1
|
Alberti M. Cities of the Anthropocene: urban sustainability in an eco-evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220264. [PMID: 37952615 PMCID: PMC10645089 DOI: 10.1098/rstb.2022.0264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023] Open
Abstract
Cities across the globe are driving systemic change in social and ecological systems by accelerating the rates of interactions and intensifying the links between human activities and Earth's ecosystems, thereby expanding the scale and influence of human activities on fundamental processes that sustain life. Increasing evidence shows that cities not only alter biodiversity, they change the genetic makeup of many populations, including animals, plants, fungi and microorganisms. Urban-driven rapid evolution in species traits might have significant effects on socially relevant ecosystem functions such as nutrient cycling, pollination, water and air purification and food production. Despite increasing evidence that cities are causing rapid evolutionary change, current urban sustainability strategies often overlook these dynamics. The dominant perspectives that guide these strategies are essentially static, focusing on preserving biodiversity in its present state or restoring it to pre-urban conditions. This paper provides a systemic overview of the socio-eco-evolutionary transition associated with global urbanization. Using examples of observed changes in species traits that play a significant role in maintaining ecosystem function and resilience, I propose that these evolutionary changes significantly impact urban sustainability. Incorporating an eco-evolutionary perspective into urban sustainability science and planning is crucial for effectively reimagining the cities of the Anthropocene. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
2
|
Markowski M, Kaliński A, Wawrzyniak J, Glądalski M, Skwarska J, Bańbura J. Microsatellite Instability Assay as a Potential Approach to Evaluate Genotoxicity: Lead Exposure in a Nestling Passerine Bird at the Stage of Intensive Erythropoiesis. Animals (Basel) 2023; 13:ani13081325. [PMID: 37106888 PMCID: PMC10135023 DOI: 10.3390/ani13081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Although many avian studies have investigated the toxic effects of lead on important biochemical and physiological processes, organ and system function, and behavior, studies evaluating the specific genotoxic effects of exposure to lead are scarce. Nowadays, rapid technological advances can provide new molecular techniques in this regard. In this study, as a novel approach in bird studies, we used a panel of ten microsatellite loci to investigate the microsatellite instability (MSI) in response to experimental lead intoxication in a common hole-nesting species, the great tit Parus major. For this purpose, an experiment based on an intentional single supplementation of a lead (II) acetate trihydrate compound was conducted, with the use of two different doses, applied to randomly chosen great tit nestlings from randomly selected broods, being at the stage of intensive erythropoiesis. Although this preliminary study did not find any MSI in the seven microsatellite markers retained for the final comparison, it contributes to the examination of this molecular technique in field conditions as being potentially applicable in ecotoxicological bird studies. We believe that certain issues should be considered in finding an explanation for our result. First, the single doses of lead used in this study may have been too weak to induce genetic instability. Second, the panel of microsatellite markers studied may have been unsusceptible to lead genotoxicity in general. Third, the relatively short time interval (5 days) between the experimental procedure (lead exposure) and the sampling of post-exposure material (blood) for genetic analyses could have limited the effect of lead genotoxicity. Further analyzes are needed to verify these findings and to evaluate the scope of application of the MSI analysis in wild bird population studies.
Collapse
Affiliation(s)
- Marcin Markowski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adam Kaliński
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jarosław Wawrzyniak
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Michał Glądalski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Joanna Skwarska
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jerzy Bańbura
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
3
|
Winchell KM, Losos JB, Verrelli BC. Urban evolutionary ecology brings exaptation back into focus. Trends Ecol Evol 2023:S0169-5347(23)00060-5. [PMID: 37024381 DOI: 10.1016/j.tree.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023]
Abstract
The contribution of pre-existing phenotypic variation to evolution in novel environments has long been appreciated. Nevertheless, evolutionary ecologists have struggled with communicating these aspects of the adaptive process. In 1982, Gould and Vrba proposed terminology to distinguish character states shaped via natural selection for the roles they currently serve ('adaptations') from those shaped under preceding selective regimes ('exaptations'), with the intention of replacing the inaccurate 'preadaptation'. Forty years later, we revisit Gould and Vrba's ideas which, while often controversial, continue to be widely debated and highly cited. We use the recent emergence of urban evolutionary ecology as a timely opportunity to reintroduce the ideas of Gould and Vrba as an integrated framework to understand contemporary evolution in novel environments.
Collapse
Affiliation(s)
- Kristin M Winchell
- Department of Biology, New York University, New York, NY 10003, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Department of Biology, Washington University, St Louis, MO 63130, USA.
| | - Jonathan B Losos
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
4
|
Winchell KM, Aviles‐Rodriguez KJ, Carlen EJ, Miles LS, Charmantier A, De León LF, Gotanda KM, Rivkin LR, Szulkin M, Verrelli BC. Moving past the challenges and misconceptions in urban adaptation research. Ecol Evol 2022; 12:e9552. [PMID: 36425909 PMCID: PMC9679025 DOI: 10.1002/ece3.9552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 10/14/2023] Open
Abstract
Although the field of urban evolutionary ecology has recently expanded, much progress has been made in identifying adaptations that arise as a result of selective pressures within these unique environments. However, as studies within urban environments have rapidly increased, researchers have recognized that there are challenges and opportunities in characterizing urban adaptation. Some of these challenges are a consequence of increased direct and indirect human influence, which compounds long-recognized issues with research on adaptive evolution more generally. In this perspective, we discuss several common research challenges to urban adaptation related to (1) methodological approaches, (2) trait-environment relationships and the natural history of organisms, (3) agents and targets of selection, and (4) habitat heterogeneity. Ignoring these challenges may lead to misconceptions and further impede our ability to draw conclusions regarding evolutionary and ecological processes in urban environments. Our goal is to first shed light on the conceptual challenges of conducting urban adaptation research to help avoid the propagation of these misconceptions. We further summarize potential strategies to move forward productively to construct a more comprehensive picture of urban adaptation, and discuss how urban environments also offer unique opportunities and applications for adaptation research.
Collapse
Affiliation(s)
- Kristin M. Winchell
- Department of BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Kevin J. Aviles‐Rodriguez
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
- Department of BiologyFordham UniversityBronxNew YorkUSA
| | - Elizabeth J. Carlen
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of BiologyFordham UniversityBronxNew YorkUSA
- Living Earth CollaborativeWashington University in St. LouisSt. LouisMissouriUSA
| | - Lindsay S. Miles
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et EvolutiveUniversité de Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Luis F. De León
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Kiyoko M. Gotanda
- Department of BiologyUniversité de SherbrookeSherbrookeQuebecCanada
- Department of Biological SciencesBrock UniversitySt. Catharine'sOntarioCanada
| | - L. Ruth Rivkin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Marta Szulkin
- Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Brian C. Verrelli
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
5
|
Gyasi H, Curry J, Browning J, Ha K, Thomas PJ, O'Brien JM. Microsatellite mutation frequencies in river otters (Lontra Canadensis) from the Athabasca Oil Sands region are correlated to polycyclic aromatic compound tissue burden. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:172-183. [PMID: 35452555 DOI: 10.1002/em.22482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Mining activities in the Athabasca oil sands region (AOSR) have contributed to an increase of polycyclic aromatic compounds (PACs) locally. However, many PACs found in the AOSR, and the combined effects of PAC mixtures have not been evaluated for genotoxicity in wildlife. Here, we examine whether mutation frequencies in AOSR river otters are correlated to PAC tissue burdens. We used single-molecule polymerase chain reaction (SM-PCR) to measure the mutant frequency of unstable DNA microsatellite loci in the bone marrow of wild river otters (n = 11) from the AOSR. Microsatellite mutation frequencies were regressed against liver PAC burden (total, low/high molecular weight [LMW/HMW], and parent/alkylated PACs), and to the distances from where the samples were collected to nearby bitumen upgraders. We found that microsatellite mutation frequency was positively correlated with total liver PAC burden. LMW and alkylated PACs were detected at higher levels and had a stronger positive relationship with mutation frequency than HMW (alkylated and parent) PACs. There were no significant relationships detected between mutation frequency and LMW parent PACs or the distance from bitumen upgraders. Furthermore, pyrogenic and petrogenic signatures suggest PACs in animals with high mutation frequencies were associated with combustion processes; although further investigation is warranted, due to limitations of diagnostic ratio determination with biotic models. Our findings support the hypothesis that PACs found in the AOSR increase mutation frequency in wildlife. Further investigation is required to determine if the elevated PAC levels associated with higher mutation frequency are due to natural exposure or elevated human activity.
