1
|
Jeffries O, Jibi G, Clark J, Barwood M, Waldron M. Determination of the optimal dose and dosing strategy for effective L-menthol oral rinsing during exercise in hot environments. Eur J Appl Physiol 2024:10.1007/s00421-024-05609-w. [PMID: 39367885 DOI: 10.1007/s00421-024-05609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE This multi-study programme investigated the optimal concentration of L-menthol delivered as an oral mouth rinse to modulate thermo-behaviour during exercise in a hot environment (35 °C). METHOD In study 1, 38 participants completed a survey to establish an effective and tolerable range of L-menthol concentration. 31 participants completed an RPE-protocol examining 1. the dose-response effect of L-menthol mouth rinse on exercise performance (n = 16) and 2. the temporal effectiveness of administering L-menthol in an incremental and decremental dosing pattern (n = 15). Power output, heart rate, body core temperature and thermal sensation were reported throughout. RESULTS The optimal menthol concentration for peak power was between 0.01 and 0.1% (~ 6% increase, P < 0.05) and 0.5% (~ 9% increase, P < 0.05) with respect to control. Work completed was increased at 0.01% (~ 5%, P < 0.05), at 0.1% (~ 3%, P < 0.05) and had a detrimental effect at 0.5% (- 10% decrease, P < 0.05). There were no differences between an ascending dose protocol (0.01 to 0.5%), descending dose protocol (0.5-0.01%) or a constant 0.01% dose protocol. There were no reported differences in body core temperature or heart rate across trials (P > 0.05). CONCLUSION The optimal dose of L-menthol when delivered via oral rinsing is between 0.01 and 0.1%. At lower concentrations, L-menthol appears to be less effective and at higher concentrations (> 0.5%) L-menthol appears to elicit greater irritation and may not positively modulate thermo-behaviour during exercise in a hot environment.
Collapse
Affiliation(s)
- Owen Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Godi Jibi
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Joe Clark
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Martin Barwood
- Department of Sport, Health and Nutrition, Leeds Trinity University, Leeds, UK
| | - Mark Waldron
- College of Engineering, Swansea University, Swansea, UK
| |
Collapse
|
2
|
Riantiningtyas RR, Dougkas A, Kwiecien C, Carrouel F, Giboreau A, Bredie WLP. A review of assessment methods for measuring individual differences in oral somatosensory perception. J Texture Stud 2024; 55:e12849. [PMID: 38961563 DOI: 10.1111/jtxs.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
While taste and smell perception have been thoroughly investigated, our understanding of oral somatosensory perception remains limited. Further, assessing and measuring individual differences in oral somatosensory perception pose notable challenges. This review aimed to evaluate the existing methods to assess oral somatosensory perception by examining and comparing the strengths and limitations of each method. The review highlighted the lack of standardized assessment methods and the various procedures within each method. Tactile sensitivity can be assessed using several methods, but each method measures different tactile dimensions. Further investigations are needed to confirm its correlation with texture sensitivity. In addition, measuring a single textural attribute may not provide an overall representation of texture sensitivity. Thermal sensitivity can be evaluated using thermal-change detection or temperature discrimination tests. The chemesthetic sensitivity tests involve either localized or whole-mouth stimulation tests. The choice of an appropriate method for assessing oral somatosensory sensitivity depends on several factors, including the specific research objectives and the target population. Each method has its unique intended purpose, strengths, and limitations, so no universally superior approach exists. To overcome some of the limitations associated with certain methods, the review offers alternative or complementary approaches that could be considered. Researchers can enhance the comprehensive assessment of oral somatosensory sensitivity by carefully selecting and potentially combining methods. In addition, a standardized protocol remains necessary for each method.
Collapse
Affiliation(s)
- Reisya Rizki Riantiningtyas
- Section for Food Design and Consumer Behaviour, Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
- Health Systemic Process (P2S) Research Unit UR4129, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
- Institut Lyfe (Ex. Institut Paul Bocuse) Research Center, Ecully, France
| | - Anestis Dougkas
- Institut Lyfe (Ex. Institut Paul Bocuse) Research Center, Ecully, France
- Laboratoire Centre Européen Nutrition et Santé (CENS), CarMeN, Unité INSERM 1060, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Camille Kwiecien
- Danone Global Research & Innovation Center, Utrecht, Netherlands
| | - Florence Carrouel
- Health Systemic Process (P2S) Research Unit UR4129, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Agnès Giboreau
- Health Systemic Process (P2S) Research Unit UR4129, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
- Institut Lyfe (Ex. Institut Paul Bocuse) Research Center, Ecully, France
| | - Wender L P Bredie
- Section for Food Design and Consumer Behaviour, Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
3
|
Wu Z, Peng S, Huang W, Zhang Y, Liu Y, Yu X, Shen L. The Role and Function of TRPM8 in the Digestive System. Biomolecules 2024; 14:877. [PMID: 39062591 PMCID: PMC11275170 DOI: 10.3390/biom14070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Transient receptor potential (TRP) melastatin member 8 (TRPM8) is a non-selective cation channel that can be activated by low temperatures (8-26 °C), cooling agents (including menthol analogs such as menthol, icilin, and WS-12), voltage, and extracellular osmotic pressure changes. TRPM8 expression has been identified in the digestive system by several research teams, demonstrating its significant involvement in tissue function and pathologies of the digestive system. Specifically, studies have implicated TRPM8 in various physiological and pathological processes of the esophagus, stomach, colorectal region, liver, and pancreas. This paper aims to comprehensively outline the distinct role of TRPM8 in different organs of the digestive system, offering insights for future mechanistic investigations of TRPM8. Additionally, it presents potential therapeutic targets for treating conditions such as digestive tract inflammation, tumors, sensory and functional disorders, and other related diseases. Furthermore, this paper addresses the limitations of existing studies and highlights the research prospects associated with TRPM8.
Collapse
Affiliation(s)
- Zunan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Wensha Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Yuling Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Yashi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| |
Collapse
|
4
|
Nolden AA, Lenart G, Spielman AI, Hayes JE. Inducible desensitization to capsaicin with repeated low-dose exposure in human volunteers. Physiol Behav 2024; 275:114447. [PMID: 38135109 PMCID: PMC10842799 DOI: 10.1016/j.physbeh.2023.114447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Responses to capsaicin are reduced following repeated exposure, a phenomenon known as capsaicin desensitization. Heavy consumers of chilies consistently report reduced oral burn relative to infrequent consumers, presumably due to chronic desensitization. However, the mechanism(s) underlying capsaicin desensitization remain poorly understood. We hypothesized that reduced response to capsaicin due to repeated oral exposure may result from a change in the expression of the capsaicin receptor (TRPV1) gene. To test this, we conducted two longitudinal desensitization studies in healthy human volunteers. In Study 1, 51 adults completed a 17-day capsaicin desensitization protocol. The study consisted of three in-person visits where they were asked to sample stimuli, including 3, 6, and 9 ppm capsaicin, and rate intensity on a general labeled magnitude scale (gLMS). Between days 3 & 17, participants rinsed at home with 6 ppm capsaicin (n = 31) or a control (n = 20) solution (20 uM sucrose octaccetate; SOA) twice a day. Before and after the oral exposure protocol, a clinician collected fungiform papillae. Participants randomized to the capsaicin rinse showed a statistically significant reduction in oral burn ratings that was not observed in controls, indicating repeated low-dose exposure can systematically induce desensitization. TRPV1 expression was not associated with reported capsaicin burn, and there was no evidence of a decrease in TRPV1 expression following capsaicin exposure. In Study 2, participants (n = 45) rinsed with 6 ppm capsaicin in a similar protocol, rating capsaicin, vanillyl butyl ether (VBE), cinnamaldehyde, ethanol, menthol, and sucrose on days 1, 3, & 17. Burn from capsaicin, VBE, cinnamaldehyde, and ethanol all showed a statistically significant change - capsaicin, VBE and cinnamaldehyde burn all dropped ∼20 %, and a larger reduction was seen for ethanol - while menthol cooling and sucrose sweetness did not change. Collectively, this suggests reductions in oral burn following chronic capsaicin exposure generalizes to other stimuli (i.e., cross desensitization) and this cannot be explained by a change in TRPV1 mRNA expression. More work is needed to elucidate the underlying mechanism for capsaicin desensitization in the oral cavity.
