1
|
Lee YG, Kwon JE, Choi WS, Baek NI, Kang SC. Deciphering chemical diversity among five variants of Abeliophyllum distichum flowers through metabolomics analysis. PLANT DIRECT 2024; 8:e616. [PMID: 39301044 PMCID: PMC11411454 DOI: 10.1002/pld3.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 09/22/2024]
Abstract
Abeliophyllum distichum (Oleaceae), endemic to the Korean Peninsula and the sole member of its genus and species, possesses high scarcity value, escalating its importance under the Nagoya Protocol. Despite its significance, their metabolites and activities of A. distichum flowers remain unexplored. This study employs an integrated metabolomic approach utilizing NMR, LC/MS, GC/MS, and FTIR techniques to comprehensively analyze the metabolite profile of A. distichum flowers. By combining these methods, we identified 35 metabolites, 43 secondary metabolites, and 108 hydrophobic primary metabolites. Notably, distinct concentration patterns of these compounds were observed across five variants, classified based on morphological characteristics. Correlation analyses of primary and secondary metabolites unveiled varietal metabolic flux, providing insights into A. distichum flower metabolism. Additionally, the reconstruction of metabolic pathways based on dissimilarities in morphological traits elucidates variant-specific metabolic signatures. These findings not only enhance our understanding of chemical differences between varieties but also underscore the importance of considering varietal differences in future research and conservation efforts.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology Kyung Hee University Yongin Korea
| | - Jeong Eun Kwon
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology Kyung Hee University Yongin Korea
| | - Won-Sil Choi
- National Instrumentation Center for Environmental Management Seoul National University Seoul Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology Kyung Hee University Yongin Korea
| | - Se Chan Kang
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology Kyung Hee University Yongin Korea
| |
Collapse
|
2
|
Takada S, Yamagishi Y, Tanaka YK, Anan Y, Nagasawa S, Iwase H, Ogra Y. Identification of Tellurium Metabolite in Broccoli Using Complementary Analyses of Inorganic and Organic Mass Spectrometry. Chem Res Toxicol 2024; 37:1210-1217. [PMID: 38855932 DOI: 10.1021/acs.chemrestox.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tellurium (Te) is a chalcogen element like sulfur and selenium. Although it is unclear whether Te is an essential nutrient in organisms, unique Te metabolic pathways have been uncovered. We have previously reported that an unknown Te metabolite (UKTe) was observed in plants exposed to tellurate, a highly toxic Te oxyanion, by liquid chromatography-inductively coupled plasma mass spectrometer (LC-ICP-MS). In the present study, we detected UKTe in tellurate-exposed broccoli (Brassica oleracea var. italica) by LC-ICP-MS and identified it as gluconic acid-3-tellurate (GA-3Te) using electrospray ionization mass spectrometer with quadrupole-Orbitrap detector and tandem MS analysis, the high-sensitivity and high-resolution mass spectrometry for organic compounds. We also found that GA-3Te was produced from one gluconic acid and one tellurate molecule by direct complexation in an aqueous solution. GA-3Te was significantly less toxic than tellurate on plant growth. This study is the first to identify the Te metabolite GA-3Te in plants and will contribute to the investigation of tellurate detoxification pathways. Moreover, gluconic acid, a natural and biodegradable organic compound, is expected to be applicable to eco-friendly remediation strategies for tellurate contamination.
Collapse
Affiliation(s)
- Shohei Takada
- Graduate School of Medical and Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yoshikazu Yamagishi
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8670, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yasumi Anan
- Faculty of Environmental & Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi, Kumamoto 862-8502, Japan
| | - Sayaka Nagasawa
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8670, Japan
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Hirotaro Iwase
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8670, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
3
|
Zhou H, Yu L, Liu S, Zhu A, Yang Y, Chen C, Yang A, Liu L, Yu F. Transcriptome comparison analyses in UV-B induced AsA accumulation of Lactuca sativa L. BMC Genomics 2023; 24:61. [PMID: 36737693 PMCID: PMC9896689 DOI: 10.1186/s12864-023-09133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lettuce (Lactuca sativa L.) cultivated in facilities display low vitamin C (L-ascorbic acid (AsA)) contents which require augmentation. Although UV-B irradiation increases the accumulation of AsA in crops, processes underlying the biosynthesis as well as metabolism of AsA induced by UV-B in lettuce remain unclear. RESULTS UV-B treatment increased the AsA content in lettuce, compared with that in the untreated control. UV-B treatment significantly increased AsA accumulation in a dose-dependent manner up until a certain dose.. Based on optimization experiments, three UV-B dose treatments, no UV-B (C), medium dose 7.2 KJ·m- 2·d- 1 (U1), and high dose 12.96 KJ·m- 2·d- 1 (U2), were selected for transcriptome sequencing (RNA-Seq) in this study. The results showed that C and U1 clustered in one category while U2 clustered in another, suggesting that the effect exerted on AsA by UV-B was dose dependent. MIOX gene in the myo-inositol pathway and APX gene in the recycling pathway in U2 were significantly different from the other two treatments, which was consistent with AsA changes seen in the three treatments, indicating that AsA accumulation caused by UV-B may be associated with these two genes in lettuce. UVR8 and HY5 were not significantly different expressed under UV-B irradiation, however, the genes involved in plant growth hormones and defence hormones significantly decreased and increased in U2, respectively, suggesting that high UV-B dose may regulate photomorphogenesis and response to stress via hormone regulatory pathways, although such regulation was independent of the UVR8 pathway. CONCLUSIONS Our results demonstrated that studying the application of UV-B irradiation may enhance our understanding of the response of plant growth and AsA metabolism-related genes to UV-B stress, with particular reference to lettuce.
Collapse
Affiliation(s)
- Hua Zhou
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Lei Yu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shujuan Liu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Anfan Zhu
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, China
| | - Yanfang Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Caihui Chen
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Aihong Yang
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Lipan Liu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Faxin Yu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China.
| |
Collapse
|
4
|
Retention Indices for Naturally-Occurring Chiral and Achiral Compounds on Common Gas Chromatography Chiral Stationary Phases. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Sorochan Armstrong MD, Arredondo Campos OR, Bannon CC, de la Mata AP, Case RJ, Harynuk JJ. Global metabolome analysis of Dunaliella tertiolecta, Phaeobacter italicus R11 Co-cultures using thermal desorption - Comprehensive two-dimensional gas chromatography - Time-of-flight mass spectrometry (TD-GC×GC-TOFMS). PHYTOCHEMISTRY 2022; 195:113052. [PMID: 34968885 DOI: 10.1016/j.phytochem.2021.113052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Dunaliella tertiolecta is a marine microalgae that has been studied extensively as a potential carbon-neutral biofuel source (Tang et al., 2011). Microalgae oil contains high quantities of energy-rich fatty acids and lipids, but is not yet commercially viable as an alternative fuel. Carefully optimised growth conditions, and more recently, algal-bacterial co-cultures have been explored as a way of improving the yield of D. tertiolecta microalgae oils. The relationship between the host microalgae and bacterial co-cultures is currently poorly understood. Here, a complete workflow is proposed to analyse the global metabolomic profile of co-cultured D. tertiolectra and Phaeobacter italicus R11, which will enable researchers to explore the chemical nature of this relationship in more detail. To the best of the authors' knowledge this study is one of the first of its kind, in which a pipeline for an entirely untargeted analysis of the algal metabolome is proposed using a practical sample preparation, introduction, and data analysis routine.
Collapse
Affiliation(s)
| | - O René Arredondo Campos
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, T6G 2G2, Alberta, Canada; Department of Human Ecology, University of Alberta, 302 Human Ecology Building, Edmonton, T6G 2N1, Alberta, Canada
| | - Catherine C Bannon
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - A Paulina de la Mata
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, T6G 2G2, Alberta, Canada
| | - Rebecca J Case
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) and School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore
| | - James J Harynuk
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, T6G 2G2, Alberta, Canada.
| |
Collapse
|
6
|
Troisi J, Landolfi A, Cavallo P, Marciano F, Barone P, Amboni M. Metabolomics in Parkinson's disease. Adv Clin Chem 2021; 104:107-149. [PMID: 34462054 DOI: 10.1016/bs.acc.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder in which environmental (lifestyle, dietary, infectious disease) factors as well as genetic make-up play a role. Metabolomics, an evolving research field combining biomarker discovery and pathogenetics, is particularly useful in studying complex pathophysiology in general and Parkinson's disease (PD) specifically. PD, the second most frequent neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra and the presence of intraneural inclusions of α-synuclein aggregates. Although considered a predominantly movement disorder, PD is also associated with number of non-motor features. Metabolomics has provided useful information regarding this neurodegenerative process with the aim of identifying a disease-specific fingerprint. Unfortunately, many disease variables such as clinical presentation, motor system involvement, disease stage and duration substantially affect biomarker relevance. As such, metabolomics provides a unique approach to studying this multifactorial neurodegenerative disorder.
