1
|
Cai Y, Zhang X, Jiang T, Zhong H, Han X, Ma R, Wu R. 8-OH-DPAT enhances dopamine D2-induced maternal disruption in rats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:467-477. [DOI: 10.1007/s00359-022-01551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
|
2
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
3
|
Hagino Y, Hall FS, Uhl GR, Sora I, Ikeda K. Dual actions of 5-MeO-DIPT at the serotonin transporter and serotonin 5-HT 1A receptor in the mouse striatum and prefrontal cortex. Neuropsychopharmacol Rep 2021; 41:91-101. [PMID: 33547882 PMCID: PMC8182963 DOI: 10.1002/npr2.12161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
Aims 5‐Methoxy‐N,N‐diisopropyltryptamine (5‐MeO‐DIPT) is a synthetic orally active hallucinogenic tryptamine analogue. The present study examined whether the effects of 5‐MeO‐DIPT involve the serotonin transporter (SERT) and serotonin 5‐hydroxytryptamine‐1A (5‐HT1A) receptor in the striatum and prefrontal cortex (PFC). Methods We investigated the effects of 5‐MeO‐DIPT on extracellular 5‐HT (5‐HTex) and dopamine (DAex) levels in the striatum and PFC in wildtype and SERT knockout (KO) mice using in vivo microdialysis, and for comparison the effects of the 5‐HT1A receptor antagonist WAY100635 and the 5‐HT1A receptor agonist 8‐OH‐DPAT on 5‐HTex. Results 5‐MeO‐DIPT decreased 5‐HTex levels in the striatum, but not PFC. In SERT‐KO mice, 5‐MeO‐DIPT did not affect 5‐HTex levels in the striatum or PFC. In the presence of WAY100635, 5‐MeO‐DIPT substantially increased 5‐HTex levels, suggesting that 5‐MeO‐DIPT acts on SERT and these effects are masked by its 5‐HT1A actions in the absence of WAY100635. 8‐OH‐DPAT decreased 5‐HTex levels in the striatum and PFC in wildtype mice. WAY100635 antagonized the 8‐OH‐DPAT‐induced decrease in 5‐HTex levels. In SERT‐KO mice, 8‐OH‐DPAT did not decrease 5‐HTex levels in the striatum and PFC. 5‐MeO‐DIPT dose‐dependently increased DAex levels in the PFC, but not striatum, in wildtype and SERT‐KO mice. The increase in DAex levels that was induced by 5‐MeO‐DIPT was not antagonized by WAY100635. Conclusion 5‐MeO‐DIPT influences both 5‐HTex and DAex levels in the striatum and PFC. 5‐MeO‐DIPT dually acts on SERT and 5‐HT1A receptors so that elevations in 5‐HTex levels produced by reuptake inhibition are limited by actions of the drug on 5‐HT1A receptors. 5‐MeO‐DIPT influences both 5‐HTex and DAex levels in the striatum and PFC. 5‐MeO‐DIPT dually acts on SERT and 5‐HT1A receptors so that elevations in 5‐HTex levels produced by reuptake inhibition are limited by actions of the drug on 5‐HT1A receptors.![]()
Collapse
Affiliation(s)
- Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Frank Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH, USA
| | - George R Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, NM, USA
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
4
|
Casaril AM, Domingues M, de Andrade Lourenço D, Birmann PT, Padilha N, Vieira B, Begnini K, Seixas FK, Collares T, Lenardão EJ, Savegnago L. Depression- and anxiogenic-like behaviors induced by lipopolysaccharide in mice are reversed by a selenium-containing indolyl compound: Behavioral, neurochemical and computational insights involving the serotonergic system. J Psychiatr Res 2019; 115:1-12. [PMID: 31082651 DOI: 10.1016/j.jpsychires.2019.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
Major depression and anxiety are highly incapacitating psychiatric disorders often present simultaneously, and the causal relationship between these disorders and inflammation are under extensive investigation. The treatment for this comorbidity still relies on drugs acting on the serotonergic neurotransmission, but the modulation of immune-inflammatory pathways has attained an increasing interest in the drug discovery. We have previously demonstrated that the selenoorganic compound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) possess antioxidant, anti-inflammatory, antinociceptive and antidepressant-like effect in mice. Considering these pharmacological properties and the structural similarities between tryptophan, serotonin and CMI, the aim of the present study was to investigate whether CMI ameliorates depression- and anxiogenic-like behavior induced by lipopolysaccharide (LPS) in Swiss male mice by modulating the serotonergic system and reducing neuroinflammation. The administration of CMI (1 mg/kg, i.g) reversed the behavioral deficits induced by LPS (0.83 mg/kg, i.p) in the tail suspension test, splash test and elevated plus maze. The pre-treatment of mice with WAY100635 (5-HT1A receptor antagonist), ketanserin (5-HT2A/2C receptor antagonist) and ondansetron (5-HT3 receptor antagonist) prevented the antidepressant- and anxiolytic-like effect elicited by CMI treatment after the LPS challenge. The administration of CMI also counteracted the increased expression of pro-inflammatory cytokines and indoleamine 2,3-dioxygenase (IDO) in the prefrontal cortex and hippocampus of mice challenged with LPS. Additionally, a molecular docking analysis showed that CMI binds to the active site of the serotonin transporter and IDO. These findings suggest that CMI reversed behavioral and biochemical alterations in the depression-anxiety comorbidity induced by LPS, possibly by modulation of neuroinflammatory mediators and the serotonergic system.
Collapse
Affiliation(s)
- Angela Maria Casaril
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Micaela Domingues
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Darling de Andrade Lourenço
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Paloma Taborda Birmann
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Nathalia Padilha
- Center for Chemical, PharmaceuticaSl and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Beatriz Vieira
- Center for Chemical, PharmaceuticaSl and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Karine Begnini
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana Kommling Seixas
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Center for Chemical, PharmaceuticaSl and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
5
|
Ago Y, Hasebe S, Hiramatsu N, Hashimoto H, Takuma K, Matsuda T. Psychopharmacology of combined activation of the serotonin 1A and σ 1 receptors. Eur J Pharmacol 2017; 809:172-177. [PMID: 28529139 DOI: 10.1016/j.ejphar.2017.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
The selective serotonin (5-HT) reuptake inhibitors (SSRIs) are generally used for the treatment of major depressive disorders, and the 5-HT1A and σ1 receptors are considered to be targets for treatment of psychiatric disorders. Some SSRIs such as fluvoxamine have agonistic activity towards for the σ1 receptor, but it is not known whether the effect on the receptor plays a key role in the pharmacological effects. We have recently demonstrated that fluvoxamine shows an anti-anhedonic effect in picrotoxin-induced model of anxiety/depression, while the SSRI paroxetine, which have little affinity for the σ1 receptor, does not. We also suggest that the anti-anhedonic effect of fluvoxamine is mediated by combined activation of the 5-HT1A and σ1 receptors and it is associated with activation of prefrontal dopaminergic system. In these studies, picrotoxin-treated mice and adrenalectomized/castrated mice were used as decreased GABAA receptor function and neurosteroid-deficient models, respectively. These findings suggest that the functional interaction between the 5-HT1A and σ1 receptors activates prefrontal dopaminergic system under the conditions of decreased brain GABAA receptor function and the neurochemical effect is linked to the behavioral effect. This review summarizes the pharmacological role of the 5-HT1A and σ1 receptors, focusing on the functional interaction between these receptors, and the role of prefrontal dopaminergic system in depressive-like behaviors.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shigeru Hasebe
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Naoki Hiramatsu
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Sasaki-Hamada S, Suzuki A, Ueda Y, Matsumoto K, Oka JI. Serotonergic and dopaminergic systems are implicated in antidepressant-like effects of chotosan , a Kampo formula, in mice. J Pharmacol Sci 2017; 133:110-113. [DOI: 10.1016/j.jphs.2017.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
|
7
|
Korte SM, Prins J, Van den Bergh FS, Oosting RS, Dupree R, Korte-Bouws GA, Westphal KG, Olivier B, Denys DA, Garland A, Güntürkün O. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and “waiting” impulsivity, but increases “stopping” impulsivity. Eur J Pharmacol 2017; 794:257-269. [DOI: 10.1016/j.ejphar.2016.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
8
|
Jaehne EJ, Ameti D, Paiva T, van den Buuse M. Investigating the Role of Serotonin in Methamphetamine Psychosis: Unaltered Behavioral Effects of Chronic Methamphetamine in 5-HT 1A Knockout Mice. Front Psychiatry 2017; 8:61. [PMID: 28473777 PMCID: PMC5397502 DOI: 10.3389/fpsyt.2017.00061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023] Open
Abstract
Methamphetamine (Meth) is a widely abused stimulant drug, but this abuse is associated with an increased risk of developing psychosis. In addition to its well-known action on brain dopamine, Meth also affects serotonergic (5-HT) neurons. The aim of this study was to investigate this role in mice, which lack one of the main serotonin receptors, the 5-HT1A receptor, which has been implicated in both schizophrenia and Meth-induced psychosis. Male and female wild-type or 5-HT1A knockout (KO) mice received daily treatment with increasing doses of methamphetamine from 6 to 9 weeks of age (1-4 mg/kg/day twice a day). At least 2 weeks after the last injection, the mice underwent a battery of behavioral tests focusing on psychosis-related behaviors, including Meth-induced hyperactivity, prepulse inhibition (PPI), social interaction, elevated plus maze (EPM), and Y-maze. Meth pretreatment resulted in significantly increased hyperlocomotion in response to an acute Meth challenge, but this effect was independent of genotype. Chronic Meth treatment resulted in decreased levels of anxiety in the EPM in both sexes, as well as increased startle responses in female mice only, again independent of genotype. 5-HT1A KO mice showed an increased locomotor response to acute Meth in both sexes, as well as increased PPI and decreased startle responses in female mice only, independent of Meth pretreatment. In conclusion, the effects of chronic Meth appear unaffected by the absence of the 5-HT1A receptor. These results do not support a role of the 5-HT1A receptor in Meth-induced psychosis.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Dzeneta Ameti
