1
|
Elliott ER, Cooper RL. Fluoxetine antagonizes the acute response of LPS: Blocks K2P channels. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110045. [PMID: 39307514 DOI: 10.1016/j.cbpc.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The channels responsible for maintaining resting membrane potential are known as K2P (two-P-domain K+ subunit) channels, a subset of which are known to be blocked by Fluoxetine. In this experiment, the compound's effects on the membrane potential were examined on muscles in larval Drosophila overexpressing a subtype of K2P channel (known in Drosophila as dORKA1 or ORKA1) and compared to larvae without overexpression. The compound was also observed in sequence and/or combination with a form of lipopolysaccharide (LPS) that transiently activates K2P channels. Different concentrations of Fluoxetine were tested, and it was also examined in cocktail with the LPS. At 25 μM Fluoxetine exposure, muscle in control larvae underwent depolarization, while muscles overexpressing K2P channels hyperpolarized; at 50 μM, however, much more variable responses were observed. The LPS caused hyperpolarization in both larval strains, but the effect was more transient in the Canton-S line than in the K2P overexpressors. Finally, LPS continued to cause hyperpolarization even in the presence of Fluoxetine, while Fluoxetine quickly depolarized the muscle during exposure to LPS. The cocktail showed a smaller effect on muscles overexpressing ORKA1 as compared to the controls, indicating that Fluoxetine does not block the ORKA1 subtype. This study is significant because it demonstrates how overexpression of K2P channels alters membrane response to LPS and Fluoxetine exposure.
Collapse
Affiliation(s)
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington 40506, KY, USA.
| |
Collapse
|
2
|
Hosseini K, Cediel-Ulloa A, AL-Sabri MH, Forsby A, Fredriksson R. Assessing the Neurodevelopmental Impact of Fluoxetine, Citalopram, and Paroxetine on Neural Stem Cell-Derived Neurons. Pharmaceuticals (Basel) 2024; 17:1392. [PMID: 39459031 PMCID: PMC11510426 DOI: 10.3390/ph17101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Many pregnant women globally suffer from depression and are routinely prescribed selective serotonin reuptake inhibitors (SSRIs). These drugs function by blocking the re-uptake of serotonin by the serotonin transporter (SERT) into neurons, resulting in its accumulation in the presynaptic cleft. Despite a large amount of research suggesting a potential link to neurodevelopmental disorders in children whose mothers took these drugs during pregnancy, their possible adverse effects are still debated, and results are contradictory. On the other hand, there is an immediate need for improved cell-based models for developmental neurotoxicity studies (DNT) to minimize the use of animals in research. METHODS In this study, we aimed to assess the effects of clinically relevant concentrations of paroxetine (PAR), fluoxetine (FLX), and citalopram (CIT)-on maturing neurons derived from human neural stem cells using multiple endpoints. RESULTS Although none of the tested concentrations of FLX, CIT, or PAR significantly affected cell viability, FLX (10 µM) exhibited the highest reduction in viability compared to the other drugs. Regarding neurite outgrowth, CIT did not have a significant effect. However, FLX (10 µM) significantly reduced both mean neurite outgrowth and mean processes, PAR significantly reduced mean processes, and showed a trend of dysregulation of multiple genes associated with neuronal development at therapeutic-relevant serum concentrations. CONCLUSIONS Transcriptomic data and uptake experiments found no SERT activity in the system, suggesting that the adverse effects of FLX and PAR are independent of SERT.
Collapse
Affiliation(s)
- Kimia Hosseini
- Department of Pharmaceutical Bioscience, Uppsala University, 751 24 Uppsala, Sweden (R.F.)
| | - Andrea Cediel-Ulloa
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Mohamed H. AL-Sabri
- Department of Pharmaceutical Bioscience, Uppsala University, 751 24 Uppsala, Sweden (R.F.)
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Uppsala University, 751 24 Uppsala, Sweden (R.F.)
| |
Collapse
|
3
|
Gomes LTDC, de Sena MO, Dantas PB, Barbosa AIDS, Holanda VAD, Oliveira JIN, Gavioli EC, da Silva Junior ED. Smooth muscle contraction of the fundus of stomach, duodenum and bladder from mice exposed to a stress-based model of depression. Physiol Behav 2023; 272:114374. [PMID: 37806511 DOI: 10.1016/j.physbeh.2023.114374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Several reports have demonstrated that depressive disorder is related to somatic symptoms including gastrointestinal or genitourinary alterations. The pathophysiological mechanisms underlying the gastrointestinal or genitourinary alterations associated with the depression are still not fully understood. Therefore, this study aimed to evaluate the motor activity of gastrointestinal (fundus of stomach and duodenum) and genitourinary tract (bladder) in a stress-based animal model of depression. Adult male mice were submitted to uncontrollable and unpredictable stress (learned helplessness model), controllable stress and non-stressful situations (control). Then, animals were euthanized and the fundus of stomach, duodenum segments or whole bladder were isolated and mounted in a standard organ bath preparation. We evaluated the contractile effects induced by KCl 80 mM for 5 min or carbachol (acetylcholine receptor agonist). The relaxant effects of isoproterenol (β-adrenoceptor agonist) were also checked. Animals submitted to the learned helplessness model developed a helpless (depressive-like behavior) or resilient (does not exhibit depressive-like behavior) phenotype. The contractions induced by carbachol were diminished in fundus of stomach isolated from helpless and resilient animals. The isoproterenol-induced fundus of stomach relaxation was reduced in resilient but not helpless mice. The contractions/relaxation of duodenum segments isolated from helpless or resilient animals were not altered. Both helpless and resilient animals showed an increase in the bladder contractions induced by carbachol while the relaxant effects of isoproterenol were reduced when compared to control. Conversely, mice underwent a controllable stress situation did not exhibit alterations in the fundus of stomach or duodenum contraction/relaxation induced by pharmacological agents although a decrease in the bladder contraction induced by carbachol was found. In conclusion, incontrollable and unpredictable stress and not depressive phenotype (helpless animals) or controllable stress could be related to the alterations in motor activity of the fundus of stomach and bladder.
Collapse
Affiliation(s)
- Luana Talinne da Costa Gomes
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n Campus Universitário - Lagoa Nova, Natal, RN 59072-970, Brazil
| | - Maele Oliveira de Sena
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n Campus Universitário - Lagoa Nova, Natal, RN 59072-970, Brazil
| | - Pedro Brüch Dantas
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n Campus Universitário - Lagoa Nova, Natal, RN 59072-970, Brazil
| | - Aldemara Ingrid da Silva Barbosa
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n Campus Universitário - Lagoa Nova, Natal, RN 59072-970, Brazil
| | - Victor Anastácio Duarte Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n Campus Universitário - Lagoa Nova, Natal, RN 59072-970, Brazil
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n Campus Universitário - Lagoa Nova, Natal, RN 59072-970, Brazil
| | - Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n Campus Universitário - Lagoa Nova, Natal, RN 59072-970, Brazil
| | - Edilson Dantas da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n Campus Universitário - Lagoa Nova, Natal, RN 59072-970, Brazil.
| |
Collapse
|
4
|
Spencer KA, Woods CB, Worstman HM, Johnson SC, Ramirez JM, Morgan PG, Sedensky MM. TREK-1 and TREK-2 Knockout Mice Are Not Resistant to Halothane or Isoflurane. Anesthesiology 2023; 139:63-76. [PMID: 37027798 PMCID: PMC10247454 DOI: 10.1097/aln.0000000000004577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
BACKGROUND A variety of molecular targets for volatile anesthetics have been suggested, including the anesthetic-sensitive potassium leak channel, TREK-1. Knockout of TREK-1 is reported to render mice resistant to volatile anesthetics, making TREK-1 channels compelling targets for anesthetic action. Spinal cord slices from mice, either wild type or an anesthetic- hypersensitive mutant, Ndufs4, display an isoflurane-induced outward potassium leak that correlates with their minimum alveolar concentrations and is blocked by norfluoxetine. The hypothesis was that TREK-1 channels conveyed this current and contribute to the anesthetic hypersensitivity of Ndufs4. The results led to evaluation of a second TREK channel, TREK-2, in control of anesthetic sensitivity. METHODS The anesthetic sensitivities of mice carrying knockout alleles of Trek-1 and Trek-2, the double knockout Trek-1;Trek-2, and Ndufs4;Trek-1 were measured. Neurons from spinal cord slices from each mutant were patch clamped to characterize isoflurane-sensitive currents. Norfluoxetine was used to identify TREK-dependent currents. RESULTS The mean values for minimum alveolar concentrations (± SD) between wild type and two Trek-1 knockout alleles in mice (P values, Trek-1 compared to wild type) were compared. For wild type, minimum alveolar concentration of halothane was 1.30% (0.10), and minimum alveolar concentration of isoflurane was 1.40% (0.11); for Trek-1tm1Lex, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.387), and minimum alveolar concentration of isoflurane was 1.38% (0.09; P = 0.268); and for Trek-1tm1Lzd, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.482), and minimum alveolar concentration of isoflurane was 1.41% (0.12; P = 0.188). Neither allele was resistant for loss of righting reflex. The EC50 values of Ndufs4;Trek-1tm1Lex did not differ from Ndufs4 (for Ndufs4, EC50 of halothane, 0.65% [0.05]; EC50 of isoflurane, 0.63% [0.05]; and for Ndufs4;Trek-1tm1Lex, EC50 of halothane, 0.58% [0.07; P = 0.004]; and EC50 of isoflurane, 0.61% [0.06; P = 0.442]). Loss of TREK-2 did not alter anesthetic sensitivity in a wild-type or Trek-1 genetic background. Loss of TREK-1, TREK-2, or both did not alter the isoflurane-induced currents in wild-type cells but did cause them to be norfluoxetine insensitive. CONCLUSIONS Loss of TREK channels did not alter anesthetic sensitivity in mice, nor did it eliminate isoflurane-induced transmembrane currents. However, the isoflurane-induced currents are norfluoxetine-resistant in Trek mutants, indicating that other channels may function in this role when TREK channels are deleted. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Kira A Spencer
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, 98105, USA
| | - Christian B Woods
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Hailey M Worstman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Applied Sciences, Translational Biosciences, Northumbria University, Ellison A521A, UK (current)
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98105, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, 98105, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, 98105, USA
| |
Collapse
|
5
|
Vavers E, Zvejniece L, Dambrova M. Sigma-1 receptor and seizures. Pharmacol Res 2023; 191:106771. [PMID: 37068533 PMCID: PMC10176040 DOI: 10.1016/j.phrs.2023.106771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; University of Tartu, Faculty of Science and Technology, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; Riga Stradiņš University, Faculty of Pharmacy, Konsula 21, LV-1007, Riga, Latvia
| |
Collapse
|
6
|
Dashti S, Nahavandi A. Neuroprotective effects of aripiprazole in stress-induced depressive-like behavior: Possible role of CACNA1C. J Chem Neuroanat 2022; 126:102170. [PMID: 36270562 DOI: 10.1016/j.jchemneu.2022.102170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Depression is the most common psychiatric disorder. Recently, aripiprazole, a novel antipsychotic drug, has been approved as the adjunctive therapy for the Treatment-Resistant Depression (TRD). However, the mechanisms underlying the antidepressant effects of aripiprazole are not fully known. Besides the involvement of calcium signaling dysregulations in the pathophysiology of depression, there is some evidence of overexpressed CACNA1C (the gene encoding the Cav1.2 channels) following chronic stress in the brain regions, which involved in emotional and stress responses. Based on the data indicating the aripiprazole's effects on intracellular calcium levels, this study aimed to investigate the mechanisms of therapeutic effects of aripiprazole, by a focus on the modulation of CACNA1C expression, in the rat stress-induced model of depression. METHODS Using Chronic Unpredictable Mild Stress (CUMS) model of depression, we examined the effects of aripiprazole on depressive and anxiety-like behaviors (by forced swimming test and elevated plus maze), serum IL-6 (Elisa), and cell survival (Nissl staining). In addition, CACNA1C, BDNF, and TrkB expression in the PFC and hippocampus (RT-qPCR), as well as BDNF and GAP-43 protein levels in the hippocampus (Immunohistofluorescence), have been assayed. RESULTS Our data indicated that aripiprazole could improve anxiety and depressive-like behaviors, decrease the serum levels of IL-6 and hippocampal cell death following CUMS. In addition, we showed the significant modulation on overexpressed CACNA1C, as well as downregulated BDNF and GAP-43 expression DISCUSSION: These results demonstrate that aripiprazole may promote synaptic plasticity by improving the expression of BDNF and gap-43. In addition, inflammation reduction and CACNA1C expression downregulation may be some of mechanisms by which aripiprazole alleviates chronic stress-induced hippocampal cell death and play its pivotal antidepressant role.