Collapse
Affiliation(s)
- Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy; Theoreo Srl, Montecorvino Pugliano, SA, Italy; European Biomedical Research Institute of Salerno (EBRIS), Salerno, SA, Italy.
| | - Annamaria Landolfi
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Pierpaolo Cavallo
- Department of Physics, University of Salerno, Fisciano, SA, Italy; Istituto Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Roma, RM, Italy
| | - Francesca Marciano
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, SA, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Marianna Amboni
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
7
|
Vrancheva RZ, Dincheva IN, Aneva IY, Pavlov AI. Metabolite profiling by means of GC-MS combined with principal component analyses of natural populations of Nectaroscordum siculum ssp. bulgaricum (Janka) Stearn. ACTA ACUST UNITED AC 2021; 75:451-457. [PMID: 32706756 DOI: 10.1515/znc-2020-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/13/2020] [Indexed: 11/15/2022]
Abstract
Nectaroscordum siculum ssp. bulgaricum (Janka) Stearn (Allium siculum subsp. dioscoridis (Sm.) K. Richt.) is a traditional culinary spice from South-East Europe. Studies of N. siculum have focused mainly on the botanical and taxonomic characteristics of this species and there is no data available in the scientific literature about its metabolite profile. Thus, the aim of the current study was metabolite profiling of four wild populations of N. siculum grown in Bulgaria by gas chromatography coupled to mass spectrometry (GC-MS) and subsequent principal component analysis (PCA) of the data obtained. The identified primary metabolites (carbohydrates, amino acids, organic acids and lipids) are initial compounds for the biosynthesis of different plant secondary metabolites, such as polyphenols and flavour compounds with valuable biological activities for humans. The health benefits of the phenolic acids identified in this study have been a prerequisite for the implementation of N. siculum in different food systems in order to increase their quality and biological value.
Collapse
Affiliation(s)
- Radka Z Vrancheva
- Department of Analytical Chemistry and Physical chemistry, University of Food Technologies-Plovdiv, 26 Maritza blvd., 4002, Plovdiv, Bulgaria
| | - Ivayla N Dincheva
- AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov blvd, 1164, Sofia, Bulgaria
| | - Ina Y Aneva
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Science, 1113, Sofia, Bulgaria
| | - Atanas I Pavlov
- Department of Analytical Chemistry and Physical chemistry, University of Food Technologies-Plovdiv, 26 Maritza blvd., 4002, Plovdiv, Bulgaria.,Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski blvd, 4000, Plovdiv, Bulgaria
| |
Collapse
|
8
|
GC-MS Metabolic Profile and α-Glucosidase-, α-Amylase-, Lipase-, and Acetylcholinesterase-Inhibitory Activities of Eight Peach Varieties. Molecules 2021; 26:molecules26144183. [PMID: 34299456 PMCID: PMC8306053 DOI: 10.3390/molecules26144183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The inhibition of certain digestive enzymes by target food matrices represents a new approach in the treatment of socially significant diseases. Proving the ability of fruits to inhibit such enzymes can support the inclusion of specific varieties in the daily diets of patients with diabetes, obesity, Alzheimer's disease, etc., providing them with much more than just valuable micro- and macromolecules. The current study aimed atidentifying and comparing the GC-MS metabolic profiles of eight peach varieties ("Filina", "Ufo 4, "Gergana", "Laskava", "July Lady", "Flat Queen", "Evmolpiya", and "Morsiani 90") grown in Bulgaria (local and introduced) and to evaluate the inhibitory potential of their extracts towards α-glucosidase, α-amylase, lipase, and acetylcholinesterase. In order to confirm samples' differences or similarities, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were also applied to the identified metabolites. The results provide important insights into the metabolomic profiles of the eight peach varieties and represent a first attempt to characterize the peels of the peach varieties with respect to α-glucosidase-, α-amylase-, lipase-, and acetylcholinesterase-inhibitory activities. All of the studied peach extracts displayed inhibitory activity towards α-glucosidase (IC50: 125-757 mg/mL) and acetylcholinesterase (IC50: 60-739 mg/mL), but none of them affected α-amylase activity. Five of the eight varieties showed inhibitory activity towards porcine pancreatic lipase (IC50: 24-167 mg/mL). The obtained results validate the usefulness of peaches and nectarines as valuable sources of natural agents beneficial for human health, although further detailed investigation should be performed in order to thoroughly identify the enzyme inhibitors responsible for each activity.
Collapse
|
9
|
Merder J, Freund JA, Feudel U, Hansen CT, Hawkes JA, Jacob B, Klaproth K, Niggemann J, Noriega-Ortega BE, Osterholz H, Rossel PE, Seidel M, Singer G, Stubbins A, Waska H, Dittmar T. ICBM-OCEAN: Processing Ultrahigh-Resolution Mass Spectrometry Data of Complex Molecular Mixtures. Anal Chem 2020; 92:6832-6838. [DOI: 10.1021/acs.analchem.9b05659] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Julian Merder
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Jan A. Freund
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Ulrike Feudel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Christian T. Hansen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Jeffrey A. Hawkes
- Department of Chemistry−BMC, Uppsala University, Husargatan 3 (D5), 752 37 Uppsala, Sweden
| | - Benjamin Jacob
- Helmholtz-Centre Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Katrin Klaproth
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Beatriz E. Noriega-Ortega
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Helena Osterholz
- Leibniz Institute for Baltic Sea Research Warnemuende, Seestraße 15, 18119 Rostock, Germany
| | - Pamela E. Rossel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Seidel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Gabriel Singer
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Aron Stubbins
- Departments of Marine and Environmental Science, Chemistry and Chemical Biology, and Civil and Environmental Engineering, Northeastern University, 102 HT, Boston, Massachusetts 02115, United States
| | - Hannelore Waska
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
10
|
Liu Y, Shao YR, Li XY, Wang ZM, Yang LR, Zhang YZ, Wu MB, Yao JM. Analysis of nicotine-induced metabolic changes in Blakeslea trispora by GC-MS. J Zhejiang Univ Sci B 2020; 21:172-177. [PMID: 32115914 PMCID: PMC7076348 DOI: 10.1631/jzus.b1900459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/07/2019] [Indexed: 11/11/2022]
Abstract
Blakeslea trispora is a natural source of carotenoids, including β-carotene and lycopene, which have industrial applications. Therefore, classical selective breeding techniques have been applied to generate strains with increased productivity, and microencapsulated β-carotene preparation has been used in food industry (Li et al., 2019). In B. trispora, lycopene is synthesized via the mevalonate pathway (Venkateshwaran et al., 2015). Lycopene cyclase, which is one of the key enzymes in this pathway, is a bifunctional enzyme that can catalyze the cyclization of lycopene to produce β-carotene and exhibit phytoene synthase activity (He et al., 2017).
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - You-ran Shao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiang-yu Li
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- CABIO Bioengineering (Wuhan) Co. Ltd., Wuhan 436070, China
| | - Zhi-ming Wang
- CABIO Bioengineering (Wuhan) Co. Ltd., Wuhan 436070, China
| | - Li-rong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu-zhou Zhang
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Mian-bin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, China
| | - Jian-ming Yao
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Erban A, Martinez-Seidel F, Rajarathinam Y, Dethloff F, Orf I, Fehrle I, Alpers J, Beine-Golovchuk O, Kopka J. Multiplexed Profiling and Data Processing Methods to Identify Temperature-Regulated Primary Metabolites Using Gas Chromatography Coupled to Mass Spectrometry. Methods Mol Biol 2020; 2156:203-239. [PMID: 32607984 DOI: 10.1007/978-1-0716-0660-5_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This book chapter describes the analytical procedures required for the profiling of a metabolite fraction enriched for primary metabolites. The profiling is based on routine gas chromatography coupled to mass spectrometry (GC-MS). The generic profiling method is adapted to plant material, specifically to the analysis of plant material that was exposed to temperature stress. The method can be combined with stable isotope labeling and tracing experiments and is equally applicable to preparations of plant material and microbial photosynthetic organisms. The described methods are modular and can be multiplexed, that is, the same sample or a paired identical backup sample can be analyzed sequentially by more than one of the described procedures. The modules include rapid sampling and metabolic inactivation protocols for samples in a wide weight range, sample extraction procedures, chemical derivatization steps that are required to make the metabolite fraction amenable to gas chromatographic analysis, routine GC-MS methods, and procedures of data processing and data mining. A basic and extendable set of standardizations for metabolite recovery and retention index alignment of the resulting GC-MS chromatograms is included. The methods have two applications: (1) The rapid screening for changes of relative metabolite pools sizes under temperature stress and (2) the verification by exact quantification using GC-MS protocols that are extended by internal and external standardization.
