1
|
Mahmoudi R, Novella JL, Laurent-Badr S, Boulahrouz S, Tran D, Morrone I, Jaïdi Y. Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24086921. [PMID: 37108085 PMCID: PMC10138684 DOI: 10.3390/ijms24086921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Cholinergic antagonists interfere with synaptic transmission in the central nervous system and are involved in pathological processes in patients with neurocognitive disorders (NCD), such as behavioral and psychological symptoms of dementia (BPSD). In this commentary, we will briefly review the current knowledge on the impact of cholinergic burden on BPSD in persons with NCD, including the main pathophysiological mechanisms. Given the lack of clear consensus regarding symptomatic management of BPSD, special attention must be paid to this preventable, iatrogenic condition in patients with NCD, and de-prescription of cholinergic antagonists should be considered in patients with BPSD.
Collapse
Affiliation(s)
- Rachid Mahmoudi
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Jean Luc Novella
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Sarah Laurent-Badr
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
| | - Sarah Boulahrouz
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - David Tran
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
| | - Isabella Morrone
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- Cognition Health and Society Laboratory (C2S-EA 6291), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Yacine Jaïdi
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| |
Collapse
|
2
|
Yang H, Micovic N, Monaghan JR, Clark HA. Click Chemistry-Enabled Conjugation Strategy for Producing Dibenzodiazepinone-Type Fluorescent Probes To Target M 2 Acetylcholine Receptors. Bioconjug Chem 2022; 33:2223-2233. [PMID: 36327428 DOI: 10.1021/acs.bioconjchem.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The development of fluorescently labeled receptor-targeting compounds represents a powerful pharmacological tool to study and characterize ligand-receptor interactions. Despite significant advances in developing sub-type-specific antagonists for muscarinic acetylcholine receptors (mAChRs), reports on antagonists feasible for click chemistry are less common. Here, we designed and synthesized an antagonist suitable for probe attachment through click chemistry, namely, dibenzodiazepinone (DIBA)-alkyne, based on a previously reported DIBA scaffold with a high binding affinity to type-2 mAChR (M2R). To demonstrate the versatility of DIBA-alkyne as a building block for bioconjugates, we assembled DIBA-alkyne with Cyanine5 fluorophores (Cy5) and polyethylene glycol (PEG) biomolecules to obtain fluorescent DIBA antagonist (DIBA-Cy5) and fluorescent DIBA PEG derivatives. Flow cytometric analysis showed that DIBA-Cy5 possessed a high binding affinity to M2R (Kd = 1.80 nM), a two-order magnitude higher binding affinity than M1R. Fluorescent DIBA PEG derivatives maintained a potent binding to the M2R (Kd ≤ 4 nM), confirmed by confocal microscopic imaging. Additionally, DIBA-Cy5 can serve as a fluorescent ligand in the receptor-ligand competitive binding assay for other mAChR ligands, an attractive alternative to the traditional radioligand-based assay. The competitive binding mode between DIBA-Cy5 and orthosteric antagonist atropine/allosteric modulator LY2119620 indicated a dualsteric binding mode of the DIBA-type antagonist to M2R. Lastly, we demonstrated the direct staining of DIBA-Cy5 to M2R receptors in the sinoatrial node of a mouse heart. The adaptability of the clickable DIBA antagonist to a wide range of fluorophores and biomolecules can facilitate its use in various biomedical applications such as binding assays that screen compounds for M2R as the receptor target.
Collapse
Affiliation(s)
- Hongrong Yang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts02115, United States
| | - Nicholas Micovic
- Department of Bioengineering, Northeastern University, Boston, Massachusetts02115, United States
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, Massachusetts02115, United States
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, Massachusetts02115, United States
| | - Heather A Clark
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
3
|
Silkis IG. Role of Acetylcholine and GABAergic Inhibitory Transmission in Seizure Pattern Generation in Neural Networks Integrating the Neocortex, Hippocampus, Basal Ganglia, and Thalamus. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Walker LC, Lawrence AJ. Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:233-275. [DOI: 10.1016/bs.apha.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Tillman GD, Spence JS, Briggs RW, Haley RW, Hart J, Kraut MA. Gulf War illness associated with abnormal auditory P1 event-related potential: Evidence of impaired cholinergic processing replicated in a national sample. Psychiatry Res Neuroimaging 2019; 283:7-15. [PMID: 30453127 DOI: 10.1016/j.pscychresns.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/05/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Our team previously reported event-related potential (ERP) and hyperarousal patterns from a study of one construction battalion of the U.S. Naval Reserve who served during the 1991 Persian Gulf War. We sought to replicate these findings in a sample that was more representative of the entire Gulf War-era veteran population, including male and female participants from four branches of the military. We collected ERP data from 40 veterans meeting Haley criteria for Gulf War syndromes 1-3 and from 22 matched Gulf War veteran controls while they performed an auditory oddball task. Reports of hyperarousal from the ill veterans were significantly greater than those from the control veterans, and P1 amplitudes in Syndromes 2 and 3 were significantly higher than P1 amplitudes in Syndrome 1, replicating our previous findings. Many of the contributors to the generation of the P1 potential are also involved in the regulation of arousal and are modulated by cholinergic and dopaminergic systems-two systems whose dysfunction has been implicated in Gulf War illness. These differences among the three syndrome groups where their means were on either side of controls is a replication of our previous ERP study and is consistent with previous imaging studies of this population.
Collapse
Affiliation(s)
- Gail D Tillman
- Center for BrainHealth, The University of Texas at Dallas
| | - Jeffrey S Spence
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Richard W Briggs
- Departments of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert W Haley
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John Hart
- Center for BrainHealth, The University of Texas at Dallas; Departments of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Michael A Kraut
- Center for BrainHealth, The University of Texas at Dallas; Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer's disease. Neuropharmacology 2017; 136:362-373. [PMID: 29138080 DOI: 10.1016/j.neuropharm.2017.11.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are G proteincoupled receptors (GPCRs) that mediate the metabotropic actions of acetylcholine (ACh). There are five subtypes of mAChR, M1 - M5, which are expressed throughout the central nervous system (CNS) on numerous cell types and represent promising treatment targets for a number of different diseases, disorders, and conditions of the CNS. Although the present review will focus on Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), a number of conditions such as Parkinson's disease (PD), schizophrenia, and others represent significant unmet medical needs for which selective muscarinic agents could offer therapeutic benefits. Numerous advances have been made regarding mAChR localization through the use of subtype-selective antibodies and radioligand binding studies and these efforts have helped propel a number of mAChR therapeutics into clinical trials. However, much of what we know about mAChR localization in the healthy and diseased brain has come from studies employing radioligand binding with relatively modest selectivity. The development of subtype-selective small molecule radioligands suitable for in vitro and in vivo use, as well as robust, commercially-available antibodies remains a critical need for the field. Additionally, novel genetic tools should be developed and leveraged to help move the field increasingly towards a systems-level understanding of mAChR subtype action. Finally, functional, proteomic, and genetic data from ongoing human studies hold great promise for optimizing the design and interpretation of studies examining receptor levels by enabling patient stratification. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
|
7
|
Microarray analysis of transcripts with elevated expressions in the rat medial or lateral habenula suggest fast GABAergic excitation in the medial habenula and habenular involvement in the regulation of feeding and energy balance. Brain Struct Funct 2016; 221:4663-4689. [DOI: 10.1007/s00429-016-1195-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
|
8
|
Wan M, Zhang W, Tian Y, Xu C, Xu T, Liu J, Zhang R. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor. Sci Rep 2015; 5:11408. [PMID: 26094760 PMCID: PMC4476042 DOI: 10.1038/srep11408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/22/2015] [Indexed: 12/25/2022] Open
Abstract
Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence (374)KKKPPPS(380) servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching (374)KKKPPPS(380) to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, (361)VARKIVKMTKQPA(373), which is normally masked in the presence of the downstream sequence (374)KKKPPPS(380). Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent.
Collapse
Affiliation(s)
- Min Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangli Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chanjuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xu
- 1] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Extrasynaptic muscarinic acetylcholine receptors on neuronal cell bodies regulate presynaptic function in Caenorhabditis elegans. J Neurosci 2013; 33:14146-59. [PMID: 23986249 DOI: 10.1523/jneurosci.1359-13.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) is a potent neuromodulator in the brain, and its effects on cognition and memory formation are largely performed through muscarinic acetylcholine receptors (mAChRs). mAChRs are often preferentially distributed on specialized membrane regions in neurons, but the significance of mAChR localization in modulating neuronal function is not known. Here we show that the Caenorhabditis elegans homolog of the M1/M3/M5 family of mAChRs, gar-3, is expressed in cholinergic motor neurons, and GAR-3-GFP fusion proteins localize to cell bodies where they are enriched at extrasynaptic regions that are in contact with the basal lamina. The GAR-3 N-terminal extracellular domain is necessary and sufficient for this asymmetric distribution, and mutation of a predicted N-linked glycosylation site within the N-terminus disrupts GAR-3-GFP localization. In transgenic animals expressing GAR-3 variants that are no longer asymmetrically localized, synaptic transmission at neuromuscular junctions is impaired and there is a reduction in the abundance of the presynaptic protein sphingosine kinase at release sites. Finally, GAR-3 can be activated by endogenously produced ACh released from neurons that do not directly contact cholinergic motor neurons. Together, our results suggest that humoral activation of asymmetrically localized mAChRs by ACh is an evolutionarily conserved mechanism by which ACh modulates neuronal function.