Collapse
Affiliation(s)
- Helina Gyasi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jory Curry
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jared Browning
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Kelsey Ha
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Philippe J Thomas
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Cronin AD, Smit JAH, Muñoz MI, Poirier A, Moran PA, Jerem P, Halfwerk W. A comprehensive overview of the effects of urbanisation on sexual selection and sexual traits. Biol Rev Camb Philos Soc 2022; 97:1325-1345. [PMID: 35262266 PMCID: PMC9541148 DOI: 10.1111/brv.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
Abstract
Urbanisation can affect mating opportunities and thereby alter inter- and intra-sexual selection pressures on sexual traits. Biotic and abiotic urban conditions can influence an individual's success in pre- and post-copulatory mating, for example through impacts on mate attraction and mate preference, fertilisation success, resource competition or rival interactions. Divergent sexual selection pressures can lead to differences in behavioural, physiological, morphological or life-history traits between urban and non-urban populations, ultimately driving adaptation and speciation. Most studies on urban sexual selection and mating interactions report differences between urban and non-urban populations or correlations between sexual traits and factors associated with increased urbanisation, such as pollution, food availability and risk of predation and parasitism. Here we review the literature on sexual selection and sexual traits in relation to urbanisation or urban-associated conditions. We provide an extensive list of abiotic and biotic factors that can influence processes involved in mating interactions, such as signal production and transmission, mate choice and mating opportunities. We discuss all relevant data through the lens of two, non-mutually exclusive theories on sexual selection, namely indicator and sensory models. Where possible, we indicate whether these models provide the same or different predictions regarding urban-adapted sexual signals and describe different experimental designs that can be useful for the different models as well as to investigate the drivers of sexual selection. We argue that we lack a good understanding of: (i) the factors driving urban sexual selection; (ii) whether reported changes in traits result in adaptive benefits; and (iii) whether these changes reflect a short-term ecological, or long-term evolutionary response. We highlight that urbanisation provides a unique opportunity to study the process and outcomes of sexual selection, but that this requires a highly integrative approach combining experimental and observational work.
Collapse
Affiliation(s)
- Andrew D Cronin
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Judith A H Smit
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Matías I Muñoz
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Armand Poirier
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Peter A Moran
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Paul Jerem
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Wouter Halfwerk
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
7
|
Thompson MJ, Capilla-Lasheras P, Dominoni DM, Réale D, Charmantier A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol Evol 2021; 37:171-182. [PMID: 34690006 DOI: 10.1016/j.tree.2021.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, numerous studies have explored how urbanisation affects the mean phenotypes of populations, but it remains unknown how urbanisation impacts phenotypic variation, a key target of selection that shapes, and is shaped by, eco-evolutionary processes. Our review suggests that urbanisation may often increase intraspecific phenotypic variation through several processes; a conclusion aligned with results from our illustrative analysis on tit morphology across 13 European city/forest population pairs. Urban-driven changes in phenotypic variation will have immense implications for urban populations and communities, particularly through urbanisation's effects on individual fitness, species interactions, and conservation. We call here for studies that incorporate phenotypic variation in urban eco-evolutionary research alongside advances in theory.
Collapse
Affiliation(s)
- M J Thompson
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - P Capilla-Lasheras
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D M Dominoni
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D Réale
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - A Charmantier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
8
|
Alberti M, Palkovacs E, Roches S, Meester L, Brans K, Govaert L, Grimm NB, Harris NC, Hendry AP, Schell CJ, Szulkin M, Munshi-South J, Urban MC, Verrelli BC. The Complexity of Urban Eco-evolutionary Dynamics. Bioscience 2020. [DOI: 10.1093/biosci/biaa079] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
Urbanization is changing Earth's ecosystems by altering the interactions and feedbacks between the fundamental ecological and evolutionary processes that maintain life. Humans in cities alter the eco-evolutionary play by simultaneously changing both the actors and the stage on which the eco-evolutionary play takes place. Urbanization modifies land surfaces, microclimates, habitat connectivity, ecological networks, food webs, species diversity, and species composition. These environmental changes can lead to changes in phenotypic, genetic, and cultural makeup of wild populations that have important consequences for ecosystem function and the essential services that nature provides to human society, such as nutrient cycling, pollination, seed dispersal, food production, and water and air purification. Understanding and monitoring urbanization-induced evolutionary changes is important to inform strategies to achieve sustainability. In the present article, we propose that understanding these dynamics requires rigorous characterization of urbanizing regions as rapidly evolving, tightly coupled human–natural systems. We explore how the emergent properties of urbanization affect eco-evolutionary dynamics across space and time. We identify five key urban drivers of change—habitat modification, connectivity, heterogeneity, novel disturbances, and biotic interactions—and highlight the direct consequences of urbanization-driven eco-evolutionary change for nature's contributions to people. Then, we explore five emerging complexities—landscape complexity, urban discontinuities, socio-ecological heterogeneity, cross-scale interactions, legacies and time lags—that need to be tackled in future research. We propose that the evolving metacommunity concept provides a powerful framework to study urban eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, Washington
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology,University of California, Santa Cruz, California
| | | | - Luc De Meester
- Laboratory of Aquatic Ecology Evolution, and Conservation, Katholieke Universiteit Leuven, Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei, Berlin, Germany, and with the Institute of Biology at Freie Universität Berlin, also in Berlin, Germany
| | - Kristien I Brans
- Laboratory of Aquatic Ecology Evolution, and Conservation, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; with the Department of Aquatic Ecology, in the Swiss Federal Institute of Aquatic Science and Technology, in Dübendorf, Switzerland; and with the University Research Priority Programme on Global Change and Biodiversity at the University of Zurich, in Zurich, Switzerland
| | | | - Nyeema C Harris
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Christopher J Schell
- Department of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington
| | | | - Jason Munshi-South
- Louis Calder Center Biological Field Station, Fordham University, Armonk, New York
| | - Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut
| | - Brian C Verrelli
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
9
|
Diamond SE, Martin RA. Evolution is a double-edged sword, not a silver bullet, to confront global change. Ann N Y Acad Sci 2020; 1469:38-51. [PMID: 32500534 DOI: 10.1111/nyas.14410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
Although there is considerable optimism surrounding adaptive evolutionary responses to global change, relatively little attention has been paid to maladaptation in this context. In this review, we consider how global change might lead populations to become maladapted. We further consider how populations can evolve to new optima, fail to evolve and therefore remain maladapted, or become further maladapted through trait-driven or eco-evo-driven mechanisms after being displaced from their fitness optima. Our goal is to stimulate thinking about evolution as a "double-edged sword" that comprises both adaptive and maladaptive responses, rather than as a "silver bullet" or a purely adaptive mechanism to combat global change. We conclude by discussing how a better appreciation of environmentally driven maladaptation and maladaptive responses might improve our current understanding of population responses to global change and our ability to forecast future responses.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
10
|
Marchetti F, Douglas GR, Yauk CL. A Return to the Origin of the EMGS: Rejuvenating the Quest for Human Germ Cell Mutagens and Determining the Risk to Future Generations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:42-54. [PMID: 31472026 DOI: 10.1002/em.22327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 05/23/2023]
Abstract
Fifty years ago, the Environmental Mutagen Society (now Environmental Mutagenesis and Genomics Society) was founded with a laser-focus on germ cell mutagenesis and the protection of "our most vital assets"-the sperm and egg genomes. Yet, five decades on, despite the fact that many agents have been demonstrated to induce inherited changes in the offspring of exposed laboratory rodents, there is no consensus on whether human germ cell mutagens exist. We argue that it is time to reevaluate the available data and conclude that we already have evidence for the existence of environmental exposures that impact human germ cells. What is missing are definite data to demonstrate a significant increase in de novo mutations in the offspring of exposed parents. We believe that with over two decades of research advancing knowledge and technologies in genomics, we are at the cusp of generating data to conclusively show that environmental exposures cause heritable de novo changes in the human offspring. We call on the research community to harness our technologies, synergize our efforts, and return to our Founders' original focus. The next 50 years must involve collaborative work between clinicians, epidemiologists, genetic toxicologists, genomics experts and bioinformaticians to precisely define how environmental exposures impact germ cell genomes. It is time for the research and regulatory communities to prepare to interpret the coming outpouring of data and develop a framework for managing, communicating and mitigating the risk of exposure to human germ cell mutagens. Environ. Mol. Mutagen. 61:42-54, 2020. © 2019 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Brady SP, Bolnick DI, Angert AL, Gonzalez A, Barrett RD, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Guichard F, Lamy T, McAdam AG, Newman AE, Paccard A, Rolshausen G, Simons AM, Hendry AP. Causes of maladaptation. Evol Appl 2019; 12:1229-1242. [PMID: 31417611 PMCID: PMC6691215 DOI: 10.1111/eva.12844] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evolutionary biologists tend to approach the study of the natural world within a framework of adaptation, inspired perhaps by the power of natural selection to produce fitness advantages that drive population persistence and biological diversity. In contrast, evolution has rarely been studied through the lens of adaptation's complement, maladaptation. This contrast is surprising because maladaptation is a prevalent feature of evolution: population trait values are rarely distributed optimally; local populations often have lower fitness than imported ones; populations decline; and local and global extinctions are common. Yet we lack a general framework for understanding maladaptation; for instance in terms of distribution, severity, and dynamics. Similar uncertainties apply to the causes of maladaptation. We suggest that incorporating maladaptation-based perspectives into evolutionary biology would facilitate better understanding of the natural world. Approaches within a maladaptation framework might be especially profitable in applied evolution contexts - where reductions in fitness are common. Toward advancing a more balanced study of evolution, here we present a conceptual framework describing causes of maladaptation. As the introductory article for a Special Feature on maladaptation, we also summarize the studies in this Issue, highlighting the causes of maladaptation in each study. We hope that our framework and the papers in this Special Issue will help catalyze the study of maladaptation in applied evolution, supporting greater understanding of evolutionary dynamics in our rapidly changing world.