Collapse
Affiliation(s)
- Alexander Erban
- Applied Metabolome Analysis Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Federico Martinez-Seidel
- Applied Metabolome Analysis Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yogeswari Rajarathinam
- Applied Metabolome Analysis Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Frederik Dethloff
- Applied Metabolome Analysis Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,Proteomics and Biomarkers, Max Planck Institute of Psychiatry, München, Germany
| | - Isabel Orf
- Applied Metabolome Analysis Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,Owlstone Medical Ltd, Cambridge, UK
| | - Ines Fehrle
- Applied Metabolome Analysis Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Jessica Alpers
- Applied Metabolome Analysis Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Olga Beine-Golovchuk
- Applied Metabolome Analysis Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,Nuclear Pore Complex and Ribosome Assembly, Biochemie-Zentrum, Universität Heidelberg, Heidelberg, Germany
| | - Joachim Kopka
- Applied Metabolome Analysis Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
12
|
Merder J, Freund JA, Feudel U, Niggemann J, Singer G, Dittmar T. Improved Mass Accuracy and Isotope Confirmation through Alignment of Ultrahigh-Resolution Mass Spectra of Complex Natural Mixtures. Anal Chem 2019; 92:2558-2565. [DOI: 10.1021/acs.analchem.9b04234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Julian Merder
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - Jan A. Freund
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - Ulrike Feudel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - Gabriel Singer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, D-26129 Oldenburg, Germany
| |
Collapse
|
13
|
Vitamin C in Plants: From Functions to Biofortification. Antioxidants (Basel) 2019; 8:antiox8110519. [PMID: 31671820 PMCID: PMC6912510 DOI: 10.3390/antiox8110519] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.
Collapse
|
14
|
Amino acids profiling in Datura stramonium and study of their variations after inoculation with plant growth promoting Rhizobacteria. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00287-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Vorobyova V, Skіba M. Apricot Cake Extract as Corrosion Inhibitor of Steel: Chemical Composition and Anti-corrosion Properties. CHEMISTRY JOURNAL OF MOLDOVA 2019. [DOI: 10.19261/cjm.2018.525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
16
|
Chai F, Liu W, Xiang Y, Meng X, Sun X, Cheng C, Liu G, Duan L, Xin H, Li S. Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. HORTICULTURE RESEARCH 2019; 6:8. [PMID: 30603094 PMCID: PMC6312538 DOI: 10.1038/s41438-018-0083-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 05/20/2023]
Abstract
Vitis amurensis is a wild Vitis plant that can withstand extreme cold temperatures. However, the accumulation of metabolites during cold acclimation (CA) in V. amurensis remains largely unknown. In this study, plantlets of V. amurensis and V. vinifera cv. Muscat of Hamburg were treated at 4 °C for 24 and 72 h, and changes of metabolites in leaves were detected by gas chromatography coupled with time-of-flight mass spectrometry. Most of the identified metabolites, including carbohydrates, amino acids, and organic acids, accumulated in the two types of grape after CA. Galactinol, raffinose, fructose, mannose, glycine, and ascorbate were continuously induced by cold in V. amurensis, but not in Muscat of Hamburg. Twelve metabolites, including isoleucine, valine, proline, 2-oxoglutarate, and putrescine, increased in V. amurensis during CA. More galactinol, ascorbate, 2-oxoglutarate, and putrescine, accumulated in V. amurensis, but not in Muscat of Hamburg, during CA, which may be responsible for the excellent cold tolerance in V. amurensis. The expression levels of the genes encoding β-amylase (BAMY), galactinol synthase (GolS), and raffinose synthase (RafS) were evaluated by quantitative reverse transcription-PCR. The expression BAMY (VIT_02s0012 g00170) and RafS (VIT_05s0077 g00840) were primarily responsible for the accumulation of maltose and raffinose, respectively. The accumulation of galactinol was attributed to different members of GolS in the two grapes. In conclusion, these results show the inherent differences in metabolites between V. amurensis and V. vinifera under CA.
Collapse
Affiliation(s)
- Fengmei Chai
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wenwen Liu
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yue Xiang
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xianbin Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi P.R. China
| | - Lixin Duan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
17
|
Zechmann B. Compartment-Specific Importance of Ascorbate During Environmental Stress in Plants. Antioxid Redox Signal 2018; 29:1488-1501. [PMID: 28699398 DOI: 10.1089/ars.2017.7232] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SIGNIFICANCE Ascorbate is an essential antioxidant in plants. Total contents and its redox state in organelles are crucial to fight and signal oxidative stress. Recent Advances: With quantitative immunoelectron microscopy and biochemical methods, highest ascorbate contents have recently been measured in peroxisomes (23 mM) and the cytosol (22 mM), lowest ones in vacuoles (2 mM), and intermediate concentrations (4-16 mM) in all other organelles. CRITICAL ISSUES The accumulation of ascorbate in chloroplasts and peroxisomes is crucial for plant defense. Its depletion in chloroplasts, peroxisomes, and mitochondria during biotic stress leads to the accumulation of reactive oxygen species (ROS) and the development of chlorosis and necrosis. In the apoplast and vacuoles, ascorbate is the most important antioxidant for the detoxification of ROS. The cytosol acts as a hub for ascorbate metabolism as it reduces its oxidized forms that are produced in the cytosol or imported from other cell compartments. It is a sink for ascorbate that is produced in mitochondria, distributes ascorbate to all organelles, and uses ascorbate to detoxify ROS. As ascorbate and its redox state are involved in protein synthesis and modifications, it can be concluded that ascorbate in the cytosol senses oxidative stress and regulates plant growth, development, and defense. FUTURE DIRECTIONS Future research should focus on (1) dissecting roles of ascorbate in vacuoles and the lumen of the endoplasmic reticulum, (2) identifying the physiological relevance of ascorbate transporters, and (3) correlating current data with changes in the subcellular distribution of related enzymes, ROS, and gene expression patterns.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University , Waco, Texas
| |
Collapse
|
18
|
Dethloff F, Bueschl C, Heumann H, Schuhmacher R, Turck CW. Partially 13C-labeled mouse tissue as reference for LC-MS based untargeted metabolomics. Anal Biochem 2018; 556:63-69. [PMID: 29958846 DOI: 10.1016/j.ab.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022]
Abstract
The inclusion of stable isotope-labeled reference standards in the sample is an established method for the detection and relative quantification of metabolic features in untargeted metabolomics. In order to quantify as many metabolites as possible, the reference should ideally include the same metabolites in their stable isotope-labeled form as the sample under investigation. We present here an attempt to use partially 13C-labeled mouse material as internal standard for relative metabolite quantification of mouse and human samples in untargeted metabolomics. We fed mice for 14 days with a13C-labeled Ralstonia eutropha based diet. Tissue and blood amino acids from these mice showed 13C enrichment levels that ranged from 6% to 75%. We used MetExtract II software to automatically detect native and labeled peak pairs in an untargeted manner. In a dilution series and with the implementation of a correction factor, partially 13C-labeled mouse plasma resulted in accurate relative quantification of human plasma amino acids using liquid chromatography coupled to mass spectrometry, The coefficient of variation for the relative quantification is reduced from 27% without internal standard to 10% with inclusion of partially 13C-labeled internal standard. We anticipate the method to be of general use for the relative metabolite quantification of human specimens.
Collapse
Affiliation(s)
- Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph Bueschl
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | | | - Rainer Schuhmacher
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria.
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
19
|
Wang Y, Lysøe E, Armarego-Marriott T, Erban A, Paruch L, van Eerde A, Bock R, Liu-Clarke J. Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3759-3771. [PMID: 29757407 DOI: 10.1093/jxb/ery176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/09/2018] [Indexed: 05/23/2023]
Abstract
Roots and root-released organic anions play important roles in uptake of phosphorus (P), an essential macronutrient for food production. Oat, ranking sixth in the world's cereal production, contains valuable nutritional compounds and can withstand poor soil conditions. Our aim was to investigate root transcriptional and metabolic responses of oat grown under P-deficient and P-sufficient conditions. We conducted a hydroponic experiment and measured root morphology and organic anion exudation, and analysed changes in the transcriptome and metabolome. Oat roots showed enhanced citrate and malate exudation after 4 weeks of P deficiency. After 10 d of P deficiency, we identified 9371 differentially expressed transcripts with a 2-fold or greater change (P<0.05): 48 sequences predicted to be involved in organic anion biosynthesis and efflux were consistently up-regulated; 24 up-regulated transcripts in oat were also found to be up-regulated upon P starvation in rice and wheat under similar conditions. Phosphorylated metabolites (i.e. glucose-6-phosphate, myo-inositol phosphate) were reduced dramatically, while citrate and malate, some sugars and amino acids increased slightly in P-deficient oat roots. Our data are consistent with a strategy of increased organic anion efflux and a shift in primary metabolism in response to P deficiency in oat.
