1
|
Fritze S, Spanagel R, Noori HR. Adaptive dynamics of the 5-HT systems following chronic administration of selective serotonin reuptake inhibitors: a meta-analysis. J Neurochem 2017; 142:747-755. [PMID: 28653748 DOI: 10.1111/jnc.14114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 02/05/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed antidepressants. However, a major concern is their delayed onset of action, which is hypothesized to be associated with the time required for serotonin (5-HT) autoreceptors to desensitize, which should be reflected by actual neurochemical changes. Numerous in vivo microdialysis studies have been published that report on 5-HT levels in different brain sites following SSRI administration. Here, we performed a meta-analysis on dynamic changes of 5-HT neurotransmission during the course of chronic SSRI treatment. We conducted a meta-analysis on research articles of 5-HT neurotransmission measured by in vivo microdialysis in rat brain after subchronic and chronic SSRI administrations. In total, data from 42 microdialysis studies (798 rats) were analyzed. Within the first week of SSRI treatment, extracellular 5-HT concentrations drop in frontal cortex. Over the next 2 weeks of treatment, a linear increase in extracellular 5-HT levels up to 350% of prior treatment baseline is evident (n = 269). However, in hippocampus, prefrontal cortex, nucleus accumbens, and ventral tegmental area we found increased 5-HT levels within the first 3 days of SSRI administration. The time course of 5-HT dynamics in frontal cortex is in line with the hypothesis that 5-HT autoreceptors desensitize over 2-3 weeks of SSRI treatment and thereby enhanced extracellular 5-HT levels ensue. Yet, in other regions we did not find evidence supporting the traditional autoreceptor-mediated feedback loops hypothesis and thus other neurobiological adaptation mechanisms may also play a role in the delayed onset of SSRI action.
Collapse
Affiliation(s)
- Stefan Fritze
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Neuronal Convergence Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
2
|
Perinatal reduction of functional serotonin transporters results in developmental delay. Neuropharmacology 2016; 109:96-111. [PMID: 27208789 DOI: 10.1016/j.neuropharm.2016.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/25/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022]
Abstract
While there is strong evidence from rodent and human studies that a reduction in serotonin transporter (5-HTT) function in early-life can increase the risk for several neuropsychiatric disorders in adulthood, the effects of reduced 5-HTT function on behavior across developmental stages are underinvestigated. To elucidate how perinatal pharmacological and lifelong genetic inactivation of the 5-HTT affects behavior across development, we conducted a battery of behavioral tests in rats perinatally exposed to fluoxetine or vehicle and in 5-HTT(-/-) versus 5-HTT(+/+) rats. We measured motor-related behavior, olfactory function, grooming behavior, sensorimotor gating, object directed behavior and novel object recognition in the first three postnatal weeks and if possible the tests were repeated in adolescence and adulthood. We also measured developmental milestones such as eye opening, reflex development and body weight. We observed that both pharmacological and genetic inactivation of 5-HTT resulted in a developmental delay. Except for hypo-locomotion, most of the observed early-life effects were normalized later in life. In adolescence and adulthood we observed object directed behavior and decreased novel object recognition in the 5-HTT(-/-) rats, which might be related to the lifelong inactivation of 5-HTT. Together, these data provide an important contribution to the understanding of the effects of perinatal and lifelong 5-HTT inactivation on behavior across developmental stages.
Collapse
|
3
|
Korte SM, Prins J, Krajnc AM, Hendriksen H, Oosting RS, Westphal KG, Korte-Bouws GA, Olivier B. The many different faces of major depression: It is time for personalized medicine. Eur J Pharmacol 2015; 753:88-104. [DOI: 10.1016/j.ejphar.2014.11.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/16/2014] [Accepted: 11/26/2014] [Indexed: 01/11/2023]
|
4
|
Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 2015; 147:1-19. [PMID: 25548026 PMCID: PMC4297708 DOI: 10.1016/j.drugalcdep.2014.12.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Treatment of stimulant-use disorders remains a formidable challenge, and the dopamine transporter (DAT) remains a potential target for antagonist or agonist-like substitution therapies. METHODS This review focuses on DAT ligands, such as benztropine, GBR 12909, modafinil, and DAT substrates derived from phenethylamine or cathinone that have atypical DAT-inhibitor effects, either in vitro or in vivo. The compounds are described from a molecular mechanistic, behavioral, and medicinal-chemical perspective. RESULTS Possible mechanisms for atypicality at the molecular level can be deduced from the conformational cycle for substrate translocation. For each conformation, a crystal structure of a bacterial homolog is available, with a possible role of cholesterol, which is also present in the crystal of Drosophila DAT. Although there is a direct relationship between behavioral potencies of most DAT inhibitors and their DAT affinities, a number of compounds bind to the DAT and inhibit dopamine uptake but do not share cocaine-like effects. Such atypical behavior, depending on the compound, may be related to slow DAT association, combined sigma-receptor actions, or bias for cytosol-facing DAT. Some structures are sterically small enough to serve as DAT substrates but large enough to also inhibit transport. Such compounds may display partial DA releasing effects, and may be combined with release or uptake inhibition at other monoamine transporters. CONCLUSIONS Mechanisms of atypical DAT inhibitors may serve as targets for the development of treatments for stimulant abuse. These mechanisms are novel and their further exploration may produce compounds with unique therapeutic potential as treatments for stimulant abuse.
Collapse
Affiliation(s)
- Maarten E.A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA,Corresponding author: Maarten E.A. Reith, Department of Psychiatry, Alexandria Center of Life Sciences, New York University School of Medicine, 450 E 29th Street, Room 803, New York, NY 10016. Tel.: 212 - 263 8267; Fax: 212 – 263 8183;
| | - Bruce E. Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Weimin C. Hong
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kymry T. Jones
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Kyle C. Schmitt
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Michael H. Baumann
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - John S. Partilla
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard B. Rothman
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonathan L. Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
5
|
Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J Neuropsychopharmacol 2013; 16:459-70. [PMID: 22717062 DOI: 10.1017/s1461145712000387] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Vagus nerve stimulation (VNS) is an adjunctive treatment for resistant epilepsy and depression. Electrophysiological recordings in the rat brain have already shown that chronic VNS increases norepinephrine (NE) neuronal firing activity and, subsequently, that of serotonin (5-HT) neurons through an activation of their excitatory α1-adrenoceptors. Long-term VNS was shown to increase the tonic activation of post-synaptic 5-HT1A receptors in the hippocampus. This study was aimed at examining the effect of VNS on extracellular 5-HT, NE and dopamine (DA) levels in different brain areas using in vivo microdialysis, on NE transmission in the hippocampus, and DA neuronal firing activity using electrophysiology. Rats were implanted with a VNS device and stimulated for 14 d with standard parameters used in treatment-resistant depression (0.25 mA, 20 Hz, 500 μs, 30 s on-5 min off). The results of the present study revealed that 2-wk VNS significantly increased extracellular NE levels in the prefrontal cortex and the hippocampus and enhanced the tonic activation of post-synaptic α2-adrenoceptors on pyramidal neurons. The electrophysiological experiments revealed a significant decrease in ventral tegmental area DA neuronal firing rate after long-term VNS; extracellular DA levels were nevertheless increased in the prefrontal cortex and nucleus accumbens. Chronic VNS significantly increased extracellular 5-HT levels in the dorsal raphe but not in the hippocampus and prefrontal cortex. In conclusion, the effect of VNS in increasing the transmission of monoaminergic systems targeted in the treatment of resistant depression should be involved, at least in part, in its antidepressant properties observed in patients not responding to many antidepressant strategies.
Collapse
|
6
|
The genetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2012; 136:375-400. [PMID: 22944042 DOI: 10.1016/j.pharmthera.2012.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/21/2012] [Indexed: 12/15/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are among the most widely prescribed drugs in psychiatry. Based on the fact that SSRIs increase extracellular monoamine levels in the brain, the monoamine hypothesis of depression was introduced, postulating that depression is associated with too low serotonin, dopamine and noradrenaline levels. However, several lines of evidence indicate that this hypothesis is too simplistic and that depression and the efficacy of SSRIs are dependent on neuroplastic changes mediated by changes in gene expression. Because a coherent view on global gene expression is lacking, we aim to provide an overview of the effects of SSRI treatment on the final targets of 5-HT receptor signal transduction pathways, namely the transcriptional regulation of genes. We address gene polymorphisms in humans that affect SSRI efficacy, as well as in vitro studies employing human-derived cells. We also discuss the molecular targets affected by SSRIs in animal models, both in vivo and in vitro. We conclude that serotonin transporter gene variation in humans affects the efficacy and side-effects of SSRIs, whereas SSRIs generally do not affect serotonin transporter gene expression in animals. Instead, SSRIs alter mRNA levels of genes encoding serotonin receptors, components of non-serotonergic neurotransmitter systems, neurotrophic factors, hypothalamic hormones and inflammatory factors. So far little is known about the epigenetic and age-dependent molecular effects of SSRIs, which might give more insights in the working mechanism(s) of SSRIs.
Collapse
|
7
|
Vines A, Delattre AM, Lima MMS, Rodrigues LS, Suchecki D, Machado RB, Tufik S, Pereira SIR, Zanata SM, Ferraz AC. The role of 5-HT₁A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism. Neuropharmacology 2011; 62:184-91. [PMID: 21740919 DOI: 10.1016/j.neuropharm.2011.06.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Epidemiological and dietary studies show that nutritional deficit of omega-3 polyunsaturated fatty acids (ω-3 PUFA) is directly related to the prevalence and severity of depression. Supplementation with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) during critical periods of development (pregnancy and lactation) is essential for cortical maturation, synaptogenesis and myelination, and may also mitigate the risk for cognitive deficits and psychopathologies in young adults. The present study was performed to evaluate the involvement of serotonin (5-HT) receptors, particularly of 5-HT(1A), and hippocampal brain-derived neurotrophic factor (BDNF) expression in the antidepressant effect of ω-3 PUFA supplementation. In Experiment 1, the antidepressant effects of fish oil were assessed by the modified forced swim test in adult rats. The data indicated a robust antidepressant effect produced by this supplementation and that treatment of the rats with WAY 100135 reversed this effect. In Experiment 2, cortical and hippocampal contents of BDNF, 5-HT, dopamine (DA) and its metabolites, 5-hydroxyindoleacetic acid (5-HIAA), and 3,4-dihydroxyphenylacetic acid (DOPAC), were determined in animals subjected to the same protocol. Increased BDNF expression in the cortex and hippocampus of both age groups was detected. In 90 day-old rats, 5-HT content in the hippocampus was increased, whereas 5-HIAA formation was diminished in the fish oil group. We suggest the occurrence of a reciprocal involvement of 5-HT(1A) receptors activation and the hippocampal BDNF-increased expression mediated by fish oil supplementation. These data corroborate and expand the notion that supplementation with ω-3 PUFA produces antidepressant effects mediated by an increase in serotonergic neurotransmission, particularly in the hippocampus. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Aparecida Vines
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, 81.531-990 Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bello NT, Liang NC. The use of serotonergic drugs to treat obesity--is there any hope? DRUG DESIGN DEVELOPMENT AND THERAPY 2011; 5:95-109. [PMID: 21448447 PMCID: PMC3063114 DOI: 10.2147/dddt.s11859] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Indexed: 01/18/2023]
Abstract
Surgical interventional strategies for the treatment of obesity are being implemented at an increasing rate. The safety and feasibility of these procedures are questionable for most overweight or obese individuals. The use of long-term pharmacotherapy options, on the other hand, can target a greater portion of the obese population and provide early intervention to help individuals maintain a healthy lifestyle to promote weight loss. Medications that act on the central serotonergic pathways have been a relative mainstay for the treatment of obesity for the last 35 years. The clinical efficacy of these drugs, however, has been encumbered by the potential for drug-associated complications. Two drugs that act, albeit by different mechanisms, on the central serotonergic system to reduce food intake and decrease body weight are sibutramine and lorcaserin. Sibutramine is a serotonin and norepinephrine reuptake inhibitor, whereas lorcaserin is a selective 5HT2C receptor agonist. The recent worldwide withdrawal of sibutramine and FDA rejection of lorcaserin has changed the landscape not only for serotonin-based therapeutics specifically, but for obesity pharmacotherapy in general. The purpose of this review is to focus on the importance of the serotonergic system in the control of feeding and its potential as a target for obesity pharmacotherapy. Advances in refining and screening more selective receptor agonists and a better understanding of the potential off-target effects of serotonergic drugs are needed to produce beneficial pharmacotherapy.