Collapse
Affiliation(s)
- Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenCTUSA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutMansfieldCTUSA
| | - Amy L. Angert
- Departments of Botany and ZoologyUniversity of British ColumbiaVancouverBCCanada
| | - Andrew Gonzalez
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
| | - Rowan D.H. Barrett
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
- Redpath MuseumMcGill UniversityMontréalQCCanada
| | - Erika Crispo
- Department of BiologyPace UniversityNew YorkNYUSA
| | - Alison M. Derry
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
- Département des sciences biologiquesUniversité du Québec à MontréalMontréalQCCanada
| | | | | | - Gregor F. Fussmann
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
| | - Frederic Guichard
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
| | - Thomas Lamy
- Département de sciences biologiquesUniversité de MontréalMontréalQCCanada
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCAUSA
| | - Andrew G. McAdam
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Amy E.M. Newman
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | | | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
| | | | - Andrew P. Hendry
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
- Redpath MuseumMcGill UniversityMontréalQCCanada
| |
Collapse
|
12
|
Rivkin LR, Santangelo JS, Alberti M, Aronson MFJ, de Keyzer CW, Diamond SE, Fortin M, Frazee LJ, Gorton AJ, Hendry AP, Liu Y, Losos JB, MacIvor JS, Martin RA, McDonnell MJ, Miles LS, Munshi‐South J, Ness RW, Newman AEM, Stothart MR, Theodorou P, Thompson KA, Verrelli BC, Whitehead A, Winchell KM, Johnson MTJ. A roadmap for urban evolutionary ecology. Evol Appl 2019; 12:384-398. [PMID: 30828362 PMCID: PMC6383741 DOI: 10.1111/eva.12734] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Urban ecosystems are rapidly expanding throughout the world, but how urban growth affects the evolutionary ecology of species living in urban areas remains largely unknown. Urban ecology has advanced our understanding of how the development of cities and towns change environmental conditions and alter ecological processes and patterns. However, despite decades of research in urban ecology, the extent to which urbanization influences evolutionary and eco-evolutionary change has received little attention. The nascent field of urban evolutionary ecology seeks to understand how urbanization affects the evolution of populations, and how those evolutionary changes in turn influence the ecological dynamics of populations, communities, and ecosystems. Following a brief history of this emerging field, this Perspective article provides a research agenda and roadmap for future research aimed at advancing our understanding of the interplay between ecology and evolution of urban-dwelling organisms. We identify six key questions that, if addressed, would significantly increase our understanding of how urbanization influences evolutionary processes. These questions consider how urbanization affects nonadaptive evolution, natural selection, and convergent evolution, in addition to the role of urban environmental heterogeneity on species evolution, and the roles of phenotypic plasticity versus adaptation on species' abundance in cities. Our final question examines the impact of urbanization on evolutionary diversification. For each of these six questions, we suggest avenues for future research that will help advance the field of urban evolutionary ecology. Lastly, we highlight the importance of integrating urban evolutionary ecology into urban planning, conservation practice, pest management, and public engagement.
Collapse
|
13
|
News Feature: Cities serve as testbeds for evolutionary change. Proc Natl Acad Sci U S A 2019; 116:2787-2790. [PMID: 30783018 DOI: 10.1073/pnas.1820852116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Sepp T, Ujvari B, Ewald PW, Thomas F, Giraudeau M. Urban environment and cancer in wildlife: available evidence and future research avenues. Proc Biol Sci 2019; 286:20182434. [PMID: 30963883 PMCID: PMC6367167 DOI: 10.1098/rspb.2018.2434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022] Open
Abstract
While it is generally known that the risk of several cancers in humans is higher in urban areas compared with rural areas, cancer is often deemed a problem of human societies with modern lifestyles. At the same time, more and more wild animals are affected by urbanization processes and are faced with the need to adapt or acclimate to urban conditions. These include, among other things, increased exposure to an assortment of pollutants (e.g. chemicals, light and noise), novel types of food and new infections. According to the abundant literature available for humans, all of these factors are associated with an increased probability of developing cancerous neoplasias; however, the link between the urban environment and cancer in wildlife has not been discussed in the scientific literature. Here, we describe the available evidence linking environmental changes resulting from urbanization to cancer-related physiological changes in wild animals. We identify the knowledge gaps in this field and suggest future research avenues, with the ultimate aim of understanding how our modern lifestyle affects cancer prevalence in urbanizing wild populations. In addition, we consider the possibilities of using urban wild animal populations as models to study the association between environmental factors and cancer epidemics in humans, as well as to understand the evolution of cancer and defence mechanisms against it.
Collapse
Affiliation(s)
- Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Paul W. Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Frédéric Thomas
- CREEC, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| | - Mathieu Giraudeau
- CREEC, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| |
Collapse
|
15
|
Miller JL, Sherry J, Parrott J, Quinn JS. An evaluation of germline mutations and reproductive impacts in fathead minnow (Pimephales promelas) exposed to contaminated sediment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:594-601. [PMID: 29929136 DOI: 10.1016/j.ecoenv.2018.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have become ubiquitous in the aquatic environment. Some PAHs are mutagenic, potentially causing germline mutations in fish that inhabit PAH contaminated waters. We evaluated the effect of exposure to sediment-borne PAHs on reproduction and germline mutation rates in fathead minnows (Pimephales promelas). Exposure to the contaminated sediment had no significant impact on the reproductive endpoints measured in this study. Germline mutations rates at three microsatellite DNA loci were 1.69 × 10-3 in fish exposed to PAH-contaminated sediment and 0.55 × 10-3 in control fish, with zero mutations being observed in fish exposed to sediment from a reference site. While the difference in mutation rates between treatments was not statistically significant for the sample size used (15-19 families per treatment), the observed mutations rates enabled us to estimate the sample size required to detect a significant effect. To our knowledge, this is the first report of germline mutation rates in fathead minnow exposed to an environmental contaminant, providing baseline data for use in the design of future experiments.
Collapse
Affiliation(s)
- Jason L Miller
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, Canada L8S 4K1; Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, Canada L7S 1A1.
| | - Jim Sherry
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, Canada L7S 1A1
| | - Joanne Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, Canada L7S 1A1
| | - James S Quinn
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
16
|
Abstract
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments.
Collapse
Affiliation(s)
- Marc T J Johnson
- Department of Biology and Center for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jason Munshi-South
- Department of Biological Sciences and Louis Calder Center, Fordham University, Armonk, NY, USA.
| |
Collapse
|
17
|
Brady SP, Monosson E, Matson CW, Bickham JW. Evolutionary toxicology: Toward a unified understanding of life's response to toxic chemicals. Evol Appl 2017; 10:745-751. [PMID: 29151867 PMCID: PMC5680415 DOI: 10.1111/eva.12519] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Steven P Brady
- Biology Department Southern Connecticut State University New Haven CT USA
| | - Emily Monosson
- The Ronin Institute for Independent Scholars and Department of Environmental Conservation University of Massachusetts Amherst MA USA
| | - Cole W Matson
- Department of Environmental Science and Center for Reservoir and Aquatic Systems Research (CRASR) Baylor University Waco TX USA
| | - John W Bickham
- Department of Wildlife & Fisheries Sciences Texas A&M University College Station College Station TX USA
| |
Collapse
|
18
|
Environmental exposure does not explain putative maladaptation in road-adjacent populations. Oecologia 2017; 184:931-942. [PMID: 28717880 DOI: 10.1007/s00442-017-3912-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/09/2017] [Indexed: 12/27/2022]
Abstract
While the ecological consequences of roads are well described, little is known of their role as agents of natural selection, which can shape adaptive and maladaptive responses in populations influenced by roads. This knowledge gap persists despite a growing appreciation for the influence of evolution in human-altered environments. There, insights indicate that natural selection typically results in local adaptation. Thus, populations influenced by road-induced selection should evolve fitness advantages in their local environment. Contrary to this expectation, wood frog tadpoles from roadside populations show evidence of a fitness disadvantage, consistent with local maladaptation. Specifically, in reciprocal transplants, roadside populations survive at lower rates compared to populations away from roads. A key question remaining is whether roadside environmental conditions experienced by early stage embryos induce this outcome. This represents an important missing piece in evaluating the evolutionary nature of this maladaptation pattern. Here, I address this gap using a reciprocal transplant experiment designed to test the hypothesis that embryonic exposure to roadside pond water induces a survival disadvantage. Contrary to this hypothesis, my results show that reduced survival persists when embryonic exposure is controlled. This outcome indicates that the survival disadvantage is parentally mediated, either genetically and/or through inherited environmental effects. This result suggests that roadside populations are either truly maladapted or potentially locally adapted at later life stages. I discuss these interpretations, noting that regardless of mechanism, patterns consistent with maladaptation have important implications for conservation. In light of the pervasiveness of roads, further resolution explaining maladaptive responses remains a critical challenge in conservation.