Collapse
|
10
|
Teles-Grilo Ruivo LM, Mellor JR. Cholinergic modulation of hippocampal network function. Front Synaptic Neurosci 2013; 5:2. [PMID: 23908628 PMCID: PMC3726829 DOI: 10.3389/fnsyn.2013.00002] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 11/13/2022] Open
Abstract
Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus.
Collapse
Affiliation(s)
- Leonor M Teles-Grilo Ruivo
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, University Walk Bristol, UK
| | | |
Collapse
|
11
|
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom;
| |
Collapse
|
12
|
Damiano S, Petrozziello T, Ucci V, Amente S, Santillo M, Mondola P. Cu-Zn superoxide dismutase activates muscarinic acetylcholine M1 receptor pathway in neuroblastoma cells. Mol Cell Neurosci 2012; 52:31-7. [PMID: 23147108 DOI: 10.1016/j.mcn.2012.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/25/2012] [Accepted: 11/02/2012] [Indexed: 01/25/2023] Open
Abstract
Muscarinic receptors (mAChRs) control several neuronal functions and are widely expressed in the central nervous system (CNS): M1 subtype represents the predominant mAChR in the CNS. Previously, we showed that antioxidant enzyme Cu-Zn superoxide dismutase (SOD1) is secreted by many cellular lines and specifically interacts with cell surface membrane of human neuroblastoma SK-N-BE cells thus activating phospholipase C (PLC) transduction pathway and increasing intracellular calcium concentration ([Ca(2+)](i)). In addition, we demonstrated that a small amount of SOD1 is contained in large core dense vesicles and that it is secreted in response to depolarization induced by elevated extracellular K(+) concentration. In the present study, we investigated the involvement of muscarinic M1 receptors in SOD1-induced activation of PLC transduction pathway. We showed that, in SK-N-BE cells, SOD1 was able to activate muscarinic M1 receptor producing a phosphorylation of ERK 1/2 and Akt in dose- and time-dependent manner. Interestingly, in the presence of the M1 antagonist pirenzepine, ERK 1/2 and Akt phosphorylation induced by SOD1 was remarkably prevented. This effect was mimicked by knocking-down M1 receptor using two sequences of RNA silencing (siRNA). At functional level, siRNAs against M1 receptor were able to prevent the increase in [Ca(2+)](i) induced by SOD1. The same inhibitory effect on [Ca(2+)](i) changes was produced by the M1 antagonist pirenzepine. Collectively, the results of this study demonstrated that SOD1 could activate a transductional pathway through the involvement of M1 muscarinic receptor.
Collapse
Affiliation(s)
- Simona Damiano
- Dipartimento di Neuroscienze, Unità di Fisiologia Umana, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Zheng F, Wess J, Alzheimer C. M2 muscarinic acetylcholine receptors regulate long-term potentiation at hippocampal CA3 pyramidal cell synapses in an input-specific fashion. J Neurophysiol 2012; 108:91-100. [PMID: 22490561 DOI: 10.1152/jn.00740.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscarinic receptors have long been known as crucial players in hippocampus-dependent learning and memory, but our understanding of the cellular underpinnings and the receptor subtypes involved lags well behind. This holds in particular for the hippocampal CA3 region, where the mechanisms of synaptic plasticity depend on the type of afferent input. Williams and Johnston (Williams S, Johnston D. Science 242: 84-87, 1988; Williams S, Johnston D. J Neurophysiol 64: 1089-1097, 1990) demonstrated muscarinic depression of mossy fiber (MF) long-term potentiation (LTP) through a presynaptic site of action and Maeda et al. (Maeda T, Kaneko S, Satoh M. Brain Res 619: 324-330, 1993) proposed a bidirectional modulation of MF LTP by muscarinic receptor subtypes. Since then, this issue, as well as muscarinic regulation of plasticity at associational/commissural (A/C) fiber-CA3 synapses has remained largely neglected, not least because of the lack of highly selective ligands for the different muscarinic receptor subtypes. In the present study, we performed field potential and whole cell recordings from the hippocampal CA3 region of M(2) receptor knockout mice to determine the role of M(2) receptors in short-term and long-term plasticity at A/C and MF inputs to CA3 pyramidal cells. At the A/C synapse, M(2) receptors promoted short-term facilitation and LTP. Unexpectedly, M(2) receptors mediated the opposite effect on LTP at the MF synapse, which was significantly reduced, most likely involving a depressant effect of M(2) receptors on adenylyl cyclase activity in MF terminals. Our data demonstrate that cholinergic projections recruit M(2) receptors to redistribute the gain of LTP in CA3 pyramidal cells in an input-specific manner.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology, University of Kiel, Kiel, Germany
| | | | | |
Collapse
|
14
|
Drever BD, Riedel G, Platt B. The cholinergic system and hippocampal plasticity. Behav Brain Res 2010; 221:505-14. [PMID: 21130117 DOI: 10.1016/j.bbr.2010.11.037] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
Acetylcholine is an essential excitatory neurotransmitter in the central nervous system and undertakes a vital role in cognitive function. Consequently, there is ample evidence to suggest the involvement of both nicotinic and muscarinic acetylcholine receptors in the modulation of synaptic plasticity, which is believed to be the molecular correlate of learning and memory. In the hippocampus in particular, multiple subtypes of both nicotinic and muscarinic receptors are present at presynaptic and postsynaptic loci of both principal neurons and inhibitory interneurons, where they exert profound bi-directional influences on synaptic transmission. Further evidence points to a role for cholinergic activation in the induction and maintenance of synaptic plasticity, and key influences on hippocampal network oscillations. The present review examines these multiple roles of acetylcholine in hippocampal plasticity.
Collapse
Affiliation(s)
- Benjamin D Drever
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | |
Collapse
|
15
|
Havekes R, Abel T, Van der Zee EA. The cholinergic system and neostriatal memory functions. Behav Brain Res 2010; 221:412-23. [PMID: 21129408 DOI: 10.1016/j.bbr.2010.11.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/25/2022]
Abstract
The striatum is one of the major forebrain regions that strongly expresses muscarinic and nicotinic cholinergic receptors. This article reviews the current knowledge and our new findings about the striatal cholinoceptive organization and its role in a variety of cognitive functions. Pharmacological and genetic manipulations have indicated that the cholinergic and dopaminergic system in the striatum modulate each other's function. In addition to modulating the dopaminergic system, nicotinic cholinergic receptors facilitate GABA release, whereas muscarinic receptors attenuate GABA release. The striatal cholinergic system has also been implicated in various cognitive functions including procedural learning and intradimensional set shifting. Together, these data indicate that the cholinergic system in the striatum is involved in a diverse set of cognitive functions through interactions with other neurotransmitter systems including the dopaminergic and GABAergic systems.
Collapse
Affiliation(s)
- Robbert Havekes
- Department of Biology, University of Pennsylvania, 433 S University Avenue, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
16
|
Cardoso CC, Ricardo VP, Frussa-Filho R, Porto CS, Abdalla FMF. Effects of 17β-estradiol on expression of muscarinic acetylcholine receptor subtypes and estrogen receptor α in rat hippocampus. Eur J Pharmacol 2010; 634:192-200. [DOI: 10.1016/j.ejphar.2010.02.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 02/01/2010] [Accepted: 02/15/2010] [Indexed: 12/01/2022]
|
17
|
Localisation of pre- and postsynaptic cholinergic markers in the human brain. Behav Brain Res 2010; 221:341-55. [PMID: 20170687 DOI: 10.1016/j.bbr.2010.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The cholinergic neurotransmission in the central nervous system plays an important role in modulating cognitive processes such as learning, memory, arousal and sleep as well as in modulating locomotor activity. Dysfunction of the central cholinergic system is involved in numerous neuropsychiatric diseases. This review will provide a synopsis on the regional localisation of cholinergic and cholinoceptive structures within the adult human brain. On the cholinergic site data based on the distribution of choline acetyltransferase-immunoreactive structures are in the focus, complemented by data from acetylcholinesterase and vesicular acetylcholine transporter studies. On the cholinoceptive site, the distribution and localisation of receptors that transduce the acetylcholine message, i.e. the muscarinic and the nicotinic acetylcholine receptors is summarized. In addition to these data obtained on post mortem brain an overview of markers which allow for the in vivo monitoring of the cholinergic system in the brain is given. The detailed knowledge on the distribution and localisation of cholinergic markers in human brain will provide further information on the cholinergic circuits of neurotransmission - a prerequisite for the interpretation of in vivo imaging data and the development of selective diagnostic and therapeutic compounds.