Collapse
Affiliation(s)
- Yanliang Wang
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Erik Lysøe
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Lisa Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - André van Eerde
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Ralph Bock
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | | |
Collapse
|
20
|
Yadav M, Jindal DK, Parle M, Kumar A, Dhingra S. Targeting oxidative stress, acetylcholinesterase, proinflammatory cytokine, dopamine and GABA by eucalyptus oil (Eucalyptus globulus) to alleviate ketamine-induced psychosis in rats. Inflammopharmacology 2018; 27:301-311. [PMID: 29464495 DOI: 10.1007/s10787-018-0455-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/07/2018] [Indexed: 01/02/2023]
Abstract
Essential oil of eucalyptus species is among the most common traded essential oils in the world. There is an increasing interest in the application of eucalyptus oil as a natural additive in food and pharmaceutical industry. The present study was undertaken to identify the phytoconstituents present in the essential oil of Eucalyptus globulus leaves (EO) and ascertain their protective effect against ketamine-induced psychosis in rats. GC-MS technique was used for analysis of phytoconstituents present in EO. Ketamine (50 mg/kg, i.p.) was used to induce psychosis in rats. Photoactometer, forced swim test and pole climb avoidance test were used to evaluate the protective effects of the EO (500, 1000 and 2000 mg/kg, p.o.) on acute and chronic administration. Bar test was used to test the side effect of EO. Biochemical and neurochemical estimations were carried out to explore the possible mechanism of action. GC-MS analysis of EO showed the presence of a number of biologically active compounds. EO at the dose of 500, 1000 and 2000 mg/kg, p.o. on acute and chronic administration, decreased locomotor activity, immobility duration and latency to climb the pole. EO was effective to facilitate the release of GABA, increase GSH levels, inhibit dopamine neurotransmission and decrease TNF-α levels as well as diminish AChE activity in different regions of the brain. EO at the dose of 500, 1000 mg/kg did not produce cataleptic behavior in rats. EO at the dose of 500, 1000 mg/kg produced protective effects against ketamine-induced psychosis and can be further explored clinically against neuropsychiatric disorders.
Collapse
Affiliation(s)
- Monu Yadav
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Deepak Kumar Jindal
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Milind Parle
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study (UGC-CAS) in Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sameer Dhingra
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
21
|
Investigating the Role of the Photorespiratory Pathway in Non-photosynthetic Tissues. Methods Mol Biol 2017. [PMID: 28822136 DOI: 10.1007/978-1-4939-7225-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Whilst photorespiration represents one of the dominant pathway fluxes in photosynthetic tissues there are hints from publically available gene expression data such as that housed in the bioarray resource (BAR; www.bar.utoronto.ca) that several of the constituent enzymes are present in roots and other heterotrophic tissues. Here we describe a protocol based on modification of the gaseous environment surrounding individual tissues of mutant and wild type Arabidopsis and evaluation of the consequences. This method could additionally easily be used for larger plants.
Collapse
|
22
|
Metabolic Flexibility Underpins Growth Capabilities of the Fastest Growing Alga. Curr Biol 2017; 27:2559-2567.e3. [PMID: 28803869 DOI: 10.1016/j.cub.2017.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 11/21/2022]
Abstract
The factors rate-limiting growth of photosynthetic organisms under optimal conditions are controversial [1-8]. Adaptation to extreme environments is usually accompanied by reduced performance under optimal conditions [9, 10]. However, the green alga Chlorella ohadii, isolated from a harsh desert biological soil crust [11-17], does not obey this rule. In addition to resistance to photodamage [17, 18], it performs the fastest growth ever reported for photosynthetic eukaryotes. A multiphasic growth pattern (very fast growth [phase I], followed by growth retardation [phase II] and additional fast growth [phase III]) observed under constant illumination and temperature indicates synchronization of the algal population. Large physiological changes at transitions between growth phases suggest metabolic shifts. Indeed, metabolome analyses at points along the growth phases revealed large changes in the levels of many metabolites during growth with an overall rise during phase I and decline in phase II. Multivariate analysis of the metabolome data highlighted growth phase as the main factor contributing to observed metabolite variance. The analyses identified putrescine as the strongest predictive metabolite for growth phase and a putative growth regulator. Indeed, extracellular additions of polyamines strongly affected the growth rate in phase I and the growth arrest in phase II, with a marked effect on O2 exchange. Our data implicate polyamines as the signals harmonizing metabolic shifts and suggest that metabolic flexibility enables the immense growth capabilities of C. ohadii. The data provide a new dimension to current models focusing on growth-limiting processes in photosynthetic organisms where the anabolic and catabolic metabolisms must be strictly regulated.
Collapse
|
23
|
Uclés S, Uclés A, Lozano A, Martínez Bueno M, Fernández-Alba A. Shifting the paradigm in gas chromatography mass spectrometry pesticide analysis using high resolution accurate mass spectrometry. J Chromatogr A 2017; 1501:107-116. [DOI: 10.1016/j.chroma.2017.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 11/30/2022]
|
24
|
Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gómez-Cadenas A, Tiburcio AF, Alcázar R. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. PLANT, CELL & ENVIRONMENT 2017; 40:527-542. [PMID: 26791972 DOI: 10.1111/pce.12714] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 05/18/2023]
Abstract
The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine and its structural isomer thermospermine (tSpm) into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimulation of abscisic acid and jasmonate (JA) biosynthesis and accumulation of important compatible solutes, such as sugars, polyols and proline, as well as TCA cycle intermediates were observed in atpao5 mutants under salt stress. Expression analyses indicate that tSpm modulates the transcript levels of several target genes, including many involved in the biosynthesis and signalling of JA, some of which are already known to promote salinity tolerance. Transcriptional modulation by tSpm is isomer-dependent, thus demonstrating the specificity of this response. Overall, we conclude that tSpm triggers metabolic and transcriptional reprogramming that promotes salt stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Xavier Zarza
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Kostadin E Atanasov
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Francisco Marco
- Departamento de Biología Vegetal, Facultad de Farmacia, Universidad de Valencia, Burjassot, Spain
| | - Vicent Arbona
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E-12071, Castelló de la Plana, Spain
| | - Pedro Carrasco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
| | - Joachim Kopka
- Max Planck Institute for Molecular Plant Physiology, Golm, Germany
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329, Limassol, Cyprus
| | - Teun Munnik
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E-12071, Castelló de la Plana, Spain
| | - Antonio F Tiburcio
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Rubén Alcázar
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Lu C, Yin J, Zhao F, Li F, Lu W. Metabolomics analysis of the effect of dissolved oxygen on spinosad production by Saccharopolyspora spinosa. Antonie van Leeuwenhoek 2017; 110:677-685. [DOI: 10.1007/s10482-017-0835-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/19/2017] [Indexed: 11/30/2022]
|
26
|
Kolton M, Graber ER, Tsehansky L, Elad Y, Cytryn E. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. THE NEW PHYTOLOGIST 2017; 213:1393-1404. [PMID: 27780299 DOI: 10.1111/nph.14253] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/01/2016] [Indexed: 05/03/2023]
Abstract
The 'biochar effect' depicts a phenomenon in which biochar soil amendment enhances plant performance by promoting growth and suppressing disease. Although this phenomenon has been observed in numerous studies, the mode of action that explains it is currently unknown. In order to elucidate mechanisms responsible for the 'biochar effect', we comprehensively monitored tomato plant development and resistance to the foliar fungal pathogen Botrytis cinerea, in biochar-amended and nonamended soils using native biochar and washed biochar, striped of labile chemical constituents. We concomitantly assessed bacterial community succession in the rhizosphere by high-throughput 16S rRNA gene amplicon sequencing and carbon-source utilization profiling. Biochar had little impact on plant physiological parameters. However, both native and washed biochar treatments were characterized by higher rhizosphere bacterial diversity and enhanced carbohydrate and phenolic compound utilization rates coupled to stimulation of bacteria known to degrade phenolic compounds. This study indicates that the 'biochar effect' is at least partially dictated by increased diversity and changes in metabolic potential in the rhizosphere microbiome, which is primarily triggered by the recalcitrant carbon backbone of the biochar and tightly bound compounds. It corresponds to the growing consensus that soil amendments which enhance microbial diversity have important benefits to ecosystem functioning.