Collapse
Affiliation(s)
- Alissa A Nolden
- Department of Food Science, University of Massachusetts, Amherst, MA, USA,; Sensory Evaluation Center, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gabrielle Lenart
- Sensory Evaluation Center, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew I Spielman
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - John E Hayes
- Sensory Evaluation Center, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
5
|
Lee S, Jang IS. Menthol excites dural afferent neurons by inhibiting leak K + conductance in rats. Neurosci Lett 2023; 813:137427. [PMID: 37549867 DOI: 10.1016/j.neulet.2023.137427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Menthol-a natural organic compound-is widely used for relieving various pain conditions including migraine. However, a high dose of menthol reportedly decreases pain thresholds and enhances pain responses. Accordingly, in the present study, we addressed the effect of menthol on the excitability of acutely isolated dural afferent neurons, which were identified with a fluorescent dye, using the whole-cell patch-clamp technique. Under a voltage-clamped condition, menthol altered the holding current levels in a concentration-dependent manner. The menthol-induced current (IMenthol) remained unaffected by the addition of selective transient receptor potential melastatin 8 antagonists. Moreover, the reversal potential of IMenthol was similar to the equilibrium potential of K+. IMenthol was accompanied by an increase in input resistance, thereby suggesting that menthol decreases the leak K+ conductance. Under a current-clamped condition, menthol caused depolarization of the membrane potential and decreased the threshold for the generation of action potential. While the IMenthol was substantially inhibited by 10 μM XE-991, a selective KV7 blocker, the M-current mediated by KV7 was not detected in the nociceptive neurons tested in the present study. Moreover, IMenthol decreased under acidic extracellular pH conditions or in the presence of 3 μM A-1899, a selective K2P3.1 and K2P9.1 blocker. The present results suggest that menthol inhibits leak K+ channels, possibly acid-sensitive two-pore domain K+ channels, thereby increasing the excitability of nociceptive sensory neurons. The resultant increase in neuron excitability may partially be responsible for the pronociceptive effect mediated by high menthol doses.
Collapse
Affiliation(s)
- Seungbo Lee
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea.
| |
Collapse
|
6
|
Li Z, Zhang H, Wang Y, Li Y, Li Q, Zhang L. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Front Mol Neurosci 2022; 15:1006908. [PMID: 36277488 PMCID: PMC9580369 DOI: 10.3389/fnmol.2022.1006908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol is an important flavoring additive that triggers a cooling sensation. Under physiological condition, low to moderate concentrations of menthol activate transient receptor potential cation channel subfamily M member 8 (TRPM8) in the primary nociceptors, such as dorsal root ganglion (DRG) and trigeminal ganglion, generating a cooling sensation, whereas menthol at higher concentration could induce cold allodynia, and cold hyperalgesia mediated by TRPM8 sensitization. In addition, the paradoxical irritating properties of high concentrations of menthol is associated with its activation of transient receptor potential cation channel subfamily A member 1 (TRPA1). Under pathological situation, menthol activates TRPM8 to attenuate mechanical allodynia and thermal hyperalgesia following nerve injury or chemical stimuli. Recent reports have recapitulated the requirement of central group II/III metabotropic glutamate receptors (mGluR) with endogenous κ-opioid signaling pathways for menthol analgesia. Additionally, blockage of sodium channels and calcium influx is a determinant step after menthol exposure, suggesting the possibility of menthol for pain management. In this review, we will also discuss and summarize the advances in menthol-related drugs for pathological pain treatment in clinical trials, especially in neuropathic pain, musculoskeletal pain, cancer pain and postoperative pain, with the aim to find the promising therapeutic candidates for the resolution of pain to better manage patients with pain in clinics.
Collapse
Affiliation(s)
- Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Haoyue Zhang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yigang Wang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Qing Li,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Linlin Zhang,
| |
Collapse
|
7
|
Sandri A, Cecchini MP, Riello M, Zanini A, Nocini R, Fiorio M, Tinazzi M. Pain, Smell, and Taste in Adults: A Narrative Review of Multisensory Perception and Interaction. Pain Ther 2021; 10:245-268. [PMID: 33635507 PMCID: PMC8119564 DOI: 10.1007/s40122-021-00247-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Every day our sensory systems perceive and integrate a variety of stimuli containing information vital for our survival. Pain acts as a protective warning system, eliciting a response to remove harmful stimuli; it may also be a symptom of an illness or present as a disease itself. There is a growing need for additional pain-relieving therapies involving the multisensory integration of smell and taste in pain modulation, an approach that may provide new strategies for the treatment and management of pain. While pain, smell, and taste share common features and are strongly linked to emotion and cognition, their interaction has been poorly explored. In this review, we provide an overview of the literature on pain modulation by olfactory and gustatory substances. It includes adult human studies investigating measures of pain threshold, tolerance, intensity, and/or unpleasantness. Due to the limited number of studies currently available, we have structured this review as a narrative in which we comment on experimentally induced and clinical pain separately on pain–smell and pain–taste interaction. Inconsistent study findings notwithstanding, pain, smell, and taste seem to interact at both the behavioral and the neural levels. Pain intensity and unpleasantness seem to be affected more by olfactory substances, whereas pain threshold and tolerance are influenced by gustatory substances. Few pilot studies to date have investigated these effects in clinical populations. While the current results are promising for the future, more evidence is needed to elucidate the link between the chemical senses and pain. Doing so has the potential to improve and develop novel options for pain treatment.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Maria Paola Cecchini
- Anatomy and Histology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marianna Riello
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alice Zanini
- Anatomy and Histology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Riccardo Nocini
- Otolaryngology Section, Department of Surgery, Dentistry, Paediatrics and Gynaecology , University of Verona, Verona, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
8
|
Shibata M, Tang C. Implications of Transient Receptor Potential Cation Channels in Migraine Pathophysiology. Neurosci Bull 2021; 37:103-116. [PMID: 32870468 PMCID: PMC7811976 DOI: 10.1007/s12264-020-00569-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Migraine is a common and debilitating headache disorder. Although its pathogenesis remains elusive, abnormal trigeminal and central nervous system activity is likely to play an important role. Transient receptor potential (TRP) channels, which transduce noxious stimuli into pain signals, are expressed in trigeminal ganglion neurons and brain regions closely associated with the pathophysiology of migraine. In the trigeminal ganglion, TRP channels co-localize with calcitonin gene-related peptide, a neuropeptide crucially implicated in migraine pathophysiology. Many preclinical and clinical data support the roles of TRP channels in migraine. In particular, activation of TRP cation channel V1 has been shown to regulate calcitonin gene-related peptide release from trigeminal nerves. Intriguingly, several effective anti-migraine therapies, including botulinum neurotoxin type A, affect the functions of TRP cation channels. Here, we discuss currently available data regarding the roles of major TRP cation channels in the pathophysiology of migraine and the therapeutic applicability thereof.
Collapse
Affiliation(s)
- Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Department of Neurology, Tokyo Dental College Ichikawa General Hospital, Chiba, 272-8513, Japan.
| | - Chunhua Tang
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| |
Collapse
|
9
|
Nachtigal D, Andrew K, Green BG. Selective Effects of Temperature on the Sensory Irritation but not Taste of NaCl and Citric Acid. Chem Senses 2019; 44:61-68. [PMID: 30418541 DOI: 10.1093/chemse/bjy072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study investigated the effect of temperature on taste and chemesthetic sensations produced by the prototypical salty and sour stimuli NaCl and citric acid. Experiment 1 measured the perceived intensity of irritation (burning, stinging) and taste (saltiness, sourness) produced on the tongue tip by brief (3 s) exposures to suprathreshold concentrations of NaCl and citric acid at 3 different temperatures (12, 34, and 42 °C). No significant effects of temperature were found on the taste or sensory irritation of either stimulus. Experiment 2 investigated the potential effects of temperature on sensory irritation at peri-threshold concentrations and its sensitization over time. Measurements were again made on the tongue tip at the same 3 temperatures. Heating was found to enhance the perception of irritation at peri-threshold concentrations for both stimuli, whereas cooling suppressed sensitization of irritation for NaCl but not for citric acid. These results (i) confirm prior evidence that perception of suprathreshold salty and sour tastes are independent of temperature; (ii) demonstrate that heat has only weak effects on sensory irritation produced by brief exposures to NaCl and citric acid; and (iii) suggest that sensitization of the irritation produced by NaCl and citric acid occur via different peripheral mechanisms that have different thermal sensitivities. Overall, the results are consistent with involvement of the heat-sensitive channel TRPV1 in the sensory irritation of both stimuli together with one or more additional channels (e.g., acid-sensing channel, epithelial sodium channel, TRPA1) that are insensitive to heat and may possibly be sensitive to cooling.