Collapse
|
18
|
Muscarinic receptor changes in the gerbil thalamus during aging. Brain Res 2008; 1243:38-46. [PMID: 18835552 DOI: 10.1016/j.brainres.2008.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/11/2008] [Accepted: 09/13/2008] [Indexed: 11/22/2022]
Abstract
Here we studied muscarinic receptors in the gerbil thalamus at 8 different ages - from 6 to 36 months - using receptor and functional autoradiography. The pharmacological profile inhibiting [(3)H]N-methyl scopolamine ([(3)H]NMS) binding with 50 and 200 nM pirenzepine, 30 nM pFHHSiD and 100 nM AF-DX 116 revealed the predominance of the M(2) muscarinic subtype in the thalamic nuclei studied, mainly in the anteroventral, anteromedial and paraventricular thalamic nuclei. These data correlated with the highest [(35)S]guanylyl-5'-O-(gamma-thio)-triphosphate ([(35)S]GTP gamma S) binding induced in these nuclei by the muscarinic agonist oxotremorine in functional autoradiographic assays. Significant aging-dependent increases in the functional response in these three nuclei were observed, but only the anteroventral and anteromedial thalamic nuclei showed aging-dependent increases in [(3)H]NMS binding. Since these nuclei exert relevant functions, in which cholinergic pathways are involved and acetylcholine release is reported to decrease during aging, we suggest that the anteroventral and anteromedial thalamic nuclei would play critical roles in the cholinergic transmission that require compensatory mechanisms during the aging process and that are not observed in other thalamic nuclei.
Collapse
|
19
|
Effects of estrogen on intracellular signaling pathways linked to activation of muscarinic acetylcholine receptors and on acetylcholinesterase activity in rat hippocampus. Biochem Pharmacol 2008; 75:1827-34. [DOI: 10.1016/j.bcp.2008.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 11/20/2022]
|
20
|
Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 2008; 117:232-43. [DOI: 10.1016/j.pharmthera.2007.09.009] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 11/29/2022]
|
21
|
Hayes J, Li S, Anwyl R, Rowan MJ. A role for protein kinase A and protein kinase M zeta in muscarinic acetylcholine receptor-initiated persistent synaptic enhancement in rat hippocampus in vivo. Neuroscience 2007; 151:604-12. [PMID: 18061357 DOI: 10.1016/j.neuroscience.2007.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/16/2007] [Accepted: 10/29/2007] [Indexed: 11/28/2022]
Abstract
Antagonists at presynaptic muscarinic autoreceptors increase endogenous acetylcholine (ACh) release and enhance cognition but little is known regarding their actions on plasticity at glutamatergic synapses. Here the mechanisms of the persistent enhancement of hippocampal excitatory transmission induced by the M2/M4 muscarinic ACh receptor antagonist methoctramine were investigated in vivo. The persistent facilitatory effect of i.c.v. methoctramine in the CA1 region of urethane-anesthetized rats was mimicked by gallamine, an M2 receptor antagonist, supporting a role for this receptor subtype. Neither the N-methyl-D-aspartate (NMDA) receptor antagonists D-(-)-2-amino phosphonopentanoic acid (d-AP5) and memantine, nor the metabotropic glutamate receptor subtype 1a antagonist (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) significantly affected the methoctramine-induced persistent synaptic enhancement, indicating a lack of requirement for these glutamate receptors. The selective kinase inhibitors Rp-adenosine-3', 5'-cyclic monophosphorothioate (Rp-cAMPS) and the myrostylated pseudosubstrate peptide, Myr-Ser-Ile-Tyr-Arg-Arg-Gly-Ala-Arg-Arg-Trp-Arg-Lys-Leu-OH (ZIP), were used to investigate the roles of protein kinase A (PKA) and the atypical protein kinase C, protein kinase Mzeta (PKM zeta), respectively. Remarkably, pretreatment with either agent prevented the induction of the persistent synaptic enhancement by methoctramine and post-methoctramine treatment with Rp-cAMPS transiently reversed the enhancement. These findings are strong evidence that antagonism of M2 muscarinic ACh receptors in vivo induces an NMDA receptor-independent persistent synaptic enhancement that requires activation of both PKA and PKM zeta.
Collapse
Affiliation(s)
- J Hayes
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
22
|
Li S, Cullen WK, Anwyl R, Rowan MJ. Muscarinic acetylcholine receptor-dependent induction of persistent synaptic enhancement in rat hippocampus in vivo. Neuroscience 2007; 144:754-61. [PMID: 17101232 DOI: 10.1016/j.neuroscience.2006.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 09/30/2006] [Accepted: 10/02/2006] [Indexed: 11/23/2022]
Abstract
Presynaptic terminal autoinhibitory muscarinic acetylcholine (ACh) receptors are predominantly of the M2/M4 subtypes and antagonists at these receptors may facilitate cognitive processes by increasing ACh release. The present study examined the ability of the M2/M4 muscarinic ACh receptor antagonist N,N'-bis [6-[[(2-methoxyphenyl)methyl]amino]hexyl]-1,8-octane diamine tetrahydrochloride (methoctramine) to induce and modulate synaptic plasticity in the CA1 area of the hippocampus in urethane-anesthetized rats. Both methoctramine and another M2/M4 antagonist, {11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one} (AF-DX 116), caused a rapid onset and persistent increase in baseline synaptic transmission after i.c.v. injection. Consistent with a requirement for activation of non-M2 receptors by endogenously released ACh, the M1/M3 receptor selective antagonists 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and 4,9-dihydro-3-methyl-4-[(4-methyl-1-piperazinyl)acetyl]-10H-thieno[3,4-b][1,5]benzodiazepin-10-one dihydrochloride (telenzepine) prevented the induction of the persistent synaptic enhancement by methoctramine. The requirement for cholinergic activation was transient and independent of nicotinic ACh receptor stimulation. The synaptic enhancement was inhibited by the prior induction of long-term potentiation (LTP) by high frequency stimulation but induction of the synaptic enhancement by methoctramine before high frequency stimulation did not inhibit LTP. Unlike high frequency stimulation-evoked LTP, the synaptic enhancement induced by methoctramine appeared to be NMDA receptor-independent. The present studies provide evidence for the rapid induction of a persistent potentiation at hippocampal glutamatergic synapses by endogenous ACh in vivo following disinhibition of inhibitory M2 muscarinic autoreceptors.
Collapse
Affiliation(s)
- S Li
- Department of Pharmacology and Therapeutics, Biotechnology Building, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
23
|
Garzón M, Pickel VM. Subcellular distribution of M2 muscarinic receptors in relation to dopaminergic neurons of the rat ventral tegmental area. J Comp Neurol 2006; 498:821-39. [PMID: 16927256 PMCID: PMC2577061 DOI: 10.1002/cne.21082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Among the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain. The M2R was localized to endomembranes in DAT-containing somatodendritic profiles but showed a more prominent, size-dependent plasmalemmal location in nondopaminergic dendrites. M2R also was located on the plasma membrane of morphologically heterogenous axon terminals contacting unlabeled as well as M2R- or DAT-labeled dendrites. Some of these terminals formed asymmetric synapses resembling those of cholinergic terminals in the VTA. The majority, however, formed symmetric, inhibitory-type synapses or were apposed without recognized junctions. Our results provide the first ultrastructural evidence that the M2R is expressed, but largely not available for local activation, on the plasma membrane of VTA dopaminergic neurons. Instead, the M2R in this region has a distribution suggesting more indirect regulation of mesocorticolimbic transmission through autoregulation of acetylcholine release and changes in the physiological activity or release of other, largely inhibitory transmitters. These findings could have implications for understanding the muscarinic control of cognitive and goal-directed behaviors within the VTA.
Collapse
Affiliation(s)
- Miguel Garzón
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
24
|
Bazalakova MH, Wright J, Schneble EJ, McDonald MP, Heilman CJ, Levey AI, Blakely RD. Deficits in acetylcholine homeostasis, receptors and behaviors in choline transporter heterozygous mice. GENES BRAIN AND BEHAVIOR 2006; 6:411-24. [PMID: 17010154 DOI: 10.1111/j.1601-183x.2006.00269.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.