Collapse
Affiliation(s)
- Max Kolton
- Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, PO Box 15159, Rishon Lezion, 7528809, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ellen R Graber
- Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, PO Box 15159, Rishon Lezion, 7528809, Israel
| | - Ludmila Tsehansky
- Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, PO Box 15159, Rishon Lezion, 7528809, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, The Volcani Center, Agricultural Research Organization, PO Box 15159, Rishon Lezion, 7528809, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, PO Box 15159, Rishon Lezion, 7528809, Israel
| |
Collapse
|
27
|
Dethloff F, Orf I, Kopka J. Rapid in situ 13C tracing of sucrose utilization in Arabidopsis sink and source leaves. PLANT METHODS 2017; 13:87. [PMID: 29075313 PMCID: PMC5648436 DOI: 10.1186/s13007-017-0239-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/10/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Conventional metabolomics approaches face the problem of hidden metabolic phenotypes where only fluxes are altered but pool sizes stay constant. Metabolic flux experiments are used to detect such hidden flux phenotypes. These experiments are, however, time consuming, may be cost intensive, and involve specialists for modeling. We fill the gap between conventional metabolomics and flux modeling. We present rapid stable isotope tracing assays and analysis strategies of 13C labeling data. For this purpose, we combine the conventional metabolomics approach that detects significant relative changes of metabolite pool sizes with analyses of differential utilization of 13C labeled carbon. As a test case, we use uniformly labeled 13C-sucrose. RESULTS We present petiole and hypocotyl feeding assays for the rapid in situ feeding (≤ 4 h) of isotopically labeled metabolic precursor to whole Arabidopsis thaliana rosettes. The assays are assessed by conventional gas chromatography-mass spectrometry based metabolite profiling that was extended by joined differential analysis of 13C-labeled sub-pools and of 13C enrichment of metabolites relative to the enrichment of 13C-sucrose within each sample. We apply these analyses to the sink to source transition continuum of leaves from single A. thaliana rosettes and characterize the associated relative changes of metabolite pools, as well as previously hidden changes of sucrose-derived carbon partitioning. We compared the contribution of sucrose as a carbon source in predominantly sink to predominantly source leaves and identified a set of primary metabolites with differential carbon utilization during sink to source transition. CONCLUSION The presented feeding assays and data evaluation strategies represent a rapid and easy-to-use tool box for enhanced metabolomics studies that combine differential pool size analysis with screening for differential carbon utilization from defined stable isotope labeled metabolic precursors.
Collapse
Affiliation(s)
- Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Isabel Orf
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
28
|
Goettel M, Niessner R, Pluym N, Scherer G, Scherer M. A fully validated GC-TOF-MS method for the quantification of fatty acids revealed alterations in the metabolic profile of fatty acids after smoking cessation. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1041-1042:141-150. [PMID: 28039811 DOI: 10.1016/j.jchromb.2016.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
We developed and validated an efficient and robust method for the simultaneous quantification of 44 fatty acid species in human plasma via GC-TOF-MS. The method is characterized by its robustness, accuracy and precision covering a wide range of fatty acid species with various saturation degrees including short chain fatty acids (beginning with FA 4:0) and long chain fatty acids (up to FA 32:0). The fatty acids were methylated prior to analyses and subsequently detected as fatty acid methyl esters by means of GC-TOF-MS. A highly substituted polar column allowed the separation of geometrical and positional isomers of fatty acid species. The method was applied to plasma samples of a strictly diet controlled clinical smoking cessation study including 39 smokers followed over the course of three months after having quit. Statistical significant alterations within the fatty acid profile were observed when comparing the baseline (subjects still smoking) with one week, one month and three months of smoking cessation. After 3 months of smoking cessation, a partial recovery of alterations in the fatty acid profile evoked by smoking was observed. In conclusion, the developed fatty acid profiling method using GC-TOF-MS has proven as a reliable tool for the quantitative determination of 44 individual fatty acid species within clinical studies.
Collapse
Affiliation(s)
- Michael Goettel
- Chair for Analytical Chemistry, Technische Universität München, Marchioninistraße 17, 81377 Munich, Germany; ABF, Analytisch-Biologisches Forschungslabor GmbH, Goethestraße 20, 80336 Munich, Germany
| | - Reinhard Niessner
- Chair for Analytical Chemistry, Technische Universität München, Marchioninistraße 17, 81377 Munich, Germany
| | - Nikola Pluym
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Goethestraße 20, 80336 Munich, Germany
| | - Gerhard Scherer
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Goethestraße 20, 80336 Munich, Germany
| | - Max Scherer
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Goethestraße 20, 80336 Munich, Germany.
| |
Collapse
|
29
|
Sprenger H, Kurowsky C, Horn R, Erban A, Seddig S, Rudack K, Fischer A, Walther D, Zuther E, Köhl K, Hincha DK, Kopka J. The drought response of potato reference cultivars with contrasting tolerance. PLANT, CELL & ENVIRONMENT 2016; 39:2370-2389. [PMID: 27341794 DOI: 10.1111/pce.12780] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 05/21/2023]
Abstract
Systems responses to drought stress of four potato reference cultivars with differential drought tolerance (Solanum tuberosum L.) were investigated by metabolome profiling and RNA sequencing. Systems analysis was based on independent field and greenhouse trials. Robust differential drought responses across all cultivars under both conditions comprised changes of proline, raffinose, galactinol, arabitol, arabinonic acid, chlorogenic acid and 102 transcript levels. The encoded genes contained a high proportion of heat shock proteins and proteins with signalling or regulatory functions, for example, a homolog of abscisic acid receptor PYL4. Constitutive differences of the tolerant compared with the sensitive cultivars included arbutin, octopamine, ribitol and 248 transcripts. The gene products of many of these transcripts were pathogen response related, such as receptor kinases, or regulatory proteins, for example, a homolog of the Arabidopsis FOUR LIPS MYB-regulator of stomatal cell proliferation. Functional enrichment analyses imply heat stress as a major acclimation component of potato leaves to long-term drought stress. Enhanced heat stress during drought can be caused by loss of transpiration cooling. This effect and CO2 limitation are the main consequences of drought-induced or abscisic acid-induced stomatal closure. Constitutive differences in metabolite and transcript levels between tolerant and sensitive cultivars indicate interactions of drought tolerance and pathogen resistance in potato.
Collapse
Affiliation(s)
- Heike Sprenger
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Christina Kurowsky
- Institut für Biowissenschaften und Pflanzengenetik, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Renate Horn
- Institut für Biowissenschaften und Pflanzengenetik, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Sylvia Seddig
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institut, Federal Research Centre for Cultivated Plants, Rudolf-Schick-Platz 3, D-18190, Sanitz, Germany
| | - Katharina Rudack
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institut, Federal Research Centre for Cultivated Plants, Rudolf-Schick-Platz 3, D-18190, Sanitz, Germany
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany.
| |
Collapse
|
30
|
Zhang X, Yu HJ, Zhang XM, Yang XY, Zhao WC, Li Q, Jiang WJ. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:222-230. [PMID: 27459340 DOI: 10.1016/j.plaphy.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/29/2016] [Accepted: 07/09/2016] [Indexed: 05/27/2023]
Abstract
L-Ascorbic acid (AsA, ascorbate) is one of the most abundant natural antioxidants, and it is an important factor in the nutritional quality of cucumber. In this work, key enzymes involved in the ascorbic acid biosynthesis and recycling pathway in cucumber seedlings under nitrogen deficiency were investigated at the levels of transcription and enzyme activity. The activities of myo-inositol oxygenase (MIOX) and transcript levels of MIOXs increased dramatically, while the activities of ascorbate oxidase (AO) and glutathione reductase (GR) and transcript levels of AOs and GR2 decreased significantly in N-limited leaves, as did the ascorbate concentration, in nitrogen-deficient cucumber seedlings. The activities of other enzymes and transcript levels of other genes involved in the ascorbate recycling pathway and ascorbate synthesis pathways decreased or remained unchanged under nitrogen deficiency. These results indicate that nitrogen deficiency induced genes involved in the ascorbate-glutathione recycling and myo-inositol pathway in cucumber leaves. Thus, the AO, GR and MIOX involved in the pathways might play roles in AsA accumulation.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Jun Yu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiao Meng Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Yong Yang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Chao Zhao
- Beijing Key Laboratory for Agriculture Application and New Technology, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Qiang Li
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Jie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China.
| |
Collapse
|
31
|
Ray JL, Althammer J, Skaar KS, Simonelli P, Larsen A, Stoecker D, Sazhin A, Ijaz UZ, Quince C, Nejstgaard JC, Frischer M, Pohnert G, Troedsson C. Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities. Mol Ecol 2016; 25:5585-5602. [PMID: 27662431 DOI: 10.1111/mec.13844] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 12/01/2022]
Abstract
In order to characterize copepod feeding in relation to microbial plankton community dynamics, we combined metabarcoding and metabolome analyses during a 22-day seawater mesocosm experiment. Nutrient amendment of mesocosms promoted the development of haptophyte (Phaeocystis pouchetii)- and diatom (Skeletonema marinoi)-dominated plankton communities in mesocosms, in which Calanus sp. copepods were incubated for 24 h in flow-through chambers to allow access to prey particles (<500 μm). Copepods and mesocosm water sampled six times spanning the experiment were analysed using metabarcoding, while intracellular metabolite profiles of mesocosm plankton communities were generated for all experimental days. Taxon-specific metabarcoding ratios (ratio of consumed prey to available prey in the surrounding seawater) revealed diverse and dynamic copepod feeding selection, with positive selection on large diatoms, heterotrophic nanoflagellates and fungi, while smaller phytoplankton, including P. pouchetii, were passively consumed or even negatively selected according to our indicator. Our analysis of the relationship between Calanus grazing ratios and intracellular metabolite profiles indicates the importance of carbohydrates and lipids in plankton succession and copepod-prey interactions. This molecular characterization of Calanus sp. grazing therefore provides new evidence for selective feeding in mixed plankton assemblages and corroborates previous findings that copepod grazing may be coupled to the developmental and metabolic stage of the entire prey community rather than to individual prey abundances.