- Department Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Tehani Paiva
- Department Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- Department Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
9
|
Woźniak M, Gołembiowska K, Noworyta-Sokołowska K, Acher F, Cieślik P, Kusek M, Tokarski K, Pilc A, Wierońska JM. Neurochemical and behavioral studies on the 5-HT 1A-dependent antipsychotic action of the mGlu 4 receptor agonist LSP4-2022. Neuropharmacology 2016; 115:149-165. [PMID: 27465045 DOI: 10.1016/j.neuropharm.2016.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022]
Abstract
LSP4-2022 is a novel, orthosteric agonist of mGlu4 receptor that induces antipsychotic-like activity in animal studies. In the present study, the involvement of 5-HT1A receptors in LSP4-2022-induced antipsychotic actions and the neurochemical background of that interaction were investigated. In several behavioral tests the actions of effective doses of the compound (0.5-2 mg/kg) were antagonized via the administration of the 5-HT1A antagonist WAY100635 (0.1 mg/kg). The co-administration of sub-effective dose of the 5-HT1A agonist (R)-(S)-8-OH-DPAT (0.01 mg/kg) intensified the activity of ineffective doses of LSP4-2022, having no influence on the efficacy of the active doses. The co-administration of effective doses of both compounds did not intensify each other's action. In the microdialysis in vivo tests, MK-801 (0.6 mg/kg) induced an enhancement of the release of dopamine, serotonin, glutamate and GABA in the prefrontal cortex. Administration of LSP4-2022 (2 mg/kg) abolished this MK-801-induced effect on neurotransmitter release. Co-administration with WAY100635 (0.1 mg/kg), a 5-HT1A antagonist, completely (dopamine, serotonin) or partially (glutamate, GABA) counteracted this LSP4-2022-induced effect. Subsequently, the patch-clamp recordings of spontaneous EPSCs were performed. sEPSCs were evoked in slices from the mouse prefrontal cortex by DOI (10 μM). LSP4-2022 (2.5; 5 and 10 μm) reversed DOI-induced changes in both the frequency and amplitude of the sEPSCs, but the more robust effect on the frequency was observed. The administration of WAY100635 had no effect on the LSP4-2022-induced effects on sEPSCs, indicating that the mGlu4-5-HT1A interaction does not occur via single-neuron signaling but involves neuronal circuits that regulate neurotransmitter release. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Monika Woźniak
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | | | | - Francine Acher
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, UMR8601-CNRS, Paris Descartes University, Sorbonne Paris Cite,45, rue des Saints-Peres, 75270 Paris Cedex 06, France
| | - Paulina Cieślik
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Magdalena Kusek
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Krzysztof Tokarski
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
10
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
11
|
Higashino K, Ago Y, Umeki T, Hasebe S, Onaka Y, Hashimoto H, Takuma K, Matsuda T. Rivastigmine improves isolation rearing-induced prepulse inhibition deficits via muscarinic acetylcholine receptors in mice. Psychopharmacology (Berl) 2016; 233:521-8. [PMID: 26518025 DOI: 10.1007/s00213-015-4123-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
RATIONALE The acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine are used for the treatment of Alzheimer's disease. We previously demonstrated that donepezil and galantamine differentially affect isolation rearing-induced prepulse inhibition (PPI) deficits and that this might be due to differential effects on brain muscarinic acetylcholine (mACh) receptor function in mice. OBJECTIVES We examined the effects of rivastigmine on isolation rearing-induced PPI deficits, brain ACh levels, and mACh receptor function in mice. METHODS Acoustic startle responses were measured in a startle chamber. Microdialysis was performed, and the levels of dopamine and ACh in the prefrontal cortex were measured. RESULTS Rivastigmine (0.3 mg/kg) improved PPI deficits, and this improvement was antagonized by the mACh receptor antagonist telenzepine but not by the nicotinic ACh receptor antagonist mecamylamine. Rivastigmine increased extracellular ACh levels by approximately 2-3-fold, less than the increase produced by galantamine. Rivastigmine enhanced the effect of the mACh receptor agonist N-desmethylclozapine on prefrontal dopamine release, a marker of mACh receptor function, and this increase was blocked by telenzepine. In contrast, galantamine did not affect N-desmethylclozapine-induced dopamine release. Furthermore, rivastigmine did not affect cortical dopamine release induced by the serotonin1A receptor agonist osemozotan, suggesting that the effect of rivastigmine has specificity for mACh receptors. CONCLUSIONS Taken together with our previous finding that marked increases in ACh levels are required for the PPI deficit improvement induced by galantamine, our present results suggest that rivastigmine improves isolation rearing-induced PPI deficits by increasing ACh levels and by concomitantly enhancing mACh receptor function.
Collapse
Affiliation(s)
- Kosuke Higashino
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Umeki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Hasebe
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Onaka
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Yokukansan Increases 5-HT1A Receptors in the Prefrontal Cortex and Enhances 5-HT1A Receptor Agonist-Induced Behavioral Responses in Socially Isolated Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:726471. [PMID: 26681968 PMCID: PMC4670863 DOI: 10.1155/2015/726471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/02/2022]
Abstract
The traditional Japanese medicine yokukansan has an anxiolytic effect, which occurs after repeated administration. In this study, to investigate the underlying mechanisms, we examined the effects of repeated yokukansan administration on serotonin 1A (5-HT1A) receptor density and affinity and its expression at both mRNA and protein levels in the prefrontal cortex (PFC) of socially isolated mice. Moreover, we examined the effects of yokukansan on a 5-HT1A receptor-mediated behavioral response. Male mice were subjected to social isolation stress for 6 weeks and simultaneously treated with yokukansan. Thereafter, the density and affinity of 5-HT1A receptors were analyzed by a receptor-binding assay. Levels of 5-HT1A receptor protein and mRNA were also measured. Furthermore, (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT; a 5-HT1A receptor agonist) was injected intraperitoneally, and rearing behavior was examined. Social isolation stress alone did not affect 5-HT1A receptor density or affinity. However, yokukansan significantly increased receptor density and decreased affinity concomitant with unchanged protein and mRNA levels. Yokukansan also enhanced the 8-OH-DPAT-induced decrease in rearing behavior. These results suggest that yokukansan increases 5-HT1A receptors in the PFC of socially isolated mice and enhances their function, which might underlie its anxiolytic effects.
Collapse
|
13
|
Brosda J, Müller N, Bert B, Fink H. Modulatory Role of Postsynaptic 5-Hydroxytryptamine Type 1A Receptors in (±)-8-Hydroxy-N,N-dipropyl-2-aminotetralin-Induced Hyperphagia in Mice. ACS Chem Neurosci 2015; 6:1176-85. [PMID: 25781502 DOI: 10.1021/cn5003094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brain serotonin (5-HT) is involved in the control of food intake. The ingestive effects of 5-HT are mediated by various receptor subtypes, among others the 5-HT1A receptor. While the involvement of presynaptic 5-HT1A receptors is regarded as certain, the role of postsynaptic 5-HT1A receptors is rather vague. Here, we studied the role of the 5-HT1A receptor on feeding in non-food-deprived and food-deprived (young adult and adult, both sexes) wild-type NMRI mice as well as transgenic NMRI mice, which are characterized by a distinct overexpression of postsynaptic 5-HT1A receptors. The known hyperphagic effect of the 5-HT1A receptor full agonist 8-OH-DPAT ((±)-8-hydroxy-N,N-dipropyl-2-aminotetralin) in non-food-deprived animals was demonstrated in male NMRI wild-type mice and could be antagonized by the selective 5-HT1A receptor antagonist WAY100635. In transgenic mice, this hyperphagic response was induced at lower doses, with an earlier onset and even in females. However, in adult male transgenic mice, the hyperphagic effect did not occur. In food-deprived NMRI wild-type as well as transgenic mice, 8-OH-DPAT first induced a hypophagic and subsequently a hyperphagic effect. Again, in transgenic animals most responses occurred at lower doses and with an earlier onset. The results indicate that postsynaptic 5-HT1A receptors exert a modulatory function in food intake in free-feeding and fasted mice, which for the first time shows an involvement of postsynaptic 5-HT1A receptors in feeding behavior. Understanding the function of pre- and postsynaptic 5-HT1A receptors may help to achieve new insights into the regulation of food intake and foster prospective treatment strategies for eating disorders.