Collapse
Affiliation(s)
- Nicholas T Bello
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
9
|
Tokuyama Y, Ingram SL, Woodward JS, Bethea CL. Functional characterization of rhesus embryonic stem cell-derived serotonin neurons. Exp Biol Med (Maywood) 2010; 235:649-57. [PMID: 20463306 DOI: 10.1258/ebm.2010.009307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optimal function of the serotonin system is essential for mental health and its role in psychopathologies is undisputed. Enhancing the ability to study primate serotonin neurons in culture would facilitate understanding of intracellular signaling pathways that mediate the action of drugs and other epigenetic or developmental factors impacting human mental health. We were the first group to report differentiation of the non-human primate rhesus monkey embryonic stem cell (ESC) line 366.4 into cultures of serotonin neurons. In this study, we optimized yield and obtained functional characteristics of the derived serotonin neurons. Sequential treatments of ESC 366.4 during expansion stage with fibroblast growth factor 4 and sonic hedgehog markedly increased the yield of serotonin neurons. These serotonin neurons propagated action potentials and expressed GABA receptors. Also, for the first time we demonstrate that these ESC-derived serotonin neurons exhibit functional high-affinity transporter sites, as well as high-affinity 5HT(1A) binding sites, which are essential targets of common psychoactive drugs. Finally, to test the generality of this method, we utilized another rhesus ESC line, ORMES-22, which efficiently differentiated into serotonin neurons. Together, these findings demonstrate the feasibility of our protocol to direct different primate ESC lines to serotonin neurons with physiological characteristics, which makes them a useful in vitro model system.
Collapse
Affiliation(s)
- Yukari Tokuyama
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
10
|
Fox MA, Stein AR, French HT, Murphy DL. Functional interactions between 5-HT2A and presynaptic 5-HT1A receptor-based responses in mice genetically deficient in the serotonin 5-HT transporter (SERT). Br J Pharmacol 2010; 159:879-87. [PMID: 20128812 DOI: 10.1111/j.1476-5381.2009.00578.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Despite decreased presynaptic 5-HT(1A) and altered 5-HT(2A) receptor function in genetically-deficient serotonin (5-HT) transporter (SERT) mice, the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate salt (WAY 100635) still induced head twitches in these mice, a well-established 5-HT(2A) receptor-mediated response. EXPERIMENTAL APPROACH Interactions between 5-HT(1A) and 5-HT(2A) receptors were assessed using the head-twitch response following 5-HT(1A) and 5-HT(2A) receptor agonists and antagonists in SERT wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice. The role of brain 5-HT availability in WAY 100635 induced head twitches was also examined. KEY RESULTS WAY 100635 induced head twitches in a SERT gene-dose dependent manner, inducing 5-fold more head twitches in SERT -/- versus SERT +/+ mice. In SERT -/- mice, inhibition of 5-HT synthesis with p-chlorophenylalanine (PCPA) markedly depleted tissue 5-HT in all five brain areas examined and abolished WAY 100635 induced head twitches. Further, the selective 5-HT reuptake inhibitor fluvoxamine increased WAY 100635 induced head twitches in SERT +/+ and +/- mice. Head twitches following the 5-HT(2A) receptor agonist (+/-)-2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI) were robust in SERT +/+ and +/- mice but much reduced in SERT -/- mice. DOI-induced head twitches were decreased by the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in SERT +/+ and +/- mice. All drug-induced head twitches were blocked by the 5-HT(2A) receptor antagonist a-Phenyl-1-(2-phenylethyl)-4-piperidinemethanol (MDL 11,939). CONCLUSIONS AND IMPLICATIONS These data show that indirect activation of 5-HT(2A) receptors via blockade of presynaptic 5-HT(1A) receptors potentiated head-twitch responses, suggesting functional interactions between these receptors, interactions affected by altered 5-HT availability. Our findings strongly support the correlation of WAY 100635 induced head twitches with increased 5-HT availability, induced genetically or pharmacologically.
Collapse
Affiliation(s)
- Meredith A Fox
- Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1264, USA.
| | | | | | | |
Collapse
|
11
|
Popa D, Cerdan J, Repérant C, Guiard BP, Guilloux JP, David DJ, Gardier AM. A longitudinal study of 5-HT outflow during chronic fluoxetine treatment using a new technique of chronic microdialysis in a highly emotional mouse strain. Eur J Pharmacol 2009; 628:83-90. [PMID: 19944680 DOI: 10.1016/j.ejphar.2009.11.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 11/28/2022]
Abstract
The onset of a therapeutic response to antidepressant treatment exhibits a delay of several weeks. The present study was designed to know whether extracellular serotonin (5-HT) levels need to be increased in territories of 5-HT innervation in order to obtain beneficial effects from a chronic treatment with a serotonin-selective reuptake inhibitor (SSRI). Thus, we performed a longitudinal study of a chronic fluoxetine treatment in a model of highly emotional mice (BALB/cJ). The function of the 5-HT system in the raphe nuclei and hippocampus, was assessed by using repeated in vivo microdialysis sessions in awake freely moving mice, then studying its relation with behavior, analyzed mainly with open field paradigm. One of the neural mechanisms underlying such delay has been proposed to be the functional status of 5-HT1A autoreceptors in raphe nuclei. Thus, we also assessed the degree of 5-HT1A autoreceptor desensitization by using a local infusion in the raphe of the antagonist, WAY 100635 via reverse microdialysis. We report that the anxiolytic-like effects of fluoxetine correlate in time and amplitude with 5-HT1A autoreceptor desensitization, but neither with the extracellular levels of 5-HT in the raphe nuclei, nor in the hippocampus. Our study suggests that the beneficial anxiolytic/antidepressant-like effects of chronic SSRI treatment indeed depend on 5-HT1A autoreceptor internalization, but do not require a sustained increase in extracellular 5-HT levels in a territory of 5-HT projection such as hippocampus.
Collapse
Affiliation(s)
- Daniela Popa
- Univ. Paris Sud, EA 3544, Fac. Pharmacie, Chatenay-Malabry cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Hashimoto S, Inoue T, Muraki I, Koyama T. Effects of acute citalopram on the expression of conditioned freezing in naive versus chronic citalopram-treated rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:113-7. [PMID: 19010374 DOI: 10.1016/j.pnpbp.2008.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 10/26/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
An acute challenge with selective serotonin (5-HT) reuptake inhibitors (SSRIs) reduces the conditioned freezing in rats, a model of anxiety. The increase in the 5-HT levels in the nerve terminal induced by SSRIs is closely related to its pharmacological effects. Clinically, SSRIs exert an anxiolytic effect after chronic treatment. The effects of repeated treatment with citalopram on conditioned freezing in rats were examined in the present study. Acute citalopram (10 mg/kg) reduced freezing at a short post-training interval (1 day) significantly. While the effect of citalopram (10 mg/kg) on freezing was diminished by prolonging the interval between conditioning and the exposure to conditioned fear stress, repeated citalopram (10 mg/kg) injection twice daily for 7 days restored the inhibitory effect of acute challenge of citalopram (10 mg/kg) on freezing. By prolonging the period between conditioning and exposure to conditioned fear stress, this model may have a more precise predictive validity of anxiety disorder as an animal model.
Collapse
Affiliation(s)
- Shinji Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | |
Collapse
|
13
|
Flesinoxan challenge suggests that chronic treatment with paroxetine in rats does not desensitize receptors controlling 5-HT synthesis. Neurochem Int 2008; 53:236-43. [DOI: 10.1016/j.neuint.2008.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/01/2008] [Accepted: 04/16/2008] [Indexed: 11/17/2022]
|
14
|
Muraki I, Inoue T, Hashimoto S, Izumi T, Koyama T. Effect of different challenge doses after repeated citalopram treatment on extracellular serotonin level in the medial prefrontal cortex: in vivo microdialysis study. Psychiatry Clin Neurosci 2008; 62:568-74. [PMID: 18950377 DOI: 10.1111/j.1440-1819.2008.01851.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS In order to elucidate the relevance between the delayed onset of clinical efficacy of selective serotonin re-uptake inhibitors (SSRI) and extracellular 5-HT levels in the medial prefrontal cortex, the present study compared the ability of low-dose (3 mg/kg) and high-dose (30 mg/kg) citalopram to increase extracellular 5-HT levels in the medial prefrontal cortex following repeated citalopram treatment using in vivo microdialysis. METHODS An SSRI, citalopram, was given 10 mg/kg, s.c. twice daily for 6 days and once on the seventh day in rats. On the eighth day, rats received a single injection of citalopram (3 or 30 mg/kg s.c.), and extracellular 5-HT levels were assessed in the medial prefrontal cortex of rats using in vivo brain microdialysis. RESULTS There was no significant difference in basal extracellular 5-HT levels between the repeated citalopram group and the repeated saline group. The low-challenge dose of citalopram (3 mg/kg) produced significantly greater increases (170-200% at each time point) in the repeated citalopram group than in the repeated saline group (150%). The high-challenge dose of citalopram (30 mg/kg), however, increased extracellular 5-HT levels by 200-250% of basal levels in the repeated citalopram group, which was similar to the increases in the repeated saline group. CONCLUSIONS Repeated SSRI treatment enhances the effect of low-dose SSRI on extracellular 5-HT levels but not that of high-dose SSRI.
Collapse
Affiliation(s)
- Ihoko Muraki
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
15
|
Møller M, Andersen G, Gjedde A. Serotonin 5HT1A receptor availability and pathological crying after stroke. Acta Neurol Scand 2007; 116:83-90. [PMID: 17661792 DOI: 10.1111/j.1600-0404.2007.00869.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible by selective serotonin re-uptake inhibitor (SSRI) treatment. MATERIALS AND METHODS We PET scanned patients with acute stroke and PC and age-matched control subjects. Maps of receptor availability were generated from the images of eight cortical regions and raphe nuclei. RESULTS The maps showed highest binding in limbic areas and raphe nuclei, while binding in basal ganglia and cerebellum was negligible. Baseline binding potentials of patients were lower than that of control subjects (3.7 +/- 0.6 vs 4.2 +/- 0.2). Treatment with SSRI markedly reduced free receptor sites, whereas placebo administration led to a global increase. DISCUSSION The study is the first suggestion of changes of serotonergic neurotransmission in the early phase of stroke and the modulation of these changes with SSRI treatment.