Collapse
|
19
|
Aoki Y. Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants. Genes Environ 2017; 39:16. [PMID: 28373898 PMCID: PMC5376282 DOI: 10.1186/s41021-016-0064-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022] Open
Abstract
Various kind of chemical substances, including man-made chemical products and unintended products, are emitted to ambient air. Some of these substances have been shown to be mutagenic and therefore to act as a carcinogen in humans. National pollutant inventories (e.g., Pollutant Release and Transfer Registration in Japan) have estimated release amounts of man-made chemical products, but a major concern is the release of suspended particulate matter containing potent mutagens, for example, polycyclic aromatic hydrocarbons and related compounds generated by the combustion of fossil fuel, which are not estimated by PRTR system. In situ exposure studies have revealed that DNA adducts in the lung, and possibly mutations in germline cells are induced in rodents by inhalation of ambient air, indicating that evaluating in vivo mutations is important for assessing environmental health risks. Transgenic rodent systems (Muta, Big Blue, and gpt delta) are good tools for analyzing in vivo mutations induced by a mixture of chemical substances present in the environment. Following inhalation of diesel exhaust (used as a model mixture), mutation frequency was increased in the lung of gpt delta mice and base substitutions were induced at specific guanine residues (mutation hotspots) on the target transgenes. Mutation hotspots induced by diesel exhaust were different from those induced by benzo[a]pyrene, a typical mutagen in ambient air, but nearly identical to those induced by 1,6-dinitropyrene contained in diesel exhaust. Comparison between mutation hotspots in the TP53 (p53) gene in human lung cancer (data extracted from the IARC TP53 database) and mutations we identified in gpt delta mice showed that G to A transitions centered in CGT and CGG trinucleotides were mutation hotspots on both TP53 genes in human lung cancers and gpt genes in transgenic mice that inhaled diesel exhaust. The carcinogenic potency (TD50 value) of genotoxic carcinogen was shown to be correlated with the in vivo mutagenicity (total dose per increased mutant frequency). These results suggest that the mutations identified in transgenic rodents can help identify environmental mutagens that cause cancer.
Collapse
Affiliation(s)
- Yasunobu Aoki
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| |
Collapse
|
20
|
King LE, de Solla SR, Small JM, Sverko E, Quinn JS. Microsatellite DNA mutations in double-crested cormorants (Phalacrocorax auritus) associated with exposure to PAH-containing industrial air pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11637-11645. [PMID: 25153941 DOI: 10.1021/es502720a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hamilton Harbour, Ontario, Canada is one of the most polluted sites on the Great Lakes, and is subject to substantial airborne pollution due to emissions from both heavy industry and intense vehicle traffic. Mutagenic Polycyclic aromatic hydrocarbons (PAHs) are present at very high concentrations in the air and sediment of Hamilton Harbour. We used five variable DNA microsatellites to screen for mutations in 97 families of Double-crested Cormorants (Phalacrocorax auritus) from three wild colonies, two in Hamilton Harbour and one in cleaner northeastern Lake Erie. Mutations were identified in all five microsatellites at low frequencies, with the majority of mutations found in chicks from the Hamilton Harbour site closest to industrial sources of PAH contamination. Microsatellite mutation rates were 6-fold higher at the Hamilton Harbour site closest to the industrial sources of PAH contamination than the other Hamilton Harbour site, and both were higher than the reference colony. A Phase I metabolite of the PAH benzo[a]pyrene identified by LC-MS/MS in bile and liver from Hamilton Harbour cormorant chicks suggests that these cormorants are exposed to and metabolizing PAHs, highlighting their potential to have caused the observed mutations.
Collapse
Affiliation(s)
- L E King
- Department of Biology, McMaster University , Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
21
|
MacArthur JAL, Spector TD, Lindsay SJ, Mangino M, Gill R, Small KS, Hurles ME. The rate of nonallelic homologous recombination in males is highly variable, correlated between monozygotic twins and independent of age. PLoS Genet 2014; 10:e1004195. [PMID: 24603440 PMCID: PMC3945173 DOI: 10.1371/journal.pgen.1004195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/06/2014] [Indexed: 01/23/2023] Open
Abstract
Nonallelic homologous recombination (NAHR) between highly similar duplicated sequences generates chromosomal deletions, duplications and inversions, which can cause diverse genetic disorders. Little is known about interindividual variation in NAHR rates and the factors that influence this. We estimated the rate of deletion at the CMT1A-REP NAHR hotspot in sperm DNA from 34 male donors, including 16 monozygotic (MZ) co-twins (8 twin pairs) aged 24 to 67 years old. The average NAHR rate was 3.5×10−5 with a seven-fold variation across individuals. Despite good statistical power to detect even a subtle correlation, we observed no relationship between age of unrelated individuals and the rate of NAHR in their sperm, likely reflecting the meiotic-specific origin of these events. We then estimated the heritability of deletion rate by calculating the intraclass correlation (ICC) within MZ co-twins, revealing a significant correlation between MZ co-twins (ICC = 0.784, p = 0.0039), with MZ co-twins being significantly more correlated than unrelated pairs. We showed that this heritability cannot be explained by variation in PRDM9, a known regulator of NAHR, or variation within the NAHR hotspot itself. We also did not detect any correlation between Body Mass Index (BMI), smoking status or alcohol intake and rate of NAHR. Our results suggest that other, as yet unidentified, genetic or environmental factors play a significant role in the regulation of NAHR and are responsible for the extensive variation in the population for the probability of fathering a child with a genomic disorder resulting from a pathogenic deletion. Many genetic disorders are caused by deletions of specific regions of DNA in sperm or egg cells that go on to produce a child. This can occur through ectopic homologous recombination between highly similar segments of DNA at different positions within the genome. Little is known about the differences in rates of deletion between individuals or the factors that influence this. We analysed the rate of deletion at one such section of DNA in sperm DNA from 34 male donors, including 16 monozygotic co-twins. We observed a seven-fold variation in deletion rate across individuals. Deletion rate is significantly correlated between monozygote co-twins, indicating that deletion rate is heritable. This heritability cannot be explained by age, any known genetic regulator of deletion rate, Body Mass Index, smoking status or alcohol intake. Our results suggest that other, as yet unidentified, genetic or environmental factors play a significant role in the regulation of deletion. These factors are responsible for the extensive variation in the population for the probability of fathering a child with a genomic disorder resulting from a pathogenic deletion.
Collapse
Affiliation(s)
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Sarah J. Lindsay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Raj Gill
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Matthew E. Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Mussali-Galante P, Tovar-Sánchez E, Valverde M, Rojas E. Genetic structure and diversity of animal populations exposed to metal pollution. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 227:79-106. [PMID: 24158580 DOI: 10.1007/978-3-319-01327-5_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Studying the genetic diversity of wild populations that are affected by pollution provides a basis for estimating the risks of environmental contamination to both wildlife, and indirectly to humans. Such research strives to produce both a better understanding of the underlying mechanisms by which genetic diversity is affected,and the long-term effects of the pollutants involved.In this review, we summarize key aspects of the field of genetic ecotoxicology that encompasses using genetic patterns to examine metal pollutants as environmental stressors of natural animal populations. We address genetic changes that result from xenobiotic exposure versus genetic alterations that result from natural ecological processes. We also describe the relationship between metal exposure and changes in the genetic diversity of chronically exposed populations, and how the affected populations respond to environmental stress. Further, we assess the genetic diversity of animal populations that were exposed to metals, focusing on the literature that has been published since the year 2000.Our review disclosed that the most common metals found in aquatic and terrestrial ecosystems were Cd, Zn, Cu and Pb; however, differences in the occurrence between aquatic (Cd=Zn>Cu>Pb>Hg) and terrestrial (Cu>Cd>Pb>Zn>Ni)environments were observed. Several molecular markers were used to assess genetic diversity in impacted populations, the order of the most common ones of which were SSR's > allozyme > RAPD's > mtDNA sequencing> other molecular markers.Genetic diversity was reduced for nearly all animal populations that were exposed to a single metal, or a mixture of metals in aquatic ecosystems (except in Hyalella azteca, Littorina littorea, Salmo trutta, and Gobio gobio); however, the pattern was less clear when terrestrial ecosystems were analyzed.We propose that future research in the topic area of this paper emphasizes seven key areas of activity that pertain to the methodological design of genetic ecotoxicological studies. Collectively, these points are designed to provide more accurate data and a deeper understanding of the relationship between alterations in genetic diversity of impacted populations and metal exposures. In particular, we believe that the exact nature of all tested chemical pollutants be clearly described, biomarkers be included, sentinel organisms be used, testing be performed at multiple experimental sites, reference populations be sampled in close geographical proximity to where pollution occurs, and genetic structure parameters and high-throughput technology be more actively employed. Furthermore, we propose a new class of biomarkers,termed "biomarkers of permanent effect," which may include measures of genetic variability in impacted populations.