Collapse
Affiliation(s)
- M H Bazalakova
- Neuroscience Graduate Program, MSTP, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37242-8548, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Iverson HA, Fox D, Nadler LS, Klevit RE, Nathanson NM. Identification and Structural Determination of the M3 Muscarinic Acetylcholine Receptor Basolateral Sorting Signal. J Biol Chem 2005; 280:24568-75. [PMID: 15870063 DOI: 10.1074/jbc.m501264200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscarinic acetylcholine receptors comprise a family of G-protein-coupled receptors that display differential localization in polarized epithelial cells. We identify a seven-residue sequence, Ala(275)-Val(281), in the third intracellular loop of the M(3) muscarinic receptor that mediates dominant, position-independent basolateral targeting in Madin-Darby canine kidney cells. Mutational analyses identify Glu(276), Phe(280), and Val(281) as critical residues within this sorting motif. Phe(280) and Val(281) comprise a novel dihydrophobic sorting signal as mutations of either residue singly or together with leucine do not disrupt basolateral targeting. Conversely, Glu(276) is required and cannot be substituted with alanine or aspartic acid. A 19-amino acid peptide representing the M(3) sorting signal and surrounding sequence was analyzed via two-dimensional nuclear magnetic resonance spectroscopy. Solution structures show that Glu(276) resides in a type IV beta-turn and the dihydrophobic sequence Phe(280)Val(281) adopts either a type I or IV beta-turn.
Collapse
Affiliation(s)
- Heidi A Iverson
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
26
|
Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E, Gomeza J, Basile AS, Alzheimer C, Wess J. M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 2005; 24:10117-27. [PMID: 15537882 PMCID: PMC6730182 DOI: 10.1523/jneurosci.3581-04.2004] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Muscarinic acetylcholine receptors are known to play key roles in facilitating cognitive processes. However, the specific roles of the individual muscarinic receptor subtypes (M1-M5) in learning and memory are not well understood at present. In the present study, we used wild-type (M2+/+) and M2 receptor-deficient (M2-/-) mice to examine the potential role of M2 receptors in learning and memory and hippocampal synaptic plasticity. M2-/- mice showed significant deficits in behavioral flexibility and working memory in the Barnes circular maze and the T-maze delayed alternation tests, respectively. The behavioral deficits of M2-/- mice were associated with profound changes in neuronal plasticity studied at the Schaffer-CA1 synapse of hippocampal slices. Strikingly, short-term potentiation (STP) was abolished, and long-term potentiation (LTP) was drastically reduced after high-frequency stimulation of M2-/- hippocampi. Treatment of M2-/- hippocampal slices with the GABA(A) receptor antagonist, bicuculline, restored STP and significantly increased LTP. Whole-cell recordings from CA1 pyramidal cells demonstrated a much stronger disinhibition of GABAergic than glutamatergic transmission in M2-/- hippocampi, which was particularly prominent during stimulus trains. Increased strength of GABAergic inhibition is thus a likely mechanism underlying the impaired synaptic plasticity observed with M2-/- hippocampi. Moreover, the persistent enhancement of excitatory synaptic transmission in CA1 pyramidal cells induced by the transient application of a low concentration of a muscarinic agonist (referred to as LTP(m)) was totally abolished in M2-/- mice. Because impaired muscarinic cholinergic neurotransmission is associated with Alzheimer's disease and normal aging processes, these findings should be of considerable therapeutic relevance.
Collapse
Affiliation(s)
- Thomas Seeger
- Department of Physiology, University of Munich, D-80336 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Núñez-Taltavull JF, Prat G, Rubio A, Robledo P, Casas M. Biphasic effects of oxotremorine-M on turning behavior induced by caffeine in 6-OHDA-lesioned rats. Eur J Pharmacol 2004; 506:71-4. [PMID: 15588626 DOI: 10.1016/j.ejphar.2004.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 10/06/2004] [Indexed: 11/29/2022]
Abstract
This work studied the interactions between cholinergic and adenosine systems in the denervated striatum. For that purpose, we evaluated the effects of an intrastriatal administration of the muscarincic receptor agonist, oxotremorine-M on turning behavior induced by systemic caffeine in unilaterally 6-hydroxydopamine-lesioned rats. Low doses of oxotremorine-M (0.1 ng/microl) enhanced, whereas high doses (100 ng/microl) attenuated contralateral turning induced by caffeine. These results support a functional link between muscarinic and adenosinergic systems in the denervated striatum and suggest opposite actions of muscarinic M2 and M1 receptors on caffeine-induced turning behavior.
Collapse
Affiliation(s)
- Juan Francisco Núñez-Taltavull
- Laboratori de Neuropsicofarmacologia, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Departaments de Psiquiatria i de Farmacología, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
28
|
Décossas M, Doudnikoff E, Bloch B, Bernard V. Aging and subcellular localization of m2 muscarinic autoreceptor in basalocortical neurons in vivo. Neurobiol Aging 2004; 26:1061-72. [PMID: 15748786 DOI: 10.1016/j.neurobiolaging.2004.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 09/07/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
By using immunohistochemical approaches at the light and electron microscopic levels, we have shown that aging modifies the subcellular distribution of the m2 muscarinic autoreceptor (m2R) differentially at somato-dendritic postsynaptic sites and at axonal presynaptic sites in cholinergic basalocortical neurons, in vivo. In cholinergic perikarya and dendrites of the nucleus basalis magnocellularis (NBM), aging is associated with a decrease of the density of m2R at the plasma membrane and in the cytoplasm, suggesting a decrease of the total number of m2R in the somato-dendritic field. In contrast, the number of substance P receptors per somato-dendritic surface was not affected. In the frontal cortex (FC), we have shown a decrease of cytoplasmic m2R density also leading to a decrease of the number of m2R per surface of varicosities but with no change of the density of m2R at the membrane. Our results suggest that the decrease of m2R in the somato-dendritic field of the NBM, but not a modification of the number of presynaptic m2 autoreceptors at the plasma membrane in the FC, could contribute to the decrease of the efficacy of cholinergic transmission observed with aging in the rat.
Collapse
Affiliation(s)
- Marion Décossas
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5541, Laboratoire d'Histologie-Embryologie, Université Victor Ségalen-Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
29
|
Harte SE, Hoot MR, Borszcz GS. Involvement of the intralaminar parafascicular nucleus in muscarinic-induced antinociception in rats. Brain Res 2004; 1019:152-61. [PMID: 15306249 DOI: 10.1016/j.brainres.2004.05.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
The thalamic contribution to cholinergic-induced antinociception was examined by microinjecting the acetylcholine (ACh) agonist carbachol into the intralaminar nucleus parafascicularis (nPf) of rats. Pain behaviors organized at spinal (spinal motor reflexes), medullary (vocalizations during shock), and forebrain (vocalization afterdischarges, VADs) levels of the neuraxis were elicited by noxious tailshock. Carbachol (0.5, 1, and 2 microg/side) administered into nPf produced dose-dependent elevations of vocalization thresholds, but failed to elevate spinal motor reflex threshold. Injections of carbachol into adjacent sites dorsal or ventral to nPf failed to alter vocalization thresholds. Elevations in vocalization thresholds produced by intra-nPf carbachol were reversed in a dose-dependent manner by local administration of the muscarinic receptor antagonist atropine (30 and 60 microg/side). These results provide the first direct evidence supporting the involvement of the intralaminar thalamus in muscarinic-induced antinociception. Results are discussed in terms of the contribution of nPf to the processing of the affective dimension of pain.
Collapse
Affiliation(s)
- Steven E Harte
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
30
|
Knol RJJ, Doornbos T, van den Bos JC, de Bruin K, Pfaffendorf M, Aanhaanen W, Janssen AGM, Vekemans JAJM, van Eck-Smit BLF, Booij J. Synthesis and evaluation of iodinated TZTP-derivatives as potential radioligands for imaging of muscarinic M2 receptors with SPET. Nucl Med Biol 2004; 31:111-23. [PMID: 14741576 DOI: 10.1016/s0969-8051(03)00095-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A series of iodinated thiadiazolyltetrahydro-1-methyl-pyridine (TZTP) compounds was synthesized and evaluated in vitro and in vivo as potential radioligands for imaging of the muscarinic M2 receptor subtype with SPET. One of these compounds, 5-(E)-iodopentenylthio-TZTP, has high in vitro affinity (Ki = 4.9 nM) and moderate selectivity for the muscarinic M2 receptor subtype. Although the uptake pattern in the biodistribution studies in rats is consistent with muscarinic M2 receptor disribution, specific in vivo binding to these receptors could not be demonstrated. The usefulness of this tracer in human SPET imaging may therefore be limited.
Collapse
Affiliation(s)
- Remco J J Knol
- Graduate School of Neurosciences, Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Volpicelli LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. PROGRESS IN BRAIN RESEARCH 2004; 145:59-66. [PMID: 14650906 DOI: 10.1016/s0079-6123(03)45003-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The M1, M2 and M4 subtypes of mAChRs are the predominant receptors in the CNS. These receptors activate a multitude of signaling pathways important for modulating neuronal excitability, synaptic plasticity and feedback regulation of ACh release. In addition, novel functions mediated by mAChRs are currently being discovered. These studies are greatly facilitated by the recent development of subtype selective toxins and mice lacking individual mAChR genes. Studies in cell culture and the rodent brain demonstrate that mAChR internalization and intracellular trafficking is an important component of mAChR regulation. Characterizing mAChR intracellular trafficking could help facilitate the development of selective mAChR ligands. For example, a selective M1 agonist would cause a shift in the distribution of M1 from the cell surface to an intracellular distribution, while M2 and M4 would remain on the cell surface. Characterizing mAChR intracellular trafficking is also important for understanding the cellular mechanisms that regulate mAChR cell surface expression and signaling. Furthermore, intracellular trafficking has recently been demonstrated to play a role in the development of tolerance to drugs (Whistler et al., 1999; He et al., 2002). Because individual mAChR subtypes are novel targets for treatments of diseases such as Alzheimer's disease and schizophrenia, understanding the mechanisms that regulate mAChR signaling and intracellular trafficking following acute and chronic stimulation might lead to the development of rational strategies.
