1
|
Joshi K, Diaz A, O'Keeffe K, Schaffer JD, Chiarot PR, Huang P. Flow in temporally and spatially varying porous media: a model for transport of interstitial fluid in the brain. J Math Biol 2024; 88:69. [PMID: 38664246 DOI: 10.1007/s00285-024-02092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 05/12/2024]
Abstract
Flow in a porous medium can be driven by the deformations of the boundaries of the porous domain. Such boundary deformations locally change the volume fraction accessible by the fluid, creating non-uniform porosity and permeability throughout the medium. In this work, we construct a deformation-driven porous medium transport model with spatially and temporally varying porosity and permeability that are dependent on the boundary deformations imposed on the medium. We use this model to study the transport of interstitial fluid along the basement membranes in the arterial walls of the brain. The basement membrane is modeled as a deforming annular porous channel with the compressible pore space filled with an incompressible, Newtonian fluid. The role of a forward propagating peristaltic heart pulse wave and a reverse smooth muscle contraction wave on the flow within the basement membranes is investigated. Our results identify combinations of wave amplitudes that can induce either forward or reverse transport along these transport pathways in the brain. The magnitude and direction of fluid transport predicted by our model can help in understanding the clearance of fluids and solutes along the Intramural Periarterial Drainage route and the pathology of cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Ketaki Joshi
- Department of Mechanical Engineering, Watson College of Engineering and Applied Science, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Adrian Diaz
- Department of Mechanical Engineering, Watson College of Engineering and Applied Science, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Katherine O'Keeffe
- Department of Mechanical Engineering, Watson College of Engineering and Applied Science, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - J David Schaffer
- Institute for Justice and Well-Being, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Paul R Chiarot
- Department of Mechanical Engineering, Watson College of Engineering and Applied Science, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Peter Huang
- Department of Mechanical Engineering, Watson College of Engineering and Applied Science, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
| |
Collapse
|
2
|
Morse CJ, Boerman EM, McDonald MW, Padilla J, Olver TD. The role of nitric oxide in flow-induced and myogenic responses in 1A, 2A, and 3A branches of the porcine middle cerebral artery. J Appl Physiol (1985) 2022; 133:1228-1236. [PMID: 36227166 PMCID: PMC9715271 DOI: 10.1152/japplphysiol.00209.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 12/15/2022] Open
Abstract
Myogenic and flow-induced reactivity contribute to cerebral autoregulation, with potentially divergent roles for smaller versus larger arteries. The present study tested the hypotheses that compared with first-order (1A) branches of the middle cerebral artery, second- and third-order branches (2A and 3A, respectively) exhibit greater myogenic reactivity but reduced flow-induced constriction. Furthermore, nitric oxide synthase (NOS) inhibition may amplify myogenic reactivity and abolish instances of flow-induced dilation. Isolated porcine cerebral arteries mounted in a pressure myograph were exposed to incremental increases in intraluminal pressure (40-120 mmHg; n = 41) or flow (1-1,170 µL/min; n = 31). Intraluminal flows were adjusted to achieve 5, 10, 20, and 40 dyn/cm2 of wall shear stress at 60 mmHg. Myogenic tone was greater in 3A versus 1A arteries (P < 0.05). There was an inverse relationship between myogenic reactivity and passive arterial diameter (P < 0.01). NOS inhibition increased basal tone to a lesser extent in 3A versus 1A arteries (P < 0.01) but did not influence myogenic reactivity (P = 0.49). Increasing flow decreased luminal diameter (P ≤ 0.01), with increased vasoconstriction at 10-40 dyn/cm2 of shear stress (P < 0.01). However, relative responses were similar between 1A, 2A, and 3A arteries (P = 0.40) with and without NOS inhibition conditions (P ≥ 0.29). Whereas NOS inhibition increases basal myogenic tone, and myogenic reactivity was less in smaller versus larger arteries (range = ∼100-550 µM), neither NOS inhibition nor luminal diameter influences flow-induced constriction in porcine cerebral arteries.NEW & NOTEWORTHY This study demonstrated size-dependent heterogeneity in myogenic reactivity in porcine cerebral arteries. Smaller branches of the middle cerebral artery exhibited increased myogenic reactivity, but attenuated NOS-dependent increases in myogenic tone compared with larger branches. Flow-dependent regulation does not exhibit the same variation; diameter-independent flow-induced vasoconstrictions occur across all branch orders and are not affected by NOS inhibition. Conceptually, flow-induced vasoconstriction contributes to cerebral autoregulation, particularly in larger arteries with low myogenic tone.