Collapse
Affiliation(s)
- Danielle Nachtigal
- The John B. Pierce Laboratory, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kendra Andrew
- The John B. Pierce Laboratory, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Barry G Green
- The John B. Pierce Laboratory, Yale School of Medicine, Yale University, New Haven, CT, USA.,Department of Surgery (Otolaryngology), Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Assessment of priority tobacco additives per the requirements of the EU Tobacco Products Directive (2014/40/EU): Part 3, Smoking behavior and plasma nicotine pharmacokinetics. Regul Toxicol Pharmacol 2019; 104:29-38. [DOI: 10.1016/j.yrtph.2019.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 11/22/2022]
|
11
|
Abstract
The trigeminal sensory nerve fiber branches supply afferent information from the skin and mucous membranes of the face and head and the oral cavity regarding information on temperature, touch, and pain. Under normal conditions, the trigeminal nerve serves to provide important information from nerve fibers and tissues using specialized receptors sensitive for irritant and painful stimuli. The current scientific consensus indicates that nerve endings responsible for chemical and thermal sensitivity of the skin and mucous membranes are the same nerves responsible for nociception. This "chemesthetic sense" allows many vertebrates to detect chemical agonists that induce sensations such as touch, burning, stinging, tingling, or changes in temperature. Research has been under way for many years to determine how exposure of the oral and/or nasal cavity to compounds that elicit pungent or irritant sensations can produce these sensations. In addition, these chemicals can alter other sensory information such as taste and smell to affect the flavor of foods and beverages. We now know that these 'chemesthetic molecules' are agonists of molecular receptors, which exist on primary afferent nerve fibers that innervate the orofacial area. However, under pathophysiologic conditions, over- or underexpression or activity of these receptors may lead to painful orotrigeminal syndromes. Some of these individual receptors are discussed in detail, including transient receptor potential channels and acid sensing ion channels, among others.
Collapse
Affiliation(s)
- Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States. //
| |
Collapse
|
12
|
Analgesic-Like Activity of Essential Oil Constituents: An Update. Int J Mol Sci 2017; 18:ijms18122392. [PMID: 29232831 PMCID: PMC5751100 DOI: 10.3390/ijms18122392] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
Abstract
The constituents of essential oils are widely found in foods and aromatic plants giving characteristic odor and flavor. However, pharmacological studies evidence its therapeutic potential for the treatment of several diseases and promising use as compounds with analgesic-like action. Considering that pain affects a significant part of the world population and the need for the development of new analgesics, this review reports on the current studies of essential oils’ chemical constituents with analgesic-like activity, including a description of their mechanisms of action and chemical aspects.
Collapse
|
13
|
Castro E, Dent D. A comparison of transdermal over-the-counter lidocaine 3.6% menthol 1.25%, Rx lidocaine 5% and placebo for back pain and arthritis. Pain Manag 2017; 7:489-498. [DOI: 10.2217/pmt-2017-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Transdermal lidocaine therapy has become a gold standard as part of a treatment regimen for patients who suffer from localized pain. We compared transdermal patches: over-the-counter (OTC) lidocaine 3.6% combined with menthol 1.25%, prescription lidocaine 5% (Rx) and placebo. Methods: In a double-blind, placebo-controlled trial, 87 patients were randomized to: OTC, Rx or placebo. Results: OTC met primary end points of noninferiority compared with Rx for efficacy, side effects and quality of life. Versus placebo, OTC proved superiority for efficacy, general activity and normal work. Side effects were similar. Conclusion: It is theorized that menthol's ability to increase skin permeability facilitated more efficient drug delivery to the site of pain causing higher than expected efficacy. Decreased cost and resource utilization could benefit patients and payers.
Collapse
Affiliation(s)
- Eric Castro
- Department of Medicine, Advocate Good Sheppard Hospital, Barrington, IL 60010, USA
| | - David Dent
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Rahman H, Kim M, Leung G, Green JA, Katz S. Drug-Herb Interactions in the Elderly Patient with IBD: a Growing Concern. ACTA ACUST UNITED AC 2017; 15:618-636. [PMID: 28918484 DOI: 10.1007/s11938-017-0154-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT Inflammatory bowel disease (IBD), which includes conditions such as Crohn's disease and ulcerative colitis, is becoming more prevalent with the elderly being the fastest growing group. Parallel to this, there is an increasing interest in the use of complementary and alternative medicine (CAM). Nearly half of patients with IBD have used CAM at one time. The elderly patients, however, are burdened by comorbid conditions, polypharmacy, and altered functional status. With increasing use of complementary and alternative medicine in our elderly patients with IBD, it is vital for the provider to provide counsel on drug-herb potential interactions. CAM includes herbal products, diet, dietary supplements, acupuncture, and prayer. In this paper, we will review common CAM, specifically herbs, that are used in patients with IBD including the herb background, suggested use, evidence in IBD, and most importantly, potential interactions with IBD medications used in elderly patients. Most important evidence-based adverse events and drug-herb interactions are summarized. The herbs discussed include Triticum aestivum (wheat grass), Andrographis paniculata (chiretta), Boswellia serrata, tormentil, bilberry, curcumin (turmeric), Plantago ovata (blond psyllium), Oenothera biennis (evening primrose oil), germinated barley foodstuff, an herbal preparation of myrrh, chamomile and coffee extract, chios mastic gum, wormwood (absinthe, thujone), Cannabis sativa (marijuana, THC), tripterygium wilfordii (thunder god vine), Ulmus rubra (slippery elm bark), trigonella foenugraecum (fenugreek), Dioscorea mexicana (wild yam), Harpagophytum procumbens (devil's claw), ginger, cinnamon, licorice, and peppermint.
Collapse
Affiliation(s)
- Haider Rahman
- Department of Internal Medicine, Albany Medical Center, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Marina Kim
- Division of Gastroenterology, New York Presbyterian Brooklyn Methodist Hospital Weill Cornell College of Medicine, 506 Sixth Street Suite 312 Buckley Pavilion, Brooklyn, NY, 11215, USA.
| | - Galen Leung
- New York University School of Medicine, 550 1st Avenue NBV 16 North 30, New York, NY, USA
| | - Jesse A Green
- Perelman School of Medicine, Division of Gastroenterology, University of Pennsylvania, Penn Presbyterian Medical Center, Philadelphia, PA, 19104, USA
| | - Seymour Katz
- Division of Gastroenterology, New York University School of Medicine NYC North Shore University - Long Island Jewish Hospital System, Manhasset, NY, USA.,St. Francis Hospital, Roslyn, NY, USA
| |
Collapse
|
15
|
Kayama Y, Shibata M, Takizawa T, Ibata K, Shimizu T, Ebine T, Toriumi H, Yuzaki M, Suzuki N. Functional interactions between transient receptor potential M8 and transient receptor potential V1 in the trigeminal system: Relevance to migraine pathophysiology. Cephalalgia 2017; 38:833-845. [PMID: 28554243 PMCID: PMC5896691 DOI: 10.1177/0333102417712719] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Recent genome-wide association studies have identified transient receptor potential M8 (TRPM8) as a migraine susceptibility gene. TRPM8 is a nonselective cation channel that mediates cool perception. However, its precise role in migraine pathophysiology is elusive. Transient receptor potential V1 (TRPV1) is a nonselective cation channel activated by noxious heat. Both TRPM8 and TRPV1 are expressed in trigeminal ganglion (TG) neurons. Methods We investigated the functional roles of TRPM8 and TRPV1 in a meningeal inflammation-based migraine model by measuring the effects of facial TRPM8 activation on thermal allodynia and assessing receptor coexpression changes in TG neurons. We performed retrograde tracer labeling to identify TG neurons innervating the face and dura. Results We found that pharmacological TRPM8 activation reversed the meningeal inflammation-induced lowering of the facial heat pain threshold, an effect abolished by genetic ablation of TRPM8. No significant changes in the heat pain threshold were seen in sham-operated animals. Meningeal inflammation caused dynamic alterations in TRPM8/TRPV1 coexpression patterns in TG neurons, and colocalization was most pronounced when the ameliorating effect of TRPM8 activation on thermal allodynia was maximal. Our tracer assay disclosed the presence of dura-innervating TG neurons sending collaterals to the face. Approximately half of them were TRPV1-positive. We also demonstrated functional inhibition of TRPV1 by TRPM8 in a cell-based assay using c-Jun N-terminal kinase phosphorylation as a surrogate marker. Conclusions Our findings provide a plausible mechanism to explain how facial TRPM8 activation can relieve migraine by suppressing TRPV1 activity. Facial TRPM8 appears to be a promising therapeutic target for migraine.