Collapse
Affiliation(s)
- M Møller
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark.
| | | | | |
Collapse
|
16
|
Uhl I, Gorynia I, Gallinat J, Mulert C, Wutzler A, Heinz A, Juckel G. Is the loudness dependence of auditory evoked potentials modulated by the selective serotonin reuptake inhibitor citalopram in healthy subjects? Hum Psychopharmacol 2006; 21:463-71. [PMID: 17029304 DOI: 10.1002/hup.803] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The loudness dependence of auditory evoked potentials (LDAEP) has been discussed as a non-invasive in vivo marker of central serotonergic function. Evidence for this has been found in animal studies, but studies in humans provide less consistent results. In this study, the relationship between LDAEP and directly modulated central serotonergic activity in healthy subjects was investigated. In a single-blind cross-over design, the LDAEP of female participants (age: 24.0 +/- 2.3 years) was measured under two conditions: (1) infusion of 20 mg citalopram diluted in 250 ml 0.9% saline and (2) infusion of 250 ml 0.9% saline as placebo. LDAEP was measured at five different time points before, during and up to 60 min after drug/placebo administration and dipole source analysis was performed. The increase of the central serotonin activity in response to citalopram was not accompanied by a significant change of the LDAEP compared to the placebo condition. The result underlines that the acceptance of LDAEP as a marker of central serotonergic function still needs further discussion.
Collapse
Affiliation(s)
- Idun Uhl
- Department of Psychiatry and Psychotherapy, Charité, Campus Mitte, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Estrada-Camarena E, Fernández-Guasti A, López-Rubalcava C. Participation of the 5-HT1A receptor in the antidepressant-like effect of estrogens in the forced swimming test. Neuropsychopharmacology 2006; 31:247-55. [PMID: 16012533 DOI: 10.1038/sj.npp.1300821] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of the present study was to explore the possible participation of the 5-HT(1A) receptor in the antidepressant-like action of two estrogenic compounds: 17beta-estradiol (E(2)) and ethynil-estradiol (EE(2)) in the FST. Ovariectomized female Wistar rats were used in all experiments. As a positive control, the effect of the 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n)-propil-aminotetraline (8-OH-DPAT; 0.0625, 0.125, 0.25 and 0.5 mg/kg) alone or in combination with WAY 100635 (0.5 and 1.0 mg/kg) was analyzed in the FST. In order to analyze the participation of the 5-HT(1A) receptor in the antidepressant-like actions of estrogens, the effect of the selective antagonist WAY 100635 (0.5 and 1.0 mg/kg) in combination with E(2) (10 microg/rat) and EE(2) (5 microg/rat) was studied in the FST. In this case, WAY 100635 was administered either simultaneously with the estrogens (48 h before the FST test) or 30 min before the FST. On the other hand, a suboptimal dose of 8-OH-DPAT (0.0625 mg/kg), combined with a noneffective dose of E(2) (2.5 microg/rat) or EE(2) (1.25 microg/rat), was tested in the FST. The results showed that 8-OH-DPAT (0.25 and 0.5 mg/kg), E(2) (10 microg/rat), and EE(2) (5 microg/rat), by themselves, exerted an antidepressant-like action. The antagonist to the 5-HT(1A) receptor WAY 100635, when applied together with 8-OH-DPAT or E(2), blocked their antidepressant-like actions, but not the one induced by EE(2). Interestingly, when the antagonist was applied 30 min before the FST, it was able to cancel the actions of EE(2) on immobility behavior, and had no effect on the actions of E(2.) Finally, when a subthreshold dose of 8-OH-DPAT was combined with a noneffective dose of either E(2) or EE(2), an antidepressant-like action was observed. The results support the notion that the 5-HT(1A) receptor is one of the mediators of the antidepressant-like action of E(2), and could indirectly contribute to the one induced by EE(2).
Collapse
Affiliation(s)
- Erika Estrada-Camarena
- Subdirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, México City, DF, México
| | | | | |
Collapse
|
18
|
Looney C, Thor KB, Ricca D, Marson L. Differential effects of simultaneous or sequential administration of paroxetine and WAY-100,635 on ejaculatory behavior. Pharmacol Biochem Behav 2005; 82:427-33. [PMID: 16253317 DOI: 10.1016/j.pbb.2005.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 09/08/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Clinical treatment of depression or anxiety with selective serotonin reuptake inhibitors (SSRIs) often results in delayed ejaculation or anorgasmia. Co-treatment with subtype-selective serotonin receptor antagonists may alter the timing of onset of action and potentiate or reduce sexual side effects. Sexual behavior in male Sprague-Dawley rats was examined after acute administration of the SSRI, paroxetine and the serotonin1A antagonist, WAY-100,635. Acute administration of paroxetine alone did not alter male ejaculatory behavior. However, administration of paroxetine plus WAY-100,635 resulted in a significant delay in mounting behavior and increased the time to ejaculation. Simultaneous administration of paroxetine and WAY-100,635 produced a greater delay in initiation of mounting behavior and ejaculation compared to sequential administration of paroxetine followed by WAY-100,635. The differential effect on sexual behavior or addition of specific serotonin receptor antagonists may be relevant for clinical treatment therapies of premature ejaculation.
Collapse
Affiliation(s)
- C Looney
- Department of Urology, University of North Carolina, 103 Mason Farm Road, CB 7052, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
19
|
de Jong TR, Pattij T, Veening JG, Dederen PJWC, Waldinger MD, Cools AR, Olivier B. Citalopram combined with WAY 100635 inhibits ejaculation and ejaculation-related Fos immunoreactivity. Eur J Pharmacol 2005; 509:49-59. [PMID: 15713429 DOI: 10.1016/j.ejphar.2004.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 12/03/2004] [Accepted: 12/09/2004] [Indexed: 11/23/2022]
Abstract
The role of 5-HT (5-hydroxytryptamine, 5-HT)(1A) receptor activation in the sexual side-effects, in particular delayed ejaculation, of selective serotonin reuptake inhibitors (SSRIs) was studied. Male Wistar rats were treated for 15 days with vehicle, the SSRI citalopram (10 mg/kg/day p.o.), the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl]-N-(2-pyridinyl) cyclohexane carboxamide 3HCL (WAY 100635, 0.1 mg/kg/ day s.c.), or both drugs combined. Sexual behavior was assessed weekly. One h after the last sexual behavior test, rat brains were processed for Fos-immunohistochemistry. Acute and chronic citalopram mildly inhibited ejaculation, which was strongly augmented by co-administration of WAY 100635. WAY 100635 alone did not alter sexual behavior. Brain sites associated with ejaculation showed reduced Fos-immunoreactivity in rats treated with both citalopram and WAY 100635. Citalopram reduced Fos-immunoreactivity in the arcuate hypothalamic nucleus, an area that might link serotonergic neurotransmission to ejaculation.
Collapse
Affiliation(s)
- Trynke R de Jong
- Department of Anatomy, University Medical Centre St. Radboud, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ceglia I, Acconcia S, Fracasso C, Colovic M, Caccia S, Invernizzi RW. Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. Br J Pharmacol 2004; 142:469-78. [PMID: 15148253 PMCID: PMC1574969 DOI: 10.1038/sj.bjp.0705800] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 Microdialysis was used to study the acute and chronic effects of escitalopram (S-citalopram; ESCIT) and chronic citalopram (CIT), together with the 5-HT1A receptor antagonist WAY100,635 (N-[2-[methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide trihydrochloride) and the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on extracellular 5-hydroxytryptamine (5-HT) levels in the rat prefrontal cortex. 2 Extracellular 5-HT rose to 234 and 298% of basal values after subcutaneous (s.c.) acute doses of 0.15 and 0.63 mg kg(-1) ESCIT. No further increase was observed at 2.5 mg kg(-1) ESCIT (290%). 3 The effect of 13-day s.c. infusion of 10 mg kg(-1) day(-1) ESCIT on extracellular 5-HT (422% of baseline) was greater than after 2 days (257% of baseline), whereas exposure to ESCIT was similar. In contrast, the increase in extracellular 5-HT induced by the infusion of CIT for 2 (306%) and 13 days (302%) was similar. However, brain and plasma levels of S-citalopram in rats infused with CIT for 13 days were lower than after 2 days. 4 Acute treatment with 2.5 mg kg(-1) ESCIT or 5 mg kg(-1) CIT raised extracellular 5-HT by 243 and 276%, respectively, in rats given chronic vehicle but had no effect in rats given ESCIT (10 mg kg(-1) day(-1)) or CIT (20 mg kg(-1) day(-1)) for 2 or 13 days, suggesting that the infused doses had maximally increased extracellular 5-HT. WAY100,635 (0.1 mg kg(-1) s.c.) increased extracellular 5-HT levels by 168, 174 and 169% of prechallenge values in rats infused with vehicle or ESCIT for 2 or 13 days, respectively. WAY100,635 enhanced extracellular 5-HT levels to 226, 153 and 164% of prechallenge values in rats infused with vehicle or CIT for 2 and 13 days, respectively. 5 8-OH-DPAT (0.025 mg kg(-1)) reduced extracellular 5-HT by 54% in control rats, but had no effect in those given ESCIT and CIT for 13 days. 6 This series of experiments led to the conclusion that chronic treatment with ESCIT desensitizes the 5-HT1A receptors, regulating the release of 5-HT in the prefrontal cortex and enhances the effect of the drug on extracellular 5-HT. They also indicate that chronic treatment with ESCIT and CIT did not prevent WAY100,635 from raising extracellular 5-HT.