Collapse
Affiliation(s)
- Laura A Volpicelli
- Department of Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Whitehead Biomedical Research Building, Suite 505, 615 Michael St., Atlanta, GA 30322, USA
| | | |
Collapse
|
32
|
Abstract
Presynaptic synthesis of acetylcholine (ACh) requires a steady supply of choline, acquired by a plasma membrane, hemicholinium-3-sensitive (HC-3) choline transporter (CHT). A significant fraction of synaptic choline is recovered from ACh hydrolyzed by acetylcholinesterase (AChE) after vesicular release. Although antecedent neuronal activity is known to dictate presynaptic CHT activity, the mechanisms supporting this regulation are unknown. We observe an exclusive localization of CHT to cholinergic neurons and demonstrate that the majority of CHTs reside on small vesicles within cholinergic presynaptic terminals in the rat and mouse brain. Furthermore, immunoisolation of presynaptic vesicles with multiple antibodies reveals that CHT-positive vesicles carry the vesicular acetylcholine transporter (VAChT) and synaptic vesicle markers such as synaptophysin and Rab3A and also contain acetylcholine. Depolarization of synaptosomes evokes a Ca2+-dependent botulinum neurotoxin C-sensitive increase in the Vmax for HC-3-sensitive choline uptake that is accompanied by an increase in the density of CHTs in the synaptic plasma membrane. Our study leads to the novel hypothesis that CHTs reside on a subpopulation of synaptic vesicles in cholinergic terminals that can transit to the plasma membrane in response to neuronal activity to couple levels of choline re-uptake to the rate of ACh release.
Collapse
|
33
|
Stewart W, Maxwell DJ. Distribution of and organisation of dorsal horn neuronal cell bodies that possess the muscarinic m2 acetylcholine receptor. Neuroscience 2003; 119:121-35. [PMID: 12763074 DOI: 10.1016/s0306-4522(03)00116-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cholinergic systems in the dorsal horn are involved in antinociception but little is known about the organisation of receptors that mediate this process. In this study we examined immunocytochemical properties of dorsal horn neuronal cell bodies that express the m2 muscarinic acetylcholine receptor. Tissue was examined with confocal laser scanning microscopy and quantitative analysis performed. Immunoreactive cells were found throughout the dorsal horn and in lamina X. Quantitative analysis revealed that 22% of neuronal somata in the dorsal horn possess the receptor. The greatest concentration of cells was found in deeper laminae (IV-VI) and around lamina X. A proportion of cholinergic cells (labelled with an antibody against choline acetyltransferase) were immunoreactive for the receptor (approximately, 40% of dorsal horn cells and 44% of lamina X cells). Populations of presumed inhibitory interneurons also displayed immunoreactivity for the receptor. Between 27-34% of cells immunoreactive for GABA, nitric oxide synthase and the somatostatin receptor(2A) expressed the receptor but only 8% of parvalbumin-immunoreactive cells displayed receptor immunoreactivity. Cells labelled with neurotensin, which belong to a subgroup of excitatory neurons, displayed no receptor immunoreactivity. A small number neurokinin-1 receptor-immunoreactive cells in lamina I possessed m2 immunoreactivity but 42% of laminae III/IV neurokinin-1 cells possessed it. This study shows that a significant proportion of cell bodies in the dorsal horn express the muscarinic m2 acetylcholine receptor. The receptor is present on some cholinergic neurons and therefore may function as an autoreceptor. It is associated with inhibitory local circuit neurons and may have a role in the modulation of specific inhibitory systems. It is also found on a proportion of projection cells that possess the neurokinin-1 receptor. This could be the basis of some of the antinociceptive actions of acetylcholine.
Collapse
Affiliation(s)
- W Stewart
- Spinal Cord Group, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
34
|
Bernard V, Brana C, Liste I, Lockridge O, Bloch B. Dramatic depletion of cell surface m2 muscarinic receptor due to limited delivery from intracytoplasmic stores in neurons of acetylcholinesterase-deficient mice. Mol Cell Neurosci 2003; 23:121-33. [PMID: 12799142 DOI: 10.1016/s1044-7431(03)00034-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have studied the consequences of the constitutive acetylcholinesterase (AChE) deficiency in knockout mice for the AChE gene on the subcellular localization of the m2 receptor (m2R) and the regulation of its intraneuronal compartmentalization by the cholinergic environment, using immunohistochemistry at light and electron microscopic levels. (1) In AChE +/+ mice in vivo, m2R is mainly located at the neuronal membrane in striatum, hippocampus, and cortex. In AChE -/- mice, m2R is almost absent at the membrane but is accumulated in the endoplasmic reticulum and Golgi complex. (2) In vivo and in vitro (organotypic culture) dynamic studies demonstrate that the balance between membrane and intracytoplasmic m2R can be regulated by the cholinergic influence: In AChE -/- mice, m2R is translocated from the cytoplasm to the cell surface after (1) blockade of muscarinic receptors by atropine, (2) supplementation of AChE -/- neurons with AChE in vitro, and (3) disruption of the cortical and hippocampal cholinergic afferents in vitro. Our results suggest that the neurochemical environment may contribute to the control of the abundance and availability of cell surface receptors, and consequently to the control of neuronal sensitivity to neurotransmitters or drugs, by regulating their delivery from the endoplasmic reticulum and Golgi complex.
Collapse
Affiliation(s)
- Véronique Bernard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5541, Laboratoire d'Histologie-Embryologie, Université Victor Ségalen-Bordeaux 2, 146 rue Léo-Saignat, France.
| | | | | | | | | |
Collapse
|
35
|
Lucas-Meunier E, Fossier P, Baux G, Amar M. Cholinergic modulation of the cortical neuronal network. Pflugers Arch 2003; 446:17-29. [PMID: 12690458 DOI: 10.1007/s00424-002-0999-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2002] [Indexed: 01/15/2023]
Abstract
Acetylcholine (ACh) is an important neurotransmitter of the CNS that binds both nicotinic and muscarinic receptors to exert its action. However, the mechanisms underlying the effects of cholinergic receptors have still not been completely elucidated. Central cholinergic neurons, mainly located in basal forebrain, send their projections to different structures including the cortex. The cortical innervation is diffuse and roughly topographic, which has prompted some authors to suspect a modulating role of ACh on the activity of the cortical network rather than a direct synaptic role. The cholinergic system is implicated in functional, behavioural and pathological states including cognitive function, nicotine addiction, Alzheimer's disease, Tourette's syndrome, epilepsies and schizophrenia. As these processes depend on the activation of glutamatergic and GABAergic systems, the cholinergic terminals must exert their effects via the modulation of excitatory and/or inhibitory neurotransmission. However, the understanding of cholinergic modulation is complex because it is the result of a mixture of positive and negative modulation, implying that there are various types, or even subtypes, of cholinergic receptors. In this review, we summarize the current knowledge on central cholinergic systems (projections and receptors) and then aim to focus on the implications for ACh in the modulation of cortical neuronal activity.
Collapse
Affiliation(s)
- E Lucas-Meunier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, INAF-CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
36
|
Lazaris A, Cassel S, Stemmelin J, Cassel JC, Kelche C. Intrastriatal infusions of methoctramine improve memory in cognitively impaired aged rats. Neurobiol Aging 2003; 24:379-83. [PMID: 12498972 DOI: 10.1016/s0197-4580(02)00067-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alterations of striatal cholinergic markers may correlate with cognitive impairments in aged rats. M2 muscarinic receptors were found to be presynaptic inhibitory autoreceptors on striatal cholinergic interneurons. The effect of bilateral intrastriatal infusions of the M2 muscarinic receptor antagonist methoctramine was assessed, in cognitively impaired aged (24-26 months) Long-Evans female rats, on memory performances in a water maze. Compared with vehicle infusions, methoctramine injected bilaterally (1 microg/side) in the dorsolateral striatum, significantly improved procedural memory performance while having no effect on spatial working memory. Our results suggest that, in cognitively impaired aged rats, the blockade of M2 muscarinic receptors in the dorsolateral striatum improves procedural memory probably by enhancing the release of acetylcholine.