Collapse
Affiliation(s)
- Yohei Kayama
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Shibata
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Tsubasa Takizawa
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Ibata
- 2 Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiko Shimizu
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Taeko Ebine
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Haruki Toriumi
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Michisuke Yuzaki
- 2 Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiro Suzuki
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
High-Concentration L-Menthol Exhibits Counter-Irritancy to Neurogenic Inflammation, Thermal and Mechanical Hyperalgesia Caused by Trans-cinnamaldehyde. THE JOURNAL OF PAIN 2016; 17:919-29. [PMID: 27260636 DOI: 10.1016/j.jpain.2016.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/21/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022]
Abstract
UNLABELLED The transient receptor potential cation channel subfamily M 8 (TRPM8) agonist L-menthol has been used traditionally for its topical counterirritant properties. Although the use of topical L-menthol for pain is casuistically established, evidence regarding its efficacy is negligible. This study aimed to characterize the effect of L-menthol as a counterirritant on cutaneous pain and hyperalgesia provoked by topical application of the transient receptor potential cation channel, subfamily A, member 1 (TRPA1) agonist trans-cinnamaldehyde (CA). In a randomized, double-blinded study CA was applied to a 3 × 3-cm area of the volar forearm evoking neurogenic inflammation, pain, mechanical, and thermal hyperalgesia in 14 healthy volunteers. In different sessions, 10% CA alone or 40% L-menthol applied simultaneously with 10% CA were administered for 20 minutes, throughout which the subjects rated the pain intensity on a visual analogue scale of 0 to 10. Extensive quantitative sensory testing was conducted and superficial blood flow (neurogenic inflammation) was recorded. Administration of CA evoked spontaneous pain, neurogenic inflammation, thermal hyperalgesia, and primary and secondary mechanical hyperalgesia. Coadministration of topical L-menthol reduced spontaneous pain intensity (P < .01), neurogenic inflammation (P < .01), primary mechanical hyperalgesia (P < .05), secondary mechanical hyperalgesia (P < .05), and heat hyperalgesia (P < .05), but not cold hyperalgesia. L-menthol exhibited inhibitory effects on simultaneously established pain, hypersensitivity, and neurogenic inflammation in a human TRPA1-induced pain model. Potent TRPM8 agonists could be useful as topical antihyperalgesics. The study and the trial protocol is registered and approved by the local research ethics committee under the jurisdiction of the Danish Medicines Agency number N-20130005. The protocol also is registered at Clinicaltrials.gov under NCT02653703. PERSPECTIVE Drugs interacting with transient receptor potential channels are of great therapeutic potential. In the present study we established cutaneous pain and hyperalgesia using the TRPA1 agonist CA. Subsequently, we showed that the frequently used topical counterirritant and TRPM8 agonist, L-menthol, decreased evoked pain, hyperalgesia, and inflammation, indicating direct and indirect antinociceptive mechanisms.
Collapse
|
17
|
Integrating TRPV1 Receptor Function with Capsaicin Psychophysics. Adv Pharmacol Sci 2016; 2016:1512457. [PMID: 26884754 PMCID: PMC4738735 DOI: 10.1155/2016/1512457] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 01/17/2023] Open
Abstract
Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition.
Collapse
|
18
|
Reciprocal effects of capsaicin and menthol on thermosensation through regulated activities of TRPV1 and TRPM8. J Physiol Sci 2015; 66:143-55. [PMID: 26645885 PMCID: PMC4752590 DOI: 10.1007/s12576-015-0427-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/16/2015] [Indexed: 11/23/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is activated by elevated
temperature (>42 °C), and it has been reported that cold temperature decreases capsaicin-induced TRPV1 activity. In contrast, transient receptor potential melastatin 8 (TRPM8) is activated by low temperatures and menthol, and heat stimulation suppresses menthol-evoked TRPM8 currents. These findings suggest that the effects of specific agents on TRPV1 and TRPM8 channels are intricately interrelated. We examined the effects of menthol on human (h)TRPV1 and of capsaicin on hTRPM8. hTRPV1 currents activated by heat and capsaicin were inhibited by menthol, whereas hTRPM8 currents activated by cold and menthol were similarly inhibited by capsaicin. An in vivo sensory irritation test showed that menthol conferred an analgesic effect on the sensory irritation evoked by a capsaicin analogue. These results indicate that in our study the agonists of TRPV1 and TRPM8 interacted with both of these channels and suggest that the anti-nociceptive effects of menthol can be partially explained by this phenomenon.
Collapse
|
19
|
Yu X, Yu M, Liu Y, Yu S. TRP channel functions in the gastrointestinal tract. Semin Immunopathol 2015; 38:385-96. [PMID: 26459157 DOI: 10.1007/s00281-015-0528-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Mingran Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Yingzhe Liu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Shaoyong Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
|
21
|
Arendt Nielsen T, Nielsen BP, Wang K, Arendt-Nielsen L, Boudreau SA. Psychophysical and Vasomotor Responses of the Oral Tissues: A Nicotine Dose-Response and Menthol Interaction Study. Nicotine Tob Res 2015; 18:596-603. [PMID: 26242288 DOI: 10.1093/ntr/ntv163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/22/2015] [Indexed: 01/21/2023]
Abstract
INTRODUCTION This study implemented an intra-oral test-platform to assess the sensory, psychophysical, and vasomotor responses to nicotine and menthol, alone or in combination. METHODS Two double-blinded, placebo-controlled, randomized, cross-over studies, including healthy nonsmoking participants were performed. Study I: A dose-response relationship (N = 20) between 0, 2, and 4 mg nicotine gum. Study II: An interaction response (N = 22) to 30 mg menthol and 4 mg nicotine alone or in combination. Heart rate, blood pressure, tactile and thermosensory thresholds, intra-oral blood flow and temperature, pain/irritation intensities/locations, McGill Pain Questionnaire, and taste experience were assessed before, during or after the completion of a standardized chewing regime. RESULTS A dose-response elevation in heart rate was attenuated when nicotine was combined with menthol. Blood flow, temperature, and warm-detection thresholds, as assessed on the tongue, similarly increased for all gums. Pain intensity and taste experiences were similar between nicotine doses. Nicotine attenuated the sweet, cooling, and freshening sensation of menthol. Within the first 4 minutes, menthol reduced the intensity but not the area of nicotine-induced pain and irritation. The 4-mg nicotine dose led to a continued increase in the intensity and area of irritation in the throat post-chewing. Moreover, one-half of participants responded to menthol as an irritant, and these individuals demonstrated larger areas of nicotine-induced irritation in the throat post-chewing. CONCLUSIONS The intra-oral test platform provides a basis to optimize the assessment of nicotine-related taste and sensory experiences and can be used in future studies for profiling nicotine gum.
Collapse
Affiliation(s)
- Thomas Arendt Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | | | - Kelun Wang
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Shellie A Boudreau
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark;
| |
Collapse
|
22
|
Thermosensitive transient receptor potential (TRP) channel agonists and their role in mechanical, thermal and nociceptive sensations as assessed using animal models. CHEMOSENS PERCEPT 2015; 8:96-108. [PMID: 26388966 DOI: 10.1007/s12078-015-9176-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The present paper summarizes research using animal models to investigate the roles of thermosensitive transient receptor potential (TRP) channels in somatosensory functions including touch, temperature and pain. We present new data assessing the effects of eugenol and carvacrol, agonists of the warmth-sensitive TRPV3, on thermal, mechanical and pain sensitivity in rats. METHODS Thermal sensitivity was assessed using a thermal preference test, which measured the amount of time the animal occupied one of two adjacent thermoelectric plates set at different temperatures. Pain sensitivity was assessed as an increase in latency of hindpaw withdrawal away from a noxious thermal stimulus directed to the plantar hindpaw (Hargreaves test). Mechanical sensitivity was assessed by measuring the force exerted by an electronic von Frey filament pressed against the plantar surface that elicited withdrawal. RESULTS Topical application of eugenol and carvacrol did not significantly affect thermal preference, although there was a trend toward avoidance of the hotter surface in a 30 vs. 45°C preference test for rats treated with 1 or 10% eugenol and carvacrol. Both eugenol and carvacrol induced a concentration-dependent increase in thermal withdrawal latency (analgesia), with no significant effect on mechanosensitivity. CONCLUSIONS The analgesic effect of eugenol and carvacrol is consistent with previous studies. The tendency for these chemicals to increase the avoidance of warmer temperatures suggests a possible role for TRPV3 in warmth detection, also consistent with previous studies. Additional roles of other thermosensitive TRP channels (TRPM8 TRPV1, TRPV2, TRPV4, TRPM3, TRPM8, TRPA1, TRPC5) in touch, temperature and pain are reviewed.
Collapse
|
23
|
Olsen R, Andersen H, Møller H, Eskelund P, Arendt-Nielsen L. Somatosensory and vasomotor manifestations of individual and combined stimulation of TRPM8 and TRPA1 using topical L-menthol andtrans-cinnamaldehyde in healthy volunteers. Eur J Pain 2014; 18:1333-42. [DOI: 10.1002/j.1532-2149.2014.494.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 11/09/2022]
Affiliation(s)
- R.V. Olsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - H.H. Andersen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - H.G. Møller
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - P.W. Eskelund
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - L. Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| |
Collapse
|
24
|
Anderson EM, Jenkins AC, Caudle RM, Neubert JK. The effects of a co-application of menthol and capsaicin on nociceptive behaviors of the rat on the operant orofacial pain assessment device. PLoS One 2014; 9:e89137. [PMID: 24558480 PMCID: PMC3928399 DOI: 10.1371/journal.pone.0089137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/20/2014] [Indexed: 01/04/2023] Open
Abstract
Background Transient receptor potential (TRP) cation channels are involved in the perception of hot and cold pain and are targets for pain relief in humans. We hypothesized that agonists of TRPV1 and TRPM8/TRPA1, capsaicin and menthol, would alter nociceptive behaviors in the rat, but their opposite effects on temperature detection would attenuate one another if combined. Methods Rats were tested on the Orofacial Pain Assessment Device (OPAD, Stoelting Co.) at three temperatures within a 17 min behavioral session (33°C, 21°C, 45°C). Results The lick/face ratio (L/F: reward licking events divided by the number of stimulus contacts. Each time there is a licking event a contact is being made.) is a measure of nociception on the OPAD and this was equally reduced at 45°C and 21°C suggesting they are both nociceptive and/or aversive to rats. However, rats consumed (licks) equal amounts at 33°C and 21°C but less at 45°C suggesting that heat is more nociceptive than cold at these temperatures in the orofacial pain model. When menthol and capsaicin were applied alone they both induced nociceptive behaviors like lower L/F ratios and licks. When applied together though, the licks at 21°C were equal to those at 33°C and both were significantly higher than at 45°C. Conclusions This suggests that the cool temperature is less nociceptive when TRPM8/TRPA1 and TRPV1 are co-activated. These results suggest that co-activation of TRP channels can reduce certain nociceptive behaviors. These data demonstrate that the motivational aspects of nociception can be influenced selectively by TRP channel modulation and that certain aspects of pain can be dissociated and therefore targeted selectively in the clinic.