Collapse
Affiliation(s)
- Cameron J Morse
- Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika M Boerman
- Department Medical Physiology and Pharmacology, University of Missouri, Columbia, Missouri
| | - Matthew W McDonald
- Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - T Dylan Olver
- Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Caldwell HG, Howe CA, Hoiland RL, Carr JMJR, Chalifoux CJ, Brown CV, Patrician A, Tremblay JC, Panerai RB, Robinson TG, Minhas JS, Ainslie PN. Alterations in arterial CO 2 rather than pH affect the kinetics of neurovascular coupling in humans. J Physiol 2021; 599:3663-3676. [PMID: 34107079 DOI: 10.1113/jp281615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS We investigated the influence of arterial P C O 2 ( P aC O 2 ) with and without acute experimental metabolic alkalosis on neurovascular coupling (NVC). We assessed stepwise iso-oxic alterations in P aC O 2 prior to and following intravenous NaHCO3 to acutely elevate arterial pH and [HCO3 - ]. The NVC response was not altered following NaHCO3 between stepwise P aC O 2 stages; therefore, NVC is acutely mediated by P aC O 2 rather than the prevailing arterial [H+ ]/pH. The NVC response was attenuated by 27-38% with -10 mmHg P aC O 2 and the absolute peak change was reduced by -19% with +10 mmHg P aC O 2 irrespective of acutely elevated arterial pH/[HCO3 - ]. The NVC kinetics (i.e. time to peak) were markedly slower with hypercapnia versus hypocapnia (24 ± 5 vs. 7 ± 5 s, respectively) likely indicating an influence of resting cerebrovascular tone on NVC responsiveness. ABSTRACT Elevations in cerebral metabolism necessitate appropriate coordinated and localized increases in cerebral blood flow (i.e. neurovascular coupling; NVC). Recent pre-clinical work indicates that arterial P C O 2 ( P aC O 2 ) mediates NVC independently of arterial/extracellular pH; this has yet to be experimentally tested in humans. The goal of this study was to investigate the hypotheses that: (1) the NVC response would be unaffected by acute experimentally elevated arterial pH; rather, P aC O 2 would regulate any changes in NVC; and (2) stepwise respiratory alkalosis and acidosis would each progressively reduce the NVC response. Ten healthy males completed a standardized visual stimulus-evoked NVC test during matched stepwise iso-oxic alterations in P aC O 2 (hypocapnia: -5, -10 mmHg; hypercapnia: +5, +10 mmHg) prior to and following intravenous NaHCO3 (8.4%, 50 mEq/50 ml) that elevated arterial pH (7.406 ± 0.019 vs. 7.457 ± 0.029; P < 0.001) and [HCO3 - ] (26.2 ± 1.5 vs. 29.3 ± 0.9 mEq/l; P < 0.001). Although the NVC response was collectively attenuated by 27-38% with -10 mmHg P aC O 2 (stage post hoc: all P < 0.05), this response was unaltered following NaHCO3 (all P > 0.05) irrespective of the higher pH (P = 0.002) at each matched stage of P aC O 2 (P = 0.417). The absolute peak change was reduced by -19 ± 41% with +10 mmHg P aC O 2 irrespective of acutely elevated arterial pH/[HCO3 - ] (stage post hoc: P = 0.022). The NVC kinetics (i.e. time to peak) were markedly slower with hypercapnia versus hypocapnia (24 ± 5 vs. 7 ± 5 s, respectively; stage effect: P < 0.001). Overall, these findings indicate that temporal patterns in NVC are acutely regulated by P aC O 2 rather than arterial pH per se in the setting of acute metabolic alkalosis in humans.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology, and Therapeutics, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Carter J Chalifoux
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Courtney V Brown
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
5
|
Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, Kalaria RN, Katsumata Y, Gold BT, Wang DJJ, Ma SJ, Shade LMP, Fardo DW, Hartz AMS, Jicha GA, Nelson KB, Magaki SD, Schmitt FA, Teylan MA, Ighodaro ET, Phe P, Abner EL, Cykowski MD, Van Eldik LJ, Nelson PT. Brain arteriolosclerosis. Acta Neuropathol 2021; 141:1-24. [PMID: 33098484 PMCID: PMC8503820 DOI: 10.1007/s00401-020-02235-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Collapse