Collapse
Affiliation(s)
- Jan Brosda
- Freie Universität Berlin, Institute of Pharmacology and Toxicology,
School of Veterinary Medicine, 14195 Berlin, Germany
| | - Nadine Müller
- Freie Universität Berlin, Institute of Pharmacology and Toxicology,
School of Veterinary Medicine, 14195 Berlin, Germany
| | - Bettina Bert
- Freie Universität Berlin, Institute of Pharmacology and Toxicology,
School of Veterinary Medicine, 14195 Berlin, Germany
| | - Heidrun Fink
- Freie Universität Berlin, Institute of Pharmacology and Toxicology,
School of Veterinary Medicine, 14195 Berlin, Germany
| |
Collapse
|
14
|
Role of the 5-HT1A autoreceptor in the enhancement of fluvoxamine-induced increases in prefrontal dopamine release by adrenalectomy/castration in mice. J Pharmacol Sci 2015; 127:232-5. [DOI: 10.1016/j.jphs.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 11/20/2022] Open
|
15
|
Andolina D, Maran D, Viscomi MT, Puglisi-Allegra S. Strain-dependent variations in stress coping behavior are mediated by a 5-HT/GABA interaction within the prefrontal corticolimbic system. Int J Neuropsychopharmacol 2015; 18:pyu074. [PMID: 25522413 PMCID: PMC4360254 DOI: 10.1093/ijnp/pyu074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Serotonin and γ-aminobutyric acid (GABA) transmission is crucial in coping strategies. METHODS Here, using mice from 2 inbred strains widely exploited in behavioral neurochemistry, we investigated whether serotonin transmission in medial prefrontal cortex and GABA in basolateral amygdala determine strain-dependent liability to stress response and differences in coping. RESULTS C57BL/6J mice displayed greater immobility in the forced swimming test, higher serotonin outflow in medial prefrontal cortex, higher GABA outflow in basolateral amygdala induced by stress, and higher serotonin 1A receptor levels in medial prefrontal cortex accompanied by lower GABAb receptor levels in basolateral amygdala than DBA/2J mice. In assessing whether serotonin in medial prefrontal cortex determines GABA functioning in response to stress and passive coping behavior in C57BL/6J and DBA/2J mice, we observed that selective prefrontal serotonin depletion in C57BL/6J and DBA/2J reduced stress-induced GABA outflow in basolateral amygdala and immobility in the forced swimming test. CONCLUSIONS These results show that strain-dependent prefrontal corticolimbic serotonin/GABA regulation determines the strain differences in stress-coping behavior in the forced swimming test and point to a role of a specific neuronal system in genetic susceptibility to stress that opens up new prospects for innovative therapies for stress disorders.
Collapse
Affiliation(s)
- Diego Andolina
- Santa Lucia Foundation, Rome, Italy (Drs Andolina, Viscomi, and Puglisi-Allegra); Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Universita` degli Studi dell'Aquila, Via Vetoio, L'Aquila, Italy (Dr Andolina); Dipartimento di Psicologia and Centro 'Daniel Bovet,' Sapienza Università di Roma, Rome, Italy (Drs Maran and Puglisi-Allegra).
| | | | | | | |
Collapse
|
16
|
Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 2014; 45:233-45. [PMID: 24971825 DOI: 10.1016/j.neubiorev.2014.06.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/13/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Serotonergic dysfunction is thought to contribute to the pathophysiology of schizophrenia but the evidence has not been systematically synthesised before. We therefore systematically reviewed postmortem and in vivo molecular imaging studies of serotonin function in schizophrenia. We identified fifty relevant studies investigating eight different serotonin receptor systems in a total of 684 patients and 675 controls. Meta-analysis of postmortem studies found an elevation in prefrontal 5-HT1A receptors with a moderate to large effect size (N=8, 85 patients and 94 controls, SMD=0.60; CI: 0.17-1.03; p=0.007) and a reduction with a large effect size in prefrontal 5-HT2A receptors (N=8, 168 patients and 163 controls, SMD=-0.73; CI: -1.33, -0.12; p=0.019) in schizophrenia vs healthy controls. The evidence for alterations in serotonin transporter availability or other serotonin receptors (5-HT1B; 5-HT1D; 5-HT3; 5-HT4; 5-HT7) is limited. There are fewer studies investigating 5-HT receptors in schizophrenia with neuroimaging. Findings indicated possible 5-HT alterations at psychosis onset, although due to the limited number it was not possible to combine studies in a meta-analysis. Further in vivo studies, particularly in drug naive patients using radiotracers that can index high affinity states, will help determine if the postmortem findings are primary or secondary to other factors.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Medical Research Council, Clinical Sciences Centre, Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Department of Psychiatry and Behavioural Sciences, The University of Texas Health Science Centre at Houston, Houston, TX, USA.
| | - Danilo Arnone
- Centre for Affective Disorders, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Alessandra Cappai
- Medical Research Council, Clinical Sciences Centre, Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Forensic Outreach Service & Inreach Team HMP Wandsworth, South West London & St George's NHS Mental Health Trust, Springfield Hospital, Glenburnie Road, London SW17 7DJ, UK
| | - Oliver Howes
- Medical Research Council, Clinical Sciences Centre, Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Department of Psychosis Studies, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| |
Collapse
|
17
|
Fukumoto K, Iijima M, Chaki S. Serotonin-1A receptor stimulation mediates effects of a metabotropic glutamate 2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and an N-methyl-D-aspartate receptor antagonist, ketamine, in the novelty-suppressed feeding test. Psychopharmacology (Berl) 2014; 231:2291-8. [PMID: 24402133 DOI: 10.1007/s00213-013-3378-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/25/2013] [Indexed: 01/15/2023]
Abstract
RATIONALE α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor stimulation has been proposed to be a common neural mechanism of metabotropic glutamate 2/3 (mGlu2/3) receptor antagonists and an N-methyl-D-aspartate receptor antagonist, ketamine, exerting antidepressant effects in animal models. AMPA receptor stimulation has also been shown to mediate an increase in the extracellular level of serotonin (5-HT) in the medial prefrontal cortex by an mGlu2/3 receptor antagonist in rats. However, involvement of the serotonergic system in the actions of mGlu2/3 receptor antagonists and ketamine is not well understood. OBJECTIVES We investigated involvement of the serotonergic system in the effects of an mGlu2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and ketamine in a novelty-suppressed feeding (NSF) test in mice. RESULTS The intraperitoneal administration of LY341495 or ketamine at 30 min prior to the test significantly shortened latency to feed, which was attenuated by an AMPA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydr-obenzo[f]quinoxaline-7-sulfonamide (NBQX). The effects of LY341495 and ketamine were no longer observed in mice pretreated with a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA). Moreover, the effects of LY341495 and ketamine were blocked by a 5-HT1A receptor antagonist, N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635), but not by a 5-HT2A/2C receptor antagonist, ritanserin. Likewise, an AMPA receptor potentiator, 2,3-dihydro-1,4-benzodioxin-7-yl-(1-piperidyl)methanone (CX546), shortened latency to feed in the NSF test, which was prevented by depletion of 5-HT and blockade of 5-HT1A receptor. CONCLUSIONS These results suggest that AMPA receptor-dependent 5-HT release and subsequent 5-HT1A receptor stimulation may be involved in the actions of an mGlu2/3 receptor antagonist and ketamine in the NSF test.
Collapse
Affiliation(s)
- Kenichi Fukumoto
- Discovery Pharmacology І, Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama, 331-9530, Japan
| | | | | |
Collapse
|
18
|
Ago Y, Takuma K, Matsuda T. The Potential Role of Serotonin1A Receptors in Post-weaning Social Isolation–Induced Abnormal Behaviors in Rodents. J Pharmacol Sci 2014; 125:237-41. [DOI: 10.1254/jphs.14r05cp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Hiramatsu N, Ago Y, Hasebe S, Nishimura A, Mori K, Takuma K, Matsuda T. Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency. Neuropharmacology 2013; 75:53-61. [PMID: 23851260 DOI: 10.1016/j.neuropharm.2013.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/31/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
Abstract
Serotonin (5-HT)1A and σ1 receptors have been implicated in psychiatric disorders. We previously found that combined 5-HT reuptake inhibition and σ1 receptor activation has a synergistic effect on prefrontal dopaminergic transmission in adrenalectomized/castrated mice lacking circulating steroid hormones. In the present study, we examined the mechanisms underlying this neurochemical synergism. Systemic administration of fluvoxamine, a selective 5-HT reuptake inhibitor with agonistic activity towards the σ1 receptor, increased prefrontal dopamine (DA) levels, and adrenalectomy/castration potentiated this fluvoxamine-induced increase in DA. This enhancement of DA release was blocked by WAY100635 (a 5-HT1A receptor antagonist), but not by ritanserin (a 5-HT2 receptor antagonist), azasetron (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). Individually, osemozotan (a 5-HT1A receptor agonist) and (+)-SKF-10,047 (a σ1 receptor agonist) did not alter prefrontal monoamine levels in adrenalectomized/castrated and sham-operated mice differentially. In contrast, co-administration of these drugs increased prefrontal DA levels to a greater extent in adrenalectomized/castrated mice than in sham-operated animals. Furthermore, co-administration of osemozotan and (+)-SKF-10,047 increased expression of the neuronal activity marker c-Fos in the ventral tegmental area of adrenalectomized/castrated mice, but not in sham-operated animals. These findings suggest that combined activation of 5-HT1A and σ1 receptors has a synergistic effect on prefrontal dopaminergic transmission under circulating steroid deficiency, and that this interaction may play an important role in the regulation of the prefrontal DA system.