Collapse
Affiliation(s)
- Ethan M. Anderson
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, United States of America
- * E-mail:
| | - Alan C. Jenkins
- Department of Orthodontics, University of Florida, Gainesville, Florida, United States of America
| | - Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - John K. Neubert
- Department of Orthodontics, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
25
|
Andersen H, Olsen R, Møller H, Eskelund P, Gazerani P, Arendt-Nielsen L. A review of topical high-concentration L-menthol as a translational model of cold allodynia and hyperalgesia. Eur J Pain 2013; 18:315-25. [DOI: 10.1002/j.1532-2149.2013.00380.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Affiliation(s)
- H.H. Andersen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - R.V. Olsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - H.G. Møller
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - P.W. Eskelund
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - P. Gazerani
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - L. Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| |
Collapse
|
26
|
Eugenol and carvacrol induce temporally desensitizing patterns of oral irritation and enhance innocuous warmth and noxious heat sensation on the tongue. Pain 2013; 154:2078-2087. [PMID: 23791894 DOI: 10.1016/j.pain.2013.06.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 11/20/2022]
Abstract
Eugenol and carvacrol, from the spices clove and oregano, respectively, are agonists of TRPV3, which is implicated in transduction of warmth and possibly heat pain. We investigated the temporal dynamics of lingual irritation elicited by these agents, and their effects on innocuous warmth and heat pain, using a half-tongue method in human subjects. The irritant sensation elicited by both eugenol and carvacrol decreased across repeated applications at a 1-minute interstimulus interval (self-desensitization) which persisted for at least 10 minutes. Both agents also cross-desensitized capsaicin-evoked irritation. Eugenol and carvacrol significantly increased the magnitude of perceived innocuous warmth (44 °C) for >10 minutes, and briefly (<5 minutes) enhanced heat pain elicited by a 49 °C stimulus. Similar albeit weaker effects were observed when thermal stimuli were applied after the tongue had been desensitized by repeated application of eugenol or carvacrol, indicating that the effect is not due solely to summation of chemoirritant and thermal sensations. Neither chemical affected sensations of innocuous cool or cold pain. A separate group of subjects was asked to subdivide eugenol and carvacrol irritancy into subqualities, the most frequently reported being numbing and warmth, with brief burning, stinging/pricking, and tingle, confirming an earlier study. Eugenol, but not carvacrol, reduced detection of low-threshold mechanical stimuli. Eugenol and carvacrol enhancement of innocuous warmth may involve sensitization of thermal gating of TRPV3 expressed in peripheral warm fibers. The brief heat hyperalgesia following eugenol may involve a TRPV3-mediated enhancement of thermal gating of TRPV1 expressed in lingual polymodal nociceptors.
Collapse
|
27
|
A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J Neurosci 2013; 33:2837-48. [PMID: 23407943 DOI: 10.1523/jneurosci.1943-12.2013] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many primary sensory neurons are polymodal, responding to multiple stimulus modalities (chemical, thermal, or mechanical), yet each modality is recognized differently. Although polymodality implies that stimulus encoding occurs in higher centers, such as the spinal cord or brain, recent sensory neuron ablation studies find that behavioral responses to different modalities require distinct subpopulations, suggesting the existence of modality-specific labeled lines at the level of the sensory afferent. Here we provide evidence that neurons expressing TRPM8, a cold- and menthol-gated channel required for normal cold responses in mammals, represents a labeled line solely for cold sensation. We examined the behavioral significance of conditionally ablating TRPM8-expressing neurons in adult mice, finding that, like animals lacking TRPM8 channels (Trpm8(-/-)), animals depleted of TRPM8 neurons ("ablated") are insensitive to cool to painfully cold temperatures. Ablated animals showed little aversion to noxious cold and did not distinguish between cold and a preferred warm temperature, a phenotype more profound than that of Trpm8(-/-) mice which exhibit only partial cold-avoidance and -preference behaviors. In addition to acute responses, cold pain associated with inflammation and nerve injury was significantly attenuated in ablated and Trpm8(-/-) mice. Moreover, cooling-induced analgesia after nerve injury was abolished in both genotypes. Last, heat, mechanical, and proprioceptive behaviors were normal in ablated mice, demonstrating that TRPM8 neurons are dispensable for other somatosensory modalities. Together, these data show that, although some limited cold sensitivity remains in Trpm8(-/-) mice, TRPM8 neurons are required for the breadth of behavioral responses evoked by cold temperatures.
Collapse
|
28
|
Kawasaki H, Mizuta K, Fujita T, Kumamoto E. Inhibition by menthol and its related chemicals of compound action potentials in frog sciatic nerves. Life Sci 2013; 92:359-67. [PMID: 23352972 DOI: 10.1016/j.lfs.2013.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 01/05/2013] [Indexed: 01/07/2023]
Abstract
AIMS Transient receptor potential (TRP) vanilloid-1 (TRPV1) and melastatin-8 (TRPM8) channels play a role in transmitting sensory information in primary-afferent neurons. TRPV1 agonists at high concentrations inhibit action potential conduction in the neurons and thus have a local anesthetic effect. The purpose of the present study was to know whether TRPM8 agonist menthol at high concentrations has a similar action and if so whether there is a structure-activity relationship among menthol-related chemicals. MAIN METHODS Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. KEY FINDINGS (-)-Menthol and (+)-menthol concentration-dependently reduced CAP peak amplitude with the IC(50) values of 1.1 and 0.93 mM, respectively. This (-)-menthol activity was resistant to non-selective TRP antagonist ruthenium red; TRPM8 agonist icilin did not affect CAPs, indicating no involvements of TRPM8 channels. p-Menthane, (+)-limonene and menthyl chloride at 7-10 mM minimally affected CAPs. On the other hand, (-)-menthone, (+)-menthone, (-)-carvone, (+)-carvone and (-)-carveol (in each of which chemicals OH or O group was added to p-menthane and limonene) and (+)-pulegone inhibited CAPs with extents similar to that of menthol. 1,8-Cineole and 1,4-cineole were less effective while thymol and carvacrol were more effective than menthol in inhibiting CAPs. SIGNIFICANCE Menthol-related chemicals inhibited CAPs and were thus suggested to exhibit local anesthetic effects comparable to those of lidocaine and cocaine as reported previously for frog CAPs. This result may provide information to develop local anesthetics on the basis of the chemical structure of menthol.
Collapse
|
29
|
Klein AH, Sawyer CM, Takechi K, Davoodi A, Ivanov MA, Carstens MI, Carstens E. Topical hindpaw application of L-menthol decreases responsiveness to heat with biphasic effects on cold sensitivity of rat lumbar dorsal horn neurons. Neuroscience 2012; 219:234-42. [PMID: 22687951 PMCID: PMC3402706 DOI: 10.1016/j.neuroscience.2012.05.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 11/17/2022]
Abstract
Menthol is used in pharmaceutical applications because of its desired cooling and analgesic properties. The neural mechanism by which topical application of menthol decreases heat pain is not fully understood. We investigated the effects of topical menthol application on lumbar dorsal horn wide dynamic range and nociceptive-specific neuronal responses to noxious heat and cooling of glabrous hindpaw cutaneous receptive fields. Menthol increased thresholds for responses to noxious heat in a concentration-dependent manner. Menthol had a biphasic effect on cold-evoked responses, reducing the threshold (to warmer temperatures) at a low (1%) concentration and increasing threshold and reducing response magnitude at high (10%, 40%) concentrations. Menthol had little effect on responses to innocuous or noxious mechanical stimuli, ruling out a local anesthetic action. Application of 40% menthol to the contralateral hindpaw tended to reduce responses to cooling and noxious heat, suggesting a weak heterosegmental inhibitory effect. These results indicate that menthol has an analgesic effect on heat sensitivity of nociceptive dorsal horn neurons, as well as biphasic effects on cold sensitivity, consistent with previous behavioral observations.
