebrates have been recognised. The hormone acts by binding to cell surface transmembrane G protein coupled receptors (GPCRs) and activates Gq/11 subfamily of G proteins. Although hypothalamus and pituitary are the principal source and target sites for GnRH, several reports have recently suggested extra-hypothalamic GnRH and GnRH receptors in various reproductive tissues such as ovaries, placenta, endometrium, oviducts, testes, prostrate, and mammary glands. GnRH-II appears to be predominantly expressed in extra pituitary reproductive tissues where it produces its effect by PLC, PKA2, PLD, and AC cell signalling pathways. In these tissues, GnRH is considered to act by autocrine or paracrine manner and regulate ovarian steroidogenesis by having stimulatory as well as inhibitory effect on the production of steroid hormones and apoptosis in ovarian follicle and corpus luteum. In male gonads, GnRH has been shown to cause a direct stimulatory effect on basal steroidogenesis and an inhibitory effect on gonadotropin-stimulated androgen biosynthesis. Recent studies have shown that GnRH is more abundantly present in ovarian, endometrial and prostrate carcinomas. The presence of type-II GnRH receptors in reproductive tissues (e.g. gonads, prostrate, endometrium, oviduct, placenta, and mammary glands) suggests existence of distinct role(s) for type-II GnRH molecule in these tissues. The existence of different GnRH forms indicates the presence of distinctive cognate receptors types in vertebrates and is a productive area of research and may contribute to the development of new generation of GnRH analogues with highly selective and controlled action on different reproductive tissues and the target-specific GnRH analogues could be developed.
Collapse
Affiliation(s)
- N Ramakrishnappa
- Faculty of Agricultural Sciences, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | | | |
Collapse
|
40
|
Cheng CK, Leung PCK. Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr Rev 2005; 26:283-306. [PMID: 15561800 DOI: 10.1210/er.2003-0039] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In human beings, two forms of GnRH, termed GnRH-I and GnRH-II, encoded by separate genes have been identified. Although these hormones share comparable cDNA and genomic structures, their tissue distribution and regulation of gene expression are significantly dissimilar. The actions of GnRH are mediated by the GnRH receptor, which belongs to a member of the rhodopsin-like G protein-coupled receptor superfamily. However, to date, only one conventional GnRH receptor subtype (type I GnRH receptor) uniquely lacking a carboxyl-terminal tail has been found in the human body. Studies on the transcriptional regulation of the human GnRH receptor gene have indicated that tissue-specific gene expression is mediated by differential promoter usage in various cell types. Functionally, there is growing evidence showing that both GnRH-I and GnRH-II are potentially important autocrine and/or paracrine regulators in some extrapituitary compartments. Recent cloning of a second GnRH receptor subtype (type II GnRH receptor) in nonhuman primates revealed that it is structurally and functionally distinct from the mammalian type I receptor. However, the human type II receptor gene homolog carries a frameshift and a premature stop codon, suggesting that a full-length type II receptor does not exist in humans.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | |
Collapse
|
41
|
Fujioka H, Suzuki M, Yamanouchi K, Ohta A, Nagashima H, Kato M, Nishihara M. Generation of transgenic rats expressing enhanced green fluorescent protein in gonadotropin-releasing hormone neurons. J Reprod Dev 2004; 49:523-9. [PMID: 14967904 DOI: 10.1262/jrd.49.523] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons govern reproductive function by controlling the release of gonadotropins from the pituitary. To facilitate identification of living GnRH neurons, here we attempted to generate transgenic rats that express enhanced green fluorescent protein (EGFP) in GnRH neurons. About 3 kb of rat GnRH promoter region was inserted into the EGFP reporter cassette, and the expression of EGFP fluorescence was confirmed in several cell lines following transient transfection. Then we successfully generated a transgenic rat by injecting linearized GnRH-EGFP transgene into the pronuclei of fertilized oocytes. The GnRH-EGFP transgenic rats expressed EGFP in the brain, but not in the ovary, testis or thymus. Immunohistochemical examination revealed that detectable EGFP fluorescence was confined to the cell body of GnRH-immunoreactive neurons in the septum and preoptic area, while no EGFP signal was discernible in the median eminence where abundant GnRH-immunoreactive fibers were observed. The mean percentage of EGFP-positive cells in the GnRH-positive cells was 76.3%. The GnRH-EGFP transgenic rats generated in the present study will enable characterization of properties of individual GnRH neurons.