Affiliation(s)
- Brittney L Blevins
- Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Seth Love
- University of Bristol and Southmead Hospital, Bristol, BS10 5NB, UK
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Lea T Grinberg
- Department of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- LIM-22, Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Lincoln M P Shade
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | | | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, University Washington, Seattle, WA, 98105, USA
| | | | - Panhavuth Phe
- Sanders-Brown Center on Aging, University Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, Department of Epidemiology, University Kentucky, Lexington, KY, 40536, USA
| | - Matthew D Cykowski
- Departments of Pathology and Genomic Medicine and Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA.
- Rm 311 Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
6
|
Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front Aging Neurosci 2020; 12:80. [PMID: 32317958 PMCID: PMC7171590 DOI: 10.3389/fnagi.2020.00080] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pericytes are unique, multi-functional mural cells localized at the abluminal side of the perivascular space in microvessels. Originally discovered in 19th century, pericytes had drawn less attention until decades ago mainly due to lack of specific markers. Recently, however, a growing body of evidence has revealed that pericytes play various important roles: development and maintenance of blood–brain barrier (BBB), regulation of the neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.), trafficking of inflammatory cells, clearance of toxic waste products from the brain, and acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these functions through coordinated crosstalk with neighboring cells including endothelial, glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in SVDs, pericyte degeneration leads to microvessel instability and demyelination while in stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain capillaries. In AD, which shares some common risk factors with vascular dementia, reduction in pericyte coverage and subsequent microvascular impairments are observed in association with white matter attenuation and contribute to impaired cognition. Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the leakage of neurotoxic molecules into the brain parenchyma. In this review, we first summarize the characteristics of brain microvessel pericytes, and their roles in the central nervous system. Then, we focus on how dysfunctional pericytes contribute to the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and ‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for these disorders by targeting pericytes.
Collapse
Affiliation(s)
- Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,JSPS Overseas Research Fellowship Program, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Hsu CY, Schneller B, Alaraj A, Flannery M, Zhou XJ, Linninger A. Automatic recognition of subject-specific cerebrovascular trees. Magn Reson Med 2017; 77:398-410. [PMID: 26778056 PMCID: PMC4947568 DOI: 10.1002/mrm.26087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE An image filter designed for reconstructing cerebrovascular trees from MR images is described. Current imaging techniques capture major cerebral vessels reliably, but often fail to detect small vessels, whose contrast is suppressed due to limited resolution, slow blood flow rate, and distortions around bifurcations or nonvascular structures. An incomplete view of angioarchitecture limits the information available to physicians. METHODS A novel Hessian-based filter for contrast-enhancement in MR angiography and venography for blood vessel reconstruction without introducing dangling segments is presented. We quantify filter performance with