Collapse
Affiliation(s)
- Amanda H. Klein
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Carolyn M. Sawyer
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Kenichi Takechi
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Auva Davoodi
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Margaret A. Ivanov
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| |
Collapse
|
30
|
Pan R, Tian Y, Gao R, Li H, Zhao X, Barrett JE, Hu H. Central Mechanisms of Menthol-Induced Analgesia. J Pharmacol Exp Ther 2012; 343:661-72. [DOI: 10.1124/jpet.112.196717] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
31
|
Ashley M, Dixon M, Sisodiya A, Prasad K. Lack of effect of menthol level and type on smokers' estimated mouth level exposures to tar and nicotine and perceived sensory characteristics of cigarette smoke. Regul Toxicol Pharmacol 2012; 63:381-90. [PMID: 22634246 DOI: 10.1016/j.yrtph.2012.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/02/2012] [Accepted: 04/22/2012] [Indexed: 10/28/2022]
Abstract
Menthol can reduce sensory irritation and it has been hypothesised that this could result in smokers of mentholated cigarettes taking larger puffs and deeper post-puff inhalations thereby obtaining higher exposures to smoke constituents than smokers of non-mentholated cigarettes. The aim of our study was to use part-filter analysis methodology to assess the effects of cigarette menthol loading on regular and occasional smokers of mentholated cigarettes. We measured mouth level exposure to tar and nicotine and investigated the effects of mentholation on smokers' sensory perceptions such as cooling and irritation. Test cigarettes were produced containing no menthol and different loadings of synthetic and natural l-menthol at 1 and 4mg ISO tar yields. A target of 100 smokers of menthol cigarettes and 100 smokers who predominantly smoked non-menthol cigarettes from both 1 and 4mg ISO tar yield categories were recruited in Poland and Japan. Each subject was required to smoke the test cigarette types of their usual ISO tar yield. There were positive relationships between menthol loading and the perceived 'strength of menthol taste' and 'cooling' effect. However, we did not see marked menthol-induced reductions in perceived irritation or menthol-induced increases in mouth level exposure to tar and nicotine.
Collapse
Affiliation(s)
- Madeleine Ashley
- British American Tobacco, Group Research and Development, Southampton SO15 8TL, UK.
| | | | | | | |
Collapse
|
32
|
Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci 2012; 3:248-67. [PMID: 22860192 PMCID: PMC3369806 DOI: 10.1021/cn300006u] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 02/06/2023] Open
Abstract
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling. TRPM8 is activated by innocuous cooling (<30 °C) and contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia and is a receptor for menthol and icilin (mint-derived and synthetic cooling compounds, respectively). TRPA1 (Ankyrin family) is activated by noxious cold (<17 °C), icilin, and a variety of pungent compounds. Extensive amount of medicinal chemistry efforts have been published mainly in the form of patent literature on various classes of cooling compounds by various pharmaceutical companies; however, no prior comprehensive review has been published. When expressed in heterologous expression systems, such as Xenopus oocytes or mammalian cell lines, TRPM8 mediated currents are activated by a number of cooling compounds in addition to menthol and icilin. These include synthetic p-menthane carboxamides along with other class of compounds such as aliphatic/alicyclic alcohols/esters/amides, sulphones/sulphoxides/sulphonamides, heterocyclics, keto-enamines/lactams, and phosphine oxides. In the present review, the medicinal chemistry of various cooling compounds as activators of thermoTRPM8 channel will be discussed according to their chemical classes. The potential of these compounds to emerge as therapeutic agents is also discussed.
Collapse
Affiliation(s)
- Sonali S. Bharate
- Department of Pharmaceutics, P.E. Society’s Modern
College of Pharmacy for Ladies, Dehu-Alandi Road, Moshi,
Pune, India
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, Indian Institute of Integrative Medicine
(CSIR), Canal
Road, Jammu-180001, India
| |
Collapse
|
33
|
Guimarães AG, Quintans JSS, Quintans-Júnior LJ. Monoterpenes with Analgesic Activity-A Systematic Review. Phytother Res 2012; 27:1-15. [DOI: 10.1002/ptr.4686] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 03/03/2012] [Accepted: 03/07/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Adriana G. Guimarães
- Departamento de Fisiologia; Universidade Federal de Sergipe (DFS/UFS); São Cristóvão SE Brazil
| | - Jullyana S. S. Quintans
- Departamento de Fisiologia; Universidade Federal de Sergipe (DFS/UFS); São Cristóvão SE Brazil
| | | |
Collapse
|
34
|
Wise PM, Breslin PAS, Dalton P. Sweet taste and menthol increase cough reflex thresholds. Pulm Pharmacol Ther 2012; 25:236-41. [PMID: 22465565 DOI: 10.1016/j.pupt.2012.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/14/2012] [Indexed: 02/01/2023]
Abstract
Cough is a vital protective reflex that is triggered by both mechanical and chemical stimuli. The current experiments explored how chemosensory stimuli modulate this important reflex. Cough thresholds were measured using a single-inhalation capsaicin challenge. Experiment 1 examined the impact of sweet taste: Cough thresholds were measured after rinsing the mouth with a sucrose solution (sweet) or with water (control). Experiment 2 examined the impact of menthol: Cough thresholds were measured after inhaling headspace above a menthol solution (menthol vapor) or headspace above the mineral oil solvent (control). Experiment 3 examined the impact of rinsing the mouth with a (bitter) sucrose octaacetate solution. Rinsing with sucrose and inhaling menthol vapor significantly increased measured cough thresholds. Rinsing with sucrose octaacete caused a non-significant decrease in cough thresholds, an important demonstration of specificity. Decreases in cough reflex sensitivity from sucrose or menthol could help explain why cough syrups without pharmacologically active ingredients are often almost as effective as formulations with an added drug. Further, the results support the idea that adding menthol to cigarettes might make tobacco smoke more tolerable for beginning smokers, at least in part, by reducing the sensitivity of an important airway defense mechanism.
Collapse
Affiliation(s)
- Paul M Wise
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA.
| | | | | |
Collapse
|
35
|
Gaudioso C, Hao J, Martin-Eauclaire MF, Gabriac M, Delmas P. Menthol pain relief through cumulative inactivation of voltage-gated sodium channels. Pain 2011; 153:473-484. [PMID: 22172548 DOI: 10.1016/j.pain.2011.11.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/19/2011] [Accepted: 11/14/2011] [Indexed: 01/02/2023]
Abstract
Menthol is a natural compound of plant origin known to produce cool sensation via the activation of the TRPM8 channel. It is also frequently part of topical analgesic drugs available in a pharmacy, although its mechanism of action is still unknown. Compelling evidence indicates that voltage-gated Na(+) channels are critical for experiencing pain sensation. We tested the hypothesis that menthol may block voltage-gated Na(+) channels in dorsal root ganglion (DRG) neurons. By use of a patch clamp, we evaluated the effects of menthol application on tetrodotoxin (TTX)-resistant Nav1.8 and Nav1.9 channel subtypes in DRG neurons, and on TTX-sensitive Na(+) channels in immortalized DRG neuron-derived F11 cells. The results indicate that menthol inhibits Na(+) channels in a concentration-, voltage-, and frequency-dependent manner. Menthol promoted fast and slow inactivation states, causing use-dependent depression of Na(+) channel activity. In current clamp recordings, menthol inhibited firing at high-frequency stimulation with minimal effects on normal neuronal activity. We found that low concentrations of menthol cause analgesia in mice, relieving pain produced by a Na(+) channel-targeting toxin. We conclude that menthol is a state-selective blocker of Nav1.8, Nav1.9, and TTX-sensitive Na(+) channels, indicating a role for Na(+) channel blockade in the efficacy of menthol as topical analgesic compound.