Collapse
Affiliation(s)
- Patricia Mussali-Galante
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., CP 04510, Mexico
| | | | | | | |
Collapse
|
23
|
Stončius D, Sinkevičius S. Spontaneous Micronuclei in the Black-Headed Gull (Larus RidibundusL.) Embryos in Relation to Parameters Determining Nestling Survival. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/13921657.2003.10512684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Darius Stončius
- a Centre for Environmental Studies , Vilnius University , Čiurlionio 21, 2009 , Vilnius , Lithuania
| | - Stanislovas Sinkevičius
- a Centre for Environmental Studies , Vilnius University , Čiurlionio 21, 2009 , Vilnius , Lithuania
| |
Collapse
|
24
|
Boisen AMZ, Shipley T, Jackson P, Hougaard KS, Wallin H, Yauk CL, Vogel U. NanoTIO(2) (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice. Part Fibre Toxicol 2012; 9:19. [PMID: 22656316 PMCID: PMC3419097 DOI: 10.1186/1743-8977-9-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/14/2012] [Indexed: 12/18/2022] Open
Abstract
Background Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR) loci in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development). Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO2) produces a long-lasting inflammatory response in mice, it was chosen for the present study. Findings Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO2 UV-Titan L181 (~42.4 mg UV-Titan/m3) or filtered clean air on gestation days (GD) 8–18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring) of F1 female mice (192 UV-Titan-exposed F2 offspring and 164 F2 controls). ESTR mutation rates of 0.029 (maternal allele) and 0.047 (paternal allele) in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele) and 0.061 (paternal allele). Conclusions We found no evidence for increased ESTR mutation rates in F1 females exposed in utero to UV-Titan nanoparticles from GD8-18 relative to control females.
Collapse
|
25
|
Fassbender C, Braunbeck T, Keiter SH. Gene-TEQ--a standardized comparative assessment of effects in the comet assay using genotoxicity equivalents. JOURNAL OF ENVIRONMENTAL MONITORING : JEM 2012; 14:1325-1334. [PMID: 22441078 DOI: 10.1039/c2em10947f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Existing methods for the comparison of genotoxic effects in the comet assay bear considerable disadvantages such as the problem to link information about concentration dependence and severity of effects. Moreover, given the lack of standardized protocols and the use of various standards, it may be extremely difficult to compare different studies. In order to provide a method for standardized comparative assessment of genotoxic effects, the concept of genotoxicity equivalents (Gene-TEQ) was developed. As potential reference compounds for genotoxic effects, three directly acting (N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl-methanesulfonate, and N-methyl-N-nitrosourea) and three indirectly acting (cyclophosphamide, dimethylnitrosamine, and 4-nitroquinoline-oxide) genotoxic substances were compared with respect to their cytotoxic (neutral red) and genotoxic (comet assay) concentration-response profiles in the permanent fish cell line RTL-W1. For further comparison, two sediment extracts from the upper Danube River were investigated as environmental samples. Based on the results of cytotoxicity and genotoxicity testing, MNNG was selected as the reference compound. At several exposure levels and durations, genotoxic effects of both the other pure substances and the environmental samples were calculated as percentages of the maximum MNNG effect and related to the absolute MNNG effect (EC values). Thus, genotoxicity equivalent factors (Gene-TEQs) relative to MNNG could be calculated. Gene-TEQs can easily be applied to pure substances, mixtures and field samples to provide information about their toxicity relative to the reference compound. Furthermore, the Gene-TEQ concept allows a direct comparison of environmental samples from different laboratories.
Collapse
Affiliation(s)
- Christopher Fassbender
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
26
|
Paternal Benzo[a]pyrene Exposure Modulates MicroRNA Expression Patterns in the Developing Mouse Embryo. Int J Cell Biol 2012; 2012:407431. [PMID: 22548065 PMCID: PMC3324892 DOI: 10.1155/2012/407431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/19/2012] [Indexed: 12/02/2022] Open
Abstract
Little attention has been given to how microRNA expression is affected by environmental contaminants exposure. We investigate the effects of paternal exposure to benzo[a]pyrene (B[a]P) on miRNA expression in the developing mouse embryo. Male mice were exposed to B[a]P (150 mg/kg i.p.), and their sperm was used four days later in in-vitro fertilization experiments. Twenty embryos each from 2-, 8-cell and the blastocyst stage were used for genome-wide miRNA expression profiling. Paternal exposure to B[a]P affected the expression of several miRNAs, and the target genes for some of the dysregulated miRNAs were enriched in many different pathways that are likely to be relevant for the developing mouse embryo. By linking the miRNA target genes to publicly available databases, we identified some miRNA target genes that may serve as global markers of B[a]P-mediated genotoxic stress. The dysregulated miRNAs may provide valuable knowledge about potential transgenerational effects of sublethal exposure to chemicals.
Collapse
|
27
|
Ben-Shlomo R, Shanas U. Genetic ecotoxicology of asbestos pollution in the house mouse Mus musculus domesticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:1264-1269. [PMID: 21384142 DOI: 10.1007/s11356-011-0481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 02/11/2011] [Indexed: 05/30/2023]
Abstract
PURPOSE We tested the genetic diversity in wild mice (Mus musculus domesticus) inhabiting the asbestos-polluted area as a model for the long-term mutagenic effect of asbestos. Hazardous effects of deposited asbestos persist in the environment because of low rate of fiber disintegration. The upper layers of the soil in the vicinity of a former asbestos factory are nearly "saturated" with asbestos fibers and dust. Natural populations of mice dwell in this area and are constantly exposed to asbestos fibers. METHODS We measured the microsatellites genetic diversity of wild mice (Mus musculus domesticus) inhabiting the asbestos-polluted area as a model for the long-term mutagenic effect of this environmental toxin. RESULTS The six tested microsatellites were highly polymorphic, revealing 111 different alleles for the two sampled populations. Effective number of alleles was slightly higher in the polluted population relative to the control population, while observed heterozygosity was lower. The chromatographic profile of the polluted population exhibited a significantly higher number of bands, probably resulting from somatic mutations, in addition to the ordinary microsatellite band profiles. CONCLUSIONS Long-term exposure to asbestos fibers significantly elevates the level of somatic mutations. It also leads to a relatively high level of observed homozygosity, a phenomenon that may be associated with loss of heterozygosity. Based on the mice population, our data suggest elevated health risks for humans living in an asbestos-polluted area.
Collapse
Affiliation(s)
- Rachel Ben-Shlomo
- Department of Biology, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel.
| | | |
Collapse
|
28
|
Anmarkrud JA, Kleven O, Augustin J, Bentz KH, Blomqvist D, Fernie KJ, Magrath MJL, Pärn H, Quinn JS, Robertson RJ, Szép T, Tarof S, Wagner RH, Lifjeld JT. Factors affecting germline mutations in a hypervariable microsatellite: a comparative analysis of six species of swallows (Aves: Hirundinidae). Mutat Res 2011; 708:37-43. [PMID: 21291898 DOI: 10.1016/j.mrfmmm.2011.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/07/2011] [Accepted: 01/24/2011] [Indexed: 05/30/2023]
Abstract
Microsatellites mutate frequently by replication slippage. Empirical evidence shows that the probability of such slippage mutations may increase with the length of the repeat region as well as exposure to environmental mutagens, but the mutation rate can also differ between the male and female germline. It has been hypothesized that more intense sexual selection or sperm competition can also lead to elevated mutation rates, but the empirical evidence is inconclusive. Here, we analyzed the occurrence of germline slippage mutations in the hypervariable pentanucleotide microsatellite locus HrU10 across six species of swallow (Aves: Hirundinidae). These species exhibit marked differences in the length range of the microsatellite, as well as differences in the intensity of sperm competition. We found a strong effect of microsatellite length on the probability of mutation, but no residual effect of species or their level of sperm competition when the length effect was accounted for. Neither could we detect any difference in mutation rate between tree swallows (Tachycineta bicolor) breeding in Hamilton Harbour, Ontario, an industrial site with previous documentation of elevated mutation rates for minisatellite DNA, and a rural reference population. However, our cross-species analysis revealed two significant patterns of sex differences in HrU10 germline mutations: (1) mutations in longer alleles occurred typically in the male germline, those in shorter alleles in the female germline, and (2) male germline mutations were more often expansions than contractions, whereas no directional bias was evident in the female germline. These results indicate some fundamental differences in male and female gametogenesis affecting the probability of slippage mutations. Our study also reflects the value of a comparative, multi-species approach for locus-specific mutation analyses, through which a wider range of influential factors can be assessed than in single-species studies.