Collapse
Affiliation(s)
- I Ceglia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche ‘Mario Negri', Via Eritrea 62, 20157 Milano, Italy
| | - S Acconcia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche ‘Mario Negri', Via Eritrea 62, 20157 Milano, Italy
| | - C Fracasso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche ‘Mario Negri', Via Eritrea 62, 20157 Milano, Italy
| | - M Colovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche ‘Mario Negri', Via Eritrea 62, 20157 Milano, Italy
| | - S Caccia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche ‘Mario Negri', Via Eritrea 62, 20157 Milano, Italy
| | - R W Invernizzi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche ‘Mario Negri', Via Eritrea 62, 20157 Milano, Italy
- Author for correspondence:
| |
Collapse
|
21
|
Gardier AM, David DJ, Jego G, Przybylski C, Jacquot C, Durier S, Gruwez B, Douvier E, Beauverie P, Poisson N, Hen R, Bourin M. Effects of chronic paroxetine treatment on dialysate serotonin in 5-HT1B receptor knockout mice. J Neurochem 2003; 86:13-24. [PMID: 12807420 DOI: 10.1046/j.1471-4159.2003.01827.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of serotonin (5-HT)1B receptors in the mechanism of action of selective serotonin re-uptake inhibitors (SSRI) was studied by using intracerebral in vivo microdialysis in conscious, freely moving wild-type and 5-HT1B receptor knockout (KO 5-HT1B) mice in order to compare the effects of chronic administration of paroxetine via osmotic minipumps (1 mg per kg per day for 14 days) on extracellular 5-HT levels ([5-HT]ext) in the medial prefrontal cortex and ventral hippocampus. Basal [5-HT]ext values in the medial prefrontal cortex and ventral hippocampus, approximately 20 h after removing the minipump, were not altered by chronic paroxetine treatment in both genotypes. On day 15, in the ventral hippocampus, an acute paroxetine challenge (1 mg/kg i.p.) induced a larger increase in [5-HT]ext in saline-pretreated mutant than in wild-type mice. This difference between the two genotypes in the effect of the paroxetine challenge persisted following chronic paroxetine treatment. Conversely, in the medial prefrontal cortex, the paroxetine challenge increased [5-HT]ext similarly in saline-pretreated mice of both genotypes. Such a challenge produced a further increase in cortical [5-HT]ext compared with that in saline-pretreated groups of both genotypes, but no differences were found between genotypes following chronic treatment. To avoid the interaction with raphe 5-HT1A autoreceptors, 1 micro m paroxetine was perfused locally through the dialysis probe implanted in the ventral hippocampus; similar increases in hippocampal [5-HT]ext were found in acutely or chronically treated wild-type mice. Systemic administration of the mixed 5-HT1B/1D receptor antagonist GR 127935 (4 mg/kg) in chronically treated wild-type mice potentiated the effect of a paroxetine challenge dose on [5-HT]ext in the ventral hippocampus, whereas systemic administration of the selective 5-HT1A receptor antagonist WAY 100635 did not. By using the zero net flux method of quantitative microdialysis in the medial prefrontal cortex and ventral hippocampus of wild-type and KO 5-HT1B mice, we found that basal [5-HT]ext and the extraction fraction of 5-HT were similar in the medial prefrontal cortex and ventral hippocampus of both genotypes, suggesting that no compensatory response to the constitutive deletion of the 5-HT1B receptor involving changes in 5-HT uptake capacity occurred in vivo. As steady-state brain concentrations of paroxetine at day 14 were similar in both genotypes, it is unlikely that differences in the effects of a paroxetine challenge on hippocampal [5-HT]ext are due to alterations of the drug's pharmacokinetic properties in mutants. These data suggest that there are differences between the ventral hippocampus and medial prefrontal cortex in activation of terminal 5-HT1B autoreceptors and their role in regulating dialysate 5-HT levels. These presynaptic receptors retain their capacity to limit 5-HT release mainly in the ventral hippocampus following chronic paroxetine treatment in mice.
Collapse
Affiliation(s)
- A M Gardier
- Laboratoire de Neuropharmacologie EA3544 MENRT, Faculté de Pharmacie IFR75-ISIT Institut de Signalisation et d'Innovation Thérapeutique, Université Paris-Sud, Châtenay-Malabry, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Winstanley CA, Chudasama Y, Dalley JW, Theobald DEH, Glennon JC, Robbins TW. Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psychopharmacology (Berl) 2003; 167:304-14. [PMID: 12677356 DOI: 10.1007/s00213-003-1398-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Accepted: 12/18/2002] [Indexed: 11/25/2022]
Abstract
RATIONALE The central serotonergic systems are a major target for drugs used to treat neuropsychiatric disorders such as depression and schizophrenia in which disruption of frontal cortex function has been implicated. However, it is not known precisely how serotonin (5-HT) modulates the medial prefrontal cortex (mPFC) to affect cognitive function and behaviour. OBJECTIVE To investigate the roles of 5-HT(1A) and 5-HT(2A) receptors in mPFC on performance of the five-choice serial reaction time task (5CSRT), which assesses visuospatial attention, impulsivity and motivational processes. METHODS Following training on the 5CSRT, rats were implanted with bilateral guide cannulae aimed at the mPFC. Rats received intra-mPFC infusions of either 8-OH-DPAT (10, 30 and 100 ng) or M100907 (30, 100 and 300 ng) according to a Latin square design. RESULTS Both 8-OH-DPAT and M100907 selectively enhanced accuracy of target detection. When the stimulus duration was shortened, infusions of 8-OH-DPAT continued to improve accuracy, whereas M100907 decreased premature responding and omissions, thus partly dissociating the effects of these two compounds. Similar effects were obtained following systemic administration of M100907 and 8-OH-DPAT. The effects of 8-OH-DPAT were blocked by the 5-HT(1A) antagonist WAY 100635, at a dose that itself had no significant effects on behaviour. CONCLUSIONS These results indicate that modulation of 5-HT function within the mPFC via distinct receptors can enhance performance on the 5CSRT. These findings suggest a mechanism by which serotonergic agents improve cognitive function, which may be relevant to their therapeutic benefit in the treatment of neuropsychiatric disorders.
Collapse
|
23
|
Jongsma ME, Sebens JB, Bosker FJ, Korf J. Effect of 5-HT1A receptor-mediated serotonin augmentation on Fos immunoreactivity in rat brain. Eur J Pharmacol 2002; 455:109-15. [PMID: 12445576 DOI: 10.1016/s0014-2999(02)02583-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The consequences of pharmacologically evoked augmented serotonin (5-hydroxytryptamine, 5-HT) release on neuronal activity in the brain, as reflected by the cellular expression of the immediate early gene c-fos, were studied. Wistar rats were treated with saline, the 5-HT reuptake inhibitor citalopram (10 micromol/kg s.c.), the 5-HT(1A) receptor antagonist N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)-N-(2-pyridyl)cyclohexane carboxamine trihydrochloride (WAY 100635, 1 micromol/kg s.c.), or the combination of both drugs. At the given dosages, the combination of the drugs has previously been shown to enhance the cerebral release of 5-HT. Two hours and thirty minutes after administration, the brains were fixated, and Fos protein was histologically stained and quantified. The paraventricular nucleus of the hypothalamus, the central nucleus amygdala, the ventromedial hypothalamic nucleus, the dorsolateral striatum, and the nucleus accumbens shell were particularly responsive to increased 5-HT release. The results, illustrating the synergistic consequence of the combined drug treatments, are discussed in terms of activity of the limbic-hypothalamic-pituitary-adrenocortical system.
Collapse
Affiliation(s)
- Minke E Jongsma
- Department of Biological Psychiatry, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Dawson LA, Nguyen HQ, Smith DL, Schechter LE. Effect of chronic fluoxetine and WAY-100635 treatment on serotonergic neurotransmission in the frontal cortex. J Psychopharmacol 2002; 16:145-52. [PMID: 12095073 DOI: 10.1177/026988110201600205] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical augmentation strategies have shown that some improvement in antidepressant efficacy can be achieved by combining the beta-adrenergic/serotonin (5-HT)1A/1B receptor antagonist (+/-)pindolol with a selective serotonin reuptake inhibitor (SSRI). This has lead to the hypothesis that a combination of a 5-HT1A receptor antagonist with an SSRI will lead to a faster onset of antidepressant action. Although there is a significant accumulation of acute preclinical data supporting this rationale, until recently, there have been no investigations examining the chronic effects of combining an SSRI with a 5-HT1A receptor antagonist. Here, we determined the chronic effects of fluoxetine (10 mg/kg o.d.), administered in combination with the selective 5-HT1A receptor antagonist WAY-100635 (1 mg/kg b.i.d.), on serotonergic neurotransmission in the frontal cortex using in-vivo microdialysis. Following chronic administration of fluoxetine +/- WAY-100635, functional changes in serotonergic neurotransmission, as well as 5-HT1A autoreceptors, were assessed by administering fluoxetine or (+/-) 8-hydroxy-2-(di-n-propylamino)tetralin [(+/-) 8-OH-DPAT] 24 h after the last chronic dose. Chronic administration of WAY-100635 alone produced no detectable change in the functional status of the 5-HT1A receptor. However, fluoxetine alone produced a time-dependent adaptation in serotonergic transmission such that fluoxetine (acutely administered on day 15) was able to produce a two-fold increase in extracellular 5-HT levels but the decrease in response to 8-OH-DPAT was completely attenuated. These data indicate that the fluoxetine-induced adaptation was mediated by desensitization of the 5-HT1A receptor. WAY-100635 given chronically in combination with fluoxetine blocked the SSRI-induced desensitization of the 5-HT1A receptor. Furthermore, chronic treatment with this combination produced no tolerance in terms of its ability to acutely increase forebrain 5-HT levels. These data suggest that augmentation of an SSRI by combined pharmacotherapy with a 5-HT1A antagonist would be effective upon prolonged exposure.
Collapse
Affiliation(s)
- L A Dawson
- Neuroscience Research, Wyeth Ayerst, Princeton, NJ, USA.
| | | | | | | |
Collapse
|
25
|
Papp M, Nalepa I, Antkiewicz-Michaluk L, Sánchez C. Behavioural and biochemical studies of citalopram and WAY 100635 in rat chronic mild stress model. Pharmacol Biochem Behav 2002; 72:465-74. [PMID: 11900821 DOI: 10.1016/s0091-3057(01)00778-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversal of chronic mild stress (CMS)-induced decrease of sucrose consumption has been studied in rats after 2, 7, 14, and 35 days treatment with imipramine, citalopram (both 10 mg/kg per day, i.p.), WAY 100635 (0.2 mg/kg sc, b.i.d.), and citalopram plus WAY 100635. Bmax, Kd, and functional status [cyclic AMP (cAMP) generation] of beta1-adrenoceptors were assessed in cortical tissue at the same time points. Citalopram reversed CMS-induced reduction of sucrose intake at an earlier time point than imipramine. WAY 100635 was not effective and did not potentiate the effect of citalopram. CMS produced increase of Bmax. Imipramine decreased Bmax in controls (Days 2, 7, 14, and 35) and normalised Bmax in stressed animals (Day 35). Citalopram, WAY 100635, and the combination increased Bmax in stressed animals and controls (Days 14 and 35). Inconsistent changes of Kd values and of cAMP responses to noradrenaline (NA) stimulation were observed. Thus stress- and drug-induced effects on beta1-adrenoceptors do not appear to be a common biochemical marker of antidepressant-like activity in the CMS model.