Collapse
Affiliation(s)
- Jessica L Ray
- Hjort Centre for Marine Ecosystem Dynamics, Uni Research Environment, Uni Research AS, Nygårdsgaten 112, Bergen, N-5008, Norway.
| | - Julia Althammer
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07443, Germany
| | - Katrine S Skaar
- Hjort Centre for Marine Ecosystem Dynamics, Uni Research Environment, Uni Research AS, Nygårdsgaten 112, Bergen, N-5008, Norway
| | - Paolo Simonelli
- Department of Biology, University of Bergen, Thormøhlensgt 53A, Bergen, 5006, Norway
| | - Aud Larsen
- Hjort Centre for Marine Ecosystem Dynamics, Uni Research Environment, Uni Research AS, Nygårdsgaten 112, Bergen, N-5008, Norway
| | - Diane Stoecker
- Horn Point Lab, Center of Environmental Science, University of Maryland, Cambridge, MA, 21613, USA
| | - Andrey Sazhin
- Laboratory of Ecology of Plankton Organisms, Russian Academy of Sciences, P.P. Shirshov Institute of Oceanology, Nakhimovsky Prospect 36, Moscow, Russia
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christopher Quince
- WMS - Microbiology and Infection, University of Warwick Medical School, Coventry, CV4 7AL, UK
| | - Jens C Nejstgaard
- Department 3, Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, OT Neuglobsow, 16775, Germany
| | - Marc Frischer
- Hjort Centre for Marine Ecosystem Dynamics, Uni Research Environment, Uni Research AS, Nygårdsgaten 112, Bergen, N-5008, Norway.,Skidaway Institute of Oceanography, 10 Science Circle, Savannah, GA, 31411, USA
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07443, Germany
| | - Christofer Troedsson
- Hjort Centre for Marine Ecosystem Dynamics, Uni Research Environment, Uni Research AS, Nygårdsgaten 112, Bergen, N-5008, Norway
| |
Collapse
|
32
|
Orf I, Schwarz D, Kaplan A, Kopka J, Hess WR, Hagemann M, Klähn S. CyAbrB2 Contributes to the Transcriptional Regulation of Low CO2 Acclimation in Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2232-2243. [PMID: 27638927 DOI: 10.1093/pcp/pcw146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Acclimation to low CO2 conditions in cyanobacteria involves the co-ordinated regulation of genes mainly encoding components of the carbon-concentrating mechanism (CCM). Making use of several independent microarray data sets, a core set of CO2-regulated genes was defined for the model strain Synechocystis sp. PCC 6803. On the transcriptional level, the CCM is mainly regulated by the well-characterized transcriptional regulators NdhR (= CcmR) and CmpR. However, the role of an additional regulatory protein, namely cyAbrB2 belonging to the widely distributed AbrB regulator family that was originally characterized in the genus Bacillus, is less defined. Here we present results of transcriptomic and metabolic profiling of the wild type and a ΔcyabrB2 mutant of Synechocystis sp. PCC 6803 after shifts from high CO2 (5% in air, HC) to low CO2 (0.04%, LC). Evaluation of the transcriptomic data revealed that cyAbrB2 is involved in the regulation of several CCM-related genes such as sbtA/B, ndhF3/ndhD3/cupA and cmpABCD under LC conditions, but apparently acts supplementary to NdhR and CmpR. Under HC conditions, cyAbrB2 deletion affects the transcript abundance of PSII subunits, light-harvesting components and Calvin-Benson-Bassham cycle enzymes. These changes are also reflected by down-regulation of primary metabolite pools. The data suggest a role for cyAbrB2 in adjusting primary carbon and nitrogen metabolism to photosynthetic activity under fluctuating environmental conditions. The findings were integrated into the current knowledge about the acquisition of inorganic carbon (Ci), the CCM and parts of its regulation on the transcriptional level.
Collapse
Affiliation(s)
- Isabel Orf
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, Potsdam-Golm, Germany
| | - Doreen Schwarz
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, Potsdam-Golm, Germany
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Stephan Klähn
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Metabolomic profiling of antiviral Scaevola spinescens extracts by high resolution tandem mass spectrometry. ACTA ACUST UNITED AC 2016. [DOI: 10.17660/actahortic.2016.1125.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Treutler H, Tsugawa H, Porzel A, Gorzolka K, Tissier A, Neumann S, Balcke GU. Discovering Regulated Metabolite Families in Untargeted Metabolomics Studies. Anal Chem 2016; 88:8082-90. [PMID: 27452369 DOI: 10.1021/acs.analchem.6b01569] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The identification of metabolites by mass spectrometry constitutes a major bottleneck which considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements. By integrated analysis of MS(1) abundances and MS/MS spectra, the identification of regulated metabolite families is achieved. This approach offers a global view on metabolic regulation in comparative metabolomics. We implemented our approach in the web application "MetFamily", which is freely available at http://msbi.ipb-halle.de/MetFamily/ . MetFamily provides a dynamic link between the patterns based on MS(1)-signal intensity and the corresponding structural similarity at the MS/MS level. Structurally related metabolites are annotated as metabolite families based on a hierarchical cluster analysis of measured MS/MS spectra. Joint examination with principal component analysis of MS(1) patterns, where this annotation is preserved in the loadings, facilitates the interpretation of comparative metabolomics data at the level of metabolite families. As a proof of concept, we identified two trichome-specific metabolite families from wild-type tomato Solanum habrochaites LA1777 in a fully unsupervised manner and validated our findings based on earlier publications and with NMR.
Collapse
Affiliation(s)
- Hendrik Treutler
- Leibniz Institute of Plant Biochemistry , Department of Stress and Developmental Biology, Weinberg 3, D-06120 Halle/Saale, Germany
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science , Yokohama, Kanagawa 230-0045, Japan
| | - Andrea Porzel
- Leibniz Institute of Plant Biochemistry , Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle/Saale, Germany
| | - Karin Gorzolka
- Leibniz Institute of Plant Biochemistry , Department of Stress and Developmental Biology, Weinberg 3, D-06120 Halle/Saale, Germany
| | - Alain Tissier
- Leibniz Institute of Plant Biochemistry , Department of Cell and Metabolic Biology, Weinberg 3, D-06120 Halle/Saale, Germany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry , Department of Stress and Developmental Biology, Weinberg 3, D-06120 Halle/Saale, Germany
| | - Gerd Ulrich Balcke
- Leibniz Institute of Plant Biochemistry , Department of Cell and Metabolic Biology, Weinberg 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
35
|
Yi L, Dong N, Yun Y, Deng B, Ren D, Liu S, Liang Y. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal Chim Acta 2016; 914:17-34. [PMID: 26965324 DOI: 10.1016/j.aca.2016.02.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/03/2023]
Abstract
This review focuses on recent and potential advances in chemometric methods in relation to data processing in metabolomics, especially for data generated from mass spectrometric techniques. Metabolomics is gradually being regarded a valuable and promising biotechnology rather than an ambitious advancement. Herein, we outline significant developments in metabolomics, especially in the combination with modern chemical analysis techniques, and dedicated statistical, and chemometric data analytical strategies. Advanced skills in the preprocessing of raw data, identification of metabolites, variable selection, and modeling are illustrated. We believe that insights from these developments will help narrow the gap between the original dataset and current biological knowledge. We also discuss the limitations and perspectives of extracting information from high-throughput datasets.
Collapse
Affiliation(s)
- Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Naiping Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yonghuan Yun
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Baichuan Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dabing Ren
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yizeng Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
36
|
Park CH, Baskar TB, Park SY, Kim SJ, Valan Arasu M, Al-Dhabi NA, Kim JK, Park SU. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus). Molecules 2016; 21:157. [PMID: 26828471 PMCID: PMC6273575 DOI: 10.3390/molecules21020157] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 02/05/2023] Open
Abstract
A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS)-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g), phenolics (0.0664 ± 0.0033 mg/g) and flavonoids (0.0096 ± 0.0004 mg/g). Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA), hierarchical clustering analysis (HCA), Pearson’s correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87%) at 1000 μg/mL, and DPPH activity (20.78%), followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might provide information on the relationship between primary and secondary metabolites and a synergistic antioxidant ability derived from the secondary metabolites in the radish cultivars.
Collapse
Affiliation(s)
- Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 305-764, Korea.
| | - Thanislas Bastin Baskar
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 305-764, Korea.
| | - Soo-Yun Park
- National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 565-851, Korea.