receiver-operating-characteristic and dice-similarity-coefficient analysis. Total extracted vascular length, number-of-segments, volume, surface-to-distance, and positional error are calculated for validation. RESULTS Reconstruction of cerebrovascular trees from MR images of six volunteers show that the new filter renders more complete representations of subject-specific cerebrovascular networks. Validation with phantom models shows the filter correctly detects blood vessels across all length scales without failing at bifurcations or distorting diameters. CONCLUSION The novel filter can potentially improve the diagnosis of cerebrovascular diseases by delivering metrics and anatomy of the vasculature. It also facilitates the automated analysis of large datasets by computing biometrics free of operator subjectivity. The high quality reconstruction enables computational mesh generation for subject-specific hemodynamic simulations. Magn Reson Med 77:398-410, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chih-Yang Hsu
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St, 218 SEO, M/C 063, Chicago, IL 60607-7000, USA
| | - Ben Schneller
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St, 218 SEO, M/C 063, Chicago, IL 60607-7000, USA
| | - Ali Alaraj
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Flannery
- Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St, 218 SEO, M/C 063, Chicago, IL 60607-7000, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Andreas Linninger
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St, 218 SEO, M/C 063, Chicago, IL 60607-7000, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer's disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol 2016; 131:737-52. [PMID: 26988843 PMCID: PMC4835519 DOI: 10.1007/s00401-016-1560-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/05/2016] [Accepted: 03/06/2016] [Indexed: 01/18/2023]
Abstract
Alzheimer’s disease (AD) is characterised by pathologic cerebrovascular remodelling. Whether this occurs already before disease onset, as may be indicated by early Braak tau-related cerebral hypoperfusion and blood–brain barrier (BBB) impairment found in previous studies, remains unknown. Therefore, we systematically quantified Braak tau stage- and cerebral amyloid angiopathy (CAA)-dependent alterations in the alpha-smooth muscle actin (α-SMA), collagen, and elastin content of leptomeningeal arterioles, small arteries, and medium-sized arteries surrounding the gyrus frontalis medialis (GFM) and hippocampus (HIPP), including the sulci, of 17 clinically and pathologically diagnosed AD subjects (Braak stage IV–VI) and 28 non-demented control subjects (Braak stage I–IV). GFM and HIPP paraffin sections were stained for general collagen and elastin with the Verhoeff–van Gieson stain; α-SMA and CAA/amyloid β (Aβ) were detected using immunohistochemistry. Significant arterial elastin degradation was observed from Braak stage III onward and correlated with Braak tau pathology (ρ = 0.909, 95 % CI 0.370 to 0.990, p < 0.05). This was accompanied by an increase in neutrophil elastase expression by α-SMA-positive cells in the vessel wall. Small and medium-sized arteries exhibited significant CAA-independent α-SMA loss starting between Braak stage I and II–III, along with accumulation of phosphorylated paired helical filament (PHF) tau in the perivascular space of intraparenchymal vessels. α-SMA remained at the decreased level throughout the later Braak stages. In contrast, arterioles exhibited significant α-SMA loss only at Braak stage V and VI/in AD subjects, which was CAA-dependent/correlated with CAA burden (ρ = −0.422, 95 % CI −0.557 to −0.265, p < 0.0001). Collagen content was only significantly changed in small arteries. Our data indicate that vessel wall remodelling of leptomeningeal arteries is an early-onset, Braak tau pathology-dependent process unrelated to CAA and AD, which potentially may contribute to downstream CAA-dependent microvascular pathology in AD.