Collapse
Affiliation(s)
- Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland
| | | | | | | |
Collapse
|
26
|
Roberts C, Watson J, Price GW, Middlemiss DN. SB-236057-A: a selective 5-HT1B receptor inverse agonist. CNS DRUG REVIEWS 2001; 7:433-44. [PMID: 11830759 PMCID: PMC6741665 DOI: 10.1111/j.1527-3458.2001.tb00209.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
5-HT1B autoreceptors are involved in the control of extracellular 5-HT levels from both the terminal and cell body regions of serotonergic neurons. In this manuscript we review the pharmacological and pharmacokinetic data available for the selective and potent 5-HT1B receptor inverse agonist, SB-236057-A (1'-ethyl-5-(2'-methyl-4'-(5-methyl-1,3,4-oxadiazolyl-2-yl)biphenyl-4-carbonyl)-2,3,6,7-tetrahydrospiro (furo[2,3-f]indole-3,4'-piperidine) hydrochloride). SB 236057-A has been shown to have high affinity for human 5-HT1B receptors (pK(i) = 8.2) and displays 80 or more fold selectivity for the human 5-HT1B receptor over other 5-HT receptors and a range of additional receptors, ion channels and enzymes. In functional studies at human 5-HT1B receptors SB-236057-A displayed inverse agonism (pA(2) = 8.9) using [(35)S]GTPgammaS binding, and silent antagonism (pA(2) = 9.2) using cAMP accumulation. SB-236057-A also acted as an antagonist at the 5-HT terminal autoreceptor as measured by [3H]5-HT release from electrically stimulated guinea pig and human cortical slices. In the guinea pig, pharmacokinetic analysis demonstrated that SB-236057-A was bioavailable and according to in vivo pharmacodynamic assays it enters brain and has a long duration of action. Importantly no side effect liability was evident at relevant doses from anxiogenic, cardiovascular, sedative or migraine viewpoints. In vivo microdialysis studies demonstrated that SB-236057-A is an antagonist in the guinea pig cortex but has no effect on extracellular 5-HT levels per se. In contrast, SB-236057-A increased extracellular 5-HT levels in the guinea pig dentate gyrus. This increase in 5-HT release was comparable to that observed after 14 days of paroxetine administration. SB-236057-A has been a useful tool in confirming that, in either guinea pigs or humans, the terminal 5-HT autoreceptor is of the 5-HT1B subtype. It appears that acute 5-HT1B receptor blockade, by virtue of increased 5-HT release in the dentate gyrus, may provide a rapidly acting antidepressant.
Collapse
Affiliation(s)
- C Roberts
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Ave., Harlow, Essex, CM19 5AW, UK.
| | | | | | | |
Collapse
|
27
|
Abstract
Venlafaxine (Effexor) is an effective antidepressant and has also been approved for the treatment of generalized anxiety disorder. Venlafaxine was initially characterized as an inhibitor of both serotonin (5HT) and norepinephrine (NE) uptake and was therefore termed a "dual uptake inhibitor." This chapter reviews data from both in vitro and in vivo studies regarding its effects on 5HT and NE neurotransmission. In addition, the effects of venlafaxine on other systems that may play a role in its therapeutic efficacy effects are described. The data indicate that venlafaxine is a relatively weak inhibitor of NE transport in vitro. In vivo studies indicate that venlafaxine selectively inhibits 5HT uptake at low therapeutic doses and inhibits both 5HT and NE uptake at higher therapeutic doses. This chapter concludes with a discussion of the effects of venlafaxine on various aspects of physiology.
Collapse
Affiliation(s)
- P H Roseboom
- Department of Psychiatry, University of Wisconsin-Madison 53719-1176, USA
| | | |
Collapse
|
28
|
Parsons LH, Kerr TM, Tecott LH. 5-HT(1A) receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J Neurochem 2001; 77:607-17. [PMID: 11299323 DOI: 10.1046/j.1471-4159.2001.00254.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutant mice that lack serotonin(1A) receptors exhibit enhanced anxiety-related behaviors, a phenotype that is hypothesized to result from impaired autoinhibitory control of midbrain serotonergic neuronal firing. Here we examined the impact of serotonin(1A) receptor deletion on forebrain serotonin neurotransmission using in vivo microdialysis in the frontal cortex and ventral hippocampus of serotonin(1A) receptor mutant and wild-type mice. Baseline dialysate serotonin levels were significantly elevated in mutant animals as compared with wild-types both in frontal cortex (mutant = 0.44 +/- 0.05 n M; wild-type = 0.28 +/- 0.03 n M) and hippocampus (mutant = 0.46 +/- 0.07 n M; wild-type = 0.27 +/- 0.04 n M). A stressor known to elicit enhanced anxiety-like behaviors in serotonin(1A) receptor mutants increased dialysate 5-HT levels in the frontal cortex of mutant mice by 144% while producing no alteration in cortical 5-HT in wild-type mice. There was no phenotypic difference in the effect of this stressor on serotonin levels in the hippocampus. Fluoxetine produced significantly greater increases in dialysate 5-HT content in serotonin(1A) receptor mutants as compared with wild-types, with two- and three-fold greater responses being observed in the hippocampus and frontal cortex, respectively. This phenotypic effect was mimicked in wild-types by pretreatment with the serotonin(1A) antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide (p-MPPI). These results indicate that deletion of central serotonin(1A) receptors results in a tonic disinhibition of central serotonin neurotransmission, with a greater dysregulation of serotonin release in the frontal cortex than ventral hippocampus under conditions of stress or increased interstitial serotonin levels.
Collapse
MESH Headings
- Aminopyridines/pharmacology
- Animals
- Anxiety/genetics
- Exploratory Behavior/physiology
- Fluoxetine/pharmacology
- Frontal Lobe/drug effects
- Frontal Lobe/metabolism
- Hippocampus/drug effects
- Hippocampus/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Neurologic Mutants
- Microdialysis
- Organ Specificity
- Phenotype
- Piperazines/pharmacology
- Receptors, Serotonin/deficiency
- Receptors, Serotonin/genetics
- Receptors, Serotonin/physiology
- Receptors, Serotonin, 5-HT1
- Serotonin/physiology
- Serotonin Antagonists/pharmacology
- Selective Serotonin Reuptake Inhibitors/pharmacology
- Signal Transduction/drug effects
- Stress, Psychological/genetics
- Stress, Psychological/physiopathology
- Synaptic Transmission/drug effects
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- L H Parsons
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, USA Department of Psychiatry and Center for Neurobiology and Psychiatry, University of California San Francisco, San Francisco, USA.
| | | | | |
Collapse
|
29
|
Taber MT, Kinney GG, Pieschl RL, Yocca FD, Gribkoff VK. Differential effects of coadministration of fluoxetine and WAY-100635 on serotonergic neurotransmission in vivo: sensitivity to sequence of injections. Synapse 2000; 38:17-26. [PMID: 10941137 DOI: 10.1002/1098-2396(200010)38:1<17::aid-syn3>3.0.co;2-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Serotonin 5-HT(1A) receptor antagonists potentiate the effects of serotonin reuptake inhibitors on extracellular serotonin levels in a variety of brain regions. These effects are quite variable, however, with reports indicating potentiations of anywhere from 100-1900%. One factor that might impact the magnitude of such potentiations is the timing of administration of the two agents; reports in which the reuptake inhibitor is given prior to the serotonin receptor antagonist consistently report larger potentiations than reports in which the antagonist is given first. To test this relationship directly, microdialysis and electrophysiology studies were performed to assess the magnitude of increase in extracellular serotonin and changes in cellular activity produced by the serotonin reuptake inhibitor fluoxetine and the 5-HT(1A) receptor antagonist WAY-100635 under various dosing regimens. In microdialysis studies, when WAY-100635 (0.5 mg/kg s.c.) was administered 80 min after fluoxetine (10 mg/kg i.p.) the increase in serotonin was more than twice that observed when the compounds were coadministered. In electrophysiology studies in vivo, WAY-100635 reversed the depression of cell firing produced by fluoxetine when administered 30 min after fluoxetine, but when the two compounds were coadministered, a depression in firing rate was observed comparable to that produced by fluoxetine alone. In contrast, slice recording studies showed that WAY-100635 blocked the effects of fluoxetine regardless of the order of administration. These results indicate that fluoxetine and WAY-100635 can interact in a fashion not predicted by the currently accepted model. It is likely that neuronal circuitry outside of the raphe nuclei underlies this relationship.
Collapse
Affiliation(s)
- M T Taber
- Neuroscience Drug Discovery, Bristol-Myers Squibb Co., Wallingford, Connecticut 06492, USA.
| | | | | | | | | |
Collapse
|
30
|
Lucas G, De Deurwaerdère P, Porras G, Spampinato U. Endogenous serotonin enhances the release of dopamine in the striatum only when nigro-striatal dopaminergic transmission is activated. Neuropharmacology 2000; 39:1984-95. [PMID: 10963742 DOI: 10.1016/s0028-3908(00)00020-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we use in vivo microdialysis to investigate the influence of endogenous serotonin (5-HT) on striatal dopamine (DA) and 5-hydroxyidoleacetic acid (5-HIAA) efflux in both basal and activated conditions. The selective serotonin reuptake inhibitors citalopram and fluoxetine were used to mobilize endogenous 5-HT. In halothane-anaesthetized rats, citalopram (5 mg/kg, i.p.), administered either alone or in combination with the 5-HT(1A) receptor antagonist WAY 100635 (0.1 mg/kg, s.c.), while reducing striatal 5-HIAA outflow (-25 and -15%, respectively), had no effect on basal DA output. When locally applied into the striatum, citalopram had no effect at 1 microM concentration, but enhanced DA release after its perfusion at 25 and 100 mircroM concentrations (+27% and +67%, respectively). However, the injection of the neurotoxin 5,7-dihydroxytryptamine into the dorsal raphe nucleus, which markedly depleted 5-HT in the striatum, failed to modify the effect of 25 microM citalopram. In freely-moving rats, the intrastriatal infusion of citalopram or fluoxetine (1 microM each), had no effect on its own, but significantly enhanced the increase in DA outflow induced by the subcutaneous administration of 0.01 mg/kg haloperidol (+31% and +30% for citalopram and fluoxetine, respectively). These findings indicate that, in the striatum, endogenous 5-HT has no influence on DA release under basal conditions, but positively modulates DA outflow when nigro-striatal DA transmission is activated.
Collapse
Affiliation(s)
- G Lucas
- Laboratoire de Neuropsychobiologie des Désadaptations, UMR-CNRS 5541, Université Victor Segalen Bordeaux 2, Boîte Postale 31, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
31
|
Abstract
Presynaptic receptor theory has been expanded to encompass the regulation of the firing rate of serotonergic neurons through negative feedback mediated by the somadendritic release of transmitter. This has encouraged hypotheses as to the mechanisms of action of several classes of antidepressants and anxiolytics. One conspicuous example is the attribution of the clinical efficacy of 5-HT uptake inhibitors, such as fluoxetine and paroxetine, to desensitization of somadendritic 5-HT autoreceptors. An examination of the available evidence, mainly observations made with agonists, antagonists, monoamine oxidase inhibitors and uptake blockers, taken along with the theoretical expectations for a negative feedback loop, and the operational characteristics of inactivation pathways, indicates that negative feedback does not function at somadendritic sites to set firing rate or transmitter density, and suggests that the process may not function at all physiologically. The attribution of the effectiveness of neuroactive drugs to desensitization of raphe 5-HT inhibitory receptors, or to other interactions with feedback, is highly speculative and unlikely.