Collapse
Affiliation(s)
- Christelle Gaudioso
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université, UMR 6231, CNRS, CS80011, Bd Pierre Dramard, 13344 Marseille Cedex 15, France
| | | | | | | | | |
Collapse
|
36
|
Behavioral Testing of the Effects of Thermosensitive TRP Channel Agonists on Touch, Temperature, and Pain Sensations. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Harrington AM, Hughes PA, Martin CM, Yang J, Castro J, Isaacs NJ, Blackshaw AL, Brierley SM. A novel role for TRPM8 in visceral afferent function. Pain 2011; 152:1459-1468. [DOI: 10.1016/j.pain.2011.01.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/24/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
|
38
|
Wise PM, Preti G, Eades J, Wysocki CJ. The effect of menthol vapor on nasal sensitivity to chemical irritation. Nicotine Tob Res 2011; 13:989-97. [PMID: 21652736 DOI: 10.1093/ntr/ntr107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Among other effects, menthol added to cigarettes may modulate sensory response to cigarette smoke either by masking "harshness" or contributing to a desirable "impact." However, harshness and impact have been imprecisely defined and assessed using subjective measures. Thus, the current experiments used an objective measure of sensitivity to chemical irritation in the nose to test the hypothesis that menthol vapor modulates sensitivity to chemical irritation in the airways. METHODS Nasal irritation thresholds were measured for 2 model compounds (acetic acid and allyl isothiocyanate) using nasal lateralization. In this technique, participants simultaneously sniff clean air in one nostril and chemical vapor in the other and attempt to identify the stimulated nostril. People cannot lateralize based on smell alone but can do so when chemicals are strong enough to feel. In one condition, participants were pretreated by sniffing menthol vapor. In a control condition, participants were pretreated by sniffing an odorless blank (within-subjects design). RESULTS Pretreatment with menthol vapor decreased sensitivity to nasal irritation from acetic acid (participants required higher concentrations to lateralize) but increased sensitivity to allyl isothiocyanate (lower concentrations were required). CONCLUSIONS The current experiments provide objective evidence that menthol vapor can modulate sensitivity to chemical irritation in the upper airways in humans. Cigarette smoke is a complex mixture of chemicals and particulates, and further work will be needed to determine exactly how menthol modulates smoking sensation. A better understanding could lead to treatments tailored to help menthol smokers quit by replacing the sensation of mentholated cigarettes.
Collapse
Affiliation(s)
- Paul M Wise
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
39
|
Klein AH, Sawyer CM, Carstens MI, Tsagareli MG, Tsiklauri N, Carstens E. Topical application of L-menthol induces heat analgesia, mechanical allodynia, and a biphasic effect on cold sensitivity in rats. Behav Brain Res 2010; 212:179-86. [PMID: 20398704 DOI: 10.1016/j.bbr.2010.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/03/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
Menthol is used in analgesic balms and also in foods and oral hygiene products for its fresh cooling sensation. Menthol enhances cooling by interacting with the cold-sensitive thermoTRP channel TRPM8, but its effect on pain is less well understood. We presently used behavioral methods to investigate effects of topical menthol on thermal (hot and cold) pain and innocuous cold and mechanical sensitivity in rats. Menthol dose-dependently increased the latency for noxious heat-evoked withdrawal of the treated hindpaw with a weak mirror-image effect, indicating antinociception. Menthol at the highest concentration (40%) reduced mechanical withdrawal thresholds, with no effect at lower concentrations. Menthol had a biphasic effect on cold avoidance. At high concentrations (10% and 40%) menthol reduced avoidance of colder temperatures (15 degrees C and 20 degrees C) compared to 30 degrees C, while at lower concentrations (0.01-1%) menthol enhanced cold avoidance. In a -5 degrees C cold plate test, 40% menthol significantly increased the nocifensive response latency (cold hypoalgesia) while lower concentrations were not different from vehicle controls. These results are generally consistent with neurophysiological and human psychophysical data and support TRPM8 as a potential peripheral target of pain modulation.
Collapse
Affiliation(s)
- Amanda H Klein
- Section of Neurobiology, Physiology and Behavior, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
40
|
Heck JD. A review and assessment of menthol employed as a cigarette flavoring ingredient. Food Chem Toxicol 2010; 48 Suppl 2:S1-38. [PMID: 20113860 DOI: 10.1016/j.fct.2009.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/21/2009] [Accepted: 11/01/2009] [Indexed: 10/19/2022]
Abstract
Cigarette smoking is established as a substantial contributor to risks for cancer, cardiovascular and respiratory diseases. Less is known about the potential of cigarette composition to affect smoking risks. The use of cigarette flavoring ingredients such as menthol is currently of worldwide public health and regulatory interest. The unique conditions of menthol inhalation exposure that occur coincident with that of the complex cigarette smoke aerosol require specialized studies to support an assessment of its safety in cigarette flavoring applications. The present state of knowledge is sufficient to support an assessment of the safety of the use of menthol in cigarettes. Scientific, smoking behavioral and epidemiological data available through mid-2009 is critically reviewed and a broad convergence of findings supports a judgment that menthol employed as a cigarette tobacco flavoring ingredient does not meaningfully affect the inherent toxicity of cigarette smoke or the human risks that attend smoking. There remains a need for well-designed studies of the potential of menthol to affect smoking initiation, cessation and addiction in order to differentiate any independent effects of menthol in cigarettes from those imposed by socioeconomic, environmental and peer influences on these complex human behaviors.
Collapse
Affiliation(s)
- J Daniel Heck
- Scientific Affairs, AW Spears Research Center, Lorillard Tobacco Company, PO Box 21688, Greensboro, NC 27420-1688, USA.
| |
Collapse
|
41
|
Keifer D, Ulbricht C, Abrams TR, Basch E, Giese N, Giles M, Kirkwood CD, Miranda M, Woods J. Peppermint (Mentha Xpiperita). ACTA ACUST UNITED AC 2009. [DOI: 10.1080/j157v07n02_07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Madrid R, de la Peña E, Donovan-Rodriguez T, Belmonte C, Viana F. Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. J Neurosci 2009; 29:3120-31. [PMID: 19279249 PMCID: PMC6666436 DOI: 10.1523/jneurosci.4778-08.2009] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/28/2009] [Accepted: 02/06/2009] [Indexed: 12/31/2022] Open
Abstract
Molecular determinants of threshold differences among cold thermoreceptors are unknown. Here we show that such differences correlate with the relative expression of I(KD), a current dependent on Shaker-like Kv1 channels that acts as an excitability brake, and I(TRPM8), a cold-activated excitatory current. Neurons responding to small temperature changes have high functional expression of TRPM8 (transient receptor potential cation channel, subfamily M, member 8) and low expression of I(KD). In contrast, neurons activated by lower temperatures have a lower expression of TRPM8 and a prominent I(KD). Otherwise, both subpopulations have nearly identical membrane and firing properties, suggesting that they belong to the same neuronal pool. Blockade of I(KD) shifts the threshold of cold-sensitive neurons to higher temperatures and augments cold-evoked nocifensive responses in mice. Similar behavioral effects of I(KD) blockade were observed in TRPA1(-/-) mice. Moreover, only a small percentage of trigeminal cold-sensitive neurons were activated by TRPA1 agonists, suggesting that TRPA1 does not play a major role in the detection of low temperatures by uninjured somatic cold-specific thermosensory neurons under physiological conditions. Collectively, these findings suggest that innocuous cooling sensations and cold discomfort are signaled by specific low- and high-threshold cold thermoreceptor neurons, differing primarily in their relative expression of two ion channels having antagonistic effects on neuronal excitability. Thus, although TRPM8 appears to function as a critical cold sensor in the majority of peripheral sensory neurons, the expression of Kv1 channels in the same terminals seem to play an important role in the peripheral gating of cold-evoked discomfort and pain.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain, and
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Elvira de la Peña
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain, and
| | - Tansy Donovan-Rodriguez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain, and
| | - Carlos Belmonte
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain, and
| | - Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain, and
| |
Collapse
|
43
|
Abstract
Several airway afferent nerve subtypes have been implicated in coughing. These include bronchopulmonary C-fibers, rapidly adapting airway mechanoreceptors and touch-sensitive tracheal Adelta-fibers (also called cough receptors). Although the last two afferent nerve subtypes are primarily sensitive to mechanical stimuli, all can be acted upon by one or more different chemical stimuli. In this review we catalogue the chemical agents that stimulate and/or modulate the activity of the airway afferent nerves involved in cough, and describe the specific mechanisms involved in these effects. In addition, we describe the mechanisms of action of a number of chemical inhibitors of these afferent nerve subtypes, and attempt to relate this information to the regulation of coughing in health and disease.
Collapse
Affiliation(s)
- S B Mazzone
- School of Biomedical Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| | | |
Collapse
|
44
|
Wasner G, Naleschinski D, Binder A, Schattschneider J, McLachlan EM, Baron R. The Effect of Menthol on Cold Allodynia in Patients with Neuropathic Pain. PAIN MEDICINE 2008; 9:354-8. [DOI: 10.1111/j.1526-4637.2007.00290.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B. Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 2007; 27:9874-84. [PMID: 17855602 PMCID: PMC6672629 DOI: 10.1523/jneurosci.2221-07.2007] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TRPA1 is a calcium-permeable nonselective cation transient receptor potential (TRP) channel that functions as an excitatory ionotropic receptor in nociceptive neurons. TRPA1 is robustly activated by pungent substances in mustard oil, cinnamon, and garlic and mediates the inflammatory actions of environmental irritants and proalgesic agents. Here, we demonstrate a bimodal sensitivity of TRPA1 to menthol, a widely used cooling agent and known activator of the related cold receptor TRPM8. In whole-cell and single-channel recordings of heterologously expressed TRPA1, submicromolar to low-micromolar concentrations of menthol cause channel activation, whereas higher concentrations lead to a reversible channel block. In addition, we provide evidence for TRPA1-mediated menthol responses in mustard oil-sensitive trigeminal ganglion neurons. Our data indicate that TRPA1 is a highly sensitive menthol receptor that very likely contributes to the diverse psychophysical sensations after topical application of menthol to the skin or mucous membranes of the oral and nasal cavities.