Collapse
Affiliation(s)
- Jarl A Anmarkrud
- National Centre for Biosystematics, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Somers CM. Ambient air pollution exposure and damage to male gametes: human studies andin situ‘sentinel’ animal experiments. Syst Biol Reprod Med 2011; 57:63-71. [DOI: 10.3109/19396368.2010.500440] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Verhofstad N, van Oostrom CTM, Zwart E, Maas LM, van Benthem J, van Schooten FJ, van Steeg H, Godschalk RWL. Evaluation of benzo(a)pyrene-induced gene mutations in male germ cells. Toxicol Sci 2010; 119:218-23. [PMID: 20961952 DOI: 10.1093/toxsci/kfq325] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are mutagenic in somatic cells, whereas it remains unclear whether PAHs induce mutations in male germ cells, subsequently increasing health risks in offspring. Although results from the classical specific locus test are negative or inconclusive, recent studies with environmentally exposed animals suggest that PAHs are mutagenic in sperm cells. Therefore, we studied whether benzo(a)pyrene (B[a]P) was able to induce gene mutations in testis and sperm cells of wild-type (Wt) and Xpc(-/-) mice containing the pUR288 lacZ reporter gene. Mice were exposed to B[a]P (13 mg/kg body weight, three times per week) during 1, 4, or 6 weeks and sacrificed 6 weeks after the final exposure to obtain mutations in sperm derived from B[a]P-exposed spermatogonial stem cells. The lacZ gene mutation assay was used to assess mutant frequencies in spleen, testis, and mature sperm, and (32)P-postlabeling was used for the detection of DNA adducts in testis. Successful exposure was confirmed by a dose-related higher mutant frequency in spleen of Xpc(-/-) mice as compared with Wt mice. Mutant frequencies were also increased in all ethyl nitrosourea-exposed samples, which were used as positive control. Although B[a]P-related DNA adducts were detected in testis, mutant frequencies were not increased. On the other hand, B[a]P increased mutant frequencies in sperm of Wt mice, but not in Xpc(-/-) mice, after 6 weeks exposure. Therefore, we conclude that B[a]P can induce gene mutations in spermatogonial cells of mice, but it remains to be elucidated whether these mutations can be transmitted to offspring.
Collapse
Affiliation(s)
- Nicole Verhofstad
- Department of Health Risk Analysis and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Genotoxicity in herring gulls (Larus argentatus) in Sweden and Iceland. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 702:24-31. [DOI: 10.1016/j.mrgentox.2010.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/16/2010] [Accepted: 06/23/2010] [Indexed: 11/17/2022]
|
32
|
Zhou J, Cai ZH, Zhu XS. Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2010; 6:492-498. [PMID: 20821709 DOI: 10.1002/ieam.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exposure to environmental pollutants such as endocrine-disrupting compounds (EDCs) is now taken into account to explain partially the biodiversity decline of aquatic ecosystems. Much research has demonstrated that EDCs can adversely affect the endocrine system, reproductive health, and immune function in aquatic species. These toxicological effects include 1) interference with normal hormonal synthesis, release, and transport, 2) impairment of growth, development, and gonadal maturation, and 3) increased sensitivity to environmental stressors. Recent studies also have confirmed that EDCs have carcinogenic and mutagenic potential. In essence, these changes in physiological and biochemical parameters reflect, to some extent, some phenotypic characteristics of the deterioration of aquatic biodiversity. At present, evidence at the molecular level shows that exposure to EDCs can trigger genotoxicity, such as DNA damage, and can reduce genetic diversity. Field studies have also provided more direct evidence that EDCs contribute to the population decrease and biodiversity decline. Evolutionary toxicology and multigenerational toxicity tests have further demonstrated that EDCs can damage an organism's offspring and eventually likely lead to loss of evolutionary potential. Taken together, these results provide some basis for understanding the relationship between variety deterioration and EDC exposure. It is conceivable that there is a causal association between EDC exposure and variety deterioration of aquatic organisms.
Collapse
Affiliation(s)
- Jin Zhou
- Marine Biology Laboratory of Life Sciences Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen City, People's Republic of China
| | | | | |
Collapse
|
33
|
Verhofstad N, van Oostrom CTM, van Benthem J, van Schooten FJ, van Steeg H, Godschalk RWL. DNA adduct kinetics in reproductive tissues of DNA repair proficient and deficient male mice after oral exposure to benzo(a)pyrene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:123-9. [PMID: 19634154 DOI: 10.1002/em.20516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Benzo(a)pyrene (B[a]P) can induce somatic mutations, whereas its potential to induce germ cell mutations is unclear. There is circumstantial evidence that paternal exposure to B[a]P can result in germ cell mutations. Since DNA adducts are thought to be a prerequisite for B[a]P induced mutations, we studied DNA adduct kinetics by (32)P-postlabeling in sperm, testes and lung tissues of male mice after a single exposure to B[a]P (13 mg/kg bw, by gavage). To investigate DNA adduct formation at different stages of spermatogenesis, mice were sacrificed at Day 1, 4, 7, 10, 14, 21, 32, and 42 after exposure. In addition, DNA repair deficient (Xpc(-/-)) mice were used to study the contribution of nucleotide excision repair in DNA damage removal. DNA adducts were detectable with highest levels in lung followed by sperm and testis. Maximum adduct levels in the lung and testis were observed at Day 1 after exposure, while adduct levels in sperm reached maximum levels at approximately 1 week after exposure. Lung tissue and testis of Xpc(-/-) mice contained significantly higher DNA adduct levels compared to wild type (Wt) mice over the entire 42 day observation period (P < 0.05). Differences in adduct half-life between Xpc(-/-) and Wt mice were only observed in testis. In sperm, DNA adduct levels were significantly higher in Xpc(-/-) mice than in Wt mice only at Day 42 after exposure (P = 0.01). These results indicate that spermatogonia and testes are susceptible for the induction of DNA damage and rely on nucleotide excision repair for maintaining their genetic integrity.
Collapse
Affiliation(s)
- Nicole Verhofstad
- Department of Health Risk Analysis and Toxicology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Hashimoto AH, Amanuma K, Masumura K, Nohmi T, Aoki Y. In Vivo Mutagenesis Caused by Diesel Exhaust in the Testis of gpt delta Transgenic Mice. Genes Environ 2009. [DOI: 10.3123/jemsge.31.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
35
|
Somers CM, Cooper DN. Air pollution and mutations in the germline: are humans at risk? Hum Genet 2008; 125:119-30. [PMID: 19112582 DOI: 10.1007/s00439-008-0613-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/16/2008] [Indexed: 01/27/2023]
Abstract
Genotoxic air pollution is ubiquitous in urban and industrial areas. A variety of studies has linked human exposure to air pollution with a number of different somatic cell endpoints including cancer. However, the potential for inducing mutations in the human germline remains unclear. Sentinel animal studies of germline mutations at tandem-repeat loci (specifically minisatellites and expanded simple tandem repeats) have recently provided proof of principle that germline mutations can be induced in vertebrates (birds and mice) by air pollution under ambient conditions. Although humans may also be susceptible to induced germline mutations in polluted areas, uncertainties regarding causative agents, doses, and mutational mechanisms at repetitive DNA loci currently preclude extrapolation from animal data to the evaluation of human risk. Nevertheless, several recent studies have linked air pollution exposure to DNA damage in human sperm, indicating that our germ cells are not impervious to the genotoxic effects of air pollution. Thus, both sentinel animal and human studies have raised the possibility that ambient air pollution may increase human germline mutation rates, especially at repetitive DNA loci. Given that some human genetic conditions appear to be modulated by length mutations at tandem-repeat loci (e.g. HRAS1 cancers, type 1 diabetes, etc.), there is an urgent need for extensive study in this area. Research should be primarily focused upon: (1) the direct measurement of mutation frequencies at repetitive DNA loci in human male germ cells as a function of air pollution exposure, (2) large-scale epidemiology studies of inherited disorders and tandem-repeat associated genetic conditions and air pollution, and (3) the characterization of mutational mechanisms at hypervariable tandem-repeat loci.