Collapse
Affiliation(s)
- S Kalsner
- Department of Physiology and Pharmacology, The City University of New York Medical School, New York, NY, USA
| |
Collapse
|
32
|
Dremencov E, Gur E, Lerer B, Newman ME. Subchronic fluoxetine administration to rats: effects on 5-HT autoreceptor activity as measured by in vivo microdialysis. Eur Neuropsychopharmacol 2000; 10:229-36. [PMID: 10871704 DOI: 10.1016/s0924-977x(00)00078-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Subchronic administration of fluoxetine to rats has been shown to induce subsensitivity of presynaptic 5-HT(1A) and 5-HT(1B) autoreceptors, and also postsynaptic 5-HT(1A) receptors in the hypothalamus. We investigated the effects of administration of fluoxetine (10 mg/kg i.p.) to rats for 6 days on presynaptic 5-HT(1A) receptor activity in the hypothalamus, postsynaptic 5-HT(1A) receptor activity in the hippocampus, and presynaptic 5-HT(1B) autoreceptor activity in both areas, using in vivo microdialysis. The effect of the 5-HT(1B/1D) antagonist (N-[4-methoxy-3-(4-methyl-1-piperizinyl)phenyl]-2'-methyl-4'-(5- methyl-1,2,4-oxadiazole-3-yl)[1,1'-biphenyl]-carboxamide (GR 127935) (5 mg/kg s.c.) to elevate 5-hydroxytryptamine (5-HT) levels was reduced in hippocampus but not hypothalamus of fluoxetine-treated rats. Fluoxetine did not alter either presynaptic 5-HT(1A) autoreceptor activity, as measured by the effect of injection of 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) (0.2 mg/kg or 50 microg/kg s.c.) on 5-HT levels in the hypothalamus, or postsynaptic 5-HT(1A) receptor activity, as measured by the effect of 8-OH-DPAT (0.2 mg/kg s.c.) on cyclic AMP accumulation, in the hippocampus.
Collapse
Affiliation(s)
- E Dremencov
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, P.O.B. 12000, 91120, Jerusalem, Israel
| | | | | | | |
Collapse
|
33
|
Hjorth S, Bengtsson HJ, Kullberg A, Carlzon D, Peilot H, Auerbach SB. Serotonin autoreceptor function and antidepressant drug action. J Psychopharmacol 2000; 14:177-85. [PMID: 10890313 DOI: 10.1177/026988110001400208] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article briefly summarizes, within the context of a brief review of the relevant literature, the outcome of our recent rat microdialysis studies on (1) the relative importance of serotonin (5-HT)1A versus 5-HT1B autoreceptors in the mechanism of action of 5-HT reuptake blocking agents, including putative regional differences in this regard, and (2) autoreceptor responsiveness following chronic SSRI administration. First, our data are consistent with the primacy of 5-HT1A autoreceptors in restraining the elevation of 5-HT levels induced by SSRIs, whereas nerve terminal 5-HT1B autoreceptors appear to have an accessory role in this regard. Second, there is an important interplay between cell body and nerve terminal 5-HT autoreceptors, and recent findings suggest that this interplay may potentially be exploited to obtain regionally preferential effects on 5-HT neurotransmission in the central nervous system, even upon systemic drug administration. In particular, emerging data suggest that somatodendritic 5-HT1A autoreceptor- and nerve terminal 5-HT1B autoreceptor-mediated feedback may be relatively more important in the control of 5-HT output in dorsal raphe-frontal cortex and median raphe-dorsal hippocampus systems, respectively. Third, 5-HT autoreceptors evidently retain the capability to limit the 5-HT transmission-promoting effect of SSRIs after chronic treatment. Thus, although the responsiveness of these sites is probably somewhat reduced, residual autoreceptor capacity still remains an effective restraint on large increases in extracellular 5-HT, even after prolonged treatment. If a further increase in extracellular 5-HT is crucial to the remission of depression in patients responding only partially to prolonged administration of antidepressants, then sustained adjunctive treatment with autoreceptor-blocking drugs may consequently prove useful in the long term.
Collapse
Affiliation(s)
- S Hjorth
- Institute for Physiology and Pharmacology, Department of Pharmacology, Göteborg University, Sweden.
| | | | | | | | | | | |
Collapse
|
34
|
Kinney GG, Taber MT, Gribkoff VK. The augmentation hypothesis for improvement of antidepressant therapy: is pindolol a suitable candidate for testing the ability of 5HT1A receptor antagonists to enhance SSRI efficacy and onset latency? Mol Neurobiol 2000; 21:137-52. [PMID: 11379796 DOI: 10.1385/mn:21:3:137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of selective serotonin reuptake inhibitors (SSRIs) provided a major advancement in the treatment of depression. However, these drugs suffer from a variety of drawbacks, most notably a delay in the onset of efficacy. One hypothesis suggests that this delay in efficacy is due to a paradoxical decrease in serotonergic (5-HT) neuronal impulse flow and release, following activation of inhibitory presynaptic 5-HT1A autoreceptors, following acute administration of SSRIs. According to the hypothesis, efficacy is seen only when this impulse flow is restored following desensitization of 5-HT1A autoreceptors and coincident increases in postsynaptic 5-HT levels are achieved. Clinical proof of this principal has been suggested in studies that found a significant augmenting effect when the beta-adrenergic/5-HT1A receptor antagonist, pindolol, was coadministered with SSRI treatment. In this article, we review preclinical electrophysiological and microdialysis studies that have examined this desensitization hypothesis. We further discuss clinical studies that utilized pindolol as a test of this hypothesis in depressed patients and examine preclinical studies that challenge the notion that the beneficial effect of pindolol is due to functional antagonism of the 5-HT1A autoreceptors.
Collapse
Affiliation(s)
- G G Kinney
- Bristol-Myers Squibb Pharmaceutical Research Institute, Neuroscience and Genitourinary Drug Discovery, Wallingford, CT 06492, USA.
| | | | | |
Collapse
|
35
|
Dawson LA, Nguyen HQ, Smith DI, Schechter LE. Effects of chronic fluoxetine treatment in the presence and absence of (+/-)pindolol: a microdialysis study. Br J Pharmacol 2000; 130:797-804. [PMID: 10864885 PMCID: PMC1572134 DOI: 10.1038/sj.bjp.0703378] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1999] [Revised: 03/02/2000] [Accepted: 03/21/2000] [Indexed: 11/08/2022] Open
Abstract
Using in vivo microdialysis in the frontal cortex of the freely moving rat we evaluated the effects of chronic treatment with the serotonin specific reuptake inhibitor (SSRI) fluoxetine in the presence and absence of the 5-HT(1A)/beta-adrenergic antagonist (+/-)pindolol. Chronic vehicle treated animals produced no significant response to a challenge with fluoxetine (10 mg kg(-1)) on day 8 and 15. Alternatively, a significant (P<0.05) decrease in extracellular 5-HT was observed in control animals upon challenge with the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.03 and 0.1 mg kg(-1)). Conversely, animals treated with fluoxetine (10 mg kg(-1) o.d.) for 7 and 14 days produced a significant (P<0.05) 2 fold increase in extracellular 5-HT when challenged with fluoxetine (10 mg kg(-1)) on day 8 and 15. Moreover, no significant decrease in extracellular 5-HT was observed upon challenge with either dose of 8-OH-DPAT. Animals chronically treated with (+/-)pindolol (10 or 20 mg kg(-1) b.i.d.) produced a significant dose-related increase in extracellular 5-HT upon challenge with fluoxetine on day 15 only. Furthermore, both doses produced a significantly blunted response to the low dose challenge of 8-OH-DPAT (0.03 mg kg(-1)). In addition, 20 mg kg(-1) (+/-)pindolol treated animals also had no response to the higher 0.1 mg kg(-1) dose of 8-OH-DPAT. Animals treated for 14 days with a combination of (+/-)pindolol (10 or 20 mg kg(-1)) and fluoxetine were not significantly different from vehicle treated animals when challenged with fluoxetine or 8-OH-DPAT. Taken together it would therefore appear that although (+/-)pindolol alone has sufficient intrinsic activity to produce a desensitization of the 5-HT(1A) receptor, when given in combination with fluoxetine it is able to prevent the desensitization induced by not only fluoxetine but also itself. This may suggest that the clinical augmentation of antidepressant action by pindolol, when co-administered with a SSRI, is via antagonism of the 5-HT(1A) receptor.
Collapse
Affiliation(s)
- L A Dawson
- Neuroscience Research, Wyeth Ayerst, CN8000, Princeton, New Jersey, 08543-8000, USA.
| | | | | | | |
Collapse
|
36
|
Cremers TI, de Boer P, Liao Y, Bosker FJ, den Boer JA, Westerink BH, Wikström HV. Augmentation with a 5-HT(1A), but not a 5-HT(1B) receptor antagonist critically depends on the dose of citalopram. Eur J Pharmacol 2000; 397:63-74. [PMID: 10844100 DOI: 10.1016/s0014-2999(00)00247-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pharmacokinetic and pharmacodynamic parameters of the selective serotonin reuptake inhibitor 1-(3-dimethylaminopropyl)-1-(4-fluorophenyl)-5-phtalancarbonitril (citalopram) were determined in order to find optimal conditions for augmentation of its effect on extracellular serotonin [5-hydroxytryptamine (5-HT)] through blockade of 5-HT(1A) and 5-HT(1B) autoreceptors. Citalopram dose-dependently (0.3-10 micromol/kg s.c.) increased serotonin levels in ventral hippocampus of conscious rats. At plasma levels above approximately 0.15 microM, the effect of citalopram on extracellular 5-HT was augmented by both a 5-HT(1A) [N-[2-[4-(2-mehoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridil) cyclohexa necarboxamide trihydrochloride (Way 100635), 1 micromol/kg s.c.] and a 5-HT(1B) receptor antagonist (2'-methyl-4'-(5-methyl-[1,2, 4]oxadiazol-3-yl)biphenyl-4-carboxylic acid [4-methoxy]-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935), 1 micromol/kg s.c.). However, at plasma levels of the selective serotonin reuptake inhibitor below 0.15 microM, the effects of the antagonists diverged viz. the 5-HT(1B) receptor antagonist was still able to potentiate citalopram's effect on extracellular 5-HT, while the 5-HT(1A) receptor antagonist was no longer effective. These results suggest that in contrast to 5-HT(1B) autoreceptors, indirect activation of 5-HT(1A) autoreceptors by citalopram is critically related to the dose of selective serotonin reuptake inhibitor administered. The latter may have consequences for selective serotonin reuptake inhibitor augmentation strategies with 5-HT(1A) receptor antagonists in the therapy of depression and anxiety disorders.
Collapse
Affiliation(s)
- T I Cremers
- Department of Medicinal Chemistry, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
Hervás I, Queiroz CMT, Adell A, Artigas F. Role of uptake inhibition and autoreceptor activation in the control of 5-HT release in the frontal cortex and dorsal hippocampus of the rat. Br J Pharmacol 2000; 130:160-6. [PMID: 10781012 PMCID: PMC1572046 DOI: 10.1038/sj.bjp.0703297] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1999] [Revised: 01/31/2000] [Accepted: 02/11/2000] [Indexed: 11/09/2022] Open
Abstract
1. Using brain microdialysis, we compared the relative role of 5-hydroxytryptamine (5-HT; serotonin) blockade and somatodendritic 5-HT(1A) and/or terminal 5-HT(1B) autoreceptor activation in the control of 5-HT output. 2. Fluoxetine (10 mg kg(-1) i.p.) doubled the 5-HT output in frontal cortex and dorsal hippocampus. The 5-HT(1A) receptor antagonist WAY 100635, (0.3 mg kg(-1) s.c.) potentiated the effect of fluoxetine only in frontal cortex (to approximately 500 % of baseline). 3. Methiothepin (10 mg kg(-1) s.c.) further enhanced the 5-HT rise induced by fluoxetine+WAY 100635, to 835+/-179% in frontal cortex and 456+/-24% in dorsal hippocampus. Locally applied, methiothepin potentiated the fluoxetine-induced 5-HT rise more in the former area. 4. The selective 5-HT(1B) receptor antagonist SB-224289 (4 mg kg(-1) i.p.) enhanced the effect of fluoxetine (10 mg kg(-1) i.p.) in both areas. As with methiothepin, SB-224289 (4 mg kg(-1) i.p.) further enhanced the 5-HT increase produced by fluoxetine+WAY 100635 more in frontal cortex (613+/-134%) than in dorsal hippocampus (353+/-59%). 5. Locally applied, fluoxetine (10 - 300 microM; EC(50)=28 - 29 microM) and citalopram (1 - 30 microM; EC(50)=1.0 - 1.4 microM) increased the 5-HT output two to three times more in frontal cortex than in dorsal hippocampus. These data suggest that the comparable 5-HT increase produced by systemic fluoxetine in frontal cortex and dorsal hippocampus results from a greater effect of reuptake blockade in frontal cortex that is offset by a greater autoreceptor-mediated inhibition of 5-HT release. As a result, 5-HT autoreceptor antagonists preferentially potentiate the effect of fluoxetine in frontal cortex.