Collapse
|
9
|
Deonikar P, Kavdia M. A computational model for nitric oxide, nitrite and nitrate biotransport in the microcirculation: effect of reduced nitric oxide consumption by red blood cells and blood velocity. Microvasc Res 2010; 80:464-76. [PMID: 20888842 DOI: 10.1016/j.mvr.2010.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 11/19/2022]
Abstract
Bioavailability of vasoactive endothelium-derived nitric oxide (NO) in vasculature is a critical factor in regulation of many physiological processes. Consumption of NO by RBC plays a crucial role in maintaining NO bioavailability. Recently, Deonikar and Kavdia (2009b) reported an effective NO-RBC reaction rate constant of 0.2×10(5)M(-1)s(-1) that is ~7 times lower than the commonly used NO-RBC reaction rate constant of 1.4×10(5)M(-1)s(-1). To study the effect of lower NO-RBC reaction rate constant and nitrite and nitrate formation (products of NO metabolism in blood), we developed a 2D mathematical model of NO biotransport in 50 and 200μm ID arterioles to calculate NO concentration in radial and axial directions in the vascular lumen and vascular wall of the arterioles. We also simulated the effect of blood velocity on NO distribution in the arterioles to determine whether NO can be transported to downstream locations in the arteriolar lumen. The results indicate that lowering the NO-RBC reaction rate constant increased the NO concentration in the vascular lumen as well as the vascular wall. Increasing the velocity also led to increase in NO concentration. We predict increased NO concentration gradient along the axial direction with an increase in the velocity. The predicted NO concentration was 281-1163nM in the smooth muscle cell layer for 50μm arteriole over the blood velocity range of 0.5-4cms(-1) for k(NO-RBC) of 0.2×10(5)M(-1)s(-1), which is much higher than the reported values from earlier mathematical modeling studies. The NO concentrations are similar to the experimentally measured vascular wall NO concentration range of 300-1000nM in several different vascular beds. The results are significant from the perspective that the downstream transport of NO is possible under the right circumstances.
Collapse
Affiliation(s)
- Prabhakar Deonikar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
10
|
Carter BS, Sheth S, Chang E, Sethl M, Ogilvy CS. Epidemiology of the size distribution of intracranial bifurcation aneurysms: smaller size of distal aneurysms and increasing size of unruptured aneurysms with age. Neurosurgery 2006; 58:217-23; discussion 217-23. [PMID: 16462474 DOI: 10.1227/01.neu.0000194639.37803.f8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To explore the epidemiology of the size distribution of intracranial bifurcation aneurysms at different locations and to specifically test the hypothesis that distal vessels develop, on average, smaller aneurysms. METHODS A database detailing all aneurysm cases admitted to Massachusetts General Hospital from 1991 to 2003 was reviewed. Aneurysms were classified by location and size. The distribution of aneurysms by sizes at differing origin sites was then compared. RESULTS We identified 1673 aneurysms for study; 854 were ruptured and 819 were unruptured; 58 lesions were classified as distal middle cerebral artery and anterior cerebral artery, of which 26 were unruptured and 32 were ruptured. Analysis of the kernel density estimates for the distribution of aneurysm sizes revealed that aneurysms at distal locations and the posterior-inferior cerebellar artery location were smaller than those at other locations in the circle of Willis. The mean size of ruptured distal aneurysms at 5.7 mm (95% confidence interval 4.8-6.5), or ruptured posterior-inferior cerebellar artery aneurysms at 7.1 mm (95% confidence interval 6.3-7.8) was smaller than the average size for basilar, middle cerebral artery, or ICA aneurysms occurring proximally in the Circle of Willis. The decrease in the mean size of the distal lesions is caused by a relative paucity of aneurysms above 10 mm in size. Although ruptured aneurysms showed no change in size with age, unruptured lesions at most intracranial locations increased in size with age. CONCLUSION The distribution of aneurysm sizes differs according to location in the intracranial vasculature in this single institution series. Smaller aneurysm sizes are observed for "distal" aneurysms than at other locations in the Circle of Willis. We hypothesize that this may be related to Laplace's Law, which states that the "critical" size for aneurysm rupture is related to the parent artery wall thickness. The larger size of unruptured aneurysms in older patients in this study may reflect referral bias or a biological model in which a subset of smaller "unstable" aneurysms are prone to rupture. Because distal aneurysms present at smaller sizes compared with aneurysms originating proximally on the Circle of Willis, prospective studies that focus on the rupture risk of this subset of intracranial aneurysms are appropriate for future investigation.