Collapse
Affiliation(s)
- Somayeh Dashti
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Arezo Nahavandi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
7
|
Brackley AD, Jeske NA. Paroxetine increases delta opioid responsiveness in sensory neurons. eNeuro 2022; 9:ENEURO.0063-22.2022. [PMID: 35882549 PMCID: PMC9347309 DOI: 10.1523/eneuro.0063-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022] Open
Abstract
There are currently no Food and Drug Administration (FDA)-approved delta opioid receptor (DOR)-selective agonists, despite having fewer side effects in rodents and non-human primates compared to traditional mu opioid receptor (MOR) therapeutics (Vanderah, 2010). Targeting peripheral receptors is an attractive strategy to reduce abuse potential. However, peripheral opioid receptors do not readily respond to agonists unless primed by inflammation, which would limit their efficacy in non-inflammatory pain patients (Stein et al., 1989). It was recently identified that G protein-coupled receptor kinase 2 (GRK2) maintains DOR incompetence in non-inflamed nociceptors (Brackley et al., 2016; Brackley et al., 2017). Here, we report that paroxetine, a selective serotonin reuptake inhibitor and potent GRK2 inhibitor (Thal et al., 2012), reduces chronic GRK2 association with membrane DOR, thereby enhancing peripheral DOR-mediated analgesic competence in the absence of inflammation. Interestingly, paroxetine's effects on GRK2 in vivo are limited to peripheral tissues in the male rat. The effects of paroxetine on DOR competence are notably antagonized by GRK2 overexpression. This is the first study to suggest that paroxetine induces peripheral DOR analgesic competence through a GRK2-dependent mechanism, improving analgesic efficacy in non-inflamed tissue. Because paroxetine targets the protein that governs peripheral opioid receptor responsiveness, and does so in the absence of inflammation, we propose that paroxetine may be suitable as a co-therapy with peripherally-restrictive doses of opioids to improve analgesic efficacy in non-inflammatory pain conditions.Significance StatementOpioids that target MOR represent the gold-standard for analgesic healthcare, despite widespread abuse potential and the ongoing opioid-epidemic. Work herein uncovers the therapeutic potential of targeting peripheral DOR for analgesic utility with an FDA-approved GRK2 inhibitor paroxetine to boost efficacy and reduce side effect profiles. Analgesic pain management targeting DOR with increased efficacy through adjuvant paroxetine treatment could reduce over-reliance on MOR agonist opioids for pain relief and usher in new options for analgesia.
Collapse
Affiliation(s)
| | - Nathaniel A Jeske
- Departments of Physiology, University of Texas Health San Antonio, TX, USA
- Oral and Maxillofacial Surgery, University of Texas Health San Antonio, TX, USA
- Pharmacology, University of Texas Health San Antonio, TX, USA
| |
Collapse
|
8
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
9
|
West EG, Sellers DJ, Chess-Williams R, McDermott C. The anxiolytic sertraline reduces the impact of psychological stress on bladder function in mice. Life Sci 2021; 278:119598. [PMID: 33984361 DOI: 10.1016/j.lfs.2021.119598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023]
Abstract
AIMS To determine if treatment with the selective serotonin reuptake inhibitor (SSRI) sertraline reduces the bladder dysfunction caused by water avoidance stress in mice. MAIN METHODS Adult female mice were randomly allocated to (1) Unstressed, (2) Stressed or (3) Stress + Sertraline experimental groups. Stressed mice were subjected to water avoidance for 1 h/day for 10 days and received sertraline or vehicle in drinking water, starting 10-days prior to the first stress exposure. Age matched control/unstressed mice were house under normal conditions without stress exposure. Voiding behaviour was assessed throughout the experimental protocol. After the final stress exposure, a blood sample was taken to measure plasma corticosterone levels and bladders were removed, catheterised and intravesical pressure responses recorded during distension and in response to pharmacological agents. KEY FINDINGS Plasma corticosterone levels in sertraline-treated animals were equivalent to unstressed controls and significantly decreased compared to the stressed group. Voiding frequency was significantly increased in the stressed group, and treatment with sertraline significantly decreased voiding frequency, however, this remained elevated compared to unstressed control animals. Bladders from stressed mice displayed enhanced maximal contractile response to the muscarinic agonist carbachol and greater release of ACh in the serosal fluid, which was reduced to control levels by sertraline treatment. Spontaneous phasic contractions were not altered by stress but were significantly reduced in bladders from sertraline treated animals, relative to controls. SIGNIFICANCE These results indicate that management of voiding dysfunction caused by psychological stress may be aided by the addition of an SSRI such as sertraline.
Collapse
Affiliation(s)
- Eliza G West
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia.
| |
Collapse
|
10
|
Nguyen TMD, Klett D, Combarnous Y. Fluoxetine affects cytosolic cAMP, ATP, Ca 2+ responses to forskolin, and survival of human ovarian granulosa tumor COV434 cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:189-195. [PMID: 33859059 PMCID: PMC8050605 DOI: 10.4196/kjpp.2021.25.3.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 01/07/2021] [Indexed: 12/03/2022]
Abstract
Fluoxetine (FLX), a selective serotonin reuptake inhibitor antidepressant, exhibits various other mechanisms of action in numerous cell types and has been shown to induce cell death in cancer cells, paving the way for its potential use in cancer therapy. The aim of this study was to determine the off-target effects of the anti-depressant drug FLX, on the human ovarian granulosa tumor COV434 cells stimulated by forskolin (FSK), by measuring the real-time kinetics of intracellular cyclic AMP (cAMP), ATP level, cytoplasmic calcium ([Ca2+]cyt) and survival of COV434 cells. We show that incubating COV434 cells with FLX (between 0.6 and 10 µM) induces a decrease in intracellular cAMP response to FSK, a drop in ATP content and stimulates cytoplasmic Ca2+ accumulation in COV434 cells. Only the highest concentrations of FLX (5–10 µM) diminished cell viability. The present report is the first to identify an action mechanism of FLX in human tumor ovarian cells COV434 cells and thus opening the way to potential use of fluoxetine as a complementary tool, in granulosa tumor treatments.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Physiologie de la Reproduction & des Comportements Laboratory, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique & Environnementale (INRAe), University of Tours, Nouzilly 37380, France.,Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 820000, Vietnam
| | - Danièle Klett
- Physiologie de la Reproduction & des Comportements Laboratory, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique & Environnementale (INRAe), University of Tours, Nouzilly 37380, France
| | - Yves Combarnous
- Physiologie de la Reproduction & des Comportements Laboratory, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique & Environnementale (INRAe), University of Tours, Nouzilly 37380, France
| |
Collapse
|
11
|
Liu W, Zhang R, Feng H, Zhu H. Fluoxetine tunes the abnormal hippocampal oscillations in association with cognitive impairments in 6-OHDA lesioned rats. Behav Brain Res 2021; 409:113314. [PMID: 33894299 DOI: 10.1016/j.bbr.2021.113314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Cognitive decline is a common clinical symptom in Parkinson's disease (PD) patients. Fluoxetine (FLU), a selective serotonin reuptake inhibitor, can improve cognitive deficits in demented patients. The present study investigated the effects of FLU on spatial learning and memory cognitions in 6-OHDA lesioned rats. Morris water maze (MWM) test showed that FLU significantly improved spatial cognitive deficits in rats with unilateral 6-OHDA injection at 4 and 7 weeks after 6-OHDA injection. Electrophysiological recordings demonstrated that the number and duration of high voltage spindles(HVSs)in the ipsilateral hippocampus of 6-OHDA lesioned rats were decreased by the administration of FLU. Furthermore, the spectral analysis of per frequency revealed increases in δ and θ rhythm power and decreases in α, β and γ rhythm power in the ipsilateral hippocampus of 6-OHDA lesioned rats in contrast to the saline-treated rats. Acute FLU treatment can reduce δ and θ rhythm power, and enhance α, β and γ rhythm power in the ipsilateral hippocampus of 6-OHDA lesioned rats. These findings suggest that FLU improves impaired cognition by tuning oscillatory activities in the hippocampus of 6-OHDA lesioned rats.