Collapse
Affiliation(s)
- Naoki Hiramatsu
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shigeru Hasebe
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akira Nishimura
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuya Mori
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Takuma
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
20
|
Wierońska JM, Acher FC, Sławińska A, Gruca P, Łasoń-Tyburkiewicz M, Papp M, Pilc A. The antipsychotic-like effects of the mGlu group III orthosteric agonist, LSP1-2111, involves 5-HT₁A signalling. Psychopharmacology (Berl) 2013; 227:711-25. [PMID: 23474845 PMCID: PMC3663209 DOI: 10.1007/s00213-013-3005-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/20/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Several studies have suggested that modulation of the glutamatergic system via metabotropic glutamate receptors (mGlu) could be a new way to achieve antipsychotic-like activity. LSP1-2111, the group III mGlu receptor orthosteric agonist, with a high affinity towards mGlu4 receptors, was previously shown to exhibit antipsychotic-like action in animal models displaying positive symptoms of schizophrenia. OBJECTIVES Here, we decided to investigate the possible role of LSP1-2111 in models of negative (social interaction) and cognitive (NOR) symptoms of psychosis. We also investigated the involvement of 5-HT1A receptors in the LSP1-2111-induced antipsychotic effects. Apart from the above-mentioned models of negative and cognitive symptoms, MK-801 and amphetamine-induced hyperactivity tests, plus the DOI-induced head twitches in mice as models for positive symptoms of psychosis, were used in this part of the investigations. RESULTS LSP1-2111 (0.5, 2, and 5 mg/ kg) dose-dependently inhibited MK-801-induced deficits in social interaction and NOR tests. The effects of the drug were antagonized by 5-HT1A antagonist, WAY100635 (0.1 mg/kg). A similar inhibition of LSP1-2111-induced effects was observed in models of positive symptoms of schizophrenia. Moreover, the concomitant administration of subeffective doses of LSP1-2111 (0.3-0.5 mg/kg) with a subeffective dose of 5-HT1A agonist, (R)-(+)-8-Hydroxy-DPAT (0.01 mg/kg), induced a clear antipsychotic-like effect in all of the procedures used. CONCLUSIONS Altogether, we propose that the activation of group III mGlu receptors may be a promising target for the development of novel antipsychotic drugs, towards not only positive but also negative and cognitive symptoms. The action of the compound is 5-HT1A-dependent.
Collapse
Affiliation(s)
- Joanna M. Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Francine C. Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Paris, France
| | - Anna Sławińska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland ,Medical College Faculty of Health Sciences, Jagiellonian University, 31-531 Kraków, Poland
| |
Collapse
|
21
|
Li CSW, Zhang L, Haske T, Dounay A, Gray D, Barta N, Brodfuehrer J, Lepsy C, Campbell B. Mechanism-based pharmacokinetic/pharmacodynamic modeling of rat prefrontal cortical dopamine response to dual acting norepinephrine reuptake inhibitor and 5-HT1A partial agonist. AAPS JOURNAL 2012; 14:365-76. [PMID: 22454087 DOI: 10.1208/s12248-012-9343-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 03/02/2012] [Indexed: 11/30/2022]
Abstract
Evidence suggests that compounds possessing both norepinephrine reuptake inhibition and 5-HT(1A) partial agonism (NRI/5-HT(1A)) activities may have a greater efficacy in treating neuropsychiatric disorders than compounds possessing either activity alone. The objectives of the present study were first to characterize the pharmacokinetic/pharmacodynamic (PK/PD) relationship of the plasma concentrations of atomoxetine (NRI) and buspirone (5-HT(1A) partial agonist), administered alone and in combination, on the prefrontal cortex dopamine levels in rats, and second to use the model developed to characterize the PK/PD relationship of novel NRI/5-HT(1A) compounds, PF-04269339 and PF-03529936, in a NRI/5-HT(1A) drug discovery program. Maximal dopamine elevation was twofold higher after administration of atomoxetine and buspirone in combination, PF-04269339, or PF-03529936 than after administration of atomoxetine or buspirone alone. A mechanism-based extended indirect response model characterized the time profiles of the prefrontal cortex dopamine response to atomoxetine and buspirone, administered alone or in combination. After fixing three mechanism-specific pharmacodynamic parameters (I (max) and γ2 for NRI and γ1 for 5-HT(1A)) based on the model for atomoxetine and/or buspirone, the model fitted the exposure-response profiles of PF-04269339 and PF-03529936 well. Good in vitro-to-in vivo correlation was demonstrated with the compound-specific pharmacodynamic parameters (IC(50) for NRI and SC(50) and S (max) for 5-HT(1A)) across the compounds. In summary, a piecewise modeling approach was used successfully for the characterization of the PK/PD relationship of novel NRI/5-HT(1A) compounds on prefrontal cortex dopamine levels in rats. The application and value of the mechanism-based modeling in the dual pharmacology drug discovery program are also discussed.
Collapse
Affiliation(s)
- Cheryl Shuang-wu Li
- Department of Pharmacokinetics Dynamics and Metabolism, Global Research and Development, Pfizer Inc., Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lithium attenuates methamphetamine-induced hyperlocomotion and behavioral sensitization via modulation of prefrontal monoamine release. Neuropharmacology 2012; 62:1634-9. [DOI: 10.1016/j.neuropharm.2011.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/06/2011] [Accepted: 10/01/2011] [Indexed: 11/22/2022]
|
23
|
Ago Y, Yano K, Hiramatsu N, Takuma K, Matsuda T. Fluvoxamine enhances prefrontal dopaminergic neurotransmission in adrenalectomized/castrated mice via both 5-HT reuptake inhibition and σ(1) receptor activation. Psychopharmacology (Berl) 2011; 217:377-86. [PMID: 21487652 DOI: 10.1007/s00213-011-2293-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/27/2011] [Indexed: 11/28/2022]
Abstract
RATIONALE Fluvoxamine, a selective serotonin (5-HT) reuptake inhibitor (SSRI) and an agonist for the σ(1) receptors, increases extracellular monoamines in the prefrontal cortex, but it is not known whether the σ(1) receptor is involved in the neurochemical effect of fluvoxamine. OBJECTIVES In view of the fact that circulating steroids exert a tonic modulatory effect on σ(1) receptor-mediated effects, the present study examines the effects of fluvoxamine on prefrontal extracellular monoamine levels in adrenalectomized/castrated mice lacking the peripheral sources of steroids. RESULTS Fluvoxamine-induced increases in the extracellular levels of dopamine (DA), but not of 5-HT and noradrenaline, were significantly higher in adrenalectomized/castrated than in sham-operated mice, and this effect was blocked by BD1047, a selective σ(1) receptor antagonist. In contrast, the effects of paroxetine, an SSRI without affinity for the σ(1) receptors, and (+)-SKF-10,047, a selective σ(1) receptor agonist, on the extracellular monoamine levels did not differ between adrenalectomized/castrated and sham-operated mice, while the increase in extracellular DA levels induced by co-administration of these drugs was higher in adrenalectomized/castrated than in the control mice. Moreover, fluvoxamine increased c-Fos expression, a marker of neuronal activity, in the prefrontal cortex of adrenalectomized/castrated mice, and this effect was blocked by BD1047. The similar increase in c-Fos expression was observed by co-administration of paroxetine and (+)-SKF-10,047. CONCLUSIONS These findings suggest that fluvoxamine enhances prefrontal dopaminergic neurotransmission via both 5-HT reuptake inhibition and σ(1) receptor activation under the circulating neuroactive steroid-deficient conditions.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
24
|
5-HT1A-receptor over-expressing mice: Genotype and sex dependent responses to antidepressants in the forced swim-test. Neuropharmacology 2011; 61:433-41. [DOI: 10.1016/j.neuropharm.2011.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 11/19/2022]
|
25
|
Wierońska JM, Stachowicz K, Brański P, Pałucha-Poniewiera A, Pilc A. On the mechanism of anti-hyperthermic effects of LY379268 and LY487379, group II mGlu receptors activators, in the stress-induced hyperthermia in singly housed mice. Neuropharmacology 2011; 62:322-31. [PMID: 21855555 DOI: 10.1016/j.neuropharm.2011.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/23/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Earlier studies have demonstrated that the agonists of the mGlu(2/3) receptors produced anxiolytic actions after peripheral administration. However, the mechanism of their action is still not clear. Therefore the aim of the present study was to specify the role of the GABAergic and serotonergic system in the mechanism of the anxiolytic activity of group II mGlu receptor activators by using the stress induced hyperthermia test (SIH) in singly housed mice. We used an orthosteric mGlu(2/3) receptor agonist, LY379268, which induced anti-hyperthermic efficacy in the doses of 1-5mg/kg (73% of inhibition after a highest dose). The effect of the second ligand used, a mGlu(2) receptor positive modulator (PAM), LY487379, was observed in a dose range of 0.5-5mg/kg and reached 53% of the inhibition. The blockade of GABAergic system by GABA(A) receptor antagonist flumazenil (10mg/kg) or GABA(B) receptor antagonist CGP55845 (10mg/kg), and the blockade of serotonergic system by 5-HT(1A) receptor antagonist WAY100635 (0.1 and 1mg/kg) or 5-HT(2A/2C) receptor antagonist ritanserin (0.5mg/kg) had no influence on the anti-hyperthermic effect induced by effective dose of LY379268. However, the action of the effective dose of LY487379 was enhanced when co-administered with flumazenil, WAY100635 (0.1mg/kg) and ritanserin. Similar results were observed for the subeffective dose of LY379268 (0.5mg/kg). WAY100635 in a dose of 1mg/kg did not induce any enhancing effect on the activity of compounds. Therefore, it seems that the antagonism towards GABA(A) receptors, presynaptic 5-HT(1A) and postsynaptic 5-HT(2A/2C) receptors is responsible for the phenomenon. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- J M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland.
| | | | | | | | | |
Collapse
|
26
|
Newman-Tancredi A. Biased agonism at serotonin 5-HT1A receptors: preferential postsynaptic activity for improved therapy of CNS disorders. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/npy.11.12] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Abstract
There is growing evidence to show that atypical antipsychotic quetiapine might exert an anxiolytic effect in patients. Nevertheless, the mechanism underlying this effect has not yet been fully explored. Like other anxiolytic drugs, quetiapine exhibits partial agonistic activity toward serotonergic 1A (5HT1A) receptors. The involvement of the serotonin system in anxiety, particularly of 5HT1A receptors, has been widely documented. In this study we have investigated whether different doses of quetiapine (5, 10, and 30 mg/kg, oral gavage) administered to C57BL6/N mice could produce an anxiolytic effect in the Vogel conflict test, a classical model of anxiety, and whether or not the selective 5HT1A antagonist WAY100635 (0.1 mg/kg, subcutaneously) might prevent such an effect. Our results show that 10 mg/kg quetiapine exhibits an anxiolytic effect, that is, at least in part, 5HT1A-mediated, because it is completely eliminated by WAY100635.