Collapse
Affiliation(s)
- A Lazaris
- Laboratoire de Neurosciences Comportementales et Cognitives, Université Louis Pasteur, UMR 7521 ULP/CNRS, IFR 37 Neurosciences, 12 rue Goethe, Strasbourg 67000, France
| | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE Status epilepticus (SE) has been considered an epileptogenic factor in humans. In the pilocarpine (PILO) model, after a brief period marked by SE, the rats exhibit recurrent spontaneous seizures, mimicking the clinical features of temporal lobe epilepsy. The aim of our study was to identify the molecular actions of PILO that could account for its ability to induce SE. METHODS Whole-cell mode of the patch-clamp technique was applied to cultured hippocampal neurons (2-3 weeks old) in the absence and in the presence of PILO (1-10 microM), to study the spontaneous activity, the evoked, and the miniature postsynaptic currents. The postsynaptic currents were isolated pharmacologically. RESULTS PILO (1 and 10 microM) caused an initial increase followed by a decrease in the frequency of spontaneous activity. The increase in the frequency of excitatory postsynaptic currents (EPSCs) and inhibitory PSCs (IPSCs) was blocked by atropine (1 microM), indicating that this effect is mediated through muscarinic receptors. PILO also promoted a brief increase of the amplitude of IPSCs indirectly evoked by stimulation of a neuron synaptically connected to the neuron under study. Conversely, PILO promoted a sustained increase on the amplitude of electrically evoked EPSCs. In presence of tetrodotoxin (TTX; 300 nM), PILO (1 microM) increased the frequency of miniature EPSCs and IPSCs without changing their amplitude during the first 3 min of application. CONCLUSIONS These results indicate that PILO acting through muscarinic receptor causes an imbalance between excitatory and inhibitory transmission that can result in the generation of SE observed in animals acutely treated with PILO.
Collapse
Affiliation(s)
- M R Priel
- School of Medicine, University of Maryland, Baltimore, MD, USA.
| | | |
Collapse
|
38
|
Erisir A, Levey AI, Aoki C. Muscarinic receptor M(2) in cat visual cortex: laminar distribution, relationship to gamma-aminobutyric acidergic neurons, and effect of cingulate lesions. J Comp Neurol 2001; 441:168-85. [PMID: 11745643 DOI: 10.1002/cne.1405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acetylcholine can have diverse effects on visual cortical neurons as a result of variations in postsynaptic receptor subtypes as well as the types of neurons and subcellular sites targeted. This study examines the cellular basis for cholinergic activation in visual cortex via M(2) type muscarinic receptors in gamma-aminobutyric acid (GABA)-ergic and non-GABAergic cells, using immunocytochemical techniques. At light microscopic resolution, M(2) immunoreactivity (-ir) was seen in all layers except area and sublayer specific bands in layer 4. Subcellularly, M(2)-ir occurred in both dendrites and terminals that form symmetric and asymmetric junctions. Layers 5 and 6 were characterized by axosomatic contacts that displayed labeling in the presynaptic component, and layer 6 displayed perikaryal postsynaptic staining, suggesting that corticofugal output neurons may be modulated particularly strongly via M(2). Infragranular layers differed from the supragranular layers in that more labeled profiles were axonal than dendritic, indicating a dominant presynaptic effect by acetylcholine via M(2) there. Unilateral cingulate cortex cuts caused reduction of cholinergic and noradrenergic fibers in the lesioned hemisphere at light microscopic resolution; at electron microscopic resolution, the synapse density and axonal M(2) labeling were reduced, suggesting that M(2) was localized presynaptically on extrathalamic modulatory inputs. Dual labeling with GABA in visual cortex layer 5 showed that half of M(2)-labeled dendrites originated from GABAergic neurons. Given that only one-fifth of all cortical dendritic profiles are GABAergic, this prevalence of dual labeling indicates an enrichment of M(2) within GABAergic dendrites and, thus, implicates abundant postsynaptic action on GABAergic neurons via M(2). In contrast, only one-tenth of M(2)-labeled terminals originated from GABAergic neurons, suggesting that the presynaptic action of acetylcholine via M(2) receptors would be more selective for non-GABAergic terminals.
Collapse
Affiliation(s)
- A Erisir
- Department of Psychology, University of Virginia, 102 Gilmer Hall, Charlottesville, VA 22904, USA.
| | | | | |
Collapse
|
39
|
Nadler LS, Kumar G, Nathanson NM. Identification of a basolateral sorting signal for the M3 muscarinic acetylcholine receptor in Madin-Darby canine kidney cells. J Biol Chem 2001; 276:10539-47. [PMID: 11136723 DOI: 10.1074/jbc.m007190200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) can be differentially localized in polarized cells. To identify potential sorting signals that mediate mAChR targeting, we examined the sorting of mAChRs in Madin-Darby canine kidney cells, a widely used model system. Expression of FLAG-tagged mAChRs in polarized Madin-Darby canine kidney cells demonstrated that the M(2) subtype is sorted apically, whereas M(3) is targeted basolaterally. Expression of M(2)/M(3) receptor chimeras revealed that a 21-residue sequence, Ser(271)-Ser(291), from the M(3) third intracellular loop contains a basolateral sorting signal. Substitution of sequences containing the M(3) sorting signal into the homologous regions of M(2) was sufficient to confer basolateral localization to this apical receptor. Sequences containing the M(3) sorting signal also conferred basolateral targeting to M(2) when added to either the third intracellular loop or the C-terminal cytoplasmic tail. Furthermore, addition of a sequence containing the M(3) basolateral sorting signal to the cytoplasmic tail of the interleukin-2 receptor alpha-chain caused significant basolateral targeting of this heterologous apical protein. The results indicate that the M(3) basolateral sorting signal is dominant over apical signals in M(2) and acts in a position-independent manner. The M(3) sorting signal represents a novel basolateral targeting motif for G protein-coupled receptors.
Collapse
Affiliation(s)
- L S Nadler
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | | | |
Collapse
|
40
|
Oda S, Kuroda M, Kakuta S, Kishi K. Differential immunolocalization of m2 and m3 muscarinic receptors in the anteroventral and anterodorsal thalamic nuclei of the rat. Brain Res 2001; 894:109-20. [PMID: 11245821 DOI: 10.1016/s0006-8993(01)01986-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, to identify the precise localization of m2 and m3 muscarinic receptors in the anteroventral and anterodorsal thalamic nuclei of the rat, we used receptor-subtype-specific antibodies and characterized their immunolocalization patterns by light and electron microscopy. Many m2-positive neurons were distributed throughout these nuclei. Ultrastructural analysis showed that more than 30% of m2-positive dendritic profiles in these nuclei are proximal dendritic shafts. Moreover, a few m2-positive fiber terminals were found only in the anterodorsal thalamic nucleus. These m2-positive terminals were large (1.10+/-0.30 microm in diameter) and formed asymmetrical synapses with dendritic profiles. The m3-positive neurons were also distributed in both nuclei, and the m3-positive neuropil exhibited a significant staining gradient, with the most intense staining in the ventrolateral part of the anteroventral thalamic nucleus. This region receives the densest cholinergic input originating from the dorsal tegmental region. At the ultrastructural level, the majority of m3-positive dendritic profiles were more distal regions of the dendrites compared to the m2 receptors in the anteroventral thalamic nucleus. However, no significant difference in the intradendritic distribution pattern between m2 and m3 receptors was found in the anterodorsal thalamic nucleus, which receives no cholinergic input. These findings show the differential localization of m2 and m3 receptors in the anteroventral and anterodorsal thalamic nuclei, and suggest that the m3 receptors are spatially more closely associated with ascending cholinergic afferent fibers in the anteroventral thalamic nucleus.
Collapse
Affiliation(s)
- S Oda
- Department of Anatomy, Toho University School of Medicine, Omori Nishi 5-21-16, Ota-ku, 143-8540, Tokyo, Japan.
| | | | | | | |
Collapse
|
41
|
Keefer EW, Norton SJ, Boyle NA, Talesa V, Gross GW. Acute toxicity screening of novel AChE inhibitors using neuronal networks on microelectrode arrays. Neurotoxicology 2001; 22:3-12. [PMID: 11307849 DOI: 10.1016/s0161-813x(00)00014-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spontaneously active neuronal networks grown from embryonic murine frontal cortex on substrate integrated electrode arrays with 64 recording sites were used to assess acute neurobiological and toxic effects of a series of seven symmetrical, bifunctional alkylene-linked bis-thiocarbonate compounds designed to possess anticholinesterase activity. Acute functional neurotoxicity in the absence of cytotoxicity was defined as total collapse of spontaneous activity. All of the compounds were characterized as mixed inhibitors of AChE, with K(i)'s in the 10(-7)-10(-6) M range. The neuronal network assays revealed high repeatability for each compound, but surprisingly diverse effects among these closely related compounds. Six of the seven compounds produced changes in network activity at concentrations of 10-350 microM. Three of the compounds were excitatory, two were biphasic (excitatory at lower concentrations, inhibitory at higher), and one was solely inhibitory. Two of the inhibitory compounds produced irreversible inhibition of activity. Responses of cortical cultures to eserine were compared to the effects produced by the test compounds, with only one of seven providing a close match to the eserine profile. Matching of response patterns allows the classification of new drugs according to their response similarity to well-characterized agents. Spontaneously active neuronal networks reflect the interactions of multiple neurotransmitter and receptor systems, and can reveal unexpected side effects due to secondary binding. Utilizing such networks holds the promise of greater research efficiency through a more rapid recognition of physiological tissue responses.