Collapse
Affiliation(s)
- Weitang Liu
- School of Life Science, Shanghai University, Shanghai, China
| | - Renxing Zhang
- School of Life Science, Shanghai University, Shanghai, China
| | - Hu Feng
- School of Life Science, Shanghai University, Shanghai, China
| | - Hongyan Zhu
- School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
12
|
Acute and chronic treatment with moclobemide, a reversible MAO-inhibitor, potentiates the antielectroshock activity of conventional antiepileptic drugs in mice. Pharmacol Biochem Behav 2021; 201:173110. [PMID: 33444604 DOI: 10.1016/j.pbb.2021.173110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Due to enhancing serotonergic and noradrenergic neurotransmission, moclobemide may influence seizure phenomena. In this study, we examined the effect of both acute and chronic treatment with moclobemide on seizures and the action of first-generation antiepileptic drugs: valproate, carbamazepine, phenobarbital and phenytoin. METHODS The effect of moclobemide on seizures was assessed in the electroconvulsive threshold test, while its influence on antiepileptic drugs was estimated in the maximal electroshock test in mice. Undesired effects were evaluated in the chimney test (motor impairment) and step-through passive-avoidance task (long-term memory deficits). Finally, brain concentrations of antiepileptics were determined by fluorescence polarization immunoassay. RESULTS Given acutely, moclobemide at 62.5 and 75 mg/kg increased the electroconvulsive threshold. In contrast, chronic treatment with moclobemide up to 75 mg/kg did not influence this parameter. Acute moclobemide applied at subthreshold doses (up to 50 mg/kg) enhanced the antielectroshock effects of carbamazepine, valproate and phenobarbital. Chronic moclobemide (37.5-75 mg/kg) increased the action of all four antiepileptic drugs. All revealed interactions, except these between moclobemide and phenobarbital, seem to have pharmacokinetic nature, because the antidepressant drug, either in acute or in chronic treatment, increased the brain concentrations of respective antiepileptic drugs. In terms of undesired neurotoxic effects, acute and chronic moclobemide, antiepileptic drugs, and their combinations did not produce significant motor or long-term memory impairment. CONCLUSIONS Acute and chronic therapy with moclobemide can increase the effectiveness of some antiepileptic drugs against the maximal electroshock test. In mice, this effect was, at least partially, due to pharmacokinetic interactions. So far as the results of experimental studies can be transferred to clinical conditions, moclobemide seems safe for the application in patients with epilepsy and depression. Possibly, in the case of certain antiepileptic drugs combined with moclobemide, their doses should be adjusted downwards.
Collapse
|
13
|
Wang W, Yin H, Feng N, Wang L, Wang X. Inhibitory effects of antidepressant fluoxetine on cloned Kv2.1 potassium channel expressed in HEK293 cells. Eur J Pharmacol 2020; 878:173097. [PMID: 32278853 DOI: 10.1016/j.ejphar.2020.173097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 11/15/2022]
Abstract
It is well demonstrated that antidepressant fluoxetine has significant inhibitory effects on voltage-gated potassium channels. So far, the concise regulation of fluoxetine on Kv2.1, the predominant delayed rectifier potassium channel subtype in the central nervous system, are rarely reported. Here patch-clamp recording was used to investigate the inhibitory effects of fluoxetine on Kv2.1 potassium channels stably expressed in HEK293 cells. The results showed fluoxetine dose-dependently suppressed Kv2.1 currents with an IC50 of 51.3 μM. At the test potential positive to +50 mV, fluoxetine 50 μM voltage-dependently suppressed Kv2.1 currents with an electrical distance δ of 0.28. Moreover, fluoxetine 50 μM did not affect the activation process of Kv2.1, but reduced the decay time constant τinact and obviously accelerated the inactivation process of Kv2.1 and left-shifted the half-maximal inactivation potential of Kv2.1 potassium channel by 9.8 mV. Fluoxetine 50 μM notably delayed the recovery process of Kv2.1 from inactivation with increased time constants. In addition, fluoxetine 50 μM use-dependently inhibited Kv2.1 currents at different frequencies. In conclusion, the inhibition of Kv2.1 by fluoxetine was concentration-dependent, voltage-dependent and use-dependent. The accelerated steady-state inactivation of Kv2.1 channels induced by fluoxetine might be ascribed to the delay of the recovery process of Kv2.1.
Collapse
Affiliation(s)
- Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huajing Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Feng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Hwang S, Kim JK. Fluoxetine Induces Apoptotic and Oxidative Neuronal Death Associated with The Influx of Copper Ions in Cultured Neuronal Cells. Chonnam Med J 2020; 56:20-26. [PMID: 32021838 PMCID: PMC6976768 DOI: 10.4068/cmj.2020.56.1.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
We examined the effect of fluoxetine, a selective serotonin reuptake inhibitor antidepressant, on neuronal viability in mouse cortical near-pure neuronal cultures. Addition of fluoxetine to the media for 24 hours induced neuronal death in a concentration-dependent manner. To delineate the mechanisms of fluoxetine-induced neuronal death, we investigated the effects of trolox, cycloheximide (CHX), BDNF, z-VAD-FMK, and various metal-chelators on fluoxetine-induced neuronal death. Neuronal death was assessed by MTT assay. The addition of 20 µM fluoxetine to the media for 24 hours induced 60–70% neuronal death, which was associated with the hallmarks of apoptosis, chromatin condensation and DNA laddering. Fluoxetine-induced death was significantly attenuated by CHX, BDNF, or z-VAD-FMK. Treatment with antioxidants, trolox and ascorbate, also markedly attenuated fluoxetine-induced death. Interestingly, some divalent cation chelators (EGTA, Ca-EDTA, and Zn-EDTA) also markedly attenuated the neurotoxicity. Fluoxetine-induced reactive oxygen species (ROS) generation was measured using the fluorescent dye 2′,7′-dichlorofluorescin diacetate. Trolox and bathocuproine disulfonic acid (BCPS), a cell membrane impermeable copper ion chelator, markedly attenuated the ROS production and neuronal death. However, deferoxamine, an iron chelator, did not affect ROS generation or neurotoxicity. We examined the changes in intracellular copper concentration using a copper-selective fluorescent dye, Phen Green FL, which is quenched by free copper ions. Fluoxetine quenched the fluorescence in neuronal cells, and the quenching effect of fluoxetine was reversed by co-treatment with BCPS, however, not by deferoxamine. These findings demonstrate that fluoxetine could induce apoptotic and oxidative neuronal death associated with an influx of copper ions.
Collapse
Affiliation(s)
- Shinae Hwang
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| | - Jong-Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
15
|
Grotthus B, Szeląg A. The Effect of Sertraline on Hemodynamic Parameters and Nitric Oxide Production in Isolated Rat Hearts Subjected to Ischemia and Reperfusion. J Exp Pharmacol 2019; 11:149-158. [PMID: 31920405 PMCID: PMC6934109 DOI: 10.2147/jep.s209085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of the study was to investigate the effect of sertraline on the rat heart during ischemia and reperfusion and to determine its effect on NO production. Materials and methods The study was performed on isolated rat hearts. Hearts from three groups were perfused with sertraline at three different concentrations and subjected to global ischemia and reperfusion. Hearts from the other three groups were perfused with the same concentrations of sertraline but without the ischemia/reperfusion process. Two control groups were perfused with the Krebs-Henseleit solution only with and without ischemia/reperfusion process. Coronary flow (CF), heart rate (HR), left ventricular developed pressure (LVDP) and maximum rate of rise of left ventricular pressure (dP/dt max) were measured. Perfusate effluent was collected to determine creatine phosphokinase (CPK) and nitrate plus nitrite (NOx) levels. Results In non-ischemic groups, sertraline at the concentration of 10 μmol/L exerts a strong vasodilatory effect on CF, and after a short positive inotropic effect, it exerts a strong inotropic and chronotropic negative effect on isolated rat hearts and causes a direct damage to cardiomyocytes. At the concentration of 1 μmol/L, sertraline exerts an increasing negative inotropic effect. There were no hemodynamic differences between any of groups of hearts subjected to reperfusion. Sertraline had no effect on the nitric oxide concentration in coronary effluent neither in rat hearts subjected to ischemia/reperfusion nor in non-ischemic conditions. Conclusion Sertraline at dose 10 μmol/L exerts a strong vasodilatory effect on coronary flow, and after a short positive inotropic effect, it exerts a strong negative effect on isolated rat hearts, causing a direct damage to cardiomyocytes. Sertraline had no effect on the nitric oxide concentration in coronary effluent.
Collapse
Affiliation(s)
- Bartosz Grotthus
- Department of Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Bezerra MS, Martins ABM, Trajano FMG, Pontes THDA, Gomes LTDC, Gavioli EC, Silva Junior EDD. Fluoxetine and sertraline effects on rat distal cauda epididymis contraction, sperm count and sperm transit time trough epididymis. Eur J Pharmacol 2019; 865:172774. [DOI: 10.1016/j.ejphar.2019.172774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023]
|
17
|
Ungvari Z, Tarantini S, Yabluchanskiy A, Csiszar A. Potential Adverse Cardiovascular Effects of Treatment With Fluoxetine and Other Selective Serotonin Reuptake Inhibitors (SSRIs) in Patients With Geriatric Depression: Implications for Atherogenesis and Cerebromicrovascular Dysregulation. Front Genet 2019; 10:898. [PMID: 31616477 PMCID: PMC6764114 DOI: 10.3389/fgene.2019.00898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Late life depression is an important public health problem, which associates with increased risk of morbidity and mortality. Selective serotonin reuptake inhibitors (SSRIs), including fluoxetine, are often prescribed to treat geriatric depression. There is increasing evidence that fluoxetine and other SSRIs exert a wide range of cardiovascular side effects. Furthermore, there is evidence that aging may increase plasma level of SSRIs. In this overview, the potential role of side effects of treatment with fluoxetine and other SSRIs in the pathogenesis of age-related cardiovascular diseases, including atherogenesis, cardiac pathologies, and cerebromicrovascular impairment, is discussed.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Fluoxetine Suppresses Glutamate- and GABA-Mediated Neurotransmission by Altering SNARE Complex. Int J Mol Sci 2019; 20:ijms20174247. [PMID: 31480244 PMCID: PMC6747167 DOI: 10.3390/ijms20174247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder is one of the most common neuropsychiatric disorders worldwide. The treatment of choice that shows good efficacy in mood stabilization is based on selective serotonin reuptake inhibitors (SSRIs). Their primary mechanism of action is considered to be the increased synaptic concentration of serotonin through blockade of the serotonin transporter (SERT). In this study, we described an alternative mode of action of fluoxetine (FLX), which is a representative member of the SSRI class of antidepressants. We observed that FLX robustly decreases both glutamatergic and gamma-Aminobutyric acid (GABA)-ergic synaptic release in a SERT-independent manner. Moreover, we showed that this effect may stem from the ability of FLX to change the levels of main components of the SNARE (solubile N-ethylmaleimide-sensitive factor attachment protein receptor) complex. Our data suggest that this downregulation of SNARE fusion machinery involves diminished activity of protein kinase C (PKC) due to FLX-induced blockade of P/Q type of voltage-gated calcium channels (VGCCs). Taken together, by virtue of its inhibition at SERT, fluoxetine increases extracellular serotonin levels; however, at the same time, by reducing SNARE complex function, this antidepressant reduces glutamate and GABA release.