Collapse
|
28
|
Ohno Y. Therapeutic role of 5-HT1A receptors in the treatment of schizophrenia and Parkinson's disease. CNS Neurosci Ther 2010; 17:58-65. [PMID: 21091640 DOI: 10.1111/j.1755-5949.2010.00211.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
5-HT(1A) receptors have long been implicated in the pathogenesis and treatment of anxiety and depressive disorders. Recently, several lines of studies have revealed new insights into the therapeutic role of 5-HT(1A) receptors in treating schizophrenia and Parkinson's disease. Specifically, 5-HT(1A) receptors seem to be a promising target for alleviating antipsychotic-induced extrapyramidal side effects (EPS) and cognitive/affective disorders in schizophrenia. In the treatment of patients with Parkinson's disease, 5-HT(1A) agonists are expected to improve not only affective symptoms (e.g., anxiety and depression), but also the core parkinsonian symptoms as well as antiparkinsonian agents-induced side effects (e.g., L-DOPA-induced dyskinesia). Here, the therapeutic mechanisms mediated by 5-HT(1A) receptors in schizophrenia and Parkinson's disease are reviewed. This evidence should encourage discovery of new 5-HT(1A) ligands, which can resolve the unmet clinical needs in the current therapy.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Osaka, Japan.
| |
Collapse
|
29
|
Guptarak J, Sarkar J, Hiegel C, Uphouse L. Role of 5-HT(1A) receptors in fluoxetine-induced lordosis inhibition. Horm Behav 2010; 58:290-6. [PMID: 20223238 PMCID: PMC3427749 DOI: 10.1016/j.yhbeh.2010.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
The selective serotonin reuptake inhibitor (SSRI), fluoxetine (Prozac(R)), is an effective antidepressant that is also prescribed for other disorders (e.g. anorexia, bulimia, and premenstrual dysphoria) that are prevalent in females. However, fluoxetine also produces sexual side effects that may lead patients to discontinue treatment. The current studies were designed to evaluate several predictions arising from the hypothesis that serotonin 1A (5-HT(1A)) receptors contribute to fluoxetine-induced sexual dysfunction. In rodent models, 5-HT(1A) receptors are potent negative modulators of female rat sexual behavior. Three distinct experiments were designed to evaluate the contribution of 5-HT(1A) receptors to the effects of fluoxetine. In the first experiment, the ability of the 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635), to prevent fluoxetine-induced lordosis inhibition was examined. In the second experiment, the effects of prior treatment with fluoxetine on the lordosis inhibitory effect of the 5-HT(1A) receptor agonist, (+/-)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), were studied. In the third experiment, the ability of progesterone to reduce the acute response to fluoxetine was evaluated. WAY100635 attenuated the effect of fluoxetine; prior treatment with fluoxetine decreased 8-OH-DPAT's potency in reducing lordosis behavior; and progesterone shifted fluoxetine's dose-response curve to the right. These findings are consistent with the hypothesis that 5-HT(1A) receptors contribute to fluoxetine-induced sexual side effects.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Female
- Fluoxetine/administration & dosage
- Fluoxetine/adverse effects
- Fluoxetine/pharmacology
- Models, Animal
- Ovariectomy
- Piperazines/pharmacology
- Progesterone/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Inbred F344
- Receptor, Serotonin, 5-HT1A/metabolism
- Serotonin 5-HT1 Receptor Agonists
- Serotonin 5-HT1 Receptor Antagonists
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Selective Serotonin Reuptake Inhibitors/administration & dosage
- Selective Serotonin Reuptake Inhibitors/adverse effects
- Selective Serotonin Reuptake Inhibitors/pharmacology
- Sexual Behavior, Animal/drug effects
- Sexual Behavior, Animal/physiology
- Sexual Dysfunctions, Psychological/chemically induced
- Sexual Dysfunctions, Psychological/drug therapy
- Sexual Dysfunctions, Psychological/metabolism
- Time Factors
Collapse
Affiliation(s)
- Jutatip Guptarak
- Department of Biology, Texas Woman's University, Denton, Texas 76204, USA
| | | | | | | |
Collapse
|
30
|
Gay BM, Prigol M, Stein AL, Nogueira CW. Antidepressant-like pharmacological profile of 3-(4-fluorophenylselenyl)-2,5-diphenylselenophene: Involvement of serotonergic system. Neuropharmacology 2010; 59:172-9. [PMID: 20488195 DOI: 10.1016/j.neuropharm.2010.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 11/29/2022]
Abstract
This study evaluated the effect of 3-(4-fluorophenylselenyl)-2,5-diphenylselenophene (DPS) in the mouse forced swim test (FST) and tail suspension test (TST), two assays predictive of depressant activity. The involvement of serotonergic system in the effect caused by DPS was studied. The antidepressant-like effect of combined treatment with subeffetive doses of DPS and paroxetine, a selective serotonin reuptake inhibitor (SSRI) was investigated. Further, we verified the possible mechanism responsible for antidepressive-like effect of DPS. The results show that DPS (50 and 100 mg/kg, p.o.) significantly reduced the immobility time during the FST and TST, without accompanying changes in ambulation when assessed in the open-field test. The anti-immobility effect of DPS (50 mg/kg, p.o.) in the FST was prevented by pretreatment of mice with pCPA (100 mg/kg, i.p., once a day for 4 consecutive days, an inhibitor of 5-HT synthesis), WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist), ritanserin (1 mg/kg, i.p., a 5-HT2 receptor antagonist) or ondansetron (1 mg/kg, i.p., a 5-HT3 receptor antagonist). Combined treatment with paroxetine and DPS reduced the immobility time in the FST. DPS at the doses of 10-100 mg/kg did not produce any change in the cerebral activity of MAO-A or MAO-B. DPS at the dose of 50 mg/kg inhibited significantly 5-HT uptake in synaptosomes. These results suggest that DPS produced an antidepressant-like effect in the mouse FST and TST and this effect seems most likely to be mediated through an interaction with serotonergic system, particularly by 5-HT reuptake inhibition.
Collapse
Affiliation(s)
- Bibiana M Gay
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | | | | | | |
Collapse
|
31
|
Iskra-Jopa J, Gołembiowska K, Dziubina A, Cybulski M, Duszyńska B, Chilmonczyk Z. In-vivo effects of the 1,2,4-piperazine derivatives MM5 and MC1, putative 5-HT agonists, on dopamine and serotonin release in rat prefrontal cortex. J Pharm Pharmacol 2010; 57:205-11. [PMID: 15720784 DOI: 10.1211/0022357055425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Two 1,2,4-substituted derivatives of piperazine were tested for their effect on dopamine and serotonin (5-HT) release in rat prefrontal cortex. Both compounds, 1-[4-(4-chinolin-2-yl-piperazin-1-yl)-butyl]piperidin-2-on (MM5) and 1-[4-(2-methyl-4-chinolin-2-yl-piperazin-1-yl)-butyl]-8-azaspiro [4.5]decano-7,9-dion (MC1), produced hypothermia in mice and showed affinity for 5-HT1A receptors in-vitro. Like the selective 5-HT1A agonist 8-OH-DPAT (0.1 mg kg−1), MM5 given peripherally (30 mg kg−1) decreased the extracellular 5-HT level in rat prefrontal cortex, while MC1 suppressed 5-HT release at a higher dose (40 mg kg−1), but not at a lower one (30 mg kg−1). The effect of both compounds on 5-HT release was abolished by WAY 100635 (0.3 mg kg−1). MC1 (30 and 40 mg kg−1), but not MM5, raised cortical dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and extracellular homovanillic acid (HVA) levels. The effect of MC1 on dopamine release was reversed by neither WAY 100635 nor the non-selective 5-HT2 antagonist ritanserin (2 mg kg−1). However, ritanserin prevented the effect of the higher dose of MC1 on 5-HT release. The results of this study suggest that MM5 exhibits the profile of a 5-HT1A agonist devoid of dopaminergic activity. MC1 seems to possess moderate agonist activity at 5-HT1A and 5-HT2A receptors, while acting on 5-HT release in the rat prefrontal cortex. However, the facilitation of dopamine release by this compound does not seem to be related to its affinity for 5-HT1A and 5-HT2A receptors.