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406-772, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 305-764, Korea.
| |
Collapse
|
37
|
Li CF, Yao MZ, Ma CL, Ma JQ, Jin JQ, Chen L. Differential Metabolic Profiles during the Albescent Stages of 'Anji Baicha' (Camellia sinensis). PLoS One 2015; 10:e0139996. [PMID: 26444680 PMCID: PMC4622044 DOI: 10.1371/journal.pone.0139996] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
'Anji Baicha' is an albino tea cultivar with white shoots at low air temperature and green shoots at high air temperature in early spring. The metabolite contents in the shoots dynamically vary with the color changes and with shoot development. To investigate the metabolomic variation during the albescent and re-greening stages, gas chromatography-mass spectrometry combined with multivariate analysis were applied to analyze the metabolite profiles in the different color stages during the development of 'Anji Baicha' leaves. The metabolite profiles of three albescent stages, including the yellow-green stage, the early albescent stage, and the late albescent stage, as well as the re-greening stage were distinguished using principal component analysis, revealing that the distinct developmental stages were likely responsible for the observed metabolic differences. Furthermore, a group classification and pairwise discrimination was revealed among the three albescent stages and re-greening stage by partial least squares discriminant analysis. A total of 65 differential metabolites were identified with a variable influence on projection greater than 1. The main differential metabolic pathways of the albescent stages compared with the re-greening stage included carbon fixation in photosynthetic organisms and the phenylpropanoid and flavonoid biosynthesis pathways. Compared with the re-greening stage, the carbohydrate and amino acid metabolic pathways were disturbed during the albescent stages. During the albescent stages, the sugar (fructofuranose), sugar derivative (glucose-1-phosphate) and epicatechin concentrations decreased, whereas the amino acid (mainly glycine, serine, tryptophan, citrulline, glutamine, proline, and valine) concentrations increased. These results reveal the changes in metabolic profiling that occur during the color changes associated with the development of the albino tea plant leaves.
Collapse
Affiliation(s)
- Chun-Fang Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ji-Qiang Jin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- * E-mail:
| |
Collapse
|
38
|
Li X, Lawas LMF, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha DK, Jagadish KSV. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. PLANT, CELL & ENVIRONMENT 2015; 38:2171-92. [PMID: 25828772 DOI: 10.1111/pce.12545] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/22/2015] [Indexed: 05/18/2023]
Abstract
Heat and drought stress are projected to become major challenges to sustain rice (Oryza sativa L.) yields with global climate change. Both stresses lead to yield losses when they coincide with flowering. A significant knowledge gap exists in the mechanistic understanding of the responses of rice floral organs that determine reproductive success under stress. Our work connects the metabolomic and transcriptomic changes in anthers, pistils before pollination and pollinated pistils in a heat-tolerant (N22) and a heat-sensitive (Moroberekan) cultivar. Systematic analysis of the floral organs revealed contrasts in metabolic profiles across anthers and pistils. Constitutive metabolic markers were identified that can define reproductive success in rice under stress. Six out of nine candidate metabolites identified by intersection analysis of stressed anthers were differentially accumulated in N22 compared with Moroberekan under non-stress conditions. Sugar metabolism was identified to be the crucial metabolic and transcriptional component that differentiated floral organ tolerance or susceptibility to stress. While susceptible Moroberekan specifically showed high expression of the Carbon Starved Anthers (CSA) gene under combined heat and drought, tolerant N22 responded with high expression of genes encoding a sugar transporter (MST8) and a cell wall invertase (INV4) as markers of high sink strength.
Collapse
Affiliation(s)
- Xia Li
- Max-Planck-Institute of Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Lovely M F Lawas
- International Rice Research Institute, DAPO BOX. 7777, Manila, The Philippines
| | - Richard Malo
- International Rice Research Institute, DAPO BOX. 7777, Manila, The Philippines
| | - Ulrike Glaubitz
- Max-Planck-Institute of Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Ramil Mauleon
- International Rice Research Institute, DAPO BOX. 7777, Manila, The Philippines
| | - Sigrid Heuer
- International Rice Research Institute, DAPO BOX. 7777, Manila, The Philippines
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, D-14476, Potsdam, Germany
| | | |
Collapse
|
39
|
Affiliation(s)
- W Gary Mallard
- Teal Consulting, 7905 Cypress Place, Chevy Chase, MD, 20815, USA,
| |
Collapse
|
40
|
|
41
|
Dobritzsch S, Weyhe M, Schubert R, Dindas J, Hause G, Kopka J, Hause B. Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biol 2015; 13:28. [PMID: 25895675 PMCID: PMC4443647 DOI: 10.1186/s12915-015-0135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Jasmonates are well known plant signaling components required for stress responses and development. A prominent feature of jasmonate biosynthesis or signaling mutants is the loss of fertility. In contrast to the male sterile phenotype of Arabidopsis mutants, the tomato mutant jai1-1 exhibits female sterility with additional severe effects on stamen and pollen development. Its senescence phenotype suggests a function of jasmonates in regulation of processes known to be mediated by ethylene. To test the hypothesis that ethylene involved in tomato stamen development is regulated by jasmonates, a temporal profiling of hormone content, transcriptome and metabolome of tomato stamens was performed using wild type and jai1-1. RESULTS Wild type stamens showed a transient increase of jasmonates that is absent in jai1-1. Comparative transcriptome analyses revealed a diminished expression of genes involved in pollen nutrition at early developmental stages of jai1-1 stamens, but an enhanced expression of ethylene-related genes at late developmental stages. This finding coincides with an early increase of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in jai1-1 and a premature pollen release from stamens, a phenotype similarly visible in an ethylene overproducing mutant. Application of jasmonates to flowers of transgenic plants affected in jasmonate biosynthesis diminished expression of ethylene-related genes, whereas the double mutant jai1-1 NeverRipe (ethylene insensitive) showed a complementation of jai1-1 phenotype in terms of dehiscence and pollen release. CONCLUSIONS Our data suggest an essential role of jasmonates in the temporal inhibition of ethylene production to prevent premature desiccation of stamens and to ensure proper timing in flower development.
Collapse
Affiliation(s)
- Susanne Dobritzsch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Martin Weyhe
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Ramona Schubert
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Julian Dindas
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
- Present address: Department of Botany I, University of Würzburg, Julius-von-Sachs-Platz 2, D97082, Würzburg, Germany.
| | - Gerd Hause
- Martin Luther University Halle Wittenberg, Biocenter, Electron Microscopy, Weinbergweg 22, D06120, Halle, Germany.
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D14476, Potsdam, (OT) Golm, Germany.
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| |
Collapse
|
42
|
Agudelo-Romero P, Erban A, Rego C, Carbonell-Bejerano P, Nascimento T, Sousa L, Martínez-Zapater JM, Kopka J, Fortes AM. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1769-85. [PMID: 25675955 PMCID: PMC4669548 DOI: 10.1093/jxb/eru517] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 12/25/2014] [Indexed: 05/20/2023]
Abstract
Vitis vinifera berries are sensitive towards infection by the necrotrophic pathogen Botrytis cinerea, leading to important economic losses worldwide. The combined analysis of the transcriptome and metabolome associated with fungal infection has not been performed previously in grapes or in another fleshy fruit. In an attempt to identify the molecular and metabolic mechanisms associated with the infection, peppercorn-sized fruits were infected in the field. Green and veraison berries were collected following infection for microarray analysis complemented with metabolic profiling of primary and other soluble metabolites and of volatile emissions. The results provided evidence of a reprogramming of carbohydrate and lipid metabolisms towards increased synthesis of secondary metabolites involved in plant defence, such as trans-resveratrol and gallic acid. This response was already activated in infected green berries with the putative involvement of jasmonic acid, ethylene, polyamines, and auxins, whereas salicylic acid did not seem to be involved. Genes encoding WRKY transcription factors, pathogenesis-related proteins, glutathione S-transferase, stilbene synthase, and phenylalanine ammonia-lyase were upregulated in infected berries. However, salicylic acid signalling was activated in healthy ripening berries along with the expression of proteins of the NBS-LRR superfamily and protein kinases, suggesting that the pathogen is able to shut down defences existing in healthy ripening berries. Furthermore, this study provided metabolic biomarkers of infection such as azelaic acid, a substance known to prime plant defence responses, arabitol, ribitol, 4-amino butanoic acid, 1-O-methyl- glucopyranoside, and several fatty acids that alone or in combination can be used to monitor Botrytis infection early in the vineyard.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Cecília Rego
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Teresa Nascimento
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Lisete Sousa
- Department of Statistics and Operational Research, Centro de Estatística e Aplicações da UL, Faculdade de Ciências de Lisboa, 1749-016 Lisboa, Portugal
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Ana Margarida Fortes
- Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
43
|
Johnson SR, Lange BM. Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotechnol 2015; 3:22. [PMID: 25789275 PMCID: PMC4349186 DOI: 10.3389/fbioe.2015.00022] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/14/2015] [Indexed: 12/24/2022] Open
Abstract
Various databases have been developed to aid in assigning structures to spectral peaks observed in metabolomics experiments. In this review article, we discuss the utility of currently available open-access spectral and chemical databases for natural products discovery. We also provide recommendations on how the research community can contribute to further improvements.