Collapse
Affiliation(s)
- Yuji Karashima
- Laboratorium voor Fysiologie, Campus Gasthuisberg, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Nils Damann
- Laboratorium voor Fysiologie, Campus Gasthuisberg, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Jean Prenen
- Laboratorium voor Fysiologie, Campus Gasthuisberg, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Karel Talavera
- Laboratorium voor Fysiologie, Campus Gasthuisberg, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Andrei Segal
- Laboratorium voor Fysiologie, Campus Gasthuisberg, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratorium voor Fysiologie, Campus Gasthuisberg, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Bernd Nilius
- Laboratorium voor Fysiologie, Campus Gasthuisberg, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
46
|
Patel T, Ishiuji Y, Yosipovitch G. Menthol: a refreshing look at this ancient compound. J Am Acad Dermatol 2007; 57:873-8. [PMID: 17498839 DOI: 10.1016/j.jaad.2007.04.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/26/2007] [Accepted: 04/07/2007] [Indexed: 11/21/2022]
Abstract
Menthol is a naturally occurring cyclic terpene alcohol of plant origin, which has been used since antiquity for medicinal purposes. Its use in dermatology is ubiquitous, where it is frequently part of topical antipruritic, antiseptic, analgesic, and cooling formulations. Despite its widespread use, it was only recently that the mechanism by which menthol elicits the same cool sensation as low temperature was elucidated upon, with the discovery of the TRPM8 receptor. Although almost 5 years have passed since the discovery of this receptor, many dermatologists are still unaware of menthol's underlying target. The purpose of this review is to highlight the recent advances in the mechanism of action of menthol and to provide an overview of its dermatologic applications.
Collapse
Affiliation(s)
- Tejesh Patel
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | |
Collapse
|
47
|
Zanotto KL, Merrill AW, Carstens MI, Carstens E. Neurons in Superficial Trigeminal Subnucleus Caudalis Responsive to Oral Cooling, Menthol, and Other Irritant Stimuli. J Neurophysiol 2007; 97:966-78. [PMID: 17151223 DOI: 10.1152/jn.00996.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The recent discoveries of cold-sensitive transient receptor potential (TRP) channels prompted us to investigate the responses of neurons in trigeminal subnucleus caudalis (Vc) to intraoral cooling and agonists of TRPM8 and TRPA1. Single units responsive to lingual cooling were recorded in superficial laminae of Vc in thiopental-anesthetized rats. All units responded to noxious heat and 88% responded to menthol. Responses increased with menthol concentration from 0.1 to 1% (6.4–64 mM) and plateaued at 10% (640 mM). Noxious cold-evoked responses were significantly enhanced after menthol in a concentration-dependent manner. Constant-flow application of 1% menthol elicited a phasic discharge that adapted over 2–8 min and significantly enhanced subsequent cold-evoked but not heat-evoked responses; vehicle (10% ethanol) was ineffective. Reapplication of menthol 15 min later elicited a significantly reduced response (self-desensitization). Vc units were similarly excited phasically by 1% menthol dissolved in 40% ethanol. The 40% ethanol briefly excited Vc units during the first minute and reduced subsequent responses to noxious heat and cold while exhibiting neither self-desensitization nor cross-desensitization to menthol. Menthol cross-desensitized Vc responses to 40% ethanol. Most menthol-responsive units also responded to the TRPA1 agonists cinnamaldehyde and mustard oil, and the TRPV1 agonist capsaicin. Units in superficial Vc receive convergent input from primary afferents that express TRPM8, TRPA1, and/or TRPV1 channels, either directly or indirectly via intersubnuclear pathways. The convergent nature of these units suggests a general role in signaling noxious stimuli.
Collapse
Affiliation(s)
- Karen L Zanotto
- Section of Neurobiology, Physiology and Behavior, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | |
Collapse
|
48
|
Proudfoot CJ, Garry EM, Cottrell DF, Rosie R, Anderson H, Robertson DC, Fleetwood-Walker SM, Mitchell R. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr Biol 2006; 16:1591-605. [PMID: 16920620 DOI: 10.1016/j.cub.2006.07.061] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/11/2006] [Accepted: 07/21/2006] [Indexed: 01/27/2023]
Abstract
BACKGROUND Chronic established pain, especially that following nerve injury, is difficult to treat and represents a largely unmet therapeutic need. New insights are urgently required, and we reasoned that endogenous processes such as cooling-induced analgesia may point the way to novel strategies for intervention. Molecular receptors for cooling have been identified in sensory nerves, and we demonstrate here how activation of one of these, TRPM8, produces profound, mechanistically novel analgesia in chronic pain states. RESULTS We show that activation of TRPM8 in a subpopulation of sensory afferents (by either cutaneous or intrathecal application of specific pharmacological agents or by modest cooling) elicits analgesia in neuropathic and other chronic pain models in rats, thereby inhibiting the characteristic sensitization of dorsal-horn neurons and behavioral-reflex facilitation. TRPM8 expression was increased in a subset of sensory neurons after nerve injury. The essential role of TRPM8 in suppression of sensitized pain responses was corroborated by specific knockdown of its expression after intrathecal application of an antisense oligonucleotide. We further show that the analgesic effect of TRPM8 activation is centrally mediated and relies on Group II/III metabotropic glutamate receptors (mGluRs), but not opioid receptors. We propose a scheme in which Group II/III mGluRs would respond to glutamate released from TRPM8-containing afferents to exert an inhibitory gate control over nociceptive inputs. CONCLUSIONS TRPM8 and its central downstream mediators, as elements of endogenous-cooling-induced analgesia, represent a novel analgesic axis that can be exploited in chronic sensitized pain states.
Collapse
Affiliation(s)
- Clare J Proudfoot
- Centre for Neuroscience Research, Division of Veterinary Biomedical Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hatem S, Attal N, Willer JC, Bouhassira D. Psychophysical study of the effects of topical application of menthol in healthy volunteers. Pain 2006; 122:190-6. [PMID: 16527405 DOI: 10.1016/j.pain.2006.01.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/10/2006] [Accepted: 01/26/2006] [Indexed: 02/02/2023]
Abstract
Cold hyperalgesia is a major clinical phenomenon, but validated experimental models are still lacking for humans. Topical menthol application has recently been proposed as a possible model for the study of cold pain. We characterized the psychophysical effects of 30% l-menthol in ethanol on glabrous skin in 39 healthy subjects, using a double-blind, randomized, crossover design, with ethanol as a control. Psychophysical testing included an assessment of pain thresholds and detection of mechanical, cold, and heat stimuli, and of the sensations induced by suprathreshold stimuli. Most subjects (90%) perceived a cooling sensation with menthol. Menthol decreased cold pain thresholds and enhanced pain responses to suprathreshold noxious cold stimuli, without affecting responses to other stimuli. Menthol therefore has selective effects on noxious cold processing. No subject displayed signs of skin irritation or redness. These data suggest that 30% menthol application may be a useful experimental model for studies of cold hyperalgesia in humans. The absence of local skin reactions also makes this test potentially suitable for use in patients.
Collapse
Affiliation(s)
- Samar Hatem
- INSERM, U792, CHU Ambroise Paré, AP-HP, Boulogne-Billancourt F-92100, France
| | | | | | | |
Collapse
|
50
|
Liu Y, Ye X, Feng X, Zhou G, Rong Z, Fang C, Chen H. Menthol facilitates the skin analgesic effect of tetracaine gel. Int J Pharm 2005; 305:31-6. [PMID: 16219435 DOI: 10.1016/j.ijpharm.2005.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/11/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study is to observe the effect of menthol on the percutaneous penetration and skin analgesic action of tetracaine gel (T-gel). Anesthetic gels containing 4% tetracaine in carbomer vehicle with and without menthol were prepared. The menthol penetration-enhanced gel conferred significantly higher diffusion of tetracaine across full-thickness mouse skin than non-penetration-enhanced gel, in a dose-dependent manner. The inter-cellular spaces of the stratum corneum in skin treated with menthol penetration-enhanced gel became extended as compared with those in non-penetration-enhanced gel. This may suggest that menthol's action was related to the changes of the epidermis ultra structures. An enlarged inter-cellular space, per se, would allow a better passage to tetracaine. To determine the efficacy of menthol penetration-enhanced tetracaine gel in the management of pain, a double-blind, placebo-controlled, randomized controlled trial (RCT) design was used. The mean verbal pain scores (VPS) were significantly lower in volunteers treated with penetration-enhanced tetracaine gel than those in volunteers receiving non-penetration-enhanced tetracaine gel or placebo. Menthol improved the analgesic efficacy of the tetracaine 4% gel in part through enhanced percutaneous permeation.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, College of Basic Medical Sciences, Shanghai JiaoTong University, South ChongQing Road 280, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|