Collapse
MESH Headings
- 3,4-Dihydroxyphenylacetic Acid/chemistry
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Animals
- Dopamine/chemistry
- Dopamine/physiology
- Extracellular Fluid/chemistry
- Extracellular Fluid/drug effects
- Extracellular Fluid/metabolism
- Homovanillic Acid/chemistry
- Homovanillic Acid/metabolism
- Male
- Microdialysis/methods
- Piperazines/antagonists & inhibitors
- Piperazines/chemistry
- Piperazines/metabolism
- Piperazines/pharmacology
- Piperidones/metabolism
- Piperidones/pharmacology
- Poland
- Prefrontal Cortex/chemistry
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/physiology
- Pyridines/pharmacology
- Radioligand Assay/methods
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/physiology
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/physiology
- Ritanserin/pharmacology
- Serotonin/chemistry
- Serotonin/physiology
- Serotonin 5-HT1 Receptor Agonists
- Serotonin 5-HT2 Receptor Agonists
- Spiro Compounds/metabolism
- Spiro Compounds/pharmacology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Joanna Iskra-Jopa
- Pharmaceutical Research Institute, Rydygiera 8, PL-01-793 Warszawa, Poland
| | | | | | | | | | | |
Collapse
|
32
|
Discovery and pharmacological characterization of aryl piperazine and piperidine ethers as dual acting norepinephrine reuptake inhibitors and 5-HT1A partial agonists. Bioorg Med Chem Lett 2009; 19:6604-7. [DOI: 10.1016/j.bmcl.2009.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 10/05/2009] [Indexed: 11/22/2022]
|
33
|
Duvvuri V, Risbrough VB, Kaye WH, Geyer MA. 5-HT1A receptor activation is necessary for 5-MeODMT-dependent potentiation of feeding inhibition. Pharmacol Biochem Behav 2009; 93:349-53. [PMID: 19490926 PMCID: PMC2724836 DOI: 10.1016/j.pbb.2009.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 05/06/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
We propose a translational approach to the study of anorexia nervosa (AN) based on our human subject studies where there are characteristic elevations in 5-HT(1A) receptor binding, associated harm avoidance behaviors, reduced impulsivity, and comorbid anxiety disorders. Towards this goal, the hyponeophagia assay was implemented whereby food-deprived mice show increased latency to begin feeding in a novel, anxiogenic environment. The non-selective serotonin agonist, 5-MeODMT, potentiates feeding inhibition compared to the inhibition generated by the anxiogenic environment in a drug-by-environment interaction. Thus, using hyponeophagia in mice, it was possible to study the following key components of AN: anxiety; feeding inhibition; and a modulatory role of the serotonergic system. A major prediction of the proposed AN model is that 5-HT(1A) receptor activation is necessary for feeding inhibition. In support of this model, the 5-HT(1A) receptor antagonist, WAY100635, reverses the 5-MeODMT-dependent potentiation of feeding inhibition. Our findings hint at a mechanistic role for increased 5-HT(1A) receptor activation in restricting-type AN. Further implications for the interplay between anxiety and feeding inhibition in AN are discussed.
Collapse
Affiliation(s)
- Vikas Duvvuri
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, United States
| | | | | | | |
Collapse
|
34
|
Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T. Role of prefrontal dopaminergic neurotransmission in glucocorticoid receptor-mediated modulation of methamphetamine-induced hyperactivity. Synapse 2009; 63:7-14. [PMID: 18925659 DOI: 10.1002/syn.20575] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glucocorticoids are involved in psychostimulant-induced hyperactivity, but the exact mechanism is not known. This study used the selective glucocorticoid receptor antagonist, RU-43044, to determine whether prefrontal neurotransmission is involved in glucocorticoid-mediated modulation of methamphetamine (METH)-induced hyperactivity in mice. Pretreatment with RU-43044 (10-30 mg/kg) attenuated the increased spontaneous locomotor activity induced by METH (1-2 mg/kg). The psychostimulant effect of METH was also attenuated by adrenalectomy. RU-43044 inhibited METH-induced increases in extracellular dopamine (DA), but not serotonin (5-HT), levels in the prefrontal cortex, but did not affect METH-induced increases in extracellular DA levels in the nucleus accumbens shell, although it inhibited increases in extracellular 5-HT levels. Adrenalectomy also attenuated the METH-induced increases in extracellular DA levels in the prefrontal cortex. RU-43044 did not affect METH-induced increases in plasma corticosterone levels. These findings suggest that glucocorticoid receptors are involved in METH-induced hyperactivity, and that prefrontal dopaminergic neurotransmission plays a role in glucocorticoid-mediated modulation of METH-induced behavioral changes.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Yano K, Koda K, Ago Y, Kobayashi H, Kawasaki T, Takuma K, Matsuda T. Galantamine improves apomorphine-induced deficits in prepulse inhibition via muscarinic ACh receptors in mice. Br J Pharmacol 2009; 156:173-80. [PMID: 19133998 DOI: 10.1111/j.1476-5381.2008.00037.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Galantamine, a weak acetylcholine esterase (AChE) inhibitor and allosteric potentiator of nicotinic ACh receptors (nAChRs), improves apomorphine-induced deficits in prepulse inhibition (PPI), sensory information-processing deficits, via a nAChR-independent mechanism. The present study examined the role of muscarinic ACh receptors (mAChRs) in the effect of galantamine, and studied the mechanism of galantamine-induced increases in prefrontal ACh levels in mice. EXPERIMENTAL APPROACH Apomorphine (1 mg kg(-1)) was administered to male ddY mice (9-10 weeks old) to create a PPI deficit model. Extracellular ACh concentrations in the prefrontal cortex were measured by in vivo microdialysis. KEY RESULTS Galantamine- and donepezil-mediated improvements in apomorphine-induced PPI deficits were blocked by the preferential M(1) mAChR antagonist telenzepine. The mAChR agonist oxotremorine also improved apomorphine-induced PPI deficits. Galantamine, like donepezil, increased extracellular ACh concentrations in the prefrontal cortex. Galantamine-induced increases in prefrontal ACh levels were partially blocked by the dopamine D(1) receptor antagonist SCH23390, but not by antagonists of mAChRs (telenzepine) and nAChRs (mecamylamine). Galantamine increased dopamine, but not 5-HT, release in the prefrontal cortex. CONCLUSIONS AND IMPLICATIONS Galantamine improves apomorphine-induced PPI deficits by stimulating mAChRs through increasing brain ACh levels via a dopamine D(1) receptor-dependent mechanism and AChE inhibition.
Collapse
Affiliation(s)
- K Yano
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Bert B, Voigt JP, Kusserow H, Theuring F, Rex A, Fink H. Increasing the number of 5-HT1A-receptors in cortex and hippocampus does not induce mnemonic deficits in mice. Pharmacol Biochem Behav 2009; 92:76-81. [DOI: 10.1016/j.pbb.2008.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/09/2008] [Accepted: 10/21/2008] [Indexed: 11/29/2022]
|
37
|
Tsuchida R, Kubo M, Kuroda M, Shibasaki Y, Shintani N, Abe M, Köves K, Hashimoto H, Baba A. An Antihyperkinetic Action by the Serotonin 1A–Receptor Agonist Osemozotan Co-administered With Psychostimulants or the Non-stimulant Atomoxetine in Mice. J Pharmacol Sci 2009; 109:396-402. [DOI: 10.1254/jphs.08297fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
38
|
Learning and memory in 5-HT1A-receptor mutant mice. Behav Brain Res 2008; 195:78-85. [DOI: 10.1016/j.bbr.2008.02.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 11/22/2022]
|
39
|
Huang M, Li Z, Dai J, Shahid M, Wong EHF, Meltzer HY. Asenapine increases dopamine, norepinephrine, and acetylcholine efflux in the rat medial prefrontal cortex and hippocampus. Neuropsychopharmacology 2008; 33:2934-45. [PMID: 18418367 DOI: 10.1038/npp.2008.20] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atypical antipsychotic drugs, which are more potent direct acting antagonists of brain serotonin (5-HT)(2A) than dopamine (DA) D(2) receptors, preferentially enhance DA and acetylcholine (ACh) efflux in the rat medial prefrontal cortex (mPFC) and hippocampus (HIP), compared with the nucleus accumbens (NAc). These effects may contribute to their ability, albeit limited, to improve cognitive function and negative symptoms in patients with schizophrenia. Asenapine (ASE), a new multireceptor antagonist currently in development for the treatment of schizophrenia and bipolar disorder, has complex serotonergic properties based upon relatively high affinity for multiple serotonin (5-HT) receptors, particularly 5-HT(2A) and 5-HT(2C) receptors. In the current study, the effects of ASE on DA, norepinephrine (NE), 5-HT, ACh, glutamate, and gamma-aminobutyric acid (GABA) efflux in rat mPFC, HIP, and NAc were investigated with microdialysis in awake, freely moving rats. ASE at 0.05, 0.1, and 0.5 mg/kg (s.c.), but not 0.01 mg/kg, significantly increased DA efflux in the mPFC and HIP. Only the 0.5 mg/kg dose enhanced DA efflux in the NAc. ASE, at 0.1 and 0.5 mg/kg, significantly increased ACh efflux in the mPFC, but only the 0.5 mg/kg dose of ASE increased HIP ACh efflux. ASE did not increase ACh efflux in the NAc at any of the doses tested. The effect of ASE (0.1 mg/kg) on DA and ACh efflux was blocked by pretreatment with WAY100635, a 5-HT(1A) antagonist/D(4) agonist, suggesting involvement of indirect 5-HT(1A) agonism in both the actions. ASE, at 0.1 mg/kg, increased NE, but not 5-HT, efflux in the mPFC and HIP. ASE, at 0.1 mg/kg (s.c.), had no effect on glutamate and GABA efflux in either the mPFC or NAc. These findings indicate that ASE is similar to clozapine and other atypical antipsychotic drugs in preferentially increasing the efflux of DA, NE, and ACh in the mPFC and HIP compared with the NAC, and suggests that, like these agents, it may also improve cognitive function and negative symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Mei Huang
- Department of Psychiatry, Division of Psychopharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 2008; 55:1355-63. [PMID: 18796307 DOI: 10.1016/j.neuropharm.2008.08.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 11/24/2022]
Abstract