Collapse
|
19
|
Lacidipine attenuates reserpine-induced depression-like behavior and oxido-nitrosative stress in mice. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1265-1275. [DOI: 10.1007/s00210-019-01667-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
20
|
Fischer RA, Roux AL, Wareham LK, Sappington RM. Pressure-dependent modulation of inward-rectifying K + channels: implications for cation homeostasis and K + dynamics in glaucoma. Am J Physiol Cell Physiol 2019; 317:C375-C389. [PMID: 31166711 DOI: 10.1152/ajpcell.00444.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glaucoma is the leading cause of blindness worldwide, resulting from degeneration of retinal ganglion cells (RGCs), which form the optic nerve. Prior to structural degeneration, RGCs exhibit physiological deficits. Müller glia provide homeostatic regulation of ions that supports RGC physiology through a process called K+ siphoning. Recent studies suggest that several retinal conditions, including glaucoma, involve changes in the expression of K+ channels in Müller glia. To clarify whether glaucoma-related stressors directly alter expression and function of K+ channels in Müller glia, we examined changes in the expression of inwardly rectifying K+ (Kir) channels and two-pore domain (K2P) channels in response to elevated intraocular pressure (IOP) in vivo and in vitro in primary cultures of Müller glia exposed to elevated hydrostatic pressure. We then measured outcomes of cell health, cation homeostasis, and cation flux in Müller glia cultures. Transcriptome analysis in a murine model of microbead-induced glaucoma revealed pressure-dependent downregulation of Kir and K2P channels in vivo. Changes in the expression and localization of Kir and K2P channels in response to elevated pressure were also found in Müller glia in vitro. Finally, we found that elevated pressure compromises the plasma membrane of Müller glia and induces cation dyshomeostasis that involves changes in ion flux through cation channels. Pressure-induced changes in cation flux precede both cation dyshomeostasis and membrane compromise. Our findings have implications for Müller glia responses to pressure-related conditions, i.e., glaucoma, and identify cation dyshomeostasis as a potential contributor to electrophysiological impairment observed in RGCs of glaucomatous retina.
Collapse
Affiliation(s)
- Rachel A Fischer
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Abigail L Roux
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rebecca M Sappington
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
21
|
Inhibition by fluoxetine of LH-stimulated cyclic AMP synthesis in tumor Leydig cells partly involves AMPK activation. PLoS One 2019; 14:e0217519. [PMID: 31163038 PMCID: PMC6548379 DOI: 10.1371/journal.pone.0217519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Fluoxetine (FLX), a widely used antidepressant primarily acting as a selective serotonin reuptake inhibitor (SSRI), has been shown to exhibit other mechanisms of action in various cell types. Consequently, it might have unexpected adverse effects not related to its intended use, possibly in the endocrine regulation of reproduction. We show in the present report that after a 1-hour preincubation of MLTC-1 Leydig cells with FLX, the intracellular cyclic adenosine monophosphate (cAMP) responses to Luteinizing Hormone (LH) and forskolin (FSK) are reduced through AMPK-dependent and -independent pathways respectively. FLX at low concentrations (12.5μM and 25μM) induced this inhibition without triggering AMPK phosphorylation, while higher FLX concentrations (50μM and 100μM) induced AMPK phosphorylation and lowered ATP concentration similarly to Metformin. Pretreatment with the specific AMPK inhibitor Compound C (CpdC), significantly diminished the inhibition of cAMP synthesis caused by high concentration of FLX. Moreover, as expected FLX also caused a decline of steroidogenesis which is under the control of cAMP. Taken together, these findings demonstrate that the inhibition of cAMP synthesis by FLX is dose-dependent and occurs in MLTC-1 cells through two mechanisms, AMPK-independent and AMPK-dependent, at low and high concentrations, respectively. FLX also inhibited hormone-induced steroidogenesis in MLTC-1 cells and mouse testicular Leydig cells, suggesting similar mechanisms in both cell types.
Collapse
|
22
|
Aygun H. The effect of fluoxetine on penicillin-induced epileptiform activity. Epilepsy Behav 2019; 95:79-86. [PMID: 31026788 DOI: 10.1016/j.yebeh.2019.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
AIM Depression is the most frequent psychiatric comorbidity in patients with epilepsy. Fluoxetine is the most widely used selective serotonin reuptake inhibitor (SSRI) in depression. The aim of the present study was to evaluate the dose-dependent effect of fluoxetine on penicillin-induced seizure by electrocorticogram (ECoG), a model for simple partial epilepsy. METHOD The epileptiform activity was induced by intracortical (i.c.) microinjection of penicillin into the left sensorimotor cortex. Thirty minutes after penicillin injection, 5, 10, or 20 mg/kg doses of fluoxetine were administered intraperitoneally (i.p.). An ECoG recording was performed for 180 min using the data acquisition system. The frequency and the amplitude of the epileptiform activity were analyzed. RESULTS Penicillin induced bilateral spikes and spike-wave complexes within 2-5 min. The 5 and 10 mg/kg doses of fluoxetine significantly reduced the frequency (58%, p < 0.05 and 69%, p < 0.01, 40 and 50 min after fluoxetine injection, respectively) and amplitude (60%, p < 0.01 and 73%, p < 0.05, 40 and 120 min after fluoxetine injection, respectively) of epileptiform activity compared with penicillin-induced seizure group (control). Five-milligram fluoxetine (i.p.) was the most effective dose to decrease frequency and amplitude on penicillin-induced epileptiform activity. However, a higher fluoxetine dose (20 mg/kg) significantly increased frequency (147%, p < 0.01) and amplitude (123%, p < 0.05) of epileptiform activity 40 and 120 min after fluoxetine administration compared with control group. Also, bursts of population spikes were seen in 20 mg/kg fluoxetine doses. CONCLUSION Results of the present study indicate that low and moderate fluoxetine doses have an anticonvulsant effect while high doses have proconvulsant effect on penicillin-induced epileptic activity.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey.
| |
Collapse
|
23
|
Nikolaev MV, Komarova MS, Tikhonova TB, Korosteleva AS, Potapjeva NN, Tikhonov DB. Modulation of Proton-Gated Channels by Antidepressants. ACS Chem Neurosci 2019; 10:1636-1648. [PMID: 30475579 DOI: 10.1021/acschemneuro.8b00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The chemical structures of some antidepressants are similar to those of recently described amine-containing ligands of acid-sensing ion channels (ASICs). ASICs are expressed in brain neurons and participate in numerous CNS functions. As such, they can be related to antidepressant action or side effects. We therefore studied the actions of a series of antidepressants on recombinant ASIC1a and ASIC2a and on native ASICs in rat brain neurons. Most of the tested compounds prevented steady-state ASIC1a desensitization evoked by conditioning acidification to pH 7.1. Amitriptyline also potentiated ASIC1a responses evoked by pH drops from 7.4 to 6.5. We conclude that amitriptyline has a twofold effect: it shifts activation to less acidic values while also shifting steady-state desensitization to more acidic values. Chlorpromazine, desipramine, amitriptyline, fluoxetine, and atomoxetine potentiated ASIC2a response. Tianeptine caused strong inhibition of ASIC2a. Both potentiation and inhibition of ASIC2a were accompanied by the slowdown of desensitization, suggesting distinct mechanisms of action on activation and desensitization. In experiments on native heteromeric ASICs, tianeptine and amitriptyline demonstrated the same modes of action as on ASIC2a although with reduced potency.
Collapse
Affiliation(s)
- Maxim V. Nikolaev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Margarita S. Komarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Tatiana B. Tikhonova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Anastasia S. Korosteleva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Natalia N. Potapjeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Denis B. Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| |
Collapse
|
24
|
Alboghobeish S, Naghizadeh B, Kheirollah A, Ghorbanzadeh B, Mansouri MT. Fluoxetine increases analgesic effects of morphine, prevents development of morphine tolerance and dependence through the modulation of L-type calcium channels expression in mice. Behav Brain Res 2018; 361:86-94. [PMID: 30550947 DOI: 10.1016/j.bbr.2018.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
Here, we aimed to investigate the effects of fluoxetine on morphine-induced analgesia, as well as preventive effects of it on morphine induced tolerance and dependence in mice. We also elucidate the involvement of L-type Ca2+ channels in these phenomena. To induce morphine tolerance, mice were treated with morphine (50 mg/kg) for 3 consecutive days. To evaluate the involvement of the calcium channel in the effects of fluoxetine (5, 20 mg/kg), combination ineffective doses of the two L-type calcium channel blockers, nimodipine (5 mg/kg) or diltiazem (20 mg/kg) with flouxetine were used with each morphine dose. Nociceptive behavior was evaluated using hot-plate test, while physical dependence assessed by naloxone-precipitated withdrawal on the fourth day of experiment. The expression of Cav1.2 and Cav1.3 subunits of the L-type calcium channels in cortex and mesolimbic tissues were measured using western immunoassay. Results showed that co-administration of fluoxetine (20 mg/kg) with morphine increased its acute analgesia effect and prevented the induction of morphine antinociceptive tolerance and physical dependence in mice. Moreover, these effects was potentiated by pre-treatment with diltiazem or nimodipine. Results also showed up-regulation of the Cav1.3 and Cav1.2 expression in the cerebral cortex and mesolimbic regions through the development of morphine dependence. Moreover, chronic administration of fluoxetine with morphine reduced the observed up-regulation of Cav1.3 and Cav1.2 expression in cortex and mesolimbic tissues. Our data indicated that co-administering of fluoxetine with morphine could potentiate the antinociceptive effect of morphine, prevent morphine analgesia tolerance and attenuated the morphine withdrawal signs during induction phases. Moreover, we also pointed out for the first time the role of L-type Ca2+ channel channels in the modulatory effects of fluoxetine on the morphine-related effects.
Collapse
Affiliation(s)
- Soheila Alboghobeish
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahareh Naghizadeh
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Cellular &Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohammad Taghi Mansouri
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Neuroanesthesia Laboratory, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
25
|
Normann C, Frase S, Haug V, von Wolff G, Clark K, Münzer P, Dorner A, Scholliers J, Horn M, Vo Van T, Seifert G, Serchov T, Biber K, Nissen C, Klugbauer N, Bischofberger J. Antidepressants Rescue Stress-Induced Disruption of Synaptic Plasticity via Serotonin Transporter-Independent Inhibition of L-Type Calcium Channels. Biol Psychiatry 2018; 84:55-64. [PMID: 29174591 DOI: 10.1016/j.biopsych.2017.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. METHODS We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca2+) channels in heterologous expression systems were used to determine the modulation of Ca2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. RESULTS SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. CONCLUSIONS These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression.