Collapse
|
36
|
Verhofstad N, Linschooten JO, van Benthem J, Dubrova YE, van Steeg H, van Schooten FJ, Godschalk RWL. New methods for assessing male germ line mutations in humans and genetic risks in their offspring. Mutagenesis 2008; 23:241-7. [DOI: 10.1093/mutage/gen022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Somers CM, Valdes EV, Kjoss VA, Vaillancourt AL, Quinn JS. Influence of a contaminated fish diet on germline expanded-simple-tandem-repeat mutation frequency in mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:238-248. [PMID: 18288721 DOI: 10.1002/em.20380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herring gulls (Larus argentatus) in polluted areas on the North American Great Lakes were previously shown to have elevated germline mutation frequencies at minisatellite DNA loci. Airborne or dietary contaminants likely caused induced mutations, but the importance of each exposure type was unknown. Follow-up experiments with lab mice determined that air pollution significantly induced germline mutations; however, an evaluation of mutations induced by the diet of herring gulls has not yet been conducted. To address this issue, we fed mice a high-fish diet (58% wet mass) of the most common prey species for herring gulls nesting in Hamilton Harbour, a polluted industrial area on Lake Ontario. We bred the mice and screened pedigrees for germline mutations at expanded-simple-tandem-repeat (ESTR) DNA loci. Mutation frequencies were compared to those in a reference group that was fed fish from Atlantic Canada, and a control group that was fed commercial chow. Germline mutation frequencies were highest in mice fed contaminated fish, but were only marginally or not significantly affected by diet treatment. Statistical power to detect differences among treatment groups was low, and the effect of diet may have more clearly emerged if larger sample sizes were available. Levels of organic pollutants in the fish from Hamilton Harbour were higher than those from Atlantic Canada, but their ability to induce ESTR mutations is unknown. Our findings suggest that a contaminated fish diet may contribute to the elevated germline mutation frequencies observed previously in gulls at this site, but air pollution is likely a more important route of exposure.
Collapse
|
38
|
Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, Pogribny IP, Koturbash I, Williams A, Douglas GR, Kovalchuk O. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc Natl Acad Sci U S A 2008; 105:605-10. [PMID: 18195365 PMCID: PMC2206583 DOI: 10.1073/pnas.0705896105] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Indexed: 11/18/2022] Open
Abstract
Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation.
Collapse
Affiliation(s)
- Carole Yauk
- Environmental and Occupational Toxicology Division, HECSB, Ottawa, ON, Canada K1A 0K9.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fox GA, Jeffrey DA, Williams KS, Kennedy SW, Grasman KA. Health of herring gulls (Larus argentatus) in relation to breeding location in the early 1990s. I. Biochemical measures. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1443-70. [PMID: 17687730 DOI: 10.1080/15287390701382969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tissues of 156 adult herring gulls (Larus argentatus) were sampled in the early 1990s from 11 colonies throughout the Laurentian Great Lakes and 2 reference colonies in Lake Winnipeg and the Bay of Fundy. Gulls from 1 or more Great Lakes differed from Lake Winnipeg or the Bay of Fundy for 17 of 19 clinical biochemical measures, whereas the freshwater and marine reference sites differed in only 3. Three differed with sex. There was little evidence to suggest that these differences reflect genotypic differences. Plasma thyroxine, albumin, calcium, magnesium, inorganic phosphorus, triglyceride, bile acids, total protein, uric acid, and urea nitrogen concentrations and aspartate aminotransferase (AST) activity were lower in gulls from one or more Great Lakes than for gulls from one or both reference sites, while those for globulins and glucose were higher. Highly carboxylated porphyrins accumulated in the livers of Great Lakes gulls and ethoxyresorufin O-deethylase (EROD) activity was induced. There was resistance to PCB/TCDD-induced EROD induction in the Lake Erie colonies. Gulls from five colonies were unable to obtain adequate food to maintain average body condition. Body condition was associated with seven biochemical measures. Colonies in designated Areas of Concern as well as those with high liver polychlorinated biphenyl (PCB) concentrations both differed for 50% of the biochemical measures. Associations between biochemical measures and delta15N-derived trophic position and/or contaminant levels in tissues suggest the effects may be toxicopathic responses. Associations were most frequently with PCBs and dioxin-like contaminants. The health of adult herring gulls varied with breeding location and "lifestyle" in the early 1990s, and Great Lakes gulls suffered from chemical and nutritional stressors that modulated physiological processes and endocrine function.
Collapse
Affiliation(s)
- Glen A Fox
- Canadian Wildlife Service, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
40
|
Schmidt AL, Anderson LM. Repetitive DNA elements as mediators of genomic change in response to environmental cues. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2006.tb00217.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Eeva T, Belskii E, Kuranov B. Environmental pollution affects genetic diversity in wild bird populations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 608:8-15. [PMID: 16807076 DOI: 10.1016/j.mrgentox.2006.04.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 03/17/2006] [Accepted: 04/07/2006] [Indexed: 11/26/2022]
Abstract
Many common environmental pollutants, together with nuclear radiation, are recognized as genotoxic. There is, however, very little information on pollution-related genetic effects on free-living animal populations, especially in terrestrial ecosystems. We investigated whether genetic diversity in two small insectivorous passerines, the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca), was changed near point sources of heavy metals (two copper smelters) or radioactive isotopes (nuclear material reprocessing plant). We measured concentration of heavy metals and nucleotide diversity in mitochondrial DNA in feather samples taken from nestlings in multiple polluted areas and at control sites. In both species, heavy metal concentrations - especially of arsenic - were increased in feathers collected at smelter sites. The P. major population living near a smelter showed significantly higher nucleotide diversity than a control population in an unpolluted site, suggesting increased mutation rates in a polluted environment. On the contrary, F. hypoleuca showed reduced nucleotide diversity at both smelter sites but increased nucleotide diversity near the source of radioactivity. Our results show that heavy metal pollution and low level nuclear radiation affect the nucleotide diversity in two free-living insectivorous passerines. We suggest that the different response in these two species may be due to their different ability to handle toxic compounds in the body.
Collapse
Affiliation(s)
- Tapio Eeva
- Section of Ecology, University of Turku, FIN-20014, Finland.
| | | | | |
Collapse
|
42
|
Somers CM. Expanded simple tandem repeat (ESTR) mutation induction in the male germline: lessons learned from lab mice. Mutat Res 2006; 598:35-49. [PMID: 16500683 DOI: 10.1016/j.mrfmmm.2006.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expanded simple tandem repeat (ESTR) DNA loci that are unstable in the germline have provided the most sensitive tool ever developed for investigating low-dose heritable mutation induction in laboratory mice. Ionizing radiation exposures have shown that ESTR mutations occur mainly in pre-meiotic spermatogonia and stem cells. The average spermatogonial doubling dose is 0.62-0.69 Gy for low LET, and 0.18-0.34 Gy for high LET radiation. Chemical alkylating agents also cause significant ESTR mutation induction in pre-meiotic spermatogonia and stem cells, but are much less effective per unit dose than radiation. ESTR mutation induction efficiency is maximal at low doses of radiation or chemical mutagens, and may decrease at higher dose ranges. DNA repair deficient mice (SCID and PARP-1) with elevated levels of single and double-strand DNA breaks have spontaneously elevated ESTR mutation frequencies, and surprisingly do not show additional ESTR mutation induction following irradiation. In contrast, ESTR mutation induction in p53 knock-outs is indistinguishable from that of wild-type mice. Studies of sentinel mice exposed in situ to ambient air pollution showed elevated ESTR mutation frequencies in males exposed to high levels of particulate matter. These studies highlight the application of the ESTR assay for assessing environmental hazards under real-world conditions. All ESTR studies to date have shown untargeted mutations that occur at much higher frequencies than predicted. The mechanism of this untargeted mutation induction is unknown, and must be elucidated before we can fully understand the biological significance of ESTR mutations, or use these markers for formal risk assessment. Future studies should focus on the mechanism of ESTR mutation induction, refining dose responses, and developing ESTR markers for other animal species.
Collapse
Affiliation(s)
- Christopher M Somers
- Department of Biology, The University of Regina, 3737 Wascana Parkway, Regina, SK, Canada S4S 0A2.
| |
Collapse
|
43
|
Vineis P, Husgafvel-Pursiainen K. Air pollution and cancer: biomarker studies in human populations. Carcinogenesis 2005; 26:1846-55. [PMID: 16123121 DOI: 10.1093/carcin/bgi216] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large cohort studies in the U.S. and in Europe suggest that air pollution may increase lung cancer risk. Biomarkers can be useful to understand the mechanisms and to characterize high-risk groups. Here we describe biomarkers of exposure, in particular DNA adducts as well as markers of early damage, including mutagenicity, other endpoints of genotoxicity and molecular biomarkers of cancer. Several studies found an association between external measures of exposure to air pollution and increased levels of DNA adducts, with an apparent levelling-off of the dose-response relationship. Also, numerous experimental studies in vitro and in vivo have provided unambiguous evidence for genotoxicity of air pollution. In addition, due to the organic extracts of particulate matter [especially various polycyclic aromatic hydrocarbon (PAH) compounds], particulate air pollution induces oxidative damage to DNA. The experimental work, combined with the data on frequent oxidative DNA damage in lymphocytes in people exposed to urban air pollution, suggests 8-oxo-dG as one of the important promutagenic lesions. Lung cancer develops through a series of progressive pathological changes occurring in the respiratory epithelium. Molecular alterations such as loss of heterozygosity, gene mutations and aberrant gene promoter methylation have emerged as potentially promising molecular biomarkers of lung carcinogenesis. Data from such studies relevant for emissions rich in PAHs are also summarized, although the exposure circumstances are not directly relevant to outdoor air pollution, in order to shed light on potential mechanisms of air pollution-related carcinogenesis.