Collapse
Affiliation(s)
- E W Keefer
- Department of Biological Sciences, University of North Texas, Denton 76203, USA
| | | | | | | | | |
Collapse
|
42
|
Crespo C, Blasco-Ibáñez JM, Briñón JG, Alonso JR, Domínguez MI, Martínez-Guijarro FJ. Subcellular localization of m2 muscarinic receptors in GABAergic interneurons of the olfactory bulb. Eur J Neurosci 2000; 12:3963-74. [PMID: 11069592 DOI: 10.1046/j.1460-9568.2000.00289.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analysed the ultrastructural distribution of the m2 muscarinic receptor (m2R) in the rat olfactory bulb (OB) using immunohistochemical techniques and light and electron microscopy. m2R was differentially distributed within the cellular compartments of gamma-aminobutyric acid (GABA)ergic bulbar interneurons. It is located in the gemmules of granule cells and in the synaptic loci of the interneurons of the external plexiform layer, suggesting that m2R activation could modulate the release of GABA from these interneurons onto principal cells by a presynaptic mechanism. By contrast, the receptor appears in the somata and dendritic trunks of second-order short-axon interneurons located in the inframitral layers, suggesting that postsynaptic muscarinic activation in these cells could elicit the inhibition of granule cells, leading to a disinhibition of principal cells. We also detail the anatomical substrate for a new putative muscarinic modulation that has not been previously described, and that could influence the reception of sensory information within the olfactory glomeruli. m2R appears in a subset of GABAergic/dopaminergic juxtaglomerular cells innervated by olfactory axons but is absent in juxtaglomerular cells that do not receive sensory inputs. This finding suggests that m2R activation could modify, through dopaminergic local circuits, the strength of olfactory nerve inputs onto principal cells. Activation of the muscarinic receptor may modulate the olfactory information encoding within olfactory glomeruli and may facilitate the bulbar transmission to superior centres influencing the GABA release by presynaptic and postsynaptic mechanisms. Taken together, our data provide the neuroanatomical basis for a complex action of m2R at different levels in the mammalian OB.
Collapse
Affiliation(s)
- C Crespo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Valencia, Dr Moliner 50, 46100 Burjassot, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Pesavento E, Margotti E, Righi M, Cattaneo A, Domenici L. Blocking the NGF-TrkA interaction rescues the developmental loss of LTP in the rat visual cortex: role of the cholinergic system. Neuron 2000; 25:165-75. [PMID: 10707981 DOI: 10.1016/s0896-6273(00)80880-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although nerve growth factor (NGF) is a crucial factor in the activity-dependent development and plasticity of visual cortex, its role in synaptic efficacy changes is largely undefined. We demonstrate that the maintenance phase of long-term potentiation (LTP) is blocked by local application of exogenous NGF in rat visual cortex at an early stage of postnatal development. Long-term depression (LTD) and bidirectional plasticity are unaffected. At later postnatal ages, blockade of either endogenous NGF by immunoadhesin (TrkA-IgG) or TrkA receptors by monoclonal antibody rescues LTP. Muscarinic receptor activation/inhibition suggests that LTP dependence on NGF is mediated by the cholinergic system. These results indicate that NGF regulates synaptic strength in well-characterized cortical circuitries.
Collapse
Affiliation(s)
- E Pesavento
- Neuroscience Program, International School for Advanced Studies, Trieste, Italy
| | | | | | | | | |
Collapse
|
44
|
Ilouz N, Branski L, Parnis J, Parnas H, Linial M. Depolarization affects the binding properties of muscarinic acetylcholine receptors and their interaction with proteins of the exocytic apparatus. J Biol Chem 1999; 274:29519-28. [PMID: 10506217 DOI: 10.1074/jbc.274.41.29519] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane depolarization is the signal that triggers release of neurotransmitter from nerve terminals. As a result of depolarization, voltage-dependent Ca(2+) channels open, level of intracellular Ca(2+) increases. and release of neurotransmitter commences. Previous study had shown that in rat brain synaptosomes, muscarinic acetylcholine (ACh) receptors (mAChRs) interact with soluble NSF attachment protein receptor proteins of the exocytic machinery in a voltage-dependent manner. It was suggested that this interaction might control the rapid, synchronous release of acetylcholine. The present study investigates the mechanism for such a voltage-dependent interaction. Here we show that depolarization shifts mAChRs, specifically the m2 receptor subtype, to a low affinity state toward its agonists. At resting potential, mAChRs are in a high affinity state (K(d) of approximately 20 nM) and they shift to a low affinity state (K(d) of tens of microM) upon membrane depolarization. In addition, interaction between m2 receptor subtype and the exocytic machinery increases with receptor occupancy. Both phenomena are independent of Ca(2+) influx. We propose that these results may explain control of ACh release from nerve terminals. At resting potential the exocytic machinery is clamped due to its interaction with the occupied mAChR and depolarization relieves this interaction. This, together with Ca(2+) influx, enables release of ACh to commence.
Collapse
Affiliation(s)
- N Ilouz
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
45
|
Kitaichi K, Hori T, Srivastava LK, Quirion R. Antisense oligodeoxynucleotides against the muscarinic m2, but not m4, receptor supports its role as autoreceptors in the rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:98-106. [PMID: 10101237 DOI: 10.1016/s0169-328x(99)00047-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antisense oligodeoxynucleotides against muscarinic m2 and m4 receptors were used to investigate the role of these receptor subtypes as negative autoreceptors in the regulation of acetylcholine (ACh) release in the rat hippocampus. Following the continuous infusion of antisenses into the third ventricle (1 microgram microliter-1 h-1, 3 days), 3H-AF-DX 384/muscarinic M2-like binding was significantly decreased in the medial septum by the antisense against the m2 receptor whereas M2-like binding in the dorsal striatum was decreased by the antisense against the m4 receptor. In contrast, 3H-pirenzepine/muscarinic M1-like binding was unaffected by either antisense treatment in any of the brain areas investigated. When perfused into the hippocampus via a dialysis probe, the purported muscarinic M2 receptor antagonist AF-DX 384 (100 nM) increased hippocampal ACh release in freely moving rats. This effect of AF-DX 384 was significantly attenuated by the m2, but not the m4, receptor antisense treatment. Hippocampal choline acetyltransferase activity was not affected by either antisense treatments. Taken together, these results suggest that the molecularly defined muscarinic m2 receptor regulates hippocampal ACh release by acting as a negative autoreceptor. In contrast, the molecularly defined m4 receptor is unlikely to be directly involved in the negative regulation of ACh release in the rat hippocampus. Therefore, inhibiting muscarinic m2 receptor function may be an alternative approach to regulate the release of ACh in neurodegenerative diseases associated with impaired cholinergic functions.
Collapse
Affiliation(s)
- K Kitaichi
- Douglas Hospital Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
46
|
Smiley JF, Levey AI, Mesulam MM. m2 muscarinic receptor immunolocalization in cholinergic cells of the monkey basal forebrain and striatum. Neuroscience 1999; 90:803-14. [PMID: 10218781 DOI: 10.1016/s0306-4522(98)00527-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pharmacological studies have suggested that the m2 muscarinic receptor functions as an autoreceptor in the cholinergic axons which innervate the cerebral cortex and striatum. To test this hypothesis in the macaque monkey, we used a subtype-specific antibody to the m2 muscarinic receptor. Immunoreactive cells were well visualized in the nucleus basalis, where some of these cells displayed dense m2 immunoreactivity, while others were lightly labeled. This heterogeneity of labeling intensity was not based on peculiarities of the methodology, because cholinergic cells of the striatum expressed uniformly dense m2 immunoreactivity. Concurrent labeling with choline acetyltransferase immunoreactivity proved that most of the heavily m2-labeled cells in the nucleus basalis were also choline acetyl-transferase positive. The findings demonstrate that at least 10-25% of the cholinergic neurons in the nucleus basalis of the monkey are densely m2 immunoreactive. In the striatum, concurrent labeling demonstrated that the majority, if not all, choline acetyltransferase-positive cells also contained m2 immunoreactivity. In addition, these experiments identified a population of smaller striatal cells which were m2 immunoreactive and choline acetyltransferase negative. Consecutive labeling with m2 immunoreactivity and NADPH-diaphorase histochemistry demonstrated that many of these m2-immunoreactive non-cholinergic neurons belonged to the population of nitric oxide-synthesizing medium aspiny neurons. The findings indicate that the m2 muscarinic receptor may be expressed at high levels in only a subset of cholinergic basal forebrain neurons. In contrast, m2 receptors appear to be expressed by all cholinergic cells of the striatum.