Collapse
Affiliation(s)
- Claus Normann
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.
| | - Sibylle Frase
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Verena Haug
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Gregor von Wolff
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Kristin Clark
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Patrick Münzer
- Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Alexandra Dorner
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Jonas Scholliers
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Max Horn
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Tanja Vo Van
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Gabriel Seifert
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Knut Biber
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Christoph Nissen
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Norbert Klugbauer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
26
|
Eagle AL, Williams ES, Beatty JA, Cox CL, Robison AJ. ΔFosB Decreases Excitability of Dorsal Hippocampal CA1 Neurons. eNeuro 2018; 5:ENEURO.0104-18.2018. [PMID: 30079375 PMCID: PMC6073980 DOI: 10.1523/eneuro.0104-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 02/03/2023] Open
Abstract
Both the function of hippocampal neurons and hippocampus-dependent behaviors are dependent on changes in gene expression, but the specific mechanisms that regulate gene expression in hippocampus are not yet fully understood. The stable, activity-dependent transcription factor ΔFosB plays a role in various forms of hippocampal-dependent learning and in the structural plasticity of synapses onto CA1 neurons. The authors examined the consequences of viral-mediated overexpression or inhibition of ΔFosB on the function of adult mouse hippocampal CA1 neurons using ex vivo slice whole-cell physiology. We found that the overexpression of ΔFosB decreased the excitability of CA1 pyramidal neurons, while inhibition increased excitability. Interestingly, these manipulations did not affect resting membrane potential or spike frequency adaptation, but ΔFosB overexpression reduced hyperpolarization-activated current. Both ΔFosB overexpression and inhibition decreased spontaneous excitatory postsynaptic currents, while only ΔFosB inhibition affected the AMPA/NMDA ratio, which was mediated by decreased NMDA receptor current, suggesting complex effects on synaptic inputs to CA1 that may be driven by homeostatic cell-autonomous or network-driven adaptations to the changes in CA1 cell excitability. Because ΔFosB is induced in hippocampus by drugs of abuse, stress, or antidepressant treatment, these results suggest that ΔFosB-driven changes in hippocampal cell excitability may be critical for learning and, in maladaptive states, are key drivers of aberrant hippocampal function in diseases such as addiction and depression.
Collapse
Affiliation(s)
- Andrew L Eagle
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
| | - Elizabeth S Williams
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
| | - Joseph A Beatty
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
| | - Charles L Cox
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
| | - Alfred J Robison
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
27
|
da Rocha AM, Campbell K, Mironov S, Jiang J, Mundada L, Guerrero-Serna G, Jalife J, Herron TJ. hiPSC-CM Monolayer Maturation State Determines Drug Responsiveness in High Throughput Pro-Arrhythmia Screen. Sci Rep 2017; 7:13834. [PMID: 29061979 PMCID: PMC5653750 DOI: 10.1038/s41598-017-13590-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 01/26/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) offer a novel in vitro platform for pre-clinical cardiotoxicity and pro-arrhythmia screening of drugs in development. To date hiPSC-CMs used for cardiotoxicity testing display an immature, fetal-like cardiomyocyte structural and electrophysiological phenotype which has called into question the applicability of hiPSC-CM findings to the adult heart. The aim of the current work was to determine the effect of cardiomyocyte maturation state on hiPSC-CM drug responsiveness. To this end, here we developed a high content pro-arrhythmia screening platform consisting of either fetal-like or mature hiPSC-CM monolayers. Compounds tested in the screen were selected based on the pro-arrhythmia risk classification (Low risk, Intermediate risk, or High risk) established recently by the FDA and major stakeholders in the Drug Discovery field for the validation of the Comprehensive In vitro Pro-Arrhythmia Assay (CiPA). Here we show that maturation state of hiPSC-CMs determines the absolute pro-arrhythmia risk score calculated for these compounds. Thus, the maturation state of hiPSC-CMs should be considered prior to pro-arrhythmia and cardiotoxicity screening in drug discovery programs.
Collapse
Affiliation(s)
- André Monteiro da Rocha
- University of Michigan, Internal Medicine-Cardiology, Center for Arrhythmia Research, Ann Arbor, MI, 48109, USA.,Frankel Cardiovascular Center, Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katherine Campbell
- University of Michigan, Internal Medicine-Cardiology, Center for Arrhythmia Research, Ann Arbor, MI, 48109, USA
| | - Sergey Mironov
- University of Michigan, Internal Medicine-Cardiology, Center for Arrhythmia Research, Ann Arbor, MI, 48109, USA
| | - Jiang Jiang
- University of Michigan, Internal Medicine-Cardiology, Center for Arrhythmia Research, Ann Arbor, MI, 48109, USA
| | - Lakshmi Mundada
- University of Michigan, Internal Medicine-Cardiology, Center for Arrhythmia Research, Ann Arbor, MI, 48109, USA
| | - Guadalupe Guerrero-Serna
- University of Michigan, Internal Medicine-Cardiology, Center for Arrhythmia Research, Ann Arbor, MI, 48109, USA
| | - José Jalife
- University of Michigan, Internal Medicine-Cardiology, Center for Arrhythmia Research, Ann Arbor, MI, 48109, USA.,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain.,CIBER of Cardiovascular Diseases (CIBERCV), ISCIII, Madrid, Spain
| | - Todd J Herron
- University of Michigan, Internal Medicine-Cardiology, Center for Arrhythmia Research, Ann Arbor, MI, 48109, USA. .,Frankel Cardiovascular Center, Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Sun DS, Gao LF, Jin L, Wu H, Wang Q, Zhou Y, Fan S, Jiang X, Ke D, Lei H, Wang JZ, Liu GP. Fluoxetine administration during adolescence attenuates cognitive and synaptic deficits in adult 3×TgAD mice. Neuropharmacology 2017; 126:200-212. [PMID: 28911966 DOI: 10.1016/j.neuropharm.2017.08.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 02/04/2023]
Abstract
Fluoxetine (FLX) has broad neurobiological functions and neuroprotective effects; however, the preventive effects of FLX on cognitive impairments in Alzheimer's disease (AD) have not been reported. Here, we studied whether adolescent administration of fluoxetine can prevent memory deficits in AD transgenic mice that harbour PS1m146v, APPswe and TauP301L mutations (3 × TgAD). FLX was applied through peritoneal injection to the mice at postnatal day 35 (p35) for 15 consecutive days, and the effects of FLX were observed at 6-month. We found that adolescent administration of FLX improved learning and memory abilities in 6-month-old 3 × TgAD mice. FLX exposure also increased the sizes of the hippocampal CA1, dentate gyrus (DG) and extensive cortex regions, with increased numbers of neurons and higher dendritic spine density. Meanwhile, the synaptic plasticity of neurons in the hippocampus was remodelled, and the expression levels of synaptic-related proteins were increased along with activation of the cyclic AMP response element-binding (CREB) protein/brain-derived neurotrophic factor (BDNF) signalling pathway. Finally, we found that FLX effectively prevented the increase of beta-amyloid (Aβ) levels. These data suggest that adolescent administration of the antidepressant drug FLX can efficiently preserve cognitive functions and improve pathologies in 3×Tg AD mice.
Collapse
Affiliation(s)
- Dong-Sheng Sun
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Feng Gao
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Li Jin
- Department of Pathophysiology, Henan Medical College, Zhengzhou 451191, China; Henan Key Laboratory of Degenerative Brain Disease, Henan Medical College, Zhengzhou 451191, China
| | - Hao Wu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - You Zhou
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Shuhao Fan
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xia Jiang
- Department of Pathology, Hubei University of Chinese Medicine, Wuhan 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong JS 226001, China.
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong JS 226001, China.
| |
Collapse
|
29
|
Rozas JL, Goitia B, Bisagno V, Urbano FJ. Differential alterations of intracellular [Ca 2+] dynamics induced by cocaine and methylphenidate in thalamocortical ventrobasal neurons. ACTA ACUST UNITED AC 2017; 2. [PMID: 28920083 DOI: 10.15761/tbr.1000114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ventrobasal (VB) thalamus relay nucleus processes information from rodents' whiskers, projecting to somatosensory cortex. Cocaine and methylphenidate (MPH) have been described to differentially alter intrinsic properties of, and spontaneous GABAergic input to, VB neurons. Here we studied using bis-fura 2 ratiometric fluorescence the effects of cocaine and MPH on intracellular [Ca2+] dynamics at the soma and dendrites of VB neurons. Cocaine increased baseline fluorescence in VB somatic and dendritic compartments. Peak and areas of fluorescence amplitudes were reduced by cocaine binge treatment in somas and dendrites at different holding potentials. MPH binge treatment did not alter ratiometric fluorescence at either somatic or dendritic levels. These novel cocaine-mediated blunting effects on intracellular [Ca2+] might account for alterations in the capacity of thalamocortical neurons to maintain gamma band oscillations, as well as their ability to integrate synaptic afferents.
Collapse
Affiliation(s)
- José L Rozas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Ciudad Autónoma de Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Autónoma de Buenos Aires
| | - Belén Goitia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Ciudad Autónoma de Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Autónoma de Buenos Aires
| | - Verónica Bisagno
- Universidad de Buenos Aires, Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco J Urbano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Ciudad Autónoma de Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Autónoma de Buenos Aires
| |
Collapse
|
30
|
Yue JK, Burke JF, Upadhyayula PS, Winkler EA, Deng H, Robinson CK, Pirracchio R, Suen CG, Sharma S, Ferguson AR, Ngwenya LB, Stein MB, Manley GT, Tarapore PE. Selective Serotonin Reuptake Inhibitors for Treating Neurocognitive and Neuropsychiatric Disorders Following Traumatic Brain Injury: An Evaluation of Current Evidence. Brain Sci 2017; 7:E93. [PMID: 28757598 PMCID: PMC5575613 DOI: 10.3390/brainsci7080093] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 01/15/2023] Open
Abstract
The prevalence of neuropsychiatric disorders following traumatic brain injury (TBI) is 20%-50%, and disorders of mood and cognition may remain even after recovery of neurologic function is achieved. Selective serotonin reuptake inhibitors (SSRI) block the reuptake of serotonin in presynaptic cells to lead to increased serotonergic activity in the synaptic cleft, constituting first-line treatment for a variety of neurocognitive and neuropsychiatric disorders. This review investigates the utility of SSRIs in treating post-TBI disorders. In total, 37 unique reports were consolidated from the Cochrane Central Register and PubMed (eight randomized-controlled trials (RCTs), nine open-label studies, 11 case reports, nine review articles). SSRIs are associated with improvement of depressive but not cognitive symptoms. Pooled analysis using the Hamilton Depression Rating Scale demonstrate a significant mean decrease of depression severity following sertraline compared to placebo-a result supported by several other RCTs with similar endpoints. Evidence from smaller studies demonstrates mood improvement following SSRI administration with absent or negative effects on cognitive and functional recovery. Notably, studies on SSRI treatment effects for post-traumatic stress disorder after TBI remain absent, and this represents an important direction of future research. Furthermore, placebo-controlled studies with extended follow-up periods and concurrent biomarker, neuroimaging and behavioral data are necessary to delineate the attributable pharmacological effects of SSRIs in the TBI population.
Collapse
Affiliation(s)
- John K Yue
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - John F Burke
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Department of Psychiatry, University of California, San Diego, CA 92093, USA.
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Hansen Deng
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Caitlin K Robinson
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Romain Pirracchio
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Catherine G Suen
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Department of Neurology, University of Utah School of Medicine, Salt Lake, UT 84112, USA.
| | - Sourabh Sharma
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA.
| | - Adam R Ferguson
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | - Laura B Ngwenya
- Department of Neurological Surgery, University of Cincinnati, Cincinnati, OH 45220, USA.