Collapse
Affiliation(s)
- Hitomi Fujioka
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Talwar GP, Raina K, Gupta JC, Ray R, Wadhwa S, Ali MM. A recombinant luteinising-hormone-releasing-hormone immunogen bioeffective in causing prostatic atrophy. Vaccine 2004; 22:3713-21. [PMID: 15315851 DOI: 10.1016/j.vaccine.2004.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
Previous studies with a semi-synthetic vaccine indicated the utility of immunization against luteinising-hormone-releasing-hormone (LHRH) in prostate cancers. To overcome the limitations of the previous vaccine, which caused carrier induced suppression of antibody response on repeated immunizations and was costly to synthesize, two recombinant vaccines were designed, in which diptheria or tetanus toxoid used as carriers were replaced by 4-5 T non B peptides. The paper reports the immunogenecity, efficacy and safety of these multimer vaccines in rats, a homologous experimental animal. All animals generated anti-LHRH antibodies, which caused the decline of testosterone to castration levels at and above 0.15 OD units of antibody titres. The prostate was significantly atrophied in all animals immunized with these vaccines.
Collapse
Affiliation(s)
- G P Talwar
- The Talwar Research Foundation, E-8 Neb Valley, Neb Serai, New Delhi 110068, India.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
In Bufo arenarum, androgen biosynthesis occurs through a complete 5-ene pathway, including 5-androstane-3beta,17beta-diol as the immediate precursor of testosterone. Besides, steroidogenesis changes during the breeding period, turning from androgens to C(21)-steroids such as 5alpha-pregnan-3alpha,20alpha-diol, 3alpha-hydroxy-5alpha-pregnan-20-one and 5alpha-pregnan-3,20-dione. In B. arenarum, steroid hormones are not involved in hCG-induced spermiation, suggesting that the steroidogenic shift to C(21)-steroids during the breeding be not related to spermiation. The activity of 17-hydroxylase-C(17-20) lyase (CypP450(c17)) decreases during the reproductive season, suggesting that this enzyme would represent a key enzyme in the regulation of seasonal changes. However, the increase in the affinity for pregnenolone of 3beta-hydroxysteroid dehydrogenase (3alphaHSD)/isomerase could also be involved. Moreover, the reduction in CypP450(c17) leading to a reduction in C(19)-steroids, among them dehydroepiandrosterone (DHE), would contribute to the conversion of pregnenolone into progesterone, avoiding the non-competitive inhibition exerted by DHE on this transformation. Additionally, CypP450(c17) possesses a higher affinity for pregnenolone than for progesterone, explaining the predominance of the 5-ene pathway for testosterone biosynthesis. Animals in reproductive condition showed a significant reduction in circulating androgens, enhancing the physiological relevance of all the in vitro results. The in vitro effects of mGnRH and hrFSH on testicular steroidogenesis revealed that both hormones inhibited CypP450(c17) activity. In summary, these results demonstrate that, in B. arenarum, the change in testicular steroidogenesis during the reproductive period could be partially due to an FSH and GnRH-induced decrease in CypP450(c17) activity.
Collapse
Affiliation(s)
- Luis F Canosa
- PRHOM-CONICET and Laboratorio de Endocrinología Comparada, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | | | | | | |
Collapse
|
44
|
Pierantoni R, Cobellis G, Meccariello R, Fasano S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 218:69-141. [PMID: 12199520 DOI: 10.1016/s0074-7696(02)18012-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review emphasizes the comparative approach for developing insight into knowledge related to cellular communications occurring in the hypothalamus-pituitary-gonadal axis. Indeed, research on adaptive phenomena leads to evolutionary tracks. Thus, going through recent results, we suggest that pheromonal communication precedes local communication which, in turn, precedes communication via the blood stream. Furthermore, the use of different routes of communication by a certain mediator leads to a conceptual change related to what hormones are. Nevertheless, endocrine communication should leave out of consideration the source (glandular or not) of mediator. Finally, we point out that the use of lower vertebrate animal models is fundamental to understanding general physiological mechanisms. In fact, different anatomical organization permits access to tissues not readily approachable in mammals.