Collapse
Affiliation(s)
- Bob S Carter
- MGH Brain AVM/ Aneurysm Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
11
|
Geary GG, Osol GJ, Longo LD. Development affects in vitro vascular tone and calcium sensitivity in ovine cerebral arteries. J Physiol 2004; 558:883-96. [PMID: 15131239 PMCID: PMC1665020 DOI: 10.1113/jphysiol.2003.056945] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have shown recently that development from neonatal to adult life affects cerebrovascular tone of mouse cerebral arteries through endothelium-derived vasodilatory mechanisms. The current study tested the hypothesis that development from fetal to adult life affects cerebral artery vascular smooth muscle (VSM) [Ca(2+)](i) sensitivity and tone through a mechanism partially dependent upon endothelium-dependent signalling. In pressurized resistance sized cerebral arteries ( approximately 150 microm) from preterm (95 +/- 2 days gestation (95 d)) and near-term (140 +/- 2 days gestation (140 d)) fetuses, and non-pregnant adults, we measured vascular diameter (microm) and [Ca(2+)](i) (nm) as a function of intravascular pressure. We repeated these studies in the presence of inhibition of nitric oxide synthase (NOS; with l-NAME), cyclo-oxygenase (COX; with indomethacin) and endothelium removal (E-). Cerebrovasculature tone (E+) was greater in arteries from 95 d fetuses and adults compared to 140 d sheep. Ca(2+) sensitivity was similar in 95 d fetuses and adults, but much lower in 140 d fetuses. Removal of endothelium resulted in a reduction in lumen diameter as a function of pressure (greater tone) in all treatment groups. [Ca(2+)](i) sensitivity differences among groups were magnified after E-. NOS inhibition decreased diameter as a function of pressure in each age group, with a significant increase in [Ca(2+)](i) to pressure ratio only in the 140 d fetuses. Indomethacin increased tone and increased [Ca(2+)](i) in the 140 d fetuses, but not the other age groups. Development from near-term to adulthood uncovered an interaction between NOS- and COX-sensitive substances that functioned to modulate artery diameter but not [Ca(2+)](i). This study suggests that development is associated with significant alterations in cerebral vascular smooth muscle (VSM), endothelium, NOS and COX responses to intravascular pressure. We speculate that these changes have important implications in the regulation of cerebral blood flow in the developing organism.
Collapse
Affiliation(s)
- Greg G Geary
- Department of Physiology and Pharmacology, Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92407, USA.
| | | | | |
Collapse
|
12
|
Adegunloye BJ, Su X, Camper EV, Moreland RS. Sensitivity of rabbit aorta and mesenteric artery to norepinephrine: role of tyrosine kinases. Eur J Pharmacol 2003; 476:201-9. [PMID: 12969767 DOI: 10.1016/s0014-2999(03)02183-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We tested the hypothesis that the differential sensitivity of rabbit aorta and mesenteric artery to norepinephrine is due to tyrosine kinase activity. The EC50 of aorta to norepinephrine was 6.5 times more sensitive than that in mesenteric artery. Basal myosin light chain phosphorylation was significantly greater in aorta as compared to mesenteric artery. Vanadate increased norepinephrine sensitivity significantly more in mesenteric artery than aorta, whereas genistein had the opposite effect. Basal phosphotyrosine levels were significantly higher in aorta than in mesenteric artery, the percentage increase in total tyrosine phosphorylated protein was significantly higher in mesenteric artery. These results suggest that the higher basal phosphotyrosine levels in the aorta may be responsible for the higher basal level of myosin light chain phosphorylation and this may be the basis for the higher sensitivity of the aorta to norepinephrine when compared with the mesenteric artery.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiology
- Blotting, Western
- Electrophoresis, Polyacrylamide Gel
- Genistein/pharmacology
- In Vitro Techniques
- Isometric Contraction/drug effects
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myosin Light Chains/metabolism
- Norepinephrine/pharmacology
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Rabbits
- Receptors, Adrenergic/metabolism
- Time Factors
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Banji J Adegunloye
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th Street, MS# 488, Philadelphia, PA 19102, USA
| | | | | | | |
Collapse
|
13
|
Mickey I, Kilford L, Kingsbury A, Loesch A. Endothelin in the middle cerebral artery: a case of multiple system atrophy. THE HISTOCHEMICAL JOURNAL 2002; 34:469-77. [PMID: 12945729 DOI: 10.1023/a:1024758504647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, we show the changes in the wall of the middle cerebral artery of a subject who suffered multiple system atrophy with autonomic failure. An electron-immunocytochemical approach was employed to reveal the presence of endothelin-1. Our results demonstrate the presence of immunoreactive endothelin-1 in the endothelial cells of the intima, vascular smooth muscle cells and macrophages of the media and neointima, and perivascular nerves/axons varicosities at the adventitial-medial border of the artery. It is concluded that endothelin-1 may, therefore, play a number of roles within diseased cerebral artery. The finding of endothelin-1-positive varicosities of autonomic innervation to this artery suggests an influence of neural endothelin on vascular smooth muscle in multiple system atrophy with autonomic failure. However, the presence of features such as neointima formation, wall irregularities and foam cells suggest the coexistence of atherosclerosis.