Collapse
Affiliation(s)
- Paolo Vineis
- Department of Epidemiology and Public Health, Imperial College of Science, Technology and Medicine, Norfolk Place, London, UK.
| | | |
Collapse
|
44
|
Fox GA, White PA, Trudeau S, Theodorakis C, Shutt LJ, Kennedy SW, Fernie KJ. DNA strand length and EROD activity in relation to two screening measures of genotoxic exposure in Great Lakes herring gulls. ECOTOXICOLOGY (LONDON, ENGLAND) 2005; 14:527-44. [PMID: 16220360 DOI: 10.1007/s10646-005-0002-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2004] [Indexed: 05/04/2023]
Abstract
We collected tissues from herring gulls (Larus argentatus) nesting within and outside of the Great Lakes basin. Genotoxin exposure was assessed as fluorescent aromatic compounds (FACs) in bile and SOS Chromotest-inducing activity in muscle extracts. We determined whether these exposures were associated with decreased erythrocyte DNA strand length and/or induction of hepatic ethoxyresorufin-O-deethylase (EROD) activity. FACs were detected in all bile samples. Most muscle extracts produced a positive or marginal SOS response in the presence of S9. SOS induction potentials were strongly associated with dietary trophic level. The median molecular length of DNA isolated from erythrocytes for 14 of 17 adult and 10 of 11 prefledgling collections was reduced compared to the modal class for their respective age group suggesting widespread DNA damage. DNA damage was greatest in gulls from Saginaw Bay, Lake Huron. Median EROD activity in both adults and prefledglings from remote locations was significantly lower than that of gulls from the lower Great Lakes and was not associated with concentrations of benzo[a]pyrene (B[a]P)-like FACs. Our results indicate Great Lakes herring gulls were exposed to genotoxins and Ah-receptor activating agents in biologically significant concentrations in the early 1990s. These agents appear to be persistent bioaccumulative compounds and/or their metabolites.
Collapse
Affiliation(s)
- Glen A Fox
- Canadian Wildlife Service, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3.
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Somers CM, McCarry BE, Malek F, Quinn JS. Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science 2004; 304:1008-10. [PMID: 15143280 DOI: 10.1126/science.1095815] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Urban and industrial air pollution can cause elevated heritable mutation rates in birds and rodents. The relative importance of airborne particulate matter versus gas-phase substances in causing these genetic effects under ambient conditions has been unclear. Here we show that high-efficiency particulate-air (HEPA) filtration of ambient air significantly reduced heritable mutation rates at repetitive DNA loci in laboratory mice housed outdoors near a major highway and two integrated steel mills. These findings implicate exposure to airborne particulate matter as a principal factor contributing to elevated mutation rates in sentinel mice and add to accumulating evidence that air pollution may pose genetic risks to humans and wildlife.
Collapse
Affiliation(s)
- Christopher M Somers
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | |
Collapse
|
47
|
Yauk CL. Advances in the application of germline tandem repeat instability for in situ monitoring. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2004; 566:169-82. [PMID: 15164979 DOI: 10.1016/j.mrrev.2003.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 08/26/2003] [Indexed: 10/26/2022]
Abstract
Alterations in tandem repetitive DNA sequences such as minisatellite DNA and expanded simple tandem repeats (ESTRs) may provide useful biomarkers of induced germline effects. In this review, I describe the differences between ESTRs and minisatellites with respect to their structure and mutational mechanisms, and discuss field applications measuring induced germline instability. It is evident that both types of loci have high rates of mutation that facilitate the measurement of induced mutation measured in relatively small numbers of samples following environmentally relevant exposures. Several research groups have used these loci to demonstrate a significant increase in germline mutation in humans and animals exposed to radioactive or chemical pollutants in their natural environment. Mutations are manifested as gains or losses in repeat units and are detected either by pedigree screening or by PCR amplification of sperm DNA. Mutations at both ESTRs and minisatellites appear to arise via indirect mechanisms rather than by direct damage to the repeat locus itself. Most interestingly, ESTR instability following radiation has been shown to be heritable and transmitted to subsequent generations. An understanding of the mechanisms involved in induced instability is required in order to begin to decipher the potential biological implications of increased germline tandem repeat mutation. Furthermore, relatively few studies have investigated the ability of different genotoxins to induce tandem repeat instability. Such laboratory-based experiments will be crucial in clarifying the particular environmental or occupational exposures that should be targeted for future studies and for isolating and subsequently identifying the putative mutagens in complex environmental matrices.
Collapse
Affiliation(s)
- Carole L Yauk
- Environmental Health Centre, Health Canada, Tunney's Pasture, 0803A, Ottawa, Ont., Canada, K1A 0L2.
| |
Collapse
|
48
|
Dubrova YE. Germline mutation induction at mouse and human tandem repeat DNA loci. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 518:115-29. [PMID: 12817681 DOI: 10.1007/978-1-4419-9190-4_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yuri E Dubrova
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
49
|
Whitehead A, Anderson SL, Kuivila KM, Roach JL, May B. Genetic variation among interconnected populations of Catostomus occidentalis: implications for distinguishing impacts of contaminants from biogeographical structuring. Mol Ecol 2003; 12:2817-33. [PMID: 12969484 DOI: 10.1046/j.1365-294x.2003.01933.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exposure to contaminants can affect survivorship, recruitment, reproductive success, mutation rates and migration, and may play a significant role in the partitioning of genetic variation among exposed and nonexposed populations. However, the application of molecular population genetic data to evaluate such influences has been uncommon and often flawed. We tested whether patterns of genetic variation among native fish populations (Sacramento sucker, Catostomus occidentalis) in the Central Valley of California were consistent with long-term pesticide exposure history, or primarily with expectations based on biogeography. Field sampling was designed to rigorously test for both geographical and contamination influences. Fine-scale structure of these interconnected populations was detected with both amplified fragment length polymorphisms (AFLP) and microsatellite markers, and patterns of variation elucidated by the two marker systems were highly concordant. Analyses indicated that biogeographical hypotheses described the data set better than hypotheses relating to common historical pesticide exposure. Downstream populations had higher genetic diversity than upstream populations, regardless of exposure history, and genetic distances showed that populations from the same river system tended to cluster together. Relatedness among populations reflected primarily directions of gene flow, rather than convergence among contaminant-exposed populations. Watershed geography accounted for significant partitioning of genetic variation among populations, whereas contaminant exposure history did not. Genetic patterns indicating contaminant-induced selection, increased mutation rates or recent bottlenecks were weak or absent. We stress the importance of testing contaminant-induced genetic change hypotheses within a biogeographical context. Strategic application of molecular markers for analysis of fine-scale structure, and for evaluating contaminant impacts on gene pools, is discussed.
Collapse
Affiliation(s)
- Andrew Whitehead
- Bodega Marine Laboratory, University of California-Davis, PO Box 247, 2099 Westside Road, Bodega Bay, CA 94923-0247, USA
| | | | | | | | | |
Collapse
|
50
|
Stoncius D, Lazutka JR. Spontaneous and benzo[a]pyrene-induced micronuclei in the embryos of the black-headed gull (Larus ridibundus L.). Mutat Res 2003; 538:31-9. [PMID: 12834752 DOI: 10.1016/s1383-5718(03)00092-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The spontaneous levels of micronuclei in erythrocytes were established in embryos of the black-headed gull of two natural populations. In total 216 blood samples from the same number of individuals were examined. A statistically significant decrease in the number of spontaneous micronucleated erythrocytes was found after 13 days of incubation. We found no statistically significant difference in the spontaneous frequencies of micronucleated erythrocytes in the embryos of the two colonies studied, although they differed in anthropogenic load. Results of analysis of variance indicated that egg incubation time was the only variable significantly (P=0.0001) affecting spontaneous frequency of micronucleated erythrocytes in the embryos of black-headed gulls. We also took 78 eggs of different developmental stages from both colonies and exposed them for a further 24h to a dose of benzo[a]pyrene (30 microg per egg). After exposure to benzo[a]pyrene, the frequency of micronucleated erythrocytes was not increased in the embryos incubated for a total period of 13 days. A statistically significant increase in the number of micronucleated erythrocytes was recorded in the benzo[a]pyrene-treated embryos incubated for a total period of 14 days. Decrease in numbers of spontaneous micronucleated erythrocytes after the 13 day of incubation and increased levels of benzo[a]pyrene-induced micronuclei after the 13 day of incubation were discussed to be caused by changes in spleen and liver function in advanced developmental stages of the embryo.
Collapse
Affiliation(s)
- Darius Stoncius
- Centre for Environmental Studies, Vilnius University, Lithuania
| | | |
Collapse
|