Chronic corticosterone and isolation rearing paradigms may provide reliable mouse models of depression. Using these models, the present study examined if the specific glucocorticoid receptor antagonist, RU-43044, has an antidepressant-like effect, and studied the possible role of prefrontal neurotransmission on the behavioral effects. Chronic administration of corticosterone and isolation rearing increased the immobility time in the forced swim and tail suspension tests. Subchronic treatment with RU-43044 decreased the immobility time in the forced swim test in chronic corticosterone-treated and isolation-reared mice, but not the control mice. Chronic corticosterone decreased the levels of cortical glucocorticoid receptors and stress-induced increases in plasma corticosterone levels, and blocked the response of plasma corticosterone to dexamethasone, while isolation rearing did not cause any changes in the glucocorticoid receptor system. Both chronic corticosterone and isolation rearing markedly increased high K+ -induced dopamine release, but not serotonin release, in the prefrontal cortex. Subchronic RU-43044 reversed the enhanced release of dopamine in the prefrontal cortex of chronic corticosterone-treated and isolation-reared mice. These results suggest that chronic corticosterone and isolation rearing increase the depressive-like behavior in glucocorticoid receptor-dependent and independent manners, respectively, and that RU-43044 shows an antidepressant-like effect, probably via an inhibition of enhanced prefrontal dopaminergic neurotransmission in these mouse models.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Ago Y, Nakamura S, Baba A, Matsuda T. Neuropsychotoxicity of abused drugs: effects of serotonin receptor ligands on methamphetamine- and cocaine-induced behavioral sensitization in mice. J Pharmacol Sci 2008; 106:15-21. [PMID: 18198473 DOI: 10.1254/jphs.fm0070121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Repeated administration of psychostimulants elicits a progressive enhancement of locomotor activity known as behavioral sensitization. Central dopamine (DA) neurons play key roles as the neural substrates mediating behavioral sensitization, but the role of the serotonin (5-HT) system in the sensitization is not fully elucidated. We have recently demonstrated that osemozotan, a specific 5-HT(1A)-receptor agonist, and ritanserin, a 5-HT(2)-receptor antagonist, inhibited the expression and development of both methamphetamine- and cocaine-induced behavioral sensitization in mice and that these drugs attenuated the maintenance of behavioral sensitization of methamphetamine, but not that of cocaine. We also found that azasetron, a 5-HT(3)-receptor antagonist, inhibited the expression and development of the sensitization induced by methamphetamine and cocaine, respectively. Neurochemical studies using a microdialysis technique showed that repeated methamphetamine enhanced the methamphetamine-induced increase in 5-HT release in the prefrontal cortex. The sensitization of 5-HT release in methamphetamine-treated mice was attenuated by osemozotan and ritanserin. These findings suggest that the 5-HT system plays an important role in methamphetamine- and cocaine-induced behavioral sensitization in mice and imply that 5-HT(1A)-receptor agonists and 5-HT(2)-receptor antagonists may have a potential therapeutic value for the treatment of methamphetamine abuse or psychosis.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
42
|
Folic acid administration produces an antidepressant-like effect in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Neuropharmacology 2007; 54:464-73. [PMID: 18078962 DOI: 10.1016/j.neuropharm.2007.10.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/21/2007] [Accepted: 10/22/2007] [Indexed: 02/07/2023]
Abstract
Clinical studies have shown that folic acid plays a role in the pathophysiology of depression. However, very few studies have investigated its effect in behavioral models of depression. Hence, this study tested its effect in the forced swimming test (FST) and the tail suspension test (TST), two models predictive of antidepressant activity, in mice. Folic acid administered by oral route (p.o.) produced a reduction in the immobility time in the FST (50-100mg/kg) and in the TST (10-50mg/kg). The administration of folic acid by i.c.v. route also reduced the immobility time in the FST (10nmol/site) and in the TST (1-10nmol/site). Both folic acid administered by oral and i.c.v. route produced no psychostimulant effect, which indicates that its antidepressant-like effect is specific. Pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100mg/kg, i.p., an inhibitor of serotonin (5-HT) synthesis, for 4 consecutive days), ketanserin (5mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), prazosin (1mg/kg, i.p., an alpha(1)-adrenoceptor antagonist) or yohimbine (1mg/kg, i.p., an alpha(2)-adrenoceptor antagonist) prevented the anti-immobility effect of folic acid (50mg/kg, p.o.) in the FST. Moreover, the pretreatment of mice with WAY100635 (0.1mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) blocked the decrease in immobility time in the FST elicited by folic acid (50mg/kg, p.o.), but produced a synergistic effect with a subeffective dose of folic acid (10mg/kg, p.o.). In addition, a subeffective dose of folic acid (10mg/kg, p.o.) produced a synergistic antidepressant-like effect with fluoxetine (10mg/kg, p.o.) in the FST. Overall, the results firstly indicate that folic acid produced an antidepressant-like effect in FST and in TST and that this effect appears to be mediated by an interaction with the serotonergic (5-HT(1A) and 5-HT(2A/2C) receptors) and noradrenergic (alpha(1)- and alpha(2)-adrenoceptors) systems.
Collapse
|
43
|
Fujii H, Ishihama T, Ago Y, Shintani N, Kakuda M, Hashimoto H, Baba A, Matsuda T. Methamphetamine-induced hyperactivity and behavioral sensitization in PACAP deficient mice. Peptides 2007; 28:1674-9. [PMID: 17658665 DOI: 10.1016/j.peptides.2007.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/13/2007] [Accepted: 06/04/2007] [Indexed: 11/28/2022]
Abstract
Mice lacking the PACAP gene (PACAP(-/-)) display psychomotor abnormalities such as novelty-induced hyperactivity and jumping behavior, and they show different responses to amphetamine, a typical psychostimulant. The present study examined the possible role of endogenous PACAP in methamphetamine (METH)-induced hyperactivity and behavioral sensitization. The locomotor activity of hyperactive PACAP(-/-) mice was measured using the infrared photocell beam detection system, Acti-Track, after a habituation period. Single administration of METH (1 and 2mg/kg) caused a robust increase in locomotor activity of mice, but this effect did not differ between wild-type and PACAP(-/-) mice. Repeated administration of METH (1mg/kg) for 7 days enhanced METH-induced hyperactivity, and this sensitization was observed even when withdrawn for 7 days. There was no difference in the degree of development and expression of METH-induced behavioral sensitization between wild-type and PACAP(-/-) mice. In addition, there was no difference in METH-induced increases in extracellular serotonin and dopamine levels in the prefrontal cortex of the normal and sensitized mice between the two groups. These results suggest that endogenous PACAP is not involved in the locomotor stimulant activity of acute METH and repeated METH-induced behavioral and neurochemical sensitization.
Collapse
Affiliation(s)
- Harumi Fujii
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fellgiebel A, Müller MJ, Hiemke C, Bartenstein P, Schreckenberger M. Clinical improvement in a case of frontotemporal dementia under aripiprazole treatment corresponds to partial recovery of disturbed frontal glucose metabolism. World J Biol Psychiatry 2007; 8:123-6. [PMID: 17455105 DOI: 10.1080/15622970601016538] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Frontotemporal dementia (FTD) is increasingly recognized as an important type of degenerative dementia but satisfactory pharmacological treatment has not yet been established. We examined the clinical effects of aripiprazole, a new antipsychotic with partial agonistic properties at serotonin 5-HT(1A) and dopamine D(2) receptors, in parallel with cortical glucose metabolism changes. We conducted a follow-up investigation of clinical status and (18)F-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) in a 73-year-old male patient with FTD over a 13-month period. Under conventional drug treatment during the first 12 months a marked increase in dementia symptoms was observed. Frontal lobe glucose metabolism clearly decreased during this time period. Under consecutive treatment with aripiprazole a significant and stable improvement of clinical symptoms could be registered, while disturbed frontal glucose metabolism increased significantly. According to this case experience, further investigations should be undertaken to ascertain whether aripiprazole or other atypical antipsychotics with properties to improve impaired dopaminergic transmission in frontal brain regions could qualify for therapy of FTD.
Collapse
|
45
|
Sato M, Ago Y, Koda K, Nakamura S, Kawasaki T, Baba A, Matsuda T. Role of postsynaptic serotonin1A receptors in risperidone-induced increase in acetylcholine release in rat prefrontal cortex. Eur J Pharmacol 2007; 559:155-60. [PMID: 17258195 DOI: 10.1016/j.ejphar.2006.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/29/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
Most atypical antipsychotic drugs increase acetylcholine release in the prefrontal cortex, but the detailed mechanism is still unknown. The present study examined the role of serotonin (5-HT)1A receptors in risperidone-induced increases in acetylcholine release in rat prefrontal cortex. Systemic administration of risperidone at doses of 1 and 2 mg/kg increased acetylcholine release in the prefrontal cortex in a dose-dependent manner. This increase was antagonized by systemic administration of high doses (1 and 3 mg/kg) of N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100635), a 5-HT1A receptor antagonist/dopamine D4 receptor agonist, but not by a low dose (0.1 mg/kg) of the antagonist which antagonizes preferentially presynaptic 5-HT1A autoreceptors. Furthermore, local application of WAY100635 into the prefrontal cortex also attenuated risperidone-induced increases in acetylcholine release. WAY100635 alone did not affect acetylcholine release in the prefrontal cortex. On the other hand, local application of risperidone (3 and 10 microM), the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (1 and 10 microM), and the dopamine D4 receptor antagonist 3-(4-(4-iodophenyl)piperazine-1-yl)methyl-1H-pyrrolo[2,3-b]pyridine (1 and 10 microM) into the cortex did not affect acetylcholine release in the prefrontal cortex. These results suggest that risperidone increases acetylcholine release in the prefrontal cortex through a complex mechanism which is enhanced by prefrontal 5-HT1A receptor activation.