Collapse
Affiliation(s)
- J F Smiley
- The Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
47
|
Bourgin P, Ahnaou A, Laporte AM, Hamon M, Adrien J. Rapid eye movement sleep induction by vasoactive intestinal peptide infused into the oral pontine tegmentum of the rat may involve muscarinic receptors. Neuroscience 1999; 89:291-302. [PMID: 10051236 DOI: 10.1016/s0306-4522(98)00290-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In rats, rapid eye movement sleep can be induced by microinjection of either the cholinergic agonist carbachol or the neuropeptide vasoactive intestinal peptide into the oral pontine reticular nucleus. Possible involvement of cholinergic mechanisms in the effect of vasoactive intestinal peptide was investigated using muscarinic receptor ligands. Sleep-waking cycles were analysed after infusion into the oral pontine reticular nucleus of vasoactive intestinal peptide (10 ng in 0.1 microl), carbachol (20 ng), atropine (200 ng) and pirenzepine (50, 100 ng), performed separately or in combination at 15-min intervals. The increase in rapid eye movement sleep due to the combined infusion of vasoactive intestinal peptide and carbachol (+58.7+/-4.6% for 8 h, P<0.05) was not significantly different from that induced by each compound separately. The enhancement of rapid eye movement sleep by vasoactive intestinal peptide was totally prevented by infusion of atropine, but not pirenzepine, a relatively selective M1 antagonist. On their own, none of the latter two compounds affected the sleep-waking cycle. Quantitative autoradiographic studies using [3H]quinuclidinyl benzylate (1 nM) and pirenzepine (0.5 microM) indicated that muscarinic receptors correspond to pirenzepine-insensitive binding sites in the oral pontine reticular nucleus. In vitro, vasoactive intestinal peptide (1-100 nM) significantly increased (+30-40%) the specific binding of [3H]quinuclidinyl benzylate to the oral pontine reticular nucleus in rat brain sections. This effect appeared to be due to an increased density, with no change in affinity, of pirenzepine-insensitive binding sites in this area. These data suggest that pirenzepine-insensitive muscarinic binding sites are involved in the induction of rapid eye movement sleep by vasoactive intestinal peptide at the pontine level in the rat.
Collapse
Affiliation(s)
- P Bourgin
- NeuroPsychoPharmacologie moléculaire, cellulaire et fonctionnelle, INSERM U288, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Plummer KL, Manning KA, Levey AI, Rees HD, Uhlrich DJ. Muscarinic receptor subtypes in the lateral geniculate nucleus: a light and electron microscopic analysis. J Comp Neurol 1999; 404:408-25. [PMID: 9952356 DOI: 10.1002/(sici)1096-9861(19990215)404:3<408::aid-cne9>3.0.co;2-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neural activity in the dorsal lateral geniculate nucleus of the thalamus (DLG) is modulated by an ascending cholinergic projection from the brainstem. The purpose of this study was to identify and localize specific muscarinic receptors for acetylcholine in the DLG. Receptors were identified in rat and cat tissue by means of antibodies to muscarinic receptor subtypes, ml-m4. Brain sections were processed immunohistochemically and examined with light and electron microscopy. Rat DLG stained positively with antibodies to the m1, m2,and m3 receptor subtypes but not with antibodies to the m4 receptor subtype. The m1 and m3 antibodies appeared to label somata and dendrites of thalamocortical cells. The m1 immunostaining was pale, whereas m3-positive neurons exhibited denser labeling with focal concentrations of staining. Strong immunoreactivity to the m2 antibody was widespread in dendrites and somata of cells resembling geniculate interneurons. Most m2-positive synaptic contacts were classified as F2-type terminals, which are the presynaptic dendrites of interneurons. The thalamic reticular nucleus also exhibited robust m2 immunostaining. Cat DLG exhibited immunoreactivity to the m2 and m3 antibodies. The entire DLG stained darkly for the m2 receptor subtype, except for patchy label in the medial interlaminar nucleus and the ventralmost C laminae. The staining for m3 was lighter and was distributed more homogeneously across the DLG. The perigeniculate nucleus also was immunoreactive to the m2 and m3 subtype-specific antibodies. Immunoreactivity in cat to the m1 or m4 receptor antibodies was undetectable. These data provide anatomical evidence for specific muscarinic-mediated actions of acetylcholine on DLG thalamocortical cells and thalamic interneurons.
Collapse
Affiliation(s)
- K L Plummer
- Department of Anatomy, Medical School, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
49
|
Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, Marion DW, DeKosky ST. One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 1999; 16:109-22. [PMID: 10098956 DOI: 10.1089/neu.1999.16.109] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Persistent cognitive deficits are one of the most important sequelae of head injury in humans. In an effort to model some of the structural and neuropharmacological changes that occur in chronic postinjury brains, we examined the longitudinal effects of moderate vertical controlled cortical impact (CCI) on place learning and memory using the Morris water maze (MWM) test, morphology, and vesicular acetylcholine (ACh) transporter (VAChT) and muscarinic receptor subtype 2 (M2) immunohistochemistry. Vertical CCI (left parietal cortex, 4 m/sec, 2.5 mm; n = 10) or craniotomy (sham) was produced in male Sprague-Dawley rats (n = 10). Place learning was tested at 2 weeks, 4 weeks, 3 months, 6 months, and 12 months postinjury with the escape platform in a different maze quadrant for each time point. At each interval, rats received 5 days of water maze acquisition (latency to find hidden platform), a probe trial to measure place memory, and 2 days of visible platform trials to control for nonspecific deficits. At 3 weeks, half the animals were sacrificed for histology. At these injury parameters, CCI produced no significant differences in place learning between injured and sham rats at 2 weeks, 4 weeks, or 6 months after injury. However, at 3 and 12 months, the injured rats took significantly longer to find the hidden platform than the sham rats. Probe trial performance differed only at 12 months postinjury between injured (25.73+/-2.1%, standard error of the mean) and sham rats (44.09+/-7.0%, p < 0.05). The maze deficits at 1 year were not due to a worsening of performance, but may have resulted from a reduced ability of injured rats to benefit from previous water maze experience. Hemispheric loss of 30.4+/-5.5 mm3 was seen at 3 weeks after injury (versus respective sham). However, hemispheric loss almost doubled by 1 year after injury (51.5+/-8.5 mm3, p < 0.05 versus all other groups). Progressive tissue loss was also reflected by a three- to fourfold increase in ipsilateral ventricular volume between 3 weeks and 1 year after injury. At 1 year after injury, immunostaining for VAChT was dramatically increased in all sectors of the hippocampus and cortex after injury. Muscarinic receptor subtype 2 (M2) immunoreactivity was dramatically decreased in the ipsilateral hippocampus. This suggests a compensatory response of cholinergic neurons to increase the efficiency of ACh neurotransmission. Moderate CCI in rats produces subtle MWM performance deficits accompanied by persistent alteration in M2 and VAChT immunohistochemistry and progressive tissue atrophy. The inability of injured rats to benefit from repeated exposures to the MWM may represent a deficit in procedural memory that is independent of changes in hippocampal cholinergic systems.
Collapse
Affiliation(s)
- C E Dixon
- Department of Neurosrugery, Brain Trauma Research Center, University of Pittsburgh Medical Center, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation. J Neurosci 1998. [PMID: 9822774 DOI: 10.1523/jneurosci.18-23-10207.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of our work was to investigate how the cholinergic environment influences the targeting and the intracellular trafficking of the muscarinic receptor m2 (m2R) in vivo. To address this question, we have used immunohistochemical approaches at light and electron microscopic levels to detect the m2R in control rats and rats treated with muscarinic receptor agonists. In control animals, m2Rs were located mostly at postsynaptic sites at the plasma membrane of perikarya and dendrites of cholinergic and NPY-somatostatin interneurons as autoreceptors and heteroreceptors, respectively. Presynaptic receptors were also detected in boutons. The m2Rs were usually detected at extrasynaptic sites, but they could be found rarely in association with symmetrical synapses, suggesting that the cholinergic transmission mediated by m2R occurs via synaptic and nonsynaptic mechanisms. The stimulation of muscarinic receptors with oxotremorine provoked a dramatic alteration of m2R compartmentalization, including endocytosis with a decrease of the density of m2R at the membrane (-63%) and an increase of those associated with endosomes (+86%) in perikarya. The very strong increase of m2R associated with multivesicular bodies (+732%) suggests that oxotremorine activated degradation. The slight increase in the Golgi apparatus (+26%) suggests that the m2R stimulation had an effect on the maturation of m2R. The substance P receptor located at the membrane of the same neurons was unaffected by oxotremorine. Our data demonstrate that cholinergic stimulation dramatically influences the subcellular distribution of m2R in striatal interneurons in vivo. These events may have key roles in controlling abundance and availability of muscarinic receptors via regulation of receptor endocytosis, degradation, and/or neosynthesis. Further, the control of muscarinic receptor trafficking may influence the activity of striatal interneurons, including neurotransmitter release and/or electric activity.
Collapse
|