1
|
Fouad S, Rizk A, Mosbah E, Nabeeh MM, Awadin W, Elmezayyen AS, Elmorsy E, Zaghloul A. Platelet-rich fibrin and silver nano-particles loaded chitosan treatment for post- laminectomy epidural scar adhesions: in vivo rats study model. BMC Neurosci 2025; 26:10. [PMID: 39910448 PMCID: PMC11796154 DOI: 10.1186/s12868-025-00929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE Epidural scar fibrosis commonly leads to functional disability and pain following spinal surgery and is a prevalent manifestation of Failed Back Surgery Syndrome (FBSS). This study aimed to evaluate the use of silver nano-articles (AgNPs) loaded on chitosan (Chi/Ag-NPs) with platelets-rich fibrin (PRF) gel for the reduction of post-laminectomy epidural scar adhesions. METHODS A total of 90 male Sprague Dawley rats (255 ± 55gm) were randomized in-to six groups, each group with 15 rats: control group, laminectomy group, PRF group, Chi/Ag-NPs group, combined treatment group (PRF + Chi/Ag-NPs), and a group to prepare PRF. Lumbar laminectomy procedures were performed between L3-L5 in all rats except the control group. After a 30-days follow-up, macroscopic examination, histological studies, and mRNA evaluation for TGFβ-1and IL-6, were conducted. RESULTS Data revealed that epidural scar adhesion, scaring, arachnoid involvement, dural thickness, as well as inflammation and TGFβ-1and IL-6 coding genes expression were significantly reduced in PRF group, Chi/Ag-NPs group, and combined group compared to the laminectomy group. Combined treatment showed more significant better outcomes. CONCLUSION The use of PRF with Chi/Ag-NPs as nano biomaterials could be considered a combination therapy for the reduction of EF post-laminectomy in a rat model.
Collapse
Affiliation(s)
- Samah Fouad
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Awad Rizk
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Esam Mosbah
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa M Nabeeh
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ayman S Elmezayyen
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Physics Department, Faculty of Science, New Mansoura University, New Mansoura, Egypt
| | - Ekramy Elmorsy
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Adel Zaghloul
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Zeng H, Zeng Y, Xu H, Zhao W, Han S, Zhang J, Li D. Selective adsorption of arsenic by water treatment residuals cross-linked chitosan in co-existing oxyanions competition system. ENVIRONMENTAL RESEARCH 2024; 263:120192. [PMID: 39427941 DOI: 10.1016/j.envres.2024.120192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Selective adsorption of arsenic in co-existing oxyanions competition systems remains a significant challenge in water treatment due to the limitations of adsorbent materials that often overlook competitive adsorption, resulting in an overestimation of their actual purification potential for target contaminants. In this study, a novel hydrogel bead adsorbent, composed of water treatment residuals (WTRs) and chitosan (Chi), was developed to selectively remove arsenic, while minimizing the interference from phosphate, which is the strongest and most representative competitor in multi-oxyanion systems. The WTRs-Chi beads (WCB) adsorbents were optimized by adjusting the ratios of WTRs:Chi, with characterization results indicating that increased WTR doping improved the degree of crosslinking and the formation of bidentate complexes with enhanced electrostatic selectivity. Importantly, the co-existence of phosphate had minimal adverse effects on arsenic removal compared to other reported adsorbents. The maximum adsorption capacity for As (V) in the binary system was 34.12 mg/g, and the adsorption behavior was fitted well by the pseudo-second-order kinetic model and the extended Langmuir isotherm model. The experimental results, supported by X-ray photoelectron spectroscopy analysis (XPS), revealed that both As (V) and P (V) adsorption in the single system were driven by electrostatic attraction and ligand exchange. However, in the binary system, the inhibition of P (V) adsorption was attributed to competitive desorption caused by electrostatic repulsion, which hindered the formation of inner-sphere complexes. This study provides a practical approach for developing selective adsorbents to address arsenic contamination in complex water environments and promotes the recycling of municipal solid waste.
Collapse
Affiliation(s)
- Huiping Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yuwei Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - He Xu
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Weihua Zhao
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Su Han
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jie Zhang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dong Li
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
3
|
Gull A, Hussain T, Islam A, Ara C. Copper functionalized, pro-angiogenic, and skin regenerative scaffolds based on novel chitosan/APDEMS modified sepiolite-based formulation. Int J Biol Macromol 2024; 283:137538. [PMID: 39542317 DOI: 10.1016/j.ijbiomac.2024.137538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Biomaterials-based scaffolds are extensively explored for their proangiogenic and tissue regenerative abilities. The present study aimed to develop wound healing scaffolds based on chitosan/aminopropyldiethoxymethylsilane (APDEMS) modified sepiolite, loaded with copper (0-0.25 g), characterized by FTIR, SEM, mechanical, TGA and analyzed biomedically. The FTIR and SEM confirmed the silane-induced cross-linking and incorporation of copper leading to better dispersion of individual components in the scaffolds. Based on other physicochemical observations, the best scaffold was CS/MS/Cu0.1 (99.5 % increased Young's modulus compared to chitosan, maximum swelling = 900 %, equilibrium time = 70 min); So, CS/MS/Cu0.1 and 0.25 were chosen for further analysis. The CAM assay showed significantly increased angiogenesis in CS/MS/Cu0.1 and 0.25 groups, lacking any developmental anomalies in chick embryos, at lower copper concentrations. The scaffolds' wound healing potential and in-vivo toxicity were assessed by wound excision and histopathology of various organs in mice, respectively. The rate of wound contraction in the CS/MS/Cu0.1 group was significantly (P < 0.05) greater than the control. The abovementioned results corroborated the histological and biochemical findings regarding more collagen deposition in regenerated skin sections and insignificant deviations in biochemical parameters of treated mice, respectively. The formulated biomaterials have proven promising materials for promoting angiogenesis in chick models and accelerating regeneration in mice skin.