Collapse
Affiliation(s)
- Maiko Sato
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Iijima M, Shimazaki T, Ito A, Chaki S. Effects of metabotropic glutamate 2/3 receptor antagonists in the stress-induced hyperthermia test in singly housed mice. Psychopharmacology (Berl) 2007; 190:233-9. [PMID: 17102982 DOI: 10.1007/s00213-006-0618-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 10/16/2006] [Indexed: 11/26/2022]
Abstract
RATIONALE The stress-induced hyperthermia (SIH) test in mice has been widely used as models including some physiological aspects of psychiatric disorders. Mediated by the autonomic nervous system, SIH is commonly known to occur both before and during exposure to stress-inducing or anxiogenic situations. Recently, modulation of the group II metabotropic glutamate (mGlu) 2/3 receptor has been proposed as a novel therapeutic approach for psychiatric disorders. OBJECTIVES In the present study, we evaluated the efficacy of selective mGlu2/3 receptor antagonists and an mGlu2/3 receptor agonist in the SIH test. RESULTS mGlu2/3 receptor antagonists such as MGS0039 and LY341495 significantly and dose-dependently reduced SIH without affecting basal rectal temperatures. In contrast, mGlu2/3 receptor agonists such as MGS0008 were ineffective in the SIH test. The attenuation of SIH by MGS0039 was significantly blocked by pretreatment with WAY100635, a serotonin 1A receptor antagonist. In contrast, an AMPA receptor potentiator, CX546 failed to reduce the SIH. CONCLUSIONS Taken together, these results suggest that the blockade of mGlu2/3 receptor may prevent stress-induced autonomic hyperactivity, and that stimulation of the postsynaptic serotonin 1A receptor, but not AMPA receptor, may be involved in this action.
Collapse
Affiliation(s)
- Michihiko Iijima
- Psychiatric Diseases and Pain Research, Medicinal Pharmacology Laboratory, Medicinal Research Laboratories, Taisho Pharmaceutical Co Ltd, Saitama, Japan
| | | | | | | |
Collapse
|
47
|
Müller CP, Carey RJ, Huston JP, De Souza Silva MA. Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Prog Neurobiol 2007; 81:133-78. [PMID: 17316955 DOI: 10.1016/j.pneurobio.2007.01.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/04/2006] [Accepted: 01/03/2007] [Indexed: 01/03/2023]
Abstract
Serotonin(1A)-receptors (5-HT(1A)-Rs) are important components of the 5-HT system in the brain. As somatodendritic autoreceptors they control the activity of 5-HT neurons, and, as postsynaptic receptors, the activity in terminal areas. Cocaine (COC), amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine ("Ecstasy", MDMA) are psychostimulant drugs that can lead to addiction-related behavior in humans and in animals. At the neurochemical level, these psychostimulant drugs interact with monoamine transporters and increase extracellular 5-HT, dopamine and noradrenalin activity in the brain. The increase in 5-HT, which, in addition to dopamine, is a core mechanism of action for drug addiction, hyperactivates 5-HT(1A)-Rs. Here, we first review the role of the various 5-HT(1A)-R populations in spontaneous behavior to provide a background to elucidate the contribution of the 5-HT(1A)-Rs to the organization of psychostimulant-induced addiction behavior. The progress achieved in this field shows the fundamental contribution of brain 5-HT(1A)-Rs to virtually all behaviors associated with psychostimulant addiction. Importantly, the contribution of pre- and postsynaptic 5-HT(1A)-Rs can be dissociated and frequently act in opposite directions. We conclude that 5-HT(1A)-autoreceptors mainly facilitate psychostimulant addiction-related behaviors by a limitation of the 5-HT response in terminal areas. Postsynaptic 5-HT(1A)-Rs, in contrast, predominantly inhibit the expression of various addiction-related behaviors directly. In addition, they may also influence the local 5-HT response by feedback mechanisms. The reviewed findings do not only show a crucial role of 5-HT(1A)-Rs in the control of brain 5-HT activity and spontaneous behavior, but also their complex role in the regulation of the psychostimulant-induced 5-HT response and subsequent addiction-related behaviors.
Collapse
Affiliation(s)
- Christian P Müller
- Institute of Physiological Psychology I, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
48
|
Ago Y, Nakamura S, Kajita N, Uda M, Hashimoto H, Baba A, Matsuda T. Ritanserin reverses repeated methamphetamine-induced behavioral and neurochemical sensitization in mice. Synapse 2007; 61:757-63. [PMID: 17568413 DOI: 10.1002/syn.20421] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chronic administration of methamphetamine (METH) elicits progressive enhancement of locomotor activity known as behavioral sensitization. We have recently shown that chronic METH enhanced METH challenge-induced increase in 5-HT levels in the prefrontal cortex and that 5-HT(1A) receptor activation attenuated this neurochemical sensitization as well as behavioral sensitization. This study examined whether the nonselective 5-HT(2) receptor antagonist, ritanserin affects METH-induced behavioral and neurochemical sensitization in mice. Ritanserin at doses of 1 and 3 mg/kg inhibited the development and expression of METH-induced behavioral sensitization in a dose-dependent manner. Furthermore, chronic administration of ritanserin for a week attenuated the maintenance of behavioral sensitization, indicating the improvement of established behavioral sensitization. Microdialysis analysis showed that chronic ritanserin inhibited the neurochemical sensitization that chronic METH enhanced METH challenge-induced increase in extracellular 5-HT levels in the prefrontal cortex. Furthermore, acute ritanserin inhibited METH challenge-induced increase in extracellular 5-HT but not DA levels in the prefrontal cortex. These results suggest that 5-HT(2) receptors are involved in METH-induced hyperactivity and behavioral sensitization in mice.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Bianchi C, Marani L, Marino S, Barbieri M, Nazzaro C, Beani L, Siniscalchi A. Serotonin modulation of cell excitability and of [3H]GABA and [3H]D-aspartate efflux in primary cultures of rat cortical neurons. Neuropharmacology 2006; 52:995-1002. [PMID: 17156800 DOI: 10.1016/j.neuropharm.2006.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 10/25/2006] [Accepted: 10/28/2006] [Indexed: 11/25/2022]
Abstract
The effects of 5-hydroxytryptamine (5-HT) on neuronal excitability, evaluated as depolarization-induced firing rate, and on amino acid release, measured as electrically-evoked [(3)H]GABA and [(3)H]d-aspartate efflux, were investigated in rat primary cortical neuronal cultures. 5-HT displayed a concentration-dependent, bimodal effect on neuronal excitability: at 3-10microM it increased excitability through 5-HT(2A) receptors, and was blocked by the selective 5-HT(2A) antagonist MDL 100907, whereas at 30-100microM it reduced excitability through 5-HT(1A) receptors, and was, in turn, blocked by the selective 5-HT(1A) antagonist WAY 100135. The electrically-evoked [(3)H]GABA efflux was concentration-dependently inhibited by 5-HT (pEC(50)=4.74) and such inhibition was prevented by WAY 100135, but not by GR 55562, a selective 5-HT(1D/B) receptor antagonist. Conversely, 5-HT concentration-dependently increased stimulus-evoked [(3)H]d-aspartate efflux (pEC(50)=4.71). The increase was facilitated by methiothepin and was reversed into inhibition by ICS 205930, a selective 5-HT(3) receptor antagonist. In the presence of ICS 205930, the inhibition induced by 5-HT was prevented by the selective 5-HT(1D/B) receptor antagonist GR 55562, but not by WAY 100135. These findings suggest that 5-HT inhibits GABA release through 5-HT(1A) receptors and exerts a dual modulation on glutamate release, mostly facilitatory (through 5-HT(3) receptors) but also inhibitory (through 5-HT(1D/B) receptors), leading to a prevalently positive modulation of the excitatory signal by amino acid neurotransmitter containing neurons.
Collapse
Affiliation(s)
- C Bianchi
- Department of Clinical and Experimental Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Harasawa T, Ago Y, Itoh S, Baba A, Matsuda T. Role of serotonin type 1A receptors in fluvoxamine-induced inhibition of marble-burying behavior in mice. Behav Pharmacol 2006; 17:637-40. [PMID: 17021397 DOI: 10.1097/01.fbp.0000236266.34182.1c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined the roles of presynaptic and postsynaptic serotonin type 1A receptors in fluvoxamine-induced inhibition of marble-burying behavior in mice. The effect of fluvoxamine was attenuated by the serotonin type 1A receptor antagonist WAY100635 at 1 mg/kg, while it was enhanced by the antagonist at 0.1 mg/kg. Fluvoxamine (30 mg/kg) and WAY100635 (0.1 and 1 mg/kg) did not affect spontaneous locomotor activity. These results suggest that the effect of fluvoxamine is mediated by postsynaptic serotonin type 1A receptors and it is enhanced by an inhibition of presynaptic serotonin type 1A receptors.
Collapse
Affiliation(s)
- Toshiya Harasawa
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|