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, CA 92093, USA.
- Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| | - Phiroz E Tarapore
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110, USA.
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA.
| |
Collapse
|
31
|
Serotonin and Antidepressant SSRIs Inhibit Rat Neuroendocrine Dopamine Neurons: Parallel Actions in the Lactotrophic Axis. J Neurosci 2017; 36:7392-406. [PMID: 27413150 DOI: 10.1523/jneurosci.4061-15.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/24/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed for depression, but sexual side effects often compromise compliance. These reproductive dysfunctions are likely mediated by elevations of the hormone prolactin. Yet, how serotonin (5-HT) and SSRIs cause changes in prolactin secretion is not known. Here, using in vitro whole-cell patch-clamp recordings, we show that 5-HT hyperpolarizes and abolishes phasic discharge in rat neuroendocrine tuberoinfundibular dopamine (TIDA) neurons, the main inhibitor of prolactin secretion. This process is underpinned by 5-HT1A receptor-mediated activation of G-protein-coupled inwardly rectifying K(+)-like currents. We further demonstrate that the SSRIs, fluoxetine and sertraline, directly suppress TIDA neuron activity through parallel effects, independent of 5-HT transmission. This inhibition involves decreased intrinsic excitability and a slowing of TIDA network rhythms. These findings indicate that SSRIs may inhibit neuroendocrine dopamine release through both 5-HT-dependent and -independent actions, providing a mechanistic explanation for, and potential molecular targets for the amelioration of, the hyperprolactinemia and sexual dysfunction associated with these drugs. SIGNIFICANCE STATEMENT Depression affects approximately one-tenth of the population and is commonly treated with selective serotonin reuptake inhibitors (SSRIs; e.g., Prozac). Yet, many patients withdraw from SSRI therapy due to sexual side effects (e.g., infertility, menstrual disturbances, and impotence). Although it is generally accepted that sexual side effects are due to the ability of these drugs to elevate blood levels of the hormone prolactin, the mechanism for this hormonal imbalance is not known. Here, we show that SSRIs can inhibit hypothalamic dopamine neurons that normally suppress the secretion of prolactin. Intriguingly this inhibition can be explained both by increased serotonin activity and also by parallel serotonin-independent actions.
Collapse
|
32
|
Jeong I, Yang JS, Hong YJ, Kim HJ, Hahn SJ, Yoon SH. Dapoxetine induces neuroprotective effects against glutamate-induced neuronal cell death by inhibiting calcium signaling and mitochondrial depolarization in cultured rat hippocampal neurons. Eur J Pharmacol 2017; 805:36-45. [PMID: 28322832 DOI: 10.1016/j.ejphar.2017.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 12/28/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have an inhibitory effect on various ion channels including Ca2+ channels. We used fluorescent dye-based digital imaging, whole-cell patch clamping and cytotoxicity assays to examine whether dapoxetine, a novel rapid-acting SSRI, affect glutamate-induced calcium signaling, mitochondrial depolarization and neuronal cell death in cultured rat hippocampal neurons. Pretreatment with dapoxetine for 10min inhibited glutamate-induced intracellular free Ca2+ concentration ([Ca2+]i) increases in a concentration-dependent manner (Half maximal inhibitory concentration=4.79µM). Dapoxetine (5μM) markedly inhibited glutamate-induced [Ca2+]i increases, whereas other SSRIs such as fluoxetine and citalopram only slightly inhibited them. Dapoxetine significantly inhibited the glutamate-induced [Ca2+]i responses following depletion of intracellular Ca2+ stores by treatment with thapsigargin. Dapoxetine markedly inhibited the metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine-induced [Ca2+]i increases. Dapoxetine significantly inhibited the glutamate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced [Ca2+]i responses in either the presence or absence of nimodipine. Dapoxetine also significantly inhibited AMPA-evoked currents. However, dapoxetine slightly inhibited N-methyl-D-aspartate (NMDA)-induced [Ca2+]i increases. Dapoxetine markedly inhibited 50mMK+-induced [Ca2+]i increases. Dapoxetine significantly inhibited glutamate-induced mitochondrial depolarization. In addition, dapoxetine significantly inhibited glutamate-induced neuronal cell death and its neuroprotective effect was significantly greater than fluoxetine. These data suggest that dapoxetine reduces glutamate-induced [Ca2+]i increases by inhibiting multiple pathways mainly through AMPA receptors, voltage-gated L-type Ca2+ channels and metabotropic glutamate receptors, which are involved in neuroprotection against glutamate-induced cell death through mitochondrial depolarization.
Collapse
Affiliation(s)
- Imju Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| | - Ji Seon Yang
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea; Catholic Neuroscience Institute, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| | - Yi Jae Hong
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, South Korea.
| | - Sang June Hahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea; Catholic Neuroscience Institute, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea; Catholic Neuroscience Institute, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, South Korea.
| |
Collapse
|
33
|
Ortuño MJ, Robinson ST, Subramanyam P, Paone R, Huang YY, Guo XE, Colecraft HM, Mann JJ, Ducy P. Serotonin-reuptake inhibitors act centrally to cause bone loss in mice by counteracting a local anti-resorptive effect. Nat Med 2016; 22:1170-1179. [PMID: 27595322 PMCID: PMC5053870 DOI: 10.1038/nm.4166] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
The use of selective serotonin-reuptake inhibitors (SSRIs) has been associated with an increased risk of bone fracture, raising concerns about their increasingly broader usage. This deleterious effect is poorly understood, and thus strategies to avoid this side effect remain elusive. We show here that fluoxetine (Flx), one of the most-prescribed SSRIs, acts on bone remodeling through two distinct mechanisms. Peripherally, Flx has anti-resorptive properties, directly impairing osteoclast differentiation and function through a serotonin-reuptake-independent mechanism that is dependent on intracellular Ca2+ levels and the transcription factor Nfatc1. With time, however, Flx also triggers a brain-serotonin-dependent rise in sympathetic output that increases bone resorption sufficiently to counteract its local anti-resorptive effect, thus leading to a net effect of impaired bone formation and bone loss. Accordingly, neutralizing this second mode of action through co-treatment with the β-blocker propranolol, while leaving the peripheral effect intact, prevents Flx-induced bone loss in mice. Hence, this study identifies a dual mode of action of SSRIs on bone remodeling and suggests a therapeutic strategy to block the deleterious effect on bone homeostasis from their chronic use.
Collapse
Affiliation(s)
- María José Ortuño
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Samuel T. Robinson
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Riccardo Paone
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Yung-yu Huang
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - J. John Mann
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Patricia Ducy
- Department of Pathology & Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
de Oliveira MR. Fluoxetine and the mitochondria: A review of the toxicological aspects. Toxicol Lett 2016; 258:185-191. [PMID: 27392437 DOI: 10.1016/j.toxlet.2016.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022]
Abstract
Fluoxetine (a selective serotonin reuptake inhibitor (SSRI)) is used as an antidepressant by modulating the levels of serotonin in the synaptic cleft. Nevertheless, fluoxetine also induces undesirable effects, such as anxiety, sexual dysfunction, sleep disturbances, and gastrointestinal impairments. Fluoxetine has been viewed as an agent that may interfere with cell fate by triggering apoptosis. On the other hand, fluoxetine intake has been associated with increased cancer risk. Nonetheless, data remain contradictory and no conclusions were taken. Several studies demonstrated that fluoxetine interacts with mitochondria triggering apoptosis and/or altering mitochondrial function by modulating the activity of respiratory chain components and enzymes of the Krebs cycle. Furthermore, fluoxetine affects mitochondria-related redox parameters in different experimental models. In this review, data demonstrating the effects of fluoxetine upon mammalian mitochondria are described and discussed, as well as several unsolved questions in this field of research are addressed. A separate section deals with future needs regarding the research involving the impact of fluoxetine treatment upon mitochondria and mitochondria-related signaling.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiaba, MT, Brazil.
| |
Collapse
|
35
|
Banach M, Popławska M, Błaszczyk B, Borowicz KK, Czuczwar SJ. Pharmacokinetic/pharmacodynamic considerations for epilepsy - depression comorbidities. Expert Opin Drug Metab Toxicol 2016; 12:1067-80. [PMID: 27267259 DOI: 10.1080/17425255.2016.1198319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Epilepsy may be frequently associated with psychiatric disorders and its co-existence with depression usually results in the reduced quality of life of patients with epilepsy. Also, the efficacy of antiepileptic treatment in depressed patients with epilepsy may be significantly reduced. AREAS COVERED Results of experimental studies indicate that antidepressants co-administered with antiepileptic drugs may either increase their anticonvulsant activity, remain neutral or decrease the protective action of antiepileptic drugs in models of seizures. Apart from purely pharmacodynamic interactions, pharmacokinetic mechanisms have been proven to contribute to the final outcome. We report on clinical data regarding the pharmacokinetic interactions of enzyme-inducing antiepileptic drugs with various antidepressants, whose plasma concentration may be significantly reduced. On the other hand, antidepressants (especially selective serotonin reuptake inhibitors) may influence the metabolism of antiepileptics, in many cases resulting in the elevation of plasma concentration of antiepileptic drugs. EXPERT OPINION The preclinical data may provide valuable clues on how to combine these two groups of drugs - antidepressant drugs neutral or potentiating the anticonvulsant action of antiepileptics are recommended in this regard. Avoidance of antidepressants clearly decreasing the convulsive threshold or decreasing the anticonvulsant efficacy of antiepileptic drugs (f.e. bupropion or mianserin) in patients with epilepsy is recommended.