Collapse
Affiliation(s)
- Ildefonso Hervás
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), 08036 Barcelona, Spain
| | - Claudio M T Queiroz
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), 08036 Barcelona, Spain
| | - Albert Adell
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), 08036 Barcelona, Spain
| | - Francesc Artigas
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
38
|
Bristow LJ, O'Connor D, Watts R, Duxon MS, Hutson PH. Evidence for accelerated desensitisation of 5-HT(2C) receptors following combined treatment with fluoxetine and the 5-HT(1A) receptor antagonist, WAY 100,635, in the rat. Neuropharmacology 2000; 39:1222-36. [PMID: 10760364 DOI: 10.1016/s0028-3908(99)00191-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Both pre-clinical and clinical studies suggest that additional treatment with 5-HT(1A) receptor antagonists may accelerate the antidepressant efficacy/onset of selective serotonin re-uptake inhibitors (SSRIs). Given that chronic SSRI treatment has been shown to desensitise 5-HT(2C) receptor mediated responses, we have used the rat social interaction test to determine if combined treatment with WAY 100,635, a selective 5-HT(1A) receptor antagonist, will accelerate this effect. In pairs of unfamiliar rats, acute administration of the 5-HT(2C) receptor agonist m-chlorophenylpiperazine (mCPP) or fluoxetine decreased the time spent in social interaction, responses which were reversed by the 5-HT(2C/2B) receptor antagonists SB 200646A and SB 221284. Similar reductions in social interaction were observed in rats treated with fluoxetine (10 mg/kg, i.p. daily) for 4, 7 and 14 days but was no longer apparent after 28 days of treatment. In contrast, only 7 days of combined treatment with WAY 100,635 (1 mg/kg/s.c./day) and fluoxetine were needed to reverse this response. The decrease in social interaction induced by an acute challenge of mCPP (1 mg/kg, i. p.) was also reduced after 6 days co-treatment with WAY 100,635 and fluoxetine. Thus, WAY 100,635 accelerates SSRI-induced desensitisation of 5-HT(2C) receptors, suggesting that this response might contribute towards the therapeutic effects of SSRIs in man.
Collapse
Affiliation(s)
- L J Bristow
- Merck, Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex, UK.
| | | | | | | | | |
Collapse
|
39
|
Millan MJ, Gobert A, Rivet JM, Adhumeau-Auclair A, Cussac D, Newman-Tancredi A, Dekeyne A, Nicolas JP, Lejeune F. Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of alpha2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci 2000; 12:1079-95. [PMID: 10762339 DOI: 10.1046/j.1460-9568.2000.00982.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mirtazapine displayed marked affinity for cloned, human alpha2A-adrenergic (AR) receptors at which it blocked noradrenaline (NA)-induced stimulation of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]-GTPgammaS) binding. Similarly, mirtazapine showed high affinity for cloned, human serotonin (5-HT)2C receptors at which it abolished 5-HT-induced phosphoinositide generation. Alpha2-AR antagonist properties were revealed in vivo by blockade of UK-14,304-induced antinociception, while antagonist actions at 5-HT2C receptors were demonstrated by blockade of Ro 60 0175-induced penile erections and discriminative stimulus properties. Mirtazapine showed negligible affinity for 5-HT reuptake sites, in contrast to the selective 5-HT reuptake inhibitor, citalopram. In freely moving rats, in the dorsal hippocampus, frontal cortex (FCX), nucleus accumbens and striatum, citalopram increased dialysate levels of 5-HT, but not dopamine (DA) and NA. On the contrary, mirtazapine markedly elevated dialysate levels of NA and, in FCX, DA, whereas 5-HT was not affected. Citalopram inhibited the firing rate of serotonergic neurons in dorsal raphe nucleus, but not of dopaminergic neurons in the ventral tegmental area, nor adrenergic neurons in the locus coeruleus. Mirtazapine, in contrast, enhanced the firing rate of dopaminergic and adrenergic, but not serotonergic, neurons. Following 2 weeks administration, the facilitatory influence of mirtazapine upon dialysate levels of DA and NA versus 5-HT in FCX was maintained, and the influence of citalopram upon FCX levels of 5-HT versus DA and NA was also unchanged. Moreover, citalopram still inhibited, and mirtazapine still failed to influence, dorsal raphe serotonergic neurons. In conclusion, in contrast to citalopram, mirtazapine reinforces frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission. These actions reflect antagonist properties at alpha2A-AR and 5-HT2C receptors.
Collapse
Affiliation(s)
- M J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125, Chemin de Ronde, 78290, Croissy-sur-Seine, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Héry M, Sémont A, Fache MP, Faudon M, Héry F. The effects of serotonin on glucocorticoid receptor binding in rat raphe nuclei and hippocampal cells in culture. J Neurochem 2000; 74:406-13. [PMID: 10617146 DOI: 10.1046/j.1471-4159.2000.0740406.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The raphe-hippocampal serotonin (5-HT) system is involved in the regulation of the hypothalamus-pituitary-adrenal axis. The purpose of this study was to determine and compare the roles of 5-HT in the regulation of glucocorticoid receptor (GR) binding in the raphe nuclei and in the hippocampus. The effects of 5-HT, 5-HT agonists, and the 5-HT reuptake inhibitor citalopram on GR binding sites were studied in primary cultures of the fetal raphe nuclei and the hippocampus. Exposure of hippocampal cells to 5-HT, (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI; a 5-HT2 agonist), or citalopram resulted in an increase in number of GR binding sites. The effect of DOI was blocked by ketanserin (a 5-HT2 antagonist). Specific and saturable GR binding was found in raphe cells. Exposure of raphe cells to 5-HT, (+/-)-8 hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; a 5-HT1A agonist), or citalopram induced a significant decrease in number of GR binding sites. The effect of 8-OH-DPAT was reversed by WAY 100135 [N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropiona mide; a 5-HT1A antagonist]. These results show that the regulation of GRs during fetal life is structure-dependent and involves different 5-HT receptor subtypes. Moreover, the regulation of hippocampal GRs by citalopram suggests an action of antidepressants independent of their effects on monoamines.
Collapse
Affiliation(s)
- M Héry
- INSERM U. 501, Laboratoire des Interactions Fonctionnelles en Neuroendocrinologie, IFR Jean Roche, UER de Médecine Nord, Marseille, France.
| | | | | | | | | |
Collapse
|
41
|
Hjorth S, Auerbach SB. Autoreceptors remain functional after prolonged treatment with a serotonin reuptake inhibitor. Brain Res 1999; 835:224-8. [PMID: 10415377 DOI: 10.1016/s0006-8993(99)01585-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) autoreceptors may desensitize during prolonged administration of antidepressant drugs. If autoreceptors desensitize, their inhibitory influence on extracellular 5-HT should be attenuated. To test this hypothesis, the selective serotonin reuptake inhibitor (SSRI) citalopram (10 mg kg(-1), s.c., b.i.d.) or saline was administered for 14 days to rats. After a 24-h washout period, rats were anesthetized, and implanted with dialysis probes for determination of 5-HT in the frontal cortex (FCx) and dorsal hippocampus (DH). In response to citalopram (5 mg kg(-1), s.c.) challenge, there were moderate increases in 5-HT in the FCx and DH of both the chronic citalopram and saline pretreatment groups. After subsequent administration of the 5-HT(1A/1B) autoreceptor antagonist, (-)-penbutolol, there were further increases in 5-HT in the FCx and DH of the saline pretreatment group. Moreover, contrary to the expected effect if autoreceptors were desensitized, the potentiation produced by (-)-penbutolol was greater in the FCx and DH of the chronic citalopram group as compared to rats pretreated with saline. These results suggest that autoreceptors still restrain the increase in 5-HT produced by an SSRI after prolonged administration.
Collapse
Affiliation(s)
- S Hjorth
- Department of Pharmacology, University of Göteborg, Göteborg, Sweden
| | | |
Collapse
|
42
|
Scorza C, Silveira R, Nichols DE, Reyes-Parada M. Effects of 5-HT-releasing agents on the extracellullar hippocampal 5-HT of rats. Implications for the development of novel antidepressants with a short onset of action. Neuropharmacology 1999; 38:1055-61. [PMID: 10428424 DOI: 10.1016/s0028-3908(99)00023-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of two selective 5-HT-releasing agents, 4-methylthioamphetamine (MTA) and 5-methoxy-6-methyl-2-aminoindan (MMAI), on the extracellular 5-HT concentration in the dorsal hippocampus was determined by microdialysis in anesthetized rats. After i.p. administration of 1 or 5 mg/kg of either compound, a rapid and significant increase of 5-HT basal release was observed. MTA (5 mg/kg) induced a maximal increase of about 2000% over the basal value 40 min after injection, which declined slowly, whereas MMAI (5 mg/kg) induced a maximal response of about 1350% which showed a rapid decline. Monoamine oxidase-A inhibitory properties of MTA, and MMAI's lack of similar properties might account for the difference between the two compounds. In agreement with previous information, a much lower increase in hippocampal 5-HT was observed in response to systemic fluoxetine. This difference in the magnitude of the response after MTA or MMAI and fluoxetine indicates that different mechanisms of action are operating. Based on evidence showing that an acute enhancement of 5-HT neurotransmission might result in the rapid appearance of therapeutic effects of serotonergic antidepressants, we suggest that MTA and MMAI might serve as leads for a novel family of compounds with a short onset of action useful for treating depression.
Collapse
Affiliation(s)
- C Scorza
- Cell Biology Division, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | |
Collapse
|
43
|
Middlemiss DN, Göthert M, Schlicker E, Scott CM, Selkirk JV, Watson J, Gaster LM, Wyman P, Riley G, Price GW. SB-236057, a selective 5-HT1B receptor inverse agonist, blocks the 5-HT human terminal autoreceptor. Eur J Pharmacol 1999; 375:359-65. [PMID: 10443589 DOI: 10.1016/s0014-2999(99)00262-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel compound, SB-236057 (1'-ethyl-5-(2'-methyl-4'-(5-methyl-1,3,4-oxadiazol-2-yl)biphenyl- 4-carbonyl)-2,3,6,7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperid ine]) has been shown to have high affinity for human 5-hydroxytryptamine1B (5-HT1B) receptors (pKi = 8.2) and displays over 75 or more-fold selectivity for the human 5-HT1B receptor over other 5-HT receptors, including the human 5-HT1D receptor, and a range of other receptors, ion channels and enzymes. In functional studies using [35S]GTPgammaS binding, SB-236057 displayed negative intrinsic activity (pEC50 = 8.0) at human 5-HT1B receptors stably expressed in Chinese Hamster Ovary (CHO) cells and caused a rightward shift of agonist concentration response curves consistent with competitive antagonism (pA2 = 8.9). SB-236057 potentiated [3H]5-HT release from electrically stimulated guinea pig or human cortical slices. SB-236057 also abolished the inhibitory effect of exogenously superfused 5-HT on electrically-stimulated release from slices of the guinea pig cortex. These studies using SB-236057 confirm that, in both the guinea pig and human cerebral cortex, the terminal 5-HT autoreceptor is of the 5-HT1B subtype.