Collapse
|
45
|
Endo F, Manabe F, Takeshima H, Akaza H. Protecting spermatogonia from apoptosis induced by doxorubicin using the luteinizing hormone-releasing hormone analog leuprorelin. Int J Urol 2003; 10:72-7. [PMID: 12588601 DOI: 10.1046/j.1442-2042.2003.00572.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The present study was performed to investigate the protective effect of leuprorelin (LH-RH analog), on spermatogonia apoptosis induced by doxorubicin (DXR) in the Sprague-Dawley rat model. METHODS Twenty-four adult male rats were divided into the following four groups: (i) control group; (ii) group given doxorubicin (intravenous injection, 8 mg/kg); (iii) group given leuprorelin (subcutaneous injection, 3 mg/kg); and (iv) group given both doxorubicin (intravenous injection, 8 mg/kg) and leuprorelin (subcutaneous injection, 3 mg/kg). Evaluation for quantification of apoptotic spermatogonia was made by the ratio of TUNEL-labeled spermatogonia versus 100 Sertoli cells in each seminiferous tubule. Two hundred seminiferous tubules of each rat were assessed. RESULTS The ratio of apoptotic spermatogonia versus 100 Sertoli cells at stages II-IV of the groups given DXR (groups 2 and 4) were significantly higher than those of the other groups. However, the value at stages II-IV of the group given both DXR and leuprorelin (group 4) was significantly lower than that of the group given DXR (group 2). CONCLUSION The significant prophylactic effect (P < 0.05) of LH-RH analog against doxorubicin-induced spermatogonial apoptosis was observed in a stage specific manner by microscopic evaluation with TUNEL.
Collapse
Affiliation(s)
- Fumiyasu Endo
- Department of Urology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan.
| | | | | | | |
Collapse
|
46
|
Franke FE, Pauls K, Metzger R, Danilov SM. Angiotensin I-converting enzyme and potential substrates in human testis and testicular tumours. APMIS 2003; 111:234-43; discussion 243-4. [PMID: 12752269 DOI: 10.1034/j.1600-0463.2003.11101271.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The angiotensin I-converting enzyme (ACE, kininase II, CD143) shows a broad specificity for various oligopeptides. Besides the well-known conversion of angiotensin I to II, ACE degrades efficiently kinins and the tetrapeptide AcSDKP (goralatide) and thus equally participates in the renin-angiotensin system, the kallikrein-kinin system, and the regulation of stem cell proliferation. In the mammalian testis, ACE occurs in two isoforms. The testicular isoform (tACE) is exclusively expressed during spermatogenesis and is generally thought to represent the germ cell-specific isozyme. However, we have previously demonstrated that, in addition to tACE, the somatic isoform (sACE) is also present in human germ cells. Similar to other oncofoetal markers, sACE exhibits a transient expression during foetal germ cell development and appears to be a constant feature of intratubular germ cell neoplasm, the so-called carcinoma-in-situ (CIS) and, in particular, of classic seminoma. This demands the existence of specific paracrine functions during male germ cell differentiation and development of male germ cell tumours, which are mediated by either of the two ACE isoforms. Considering the complexity of current data about ACE, a logical connection is required between (I) the precise localisation of ACE isoforms, (I) the local access to potential substrates and (II) functional data obtained by knockout mice models. The present article summarises the current knowledge about ACE and its potential substrates with special emphasis on the differentiation-restricted ACE expression during human spermatogenesis and prespermatogenesis, the latter being closely linked to the pathogenesis of human germ cell tumours.
Collapse
Affiliation(s)
- Folker E Franke
- Institute of Pathology, Justus-Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
47
|
Ferro VA, Khan MAH, Earl ER, Harvey MJA, Colston A, Stimson WH. Influence of carrier protein conjugation site and terminal modification of a GnRH-I peptide sequence in the development of a highly specific anti-fertility vaccine. Part I. Am J Reprod Immunol 2002; 48:361-71. [PMID: 12607772 DOI: 10.1034/j.1600-0897.2002.01120.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PROBLEM We previously immunoneutralized gonadotrophin releasing hormone (GnRH), using an analogue of GnRH (des-1 GnRH-I), conjugated to tetanus toxoid via a carbodiimide reaction. The castration effect on the reproductive system was not consistent in all the treated animals. Therefore, we examined the possibility that conjugation to the carrier protein via the N- or C-terminal could have an effect on efficacy. METHOD OF STUDY GnRH analogue sequences were synthesized consisting of an additional cysteine at either terminal and specific conjugation was carried out using a bifunctional linker agent. RESULTS Conjugation of the monomer through the N-terminal proved to be a highly effective means of causing immunocastration in terms of decreased gonadotrophin and testosterone concentrations and testicular size, whereas conjugation through the C-terminal proved to be ineffective. This was reflected in the ability of the antibodies to bind native GnRH, but not the levels of the anti-GnRH antibodies. CONCLUSION Immunoneutralization efficacy was attributed to the importance of preserving the GnRH C-terminal.