Collapse
Affiliation(s)
- Isla Mickey
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
14
|
Quick CM, James DJ, Ning K, Joshi S, Halim AX, Hashimoto T, Young WL. Relationship of nidal vessel radius and wall thickness to brain arteriovenous malformation hemorrhage. Neurol Res 2002; 24:495-500. [PMID: 12117322 DOI: 10.1179/016164102101200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cerebral (brain) arteriovenous malformations (BAVMs) are a tangle of disorganized vessels that are a rare cause of hemorrhagic stroke in the general population. Although clinical presentation of hemorrhage may be related to the structure of BAVM vessels, there has been no systematic quantitative analysis of BAVM vessel morphology. Histological sections of excised BAVM lesions were prepared from patients who presented with hemorrhage (n = 14) and from patients with no history of hemorrhage (n = 22). Mean values of radius and wall thickness in each section were determined. BAVM radii were 422+/-136 microm (mean +/- SD), minimum wall thickness (thinnest portion of the wall) was 54+/-14 microm; and the minimum thickness/radius ratio was 0.23+/-0.07. Greater vessel wall thickness was associated with hemorrhagic presentation (OR= 1.1; p = 0.046) after adjusting for feeding artery pressure. Because BAVM vessels from patients presenting with hemorrhage had thicker vessel walls, the search for structural properties predisposing BAVM rupture should be expanded beyond the morphological properties analyzed here.
Collapse
Affiliation(s)
- Christopher M Quick
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco 94110, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Bevan JA, Dodge J, Walters CL, Wellman T, Bevan RD. Dimensions and wall force development capacity of human pial arteries from normotensives is not altered in obesity. Int J Obes (Lond) 2001; 25:756-8. [PMID: 11360162 DOI: 10.1038/sj.ijo.0801600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Revised: 10/30/2000] [Accepted: 11/30/2000] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The dimensions and maximum wall tension capacity of segments of human pial arteries from normotensive obese and non-obese patients were compared. DESIGN Segment size was assessed by quantitative morphometry of fixed sections and wall force by in vitro myography. SUBJECTS Twenty normotensive non-obese and 13 normotensive obese humans body mass index (BMI) 22.4+/-0.5 and 33.9+/-1.7 kg/m(2), respectively) were studied. RESULTS There was no significant difference in the perimeter of the outer medial border, the smoothed out length of the internal elastic lamina, the ratios of media thickness to area and lumen diameter and the maximum wall force development between the two groups. CONCLUSION Obesity per se is not associated with initial dimensional changes nor capacity to develop wall tension that might lead to the emergence of hypertension.
Collapse
Affiliation(s)
- J A Bevan
- Totman Laboratory for Cerebrovascular Research, Department of Pharmacology University of Vermont, College of Medicine, Burlington, Vermont 05405-0068, USA
| | | | | | | | | |
Collapse
|