Collapse
Affiliation(s)
- D N Middlemiss
- Department of Neurosciences, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Harlow, Essex, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gur E, Dremencov E, Lerer B, Newman ME. Venlafaxine: acute and chronic effects on 5-hydroxytryptamine levels in rat brain in vivo. Eur J Pharmacol 1999; 372:17-24. [PMID: 10374710 DOI: 10.1016/s0014-2999(99)00164-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Venlafaxine is a dual serotonin (5-hydroxytryptamine, 5-HT) and noradrenaline uptake inhibitor which has been claimed to have an onset of antidepressant action which is faster than for other comparable drugs. The effects of venlafaxine on brain 5-HT levels in vivo have not yet been examined. Acute administration of venlafaxine to rats by i.p. injection resulted in dose-dependent increases in cortical and hippocampal 5-HT levels, as measured by in vivo microdialysis, over the range 5-20 mg/kg. The effect of venlafaxine (10 mg/kg i.p.) was potentiated by prior administration of pindolol (10 mg/kg s.c.) in hippocampus but not in frontal cortex. Daily administration of venlafaxine (5 mg/kg i.p.) for 4 weeks did not change basal 5-HT levels in either brain area. The effect of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.2 mg/kg s.c.) to reduce 5-HT levels was unaffected by chronic venlafaxine at this dose, indicating that there was no change in sensitivity of presynaptic 5-HT1A autoreceptors.
Collapse
Affiliation(s)
- E Gur
- Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
45
|
Gartside SE, Clifford EM, Cowen PJ, Sharp T. Effects of (-)-tertatolol, (-)-penbutolol and (+/-)-pindolol in combination with paroxetine on presynaptic 5-HT function: an in vivo microdialysis and electrophysiological study. Br J Pharmacol 1999; 127:145-52. [PMID: 10369467 PMCID: PMC1566011 DOI: 10.1038/sj.bjp.0702546] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1998] [Revised: 02/16/1999] [Accepted: 02/18/1999] [Indexed: 11/09/2022] Open
Abstract
The antidepressant efficacy of selective serotonin reuptake inhibitors (SSRIs) might be enhanced by co-administration of 5-HT1A receptor antagonists. Thus, we have recently shown that the selective 5-HT1A receptor antagonist, WAY 100635, blocks the inhibitory effect of an SSRI on 5-HT cell firing, and enhances its ability to elevate extracellular 5-HT in the forebrain. Here we determined whether the beta-adrenoceptor/5-HT1A receptor ligands (+/-)-pindolol, (-)-tertatolol and (-)-penbutolol, interact with paroxetine in a similar manner. Both (-)-tertatolol (2.4 mg kg(-1) i.v.) and (-)-penbutolol (2.4 mg kg(-1) i.v.) enhanced the effect of paroxetine (0.8 mg kg(-1) i.v.) on extracellular 5-HT in the frontal cortex, whilst (+/-)-pindolol (4 mg kg(-1) i.v.) did not. (-)-Tertatolol (2.4 mg kg(-1) i.v.) alone caused a slight increase in 5-HT however, (-)-penbutolol (2.4 mg kg(-1) i.v.) alone had no effect. In electrophysiological studies (-)-tertatolol (2.4 mg kg(-1) i.v.) alone had no effect on 5-HT cell firing but blocked the inhibitory effect of paroxetine. In contrast, (-)-penbutolol (0.1-0.8 mg kg(-1) i.v.) itself inhibited 5-HT cell firing, and this effect was reversed by WAY 100635 (0.1 mg kg(-1) i.v.). We have recently shown that (+/-)-pindolol inhibits 5-HT cell firing via a WAY 100635-sensitive mechanism. Our data suggest that (-)-tertatolol enhances the effect of paroxetine on forebrain 5-HT via blockade of 5-HT1A autoreceptors which mediate paroxetine-induced inhibition of 5-HT cell firing. In comparison, the mechanisms by which (-)-penbutolol enhances the effect of paroxetine on extracellular 5-HT is unclear, since (-)-penbutolol itself appears to have agonist properties at the 5-HT1A autoreceptor. Indeed, the agonist action of (+/-)-pindolol at 5-HT1A autoreceptors probably explains its inability to enhance the effect of paroxetine on 5-HT in the frontal cortex. Overall, our data suggest that both (-)-tertatolol and (-)-penbutolol are superior to (+/-)-pindolol in terms of enhancing the effect of an SSRI on extracellular 5-HT. Both (-)-tertatolol and (-)-penbutolol are worthy of investigation for use as adjuncts to SSRIs in the treatment of major depression.
Collapse
Affiliation(s)
- S E Gartside
- Oxford University Department of Clinical Pharmacology, Radcliffe Infirmary
| | | | | | | |
Collapse
|
46
|
Zhou FC, McKinzie DL, Patel TD, Lumeng L, Li TK. Additive Reduction of Alcohol Drinking by 5-HT1A Antagonist WAY 100635 and Serotonin Uptake Blocker Fluoxetine in Alcohol-Preferring P Rats. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03648.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Sharp T, Umbers V, Gartside SE. Effect of a selective 5-HT reuptake inhibitor in combination with 5-HT1A and 5-HT1B receptor antagonists on extracellular 5-HT in rat frontal cortex in vivo. Br J Pharmacol 1997; 121:941-6. [PMID: 9222551 PMCID: PMC1564780 DOI: 10.1038/sj.bjp.0701235] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Selective 5-hydroxytryptamine (5-HT; serotonin) reuptake inhibitors (SSRIs) cause a greater increase in extracellular 5-HT in the forebrain when the somatodendritic 5-HT1A autoreceptor is blocked. Here, we investigated whether blockade of the terminal 5-HT1B autoreceptor influences a selective 5-HT reuptake inhibitor in the same way, and whether there is an additional effect of blocking both the 5-HT1A and 5-HT1B autoreceptors. 2. Extracellular 5-HT was measured in frontal cortex of the anaesthetized rat by use of brain microdialysis. In vivo extracellular recordings of 5-HT neuronal activity in the dorsal raphe nucleus (DRN) were also carried out. 3. The selective 5-HT reuptake inhibitor, paroxetine (0.8 mg kg-1, i.v.), increased extracellular 5-HT about 2 fold in rats pretreated with the 5-HT1A receptor antagonist, WAY100635. When administered alone neither paroxetine (0.8 mg kg-1, i.v.) nor WAY100635 (0.1 mg kg-1, i.v.) altered extracellular 5-HT levels. 4. Paroxetine (0.8 mg kg-1, i.v.) did not increase 5-HT in rats pretreated with the 5-HT1B/D receptor antagonist, GR127935 (1 mg kg-1, i.v.). GR127935 (1 and 5 mg kg-1, i.v.) had no effect on extracellular 5-HT when administered alone. 5. Interestingly, paroxetine (0.8 mg kg-1, i.v.) caused the greatest increase in 5-HT (up to 5 fold) when GR127935 (1 or 5 mg kg-1, i.v.) was administered in combination with WAY100635 (0.1 mg kg-1, i.v.). Administration of GR127935 (5 mg kg-1, i.v.) plus WAY100635 (0.1 mg kg-1, i.v.) without paroxetine, had no effect on extracellular 5-HT in the frontal cortex. 6. Despite the lack of effect of GR127935 on 5-HT under basal conditions, when 5-HT output was elevated about 3 fold (by adding 1 microM paroxetine to the perfusion medium), the drug caused a dose-related (1 and 5 mg kg-1, i.v.) increase in 5-HT. 7. By itself, GR127935 slightly but significantly decreased 5-HT cell firing in the DRN at higher doses (2.0-5.0 mg kg-1, i.v.), but did not prevent the inhibition of 5-HT cell firing induced by paroxetine. 8. In summary, our results suggest that selective 5-HT reuptake inhibitors may cause a large increase in 5-HT in the frontal cortex when 5-HT autoreceptors on both the somatodendrites (5-HT1A) and nerve terminals (5-HT1B) are blocked. This increase is greater than when either set of autoreceptors are blocked separately. The failure of a 5-HT1B receptor antagonist alone to enhance the effect of the selective 5-HT reuptake inhibitor in our experiments may be related to a lack of tone on the terminal 5-HT1B autoreceptor due to a continued inhibition of 5-HT cell firing. These results are discussed in relation to the use of 5-HT autoreceptor antagonists to augment the antidepressant effect of selective 5-HT reuptake inhibitors.
Collapse
Affiliation(s)
- T Sharp
- University of Oxford Department of Clinical Pharmacology, Radcliffe Infirmary
| | | | | |
Collapse
|
48
|
Hjorth S, Westlin D, Bengtsson HJ. WAY100635-induced augmentation of the 5-HT-elevating action of citalopram: relative importance of the dose of the 5-HT1A (auto)receptor blocker versus that of the 5-HT reuptake inhibitor. Neuropharmacology 1997; 36:461-5. [PMID: 9225270 DOI: 10.1016/s0028-3908(97)00050-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The elevation of extracellular 5-HT after systemic administration of 5-HT reuptake inhibiting drugs is strongly potentiated by agents capable of blocking 5-HT1A autoreceptors in the midbrain raphe. The present in vivo microdialysis study was aimed at assessing the relative importance of 5-HT reuptake inhibition versus 5-HT1A autoreceptor blockade in this interaction. Citalopram (0.5 or 5.0 mg/kg s.c.) dose-dependently increased dialysate 5-HT in the rat ventral hippocampus, maximally doubling the initial baseline values within 60 min after injection. The selective 5-HT1A receptor blocker, WAY100635 (0.01-0.3 mg/kg s.c.), further augmented, in a dose-dependent manner, the high-dose citalopram response (to approximately 4-5 x the pre-citalopram baseline). For comparison, the effect of low-dose (0.5 mg/kg s.c.) citalopram was mildly, but not significantly, potentiated by WAY100635 (0.3 mg/kg). WAY100635 given alone does not alter 5-HT under these conditions. The data confirm previous findings that 5-HT1A autoreceptor blockade enhances the citalopram-induced increase of extracellular 5-HT in the forebrain. To the extent the extracellular levels of 5-HT is a valid index, through 5-HT reuptake blockade appears to be the primary prerequisite for this interaction to occur. New drugs and/or treatment regimes based on the SSRI/5-HT1A autoreceptor blocker combination concept should, therefore, emphasize the former property.
Collapse
Affiliation(s)
- S Hjorth
- Department of Pharmacology, University of Göteborg, Sweden.
| | | | | |
Collapse
|