Collapse
Affiliation(s)
- Sean R Johnson
- Institute of Biological Chemistry, M.J. Murdock Metabolomics Laboratory, Washington State University , Pullman, WA , USA
| | - Bernd Markus Lange
- Institute of Biological Chemistry, M.J. Murdock Metabolomics Laboratory, Washington State University , Pullman, WA , USA
| |
Collapse
|
44
|
Rohloff J. Analysis of phenolic and cyclic compounds in plants using derivatization techniques in combination with GC-MS-based metabolite profiling. Molecules 2015; 20:3431-62. [PMID: 25690297 PMCID: PMC6272321 DOI: 10.3390/molecules20023431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 12/13/2022] Open
Abstract
Metabolite profiling has been established as a modern technology platform for the description of complex chemical matrices and compound identification in biological samples. Gas chromatography coupled with mass spectrometry (GC-MS) in particular is a fast and accurate method widely applied in diagnostics, functional genomics and for screening purposes. Following solvent extraction and derivatization, hundreds of metabolites from different chemical groups can be characterized in one analytical run. Besides sugars, acids, and polyols, diverse phenolic and other cyclic metabolites can be efficiently detected by metabolite profiling. The review describes own results from plant research to exemplify the applicability of GC-MS profiling and concurrent detection and identification of phenolics and other cyclic structures.
Collapse
Affiliation(s)
- Jens Rohloff
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway.
| |
Collapse
|
45
|
Haimovich-Dayan M, Lieman-Hurwitz J, Orf I, Hagemann M, Kaplan A. Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803? Environ Microbiol 2015; 17:1794-804. [PMID: 25297829 DOI: 10.1111/1462-2920.12638] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
Abstract
Cyanobacteria possess CO2 -concentrating mechanisms (CCM) that functionally compensate for the poor affinity of their ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to CO2 . It was proposed that 2-phosphoglycolate (2PG), produced by the oxygenase activity of Rubisco and metabolized via photorespiratory routes, serves as a signal molecule for the induction of CCM-related genes under limiting CO2 level (LC) conditions. However, in vivo evidence is still missing. Since 2PG does not permeate the cells, we manipulated its internal concentration. Four putative phosphoglycolate phosphatases (PGPases) encoding genes (slr0458, sll1349, slr0586 and slr1762) were identified in the cyanobacterium Synechocystis PCC 6803. Expression of slr0458 in Escherichia coli led to a significant rise in PGPase activity. A Synechocystis mutant overexpressing (OE) slr0458 was constructed. Compared with the wild type (WT), the mutant grew slower under limiting CO2 concentration and the intracellular 2PG level was considerably smaller than in the wild type, the transcript abundance of LC-induced genes including cmpA, sbtA and ndhF3 was reduced, and the OE cells acclimated slower to LC - indicated by the delayed rise in the apparent photosynthetic affinity to inorganic carbon. Data obtained here implicated 2PG in the acclimation of this cyanobacterium to LC but also indicated that other, yet to be identified components, are involved.
Collapse
Affiliation(s)
- Maya Haimovich-Dayan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
46
|
Mausz MA, Pohnert G. Phenotypic diversity of diploid and haploid Emiliania huxleyi cells and of cells in different growth phases revealed by comparative metabolomics. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:137-148. [PMID: 25304662 DOI: 10.1016/j.jplph.2014.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 06/04/2023]
Abstract
In phytoplankton a high species diversity of microalgae co-exists at a given time. But diversity is not only reflected by the species composition. Within these species different life phases as well as different metabolic states can cause additional diversity. One important example is the coccolithophore Emiliania huxleyi. Diploid cells play an important role in marine ecosystems since they can form massively abundant algal blooms but in addition the less abundant haploid life phase of E. huxleyi occurs in lower quantities. Both life phases may fulfill different functions in the plankton. We hypothesize that in addition to the functional diversity caused by this life phase transition the growth stage of cells can also influence the metabolic composition and thus the ecological impact of E. huxleyi. Here we introduce a metabolomic survey in dependence of life phases as well as different growth phases to reveal such changes. The comparative metabolomic approach is based on the extraction of intracellular metabolites from intact microalgae, derivatization and analysis by gas chromatography coupled to mass spectrometry (GC-MS). Automated data processing and statistical analysis using canonical analysis of principal coordinates (CAP) revealed unique metabolic profiles for each life phase. Concerning the correlations of metabolites to growth phases, complex patterns were observed. As for example the saccharide mannitol showed its highest concentration in the exponential phase, whereas fatty acids were correlated to stationary and sterols to declining phase. These results are indicative for specific ecological roles of these stages of E. huxleyi and are discussed in the context of previous physiological and ecological studies.
Collapse
Affiliation(s)
- Michaela A Mausz
- Department for Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Georg Pohnert
- Department for Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| |
Collapse
|
47
|
Pant BD, Pant P, Erban A, Huhman D, Kopka J, Scheible WR. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. PLANT, CELL & ENVIRONMENT 2015; 38:172-87. [PMID: 24894834 DOI: 10.1111/pce.12378] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 05/20/2023]
Abstract
Massive changes in gene expression occur when plants are subjected to phosphorus (P) limitation, but the breadth of metabolic changes in these conditions and their regulation is barely investigated. Nearly 350 primary and secondary metabolites were profiled in shoots and roots of P-replete and P-deprived Arabidopsis thaliana wild type and mutants of the central P-signalling components PHR1 and PHO2, and microRNA399 overexpresser. In the wild type, the levels of 87 primary metabolites, including phosphorylated metabolites but not 3-phosphoglycerate, decreased, whereas the concentrations of most organic acids, amino acids, nitrogenous compounds, polyhydroxy acids and sugars increased. Furthermore, the levels of 35 secondary metabolites, including glucosinolates, benzoides, phenylpropanoids and flavonoids, were altered during P limitation. Observed changes indicated P-saving strategies, increased photorespiration and crosstalk between P limitation and sulphur and nitrogen metabolism. The phr1 mutation had a remarkably pronounced effect on the metabolic P-limitation response, providing evidence that PHR1 is a key factor for metabolic reprogramming during P limitation. The effects of pho2 or microRNA399 overexpression were comparatively minor. In addition, positive correlations between metabolites and gene transcripts encoding pathway enzymes were revealed. This study provides an unprecedented metabolic phenotype during P limitation in Arabidopsis.
Collapse
Affiliation(s)
- Bikram-Datt Pant
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | | | | | | | | | | |
Collapse
|
48
|
Shukla AK, Ratnasekhar C, Pragya P, Chaouhan HS, Patel DK, Chowdhuri DK, Mudiam MKR. Metabolomic Analysis Provides Insights on Paraquat-Induced Parkinson-Like Symptoms in Drosophila melanogaster. Mol Neurobiol 2014; 53:254-269. [PMID: 25428622 DOI: 10.1007/s12035-014-9003-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/13/2014] [Indexed: 11/29/2022]
Abstract
Paraquat (PQ) exposure causes degeneration of the dopaminergic neurons in an exposed organism while altered metabolism has a role in various neurodegenerative disorders. Therefore, the study presented here was conceived to depict the role of altered metabolism in PQ-induced Parkinson-like symptoms and to explore Drosophila as a potential model organism for such studies. Metabolic profile was generated in control and in flies that were fed PQ (5, 10, and 20 mM) in the diet for 12 and 24 h concurrent with assessment of indices of oxidative stress, dopaminergic neurodegeneration, and behavioral alteration. PQ was found to significantly alter 24 metabolites belonging to different biological pathways along with significant alterations in the above indices. In addition, PQ attenuated brain dopamine content in the exposed organism. The study demonstrates that PQ-induced alteration in the metabolites leads to oxidative stress and neurodegeneration in the exposed organism along with movement disorder, a phenotype typical of Parkinson-like symptoms. The study is relevant in the context of Drosophila and humans because similar alteration in the metabolic pathways has been observed in both PQ-exposed Drosophila and in postmortem samples of patients with Parkinsonism. Furthermore, this study provides advocacy towards the applicability of Drosophila as an alternate model organism for pre-screening of environmental chemicals for their neurodegenerative potential with altered metabolism.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ch Ratnasekhar
- Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Prakash Pragya
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Hitesh Singh Chaouhan
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Devendra Kumar Patel
- Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.
| | - Mohana Krishna Reddy Mudiam
- Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
49
|
Yi L, Dong N, Yun Y, Deng B, Liu S, Zhang Y, Liang Y. WITHDRAWN: Recent advances in chemometric methods for plant metabolomics: A review. Biotechnol Adv 2014:S0734-9750(14)00183-9. [PMID: 25461504 DOI: 10.1016/j.biotechadv.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, China.
| | - Naiping Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong, China
| | - Yonghuan Yun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Baichuan Deng
- Department of Chemistry, University of Bergen, Bergen N-5007, Norway
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yizeng Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
50
|
Molecular biodiversity and recent analytical developments: A marriage of convenience. Biotechnol Adv 2014; 32:1102-10. [DOI: 10.1016/j.biotechadv.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 02/07/2023]
|