Collapse
Affiliation(s)
- Monika Banach
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Monika Popławska
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Barbara Błaszczyk
- b Faculty of Health Sciences , High School of Economics, Law and Medical Sciences , Kielce , Poland
| | - Kinga K Borowicz
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Stanisław J Czuczwar
- c Department of Pathophysiology , Medical University , Lublin , Poland.,d Department of Physiopathology , Institute of Rural Health , Lublin , Poland
| |
Collapse
|
36
|
Kim HJ, Jun I, Yoon JS, Jung J, Kim YK, Kim WK, Kim BJ, Song J, Kim SJ, Nam JH, Lee MG. Selective serotonin reuptake inhibitors facilitate ANO6 (TMEM16F) current activation and phosphatidylserine exposure. Pflugers Arch 2015; 467:2243-56. [PMID: 25630304 DOI: 10.1007/s00424-015-1692-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/30/2022]
Abstract
Anoctamin 6 (ANO6) is a member of the recently identified TMEM16/anoctamin protein family comprising Ca(2+)-activated Cl(-) channels that generate outward-rectifying ionic currents in response to intracellular Ca(2+) increase. ANO6 is also essential for Ca(2+)-dependent phospholipid scrambling required for blood coagulation. Selective serotonin reuptake inhibitors (SSRIs)--fluoxetine, sertraline, and paroxetine-that are used for the treatment of major depressive disorders can increase the risk of upper gastrointestinal bleeding after chronic treatment. However, at the earlier stage of intake, which is 1-7 days after the treatment, the possibility of blood coagulation might also increase, but transiently. Therefore, in this study, we investigated whether therapeutic SSRI concentrations affected the Cl(-) current or phospholipid scrambling activity of ANO6 by assessing ANO6 currents (I ANO6), phosphatidylserine (PS) exposure, and platelet aggregation. In the whole-cell patch mode, SSRIs facilitated Ca(2+)-dependent activation of IANO6 in ANO6-transfected cells, as evidenced by a significant decrease in the delay of IANO6 generation. On the other hand, in the inside-out patch clamp configuration, SSRIs showed an inhibitory effect on ANO6 currents, suggesting that SSRIs activate ANO6 via an indirect mechanism in intact cells. SSRIs also facilitated Ca(2+)-dependent PS exposure and α-thrombin-induced platelet aggregation. These results indicate that SSRIs at clinically relevant concentrations promote Ca(2+)-dependent activation of ANO6, which may have potential clinical implications such as the underlying mechanism of SSRI-induced adverse drug reactions.
Collapse
Affiliation(s)
- Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Kyungju, 780-714, Republic of Korea
| | - Ikhyun Jun
- Department of Pharmacology, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Jae Seok Yoon
- Biochemistry and Molecular Biology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jinsei Jung
- Department of Pharmacology, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Yung Kyu Kim
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Kyungju, 780-714, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, 410-773, Republic of Korea
- Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, 410-773, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, 49 Busandaehak-ro, Yangsan, 626-870, Republic of Korea
| | - Jaewoo Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seoul, 120-752, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul, 110-799, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Kyungju, 780-714, Republic of Korea.
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, 410-773, Republic of Korea.
| | - Min Goo Lee
- Department of Pharmacology, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| |
Collapse
|
37
|
Majeed ZR, Ritter K, Robinson J, Blümich SLE, Brailoiu E, Cooper RL. New insights into the acute actions from a high dosage of fluoxetine on neuronal and cardiac function: Drosophila, crayfish and rodent models. Comp Biochem Physiol C Toxicol Pharmacol 2015; 176-177:52-61. [PMID: 26232582 DOI: 10.1016/j.cbpc.2015.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
The commonly used mood altering drug fluoxetine (Prozac) in humans has a low occurrence in reports of harmful effects from overdose; however, individuals with altered metabolism of the drug and accidental overdose have led to critical conditions and even death. We addressed direct actions of high concentrations on synaptic transmission at neuromuscular junctions (NMJs), neural properties, and cardiac function unrelated to fluoxetine's action as a selective 5-HT reuptake inhibitor. There appears to be action in blocking action potentials in crayfish axons, enhanced occurrences of spontaneous synaptic vesicle fusion events in the presynaptic terminals at NMJs of both Drosophila and crayfish. In rodent neurons, cytoplasmic Ca(2+) rises by fluoxetine and is thapsigargin dependent. The Drosophila larval heart showed a dose dependent effect in cardiac arrest. Acute paralytic behavior in crayfish occurred at a systemic concentration of 2mM. A high percentage of death as well as slowed development occurred in Drosophila larvae consuming food containing 100μM fluoxetine. The release of Ca(2+) from the endoplasmic reticulum in neurons and the cardiac tissue as well as blockage of voltage-gated Na(+) channels in neurons could explain the effects on the whole animal as well as the isolated tissues. The use of various animal models in demonstrating the potential mechanisms for the toxic effects with high doses of fluoxetine maybe beneficial for acute treatments in humans. Future studies in determining how fluoxetine is internalized in cells and if there are subtle effects of these mentioned mechanisms presented with chronic therapeutic doses are of general interest.
Collapse
Affiliation(s)
- Zana R Majeed
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Department of Biology, University of Salahaddin, Erbil, Iraq
| | - Kyle Ritter
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Centre College, Danville, KY, USA
| | - Jonathan Robinson
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Morehead State University, Morehead, KY, USA
| | - Sandra L E Blümich
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; V.M.F., University of Leipzig, Leipzig, Germany
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA.
| |
Collapse
|
38
|
Koskimäki J, Matsui N, Umemori J, Rantamäki T, Castrén E. Nimodipine activates TrkB neurotrophin receptors and induces neuroplastic and neuroprotective signaling events in the mouse hippocampus and prefrontal cortex. Cell Mol Neurobiol 2015; 35:189-96. [PMID: 25204460 DOI: 10.1007/s10571-014-0110-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022]
Abstract
The L-type calcium channel blocker nimodipine improves clinical outcome produced by delayed cortical ischemia or vasospasm associated with subarachnoid hemorrhage. While vasoactive mechanisms are strongly implicated in these therapeutic actions of nimodipine, we sought to test whether nimodipine might also regulate neurotrophic and neuroplastic signaling events associated with TrkB neurotrophin receptor activation. Adult male mice were acutely treated with vehicle or nimodipine (10 mg/kg, s.c., 1.5 h) after which the phosphorylation states of TrkB, cyclic-AMP response element binding protein (CREB), protein kinase B (Akt), extracellular regulated kinase (ERK), mammalian target of rapamycin (mTor) and p70S6 kinase (p70S6k) from prefrontal cortex and hippocampus were assessed. Nimodipine increased the phosphorylation of the TrkB catalytic domain and the phosphoslipase-Cγ1 (PLCγ1) domain, whereas phosphorylation of the TrkB Shc binding site remained unaltered. Nimodipine-induced TrkB phosphorylation was associated with increased phosphorylation levels of Akt and CREB in the prefrontal cortex and the hippocampus whereas phosphorylation of ERK, mTor and p70S6k remained unaltered. Nimodipine-induced TrkB signaling was not associated with changes in BDNF mRNA or protein levels. These nimodipine-induced changes on TrkB signaling mimic those produced by antidepressant drugs and thus propose common mechanisms and long-term functional consequences for the effects of these medications. This work provides a strong basis for investigating the role of TrkB-associated signaling underlying the neuroprotective and neuroplastic effects of nimodipine in translationally relevant animal models of brain trauma or compromised synaptic plasticity.
Collapse
Affiliation(s)
- Janne Koskimäki
- Neuroscience Center, University of Helsinki, P.O. Box 56 (Viikinkaari 4), 00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
39
|
Barygin OI, Komarova MS, Tikhonova TB, Tikhonov DB. Non-classical mechanism of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor channel block by fluoxetine. Eur J Neurosci 2014; 41:869-77. [DOI: 10.1111/ejn.12817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Oleg I. Barygin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry; Russian Academy of Sciences; Torez pr. 44 Saint Petersburg 194223 Russia
| | - Margarita S. Komarova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry; Russian Academy of Sciences; Torez pr. 44 Saint Petersburg 194223 Russia
| | - Tatiana B. Tikhonova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry; Russian Academy of Sciences; Torez pr. 44 Saint Petersburg 194223 Russia
| | - Denis B. Tikhonov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry; Russian Academy of Sciences; Torez pr. 44 Saint Petersburg 194223 Russia
| |
Collapse
|
40
|
Poulin H, Bruhova I, Timour Q, Theriault O, Beaulieu JM, Frassati D, Chahine M. Fluoxetine blocks Nav1.5 channels via a mechanism similar to that of class 1 antiarrhythmics. Mol Pharmacol 2014; 86:378-89. [PMID: 25028482 PMCID: PMC4164981 DOI: 10.1124/mol.114.093104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated Nav1.5 channel is essential for the propagation of action potentials in the heart. Malfunctions of this channel are known to cause hereditary diseases. It is a prime target for class 1 antiarrhythmic drugs and a number of antidepressants. Our study investigated the Nav1.5 blocking properties of fluoxetine, a selective serotonin reuptake inhibitor. Nav1.5 channels were expressed in HEK-293 cells, and Na(+) currents were recorded using the patch-clamp technique. Dose-response curves of racemic fluoxetine (IC50 = 39 μM) and its optical isomers had a similar IC50 [40 and 47 μM for the (+) and (-) isomers, respectively]. Norfluoxetine, a fluoxetine metabolite, had a higher affinity than fluoxetine, with an IC50 of 29 μM. Fluoxetine inhibited currents in a frequency-dependent manner, shifted steady-state inactivation to more hyperpolarized potentials, and slowed the recovery of Nav1.5 from inactivation. Mutating a phenylalanine (F1760) and a tyrosine (Y1767) in the S6 segment of domain (D) IV (DIVS6) significantly reduced the affinity of fluoxetine and its frequency-dependent inhibition. We used a noninactivating Nav1.5 mutant to show that fluoxetine displays open-channel block behavior. The molecular model of fluoxetine in Nav1.5 was in agreement with mutational experiments in which F1760 and Y1767 were found to be the key residues in binding fluoxetine. We concluded that fluoxetine blocks Nav1.5 by binding to the class 1 antiarrhythmic site. The blocking of cardiac Na(+) channels should be taken into consideration when prescribing fluoxetine alone or in association with other drugs that may be cardiotoxic or for patients with conduction disorders.