Collapse
Affiliation(s)
- Valerie A Ferro
- Department of Immunology, University of Strathclyde, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Gray SL, Adams BA, Warby CM, Von Schalburg KR, Sherwood NM. Transcription and translation of the salmon gonadotropin-releasing hormone genes in brain and gonads of sexually maturing rainbow trout (Oncorhynchus mykiss). Biol Reprod 2002; 67:1621-7. [PMID: 12390896 DOI: 10.1095/biolreprod.102.004788] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Rainbow trout sexually mature at the end of Year 3. The form of GnRH that controls gonadotropin release in trout is salmon GnRH (sGnRH). In the tetraploid rainbow trout, two genes encode an identical sGnRH peptide. The sGnRH gene-1 produces one mRNA, whereas sGnRH gene-2 can produce more than one. This study asks whether the transcripts and their protein products are expressed in the brain and gonads and whether the pattern correlates with sexual maturity over the final year leading to first spawning. Brain sGnRH mRNA and protein were continuously present throughout the third year. We show for the first time that the long sGnRH-2 mRNA transcript is expressed in neural tissue and not exclusively in gonadal tissue. Expression of the long sGnRH-2 mRNA in the brain coincides with high levels of sGnRH peptide in the brain during a time of increased gonadal growth. Thus, the long sGnRH-2 mRNA in the brain may act to regulate sGnRH production in a stage-specific rather than a tissue-specific manner. In gonads, local sGnRH is thought to play an autocrine/paracrine role in regulating gonadal maturation and spawning. In the maturing gonads, sGnRH gene-1 and -2 are expressed intermittently. Strikingly, sGnRH peptide was not detected in the gonads at any time during Year 3. These results suggest that either the sGnRH transcripts in the gonads are not translated into protein or, if translated, the protein is rapidly released, resulting in gonadal content below 1 fM per fish.
Collapse
Affiliation(s)
- Sarah L Gray
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | |
Collapse
|
49
|
Madigou T, Uzbekova S, Lareyre JJ, Kah O. Two messenger RNA isoforms of the gonadotrophin-releasing hormone receptor, generated by alternative splicing and/or promoter usage, are differentially expressed in rainbow trout gonads during gametogenesis. Mol Reprod Dev 2002; 63:151-60. [PMID: 12203824 DOI: 10.1002/mrd.90006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The recent cloning of a gonadotrophin-releasing hormone receptor (GnRH-R) cDNA from rainbow trout showed that it contains several in-frame ATG codons, one of which, ATG2, corresponds to that found in other species. However, an upstream codon, ATG1, could give rise to a protein with a larger extracellular domain. Using S1 nuclease assay and a method combining primer extension and RACE-PCR, we characterized a second population of mRNA, termed mRNA-2, with a distinct 5'untranslated region and lacking ATG1. The genomic origin of the two mRNAs was determined by establishing the complete gene structure, which shows, for the first time in a vertebrate species that an alternative splicing and promoter usage generate two GnRH-R mRNA variants whose 5' extremities are encoded by two different exons. The analysis of the tissue distribution indicated that mRNA-2 presents a broader pattern of expression and is detected at higher levels than mRNA-1. Interestingly, it was found that those two mRNAs are differentially expressed in male and female gonads during gametogenesis. In particular, the variations of mRNA-1 levels parallel those of sGnRH expression during spermatogenesis, indicating that tissue-specific processing of the GnRH-R mRNA may underlie the effects of GnRH as a paracrine/autocrine regulator of gonadal functions.
Collapse
Affiliation(s)
- Thierry Madigou
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS, Campus de Beaulieu, Rennes, France
| | | | | | | |
Collapse
|
50
|
Morales P, Pizarro E, Kong M, Pasten C. Sperm binding to the human zona pellucida and calcium influx in response to GnRH and progesterone. Andrologia 2002. [DOI: 10.1046/j.1439-0272.2002.00510.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|