Collapse
Affiliation(s)
- Hugo Poulin
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Iva Bruhova
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Quadiri Timour
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Olivier Theriault
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Jean-Martin Beaulieu
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Dominique Frassati
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Mohamed Chahine
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| |
Collapse
|
41
|
Stanford SC. Psychostimulants, antidepressants and neurokinin-1 receptor antagonists ('motor disinhibitors') have overlapping, but distinct, effects on monoamine transmission: the involvement of L-type Ca2+ channels and implications for the treatment of ADHD. Neuropharmacology 2014; 87:9-18. [PMID: 24727210 DOI: 10.1016/j.neuropharm.2014.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 11/15/2022]
Abstract
Both psychostimulants and antidepressants target monoamine transporters and, as a consequence, augment monoamine transmission. These two groups of drugs also increase motor activity in preclinical behavioural screens for antidepressants. Substance P-preferring receptor (NK1R) antagonists similarly increase both motor activity in these tests and monoamine transmission in the brain. In this article, the neurochemical and behavioural responses to these three groups of drugs are compared. It becomes evident that NK1R antagonists represent a distinct class of compounds ('motor disinhibitors') that differ substantially from both psychostimulants and antidepressants, especially during states of heightened arousal or stress. Also, all three groups of drugs influence the activation of voltage-gated Ca(v)1.2 and Ca(v)1.3 L-type channels (LTCCs) in the brain, albeit in different ways. This article discusses evidence that points to disruption of these functional interactions between NK1R and LTCCs as a contributing factor in the cognitive and behavioural abnormalities that are prominent features of Attention Deficit Hyperactivity Disorder (ADHD). Arising from this is the interesting possibility that the hyperactivity and impulsivity (as in ADHD) and psychomotor retardation (as in depression) reflect opposite poles of a behavioural continuum. A better understanding of this pharmacological network could help explain why psychostimulants augment motor behaviour during stress (e.g., in preclinical screens for antidepressants) and yet reduce locomotor activity and impulsivity in ADHD. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Burghardt N, Bauer E. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: Implications for underlying fear circuits. Neuroscience 2013; 247:253-72. [DOI: 10.1016/j.neuroscience.2013.05.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 12/24/2022]
|
43
|
Raised activity of L-type calcium channels renders neurons prone to form paroxysmal depolarization shifts. Neuromolecular Med 2013; 15:476-92. [PMID: 23695859 PMCID: PMC3732764 DOI: 10.1007/s12017-013-8234-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/08/2013] [Indexed: 12/31/2022]
Abstract
Neuronal L-type voltage-gated calcium channels (LTCCs) are involved in several physiological functions, but increased activity of LTCCs has been linked to pathology. Due to the coupling of LTCC-mediated Ca2+ influx to Ca2+-dependent conductances, such as KCa or non-specific cation channels, LTCCs act as important regulators of neuronal excitability. Augmentation of after-hyperpolarizations may be one mechanism that shows how elevated LTCC activity can lead to neurological malfunctions. However, little is known about other impacts on electrical discharge activity. We used pharmacological up-regulation of LTCCs to address this issue on primary rat hippocampal neurons. Potentiation of LTCCs with Bay K8644 enhanced excitatory postsynaptic potentials to various degrees and eventually resulted in paroxysmal depolarization shifts (PDS). Under conditions of disturbed Ca2+ homeostasis, PDS were evoked frequently upon LTCC potentiation. Exposing the neurons to oxidative stress using hydrogen peroxide also induced LTCC-dependent PDS. Hence, raising LTCC activity had unidirectional effects on brief electrical signals and increased the likeliness of epileptiform events. However, long-lasting seizure-like activity induced by various pharmacological means was affected by Bay K8644 in a bimodal manner, with increases in one group of neurons and decreases in another group. In each group, isradipine exerted the opposite effect. This suggests that therapeutic reduction in LTCC activity may have little beneficial or even adverse effects on long-lasting abnormal discharge activities. However, our data identify enhanced activity of LTCCs as one precipitating cause of PDS. Because evidence is continuously accumulating that PDS represent important elements in neuropathogenesis, LTCCs may provide valuable targets for neuroprophylactic therapy.
Collapse
|
44
|
Caiati MD, Cherubini E. Fluoxetine impairs GABAergic signaling in hippocampal slices from neonatal rats. Front Cell Neurosci 2013; 7:63. [PMID: 23641199 PMCID: PMC3640196 DOI: 10.3389/fncel.2013.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/16/2013] [Indexed: 01/30/2023] Open
Abstract
Fluoxetine (Prozac), an antidepressant known to selectively inhibit serotonin reuptake, is widely used to treat mood disorders in women suffering from depression during pregnancy and postpartum period. Several lines of evidence suggest that this drug, which crosses the human placenta and is secreted into milk during lactation, exerts its action not only by interfering with serotoninergic but also with GABAergic transmission. GABA is known to play a crucial role in the construction of neuronal circuits early in postnatal development. The immature hippocampus is characterized by an early type of network activity, the so-called Giant Depolarizing Potentials (GDPs), generated by the synergistic action of glutamate and GABA, both depolarizing and excitatory. Here we tested the hypothesis that fluoxetine may interfere with GABAergic signaling during the first postnatal week, thus producing harmful effects on brain development. At micromolar concentrations fluoxetine severely depressed GDPs frequency (IC50 22 μM) in a reversible manner and independently of its action on serotonin reuptake. This effect was dependent on a reduced GABAergic (but not glutamatergic) drive to principal cells most probably from parvalbumin-positive fast spiking neurons. Cholecystokinin-positive GABAergic interneurons were not involved since the effects of the drug persisted when cannabinoid receptors were occluded with WIN55,212-2, a CB1/CB2 receptor agonist. Fluoxetine effects on GABAergic transmission were associated with a reduced firing rate of both principal cells and interneurons further suggesting that changes in network excitability account for GDPs disruption. This may have critical consequences on the functional organization and stabilization of neuronal circuits early in postnatal development.
Collapse
Affiliation(s)
- Maddalena D Caiati
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | | |
Collapse
|
45
|
Cardamone L, Salzberg MR, O'Brien TJ, Jones NC. Antidepressant therapy in epilepsy: can treating the comorbidities affect the underlying disorder? Br J Pharmacol 2013; 168:1531-54. [PMID: 23146067 PMCID: PMC3605864 DOI: 10.1111/bph.12052] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022] Open
Abstract
There is a high incidence of psychiatric comorbidity in people with epilepsy (PWE), particularly depression. The manifold adverse consequences of comorbid depression have been more clearly mapped in recent years. Accordingly, considerable efforts have been made to improve detection and diagnosis, with the result that many PWE are treated with antidepressant drugs, medications with the potential to influence both epilepsy and depression. Exposure to older generations of antidepressants (notably tricyclic antidepressants and bupropion) can increase seizure frequency. However, a growing body of evidence suggests that newer ('second generation') antidepressants, such as selective serotonin reuptake inhibitors or serotonin-noradrenaline reuptake inhibitors, have markedly less effect on excitability and may lead to improvements in epilepsy severity. Although a great deal is known about how antidepressants affect excitability on short time scales in experimental models, little is known about the effects of chronic antidepressant exposure on the underlying processes subsumed under the term 'epileptogenesis': the progressive neurobiological processes by which the non-epileptic brain changes so that it generates spontaneous, recurrent seizures. This paper reviews the literature concerning the influences of antidepressants in PWE and in animal models. The second section describes neurobiological mechanisms implicated in both antidepressant actions and in epileptogenesis, highlighting potential substrates that may mediate any effects of antidepressants on the development and progression of epilepsy. Although much indirect evidence suggests the overall clinical effects of antidepressants on epilepsy itself are beneficial, there are reasons for caution and the need for further research, discussed in the concluding section.
Collapse
Affiliation(s)
- L Cardamone
- Department of Medicine (RMH), University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
46
|
Kim HJ, Kim TH, Choi SJ, Hong YJ, Yang JS, Sung KW, Rhie DJ, Hahn SJ, Yoon SH. Fluoxetine suppresses synaptically induced [Ca²⁺]i spikes and excitotoxicity in cultured rat hippocampal neurons. Brain Res 2012; 1490:23-34. [PMID: 23131584 DOI: 10.1016/j.brainres.2012.10.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/21/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
Abstract
Fluoxetine is a widely used antidepressant with an action that is primarily attributed to the inhibition of serotonin re-uptake into the synaptic terminals of the central nervous system. Fluoxetine also has blocking effects on various ion channels, including Ca(2+) channels. It remains unclear, however, how fluoxetine may affect synaptically induced [Ca(2+)](i) spikes. We investigated the effects of fluoxetine on [Ca(2+)](i) spikes, along with the subsequent neurotoxicity that is synaptically evoked by lowering extracellular Mg(2+) in cultured rat hippocampal neurons. Fluoxetine inhibited the synaptically induced [Ca(2+)](i) spikes in p-chloroamphetamine-treated and non-treated neurons, in a concentration-dependent manner. However, other selective serotonin reuptake inhibitors, such as paroxetine and citalopram, did not significantly affect the spikes. Pretreatment with fluoxetine for 5 min inhibited [Ca(2+)](i) increases induced by glutamate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and N-methyl-d-aspartate. Fluoxetine also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced currents. In addition, fluoxetine decreased the [Ca(2+)](i) responses induced by the metabotrophic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine or the ryanodine receptor agonist caffeine. Fluoxetine inhibited [Ca(2+)](i) responses induced by 20mM KCl. Fluoxetine decreased the release of FM1-43 induced by electric field stimulation. Furthermore, fluoxetine inhibited 0.1mM [Mg(2+)](o)-induced cell death. Collectively, our results suggest that fluoxetine suppresses the spikes and protects neurons against excitotoxicity, particularly in cultured rat hippocampal neurons, presumably due to both direct inhibition of presynaptic glutamate release and postsynaptic glutamate receptor-mediated [Ca(2+)](i) signaling. In addition to an indirect inhibitory effect via 5-HT levels, these data suggest a new, possibly direct inhibitory action of fluoxetine on synaptically induced [Ca(2+)](i) spikes and neuronal cell death.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, San #29, Anseo-dong, Dongnam-gu, Cheonan, Chungnam 330-714, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Changes of cytosolic calcium and contractility of young rat vas deferens by acute treatment with amphetamine, fluoxetine or sibutramine. Eur J Pharmacol 2012; 691:52-60. [DOI: 10.1016/j.ejphar.2012.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 01/12/2023]
|
49
|
The antidepressant drug fluoxetine inhibits persistent sodium currents and seizure-like events. Epilepsy Res 2012; 101:174-81. [DOI: 10.1016/j.eplepsyres.2012.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/12/2012] [Accepted: 03/28/2012] [Indexed: 11/23/2022]
|
50
|
Lack of behavioral and cognitive effects of chronic ethosuximide and gabapentin treatment in the Ts65Dn mouse model of Down syndrome. Neuroscience 2012; 220:158-68. [PMID: 22728103 DOI: 10.1016/j.neuroscience.2012.06.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/06/2012] [Accepted: 06/13/2012] [Indexed: 11/22/2022]
Abstract
The Ts65Dn (TS) mouse model of Down syndrome (DS) displays a number of behavioral, neuromorphological and neurochemical phenotypes of the syndrome. Altered GABAergic transmission appears to contribute to the mechanisms responsible for the cognitive impairments in TS mice. Increased functional expression of the trisomic gene encoding an inwardly rectifying potassium channel, subfamily J, member 6 (KCNJ6) has been reported in DS and TS mice, along with the consequent impairment in GAB Aergic function. Partial display of DS phenotypes in mice harboring a single trisomy of Kcnj6 provides compelling evidence for a functional role of increased channel expression in some of the abnormal neurological phenotypes found in DS. Notably, the antiepileptic drug (AED) ethosuximide (ETH), but not other AEDs such as gabapentin (GAB), is known to inhibit KCNJ6 channels in mice. Here, we report the effect of chronic ETH and GAB on the behavioral and cognitive phenotypes of TS and disomic control (CO) mice. Neither drug significantly affected sensorimotor abilities, motor coordination or spontaneous activity in TS and CO mice. Also, ETH and GAB did not induce anxiety in the open field or plus maze tests, did not alter performance in the Morris water maze, and did not affect cued - or context - fear conditioning. Our results thus suggest that KCNJ6 may not be a promising drug target candidate in DS. As a corollary, they also show that long-term use of ETH and GAB is devoid of adverse behavioral and cognitive effects.
Collapse
|