Collapse
Affiliation(s)
- Aysha Gull
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Tajamal Hussain
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Atif Islam
- School of Chemistry, University of the Punjab, Lahore, Pakistan; Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan.
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Elouali S, Ait Hamdan Y, Belmajdoub M, Rhazi M. Green chitosan extraction from Hermetia illucens breeding waste (prepupal cases): Characterization and bioadsorption activity. Int J Biol Macromol 2024; 281:136449. [PMID: 39389499 DOI: 10.1016/j.ijbiomac.2024.136449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Heavy metal contamination has harmful consequences for the ecosystem. They are naturally non-biodegradable, and can cause severe ecotoxicity and numerous pathologies. Several bioadsorbents have been used for metal pollution control, and chitosan is one of the biomaterials that has proven to be an efficient adsorbent. The aim of the present work is to exploit the rearing waste of Hermetia illucens (prepupal cases), commonly known as the Black Soldier Fly (BSF), to produce chitin and its derivative chitosan by microwave-assisted process, and to study the interaction of this biopolymer with zinc and cadmium. All the samples obtained were characterized by several methods, including FTIR, XRD, TGA/DSC, 1H NMR, SEM, and viscosimetric studies. The chitosan obtained has interesting physicochemical properties with an acetylation degree (DA) equal to 2.3 %, Molecular weight (Mv) equal to 155 kDa, and a crystallinity index (ICr) around 51.26 %. Chitosan was also found to have an adsorption capacity of Cd and Zn around 141.05 mg·g-1 and 45 mg·g-1 respectively by absorption atomic spectroscopy (AAS). Results confirm the effectiveness of chitosan derived from BSF, obtained through an eco-friendly method, as a sustainable and efficient bioadsorbent for addressing heavy metal contamination.
Collapse
Affiliation(s)
- Samia Elouali
- University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium; Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco.
| | - Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Moncef Belmajdoub
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco
| | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco
| |
Collapse
|
5
|
Ait Hamdan Y, Ait Baba A, Azraida H, Kabdy H, Oudadesse H, Chait A, Rhazi M. In vivo evaluation by oral administration of chitosan combined with bioactive glass against cadmium-induced toxicity in rats. Int J Biol Macromol 2024; 276:133845. [PMID: 39004258 DOI: 10.1016/j.ijbiomac.2024.133845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Bioactive glass and chitosan are biomaterials widely used for orthopedic applications, notably as bone grafts. Although these biomaterials show promising therapeutic properties, no research has yet examined their potential for oral administration in soft tissue protection, particularly against metal toxicity. The aim of our study was to evaluate the potential of chitosan from cuttlefish (CHS) bone combined with bioactive glass (BG) against Cadmium-induced toxicity in rats. Cadmium (Cd), a heavy metal that accumulates in tissues, causes various disorders. Experiments were carried out on rats intoxicated acutely by oral administration of Cd (20 mg/kg body weight) and/or concomitantly with oral administration of CHS/BG (100 mg/kg body weight) for 7 days. Using pathophysiological and biochemical tests, we evaluated the detoxifying effect of orally administered CHS/BG against Cd toxicity. Our results showed, for the first time, a significant detoxifying effect of CHS/BG against Cd-induced toxicity in rats. Treatment with CHS/BG protected rats against the harmful effects of Cd by reducing lipid peroxidation levels and enhancing antioxidant enzyme activities. In addition, it helped restore phosphocalcic balance and protect liver, kidney and brain function. Remarkably, it also reduced Cd levels in the liver, kidneys and brain, as well as in the bones of rats. These results show that oral administration of CHS/BG has a strong therapeutic potential on tissues through detoxification of cadmium-exposed rats.
Collapse
Affiliation(s)
- Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Abdelfatah Ait Baba
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Departement of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Hajar Azraida
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Departement of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Hamid Kabdy
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Departement of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | | | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Departement of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| |
Collapse
|
6
|
Popescu I, Pelin IM, Suflet DM, Stanciu MC, Constantin M. Chitosan/Poly(maleic acid- alt-vinyl acetate) Hydrogel Beads for the Removal of Cu 2+ from Aqueous Solution. Gels 2024; 10:500. [PMID: 39195029 DOI: 10.3390/gels10080500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Covalent cross-linked hydrogels based on chitosan and poly(maleic acid-alt-vinyl acetate) were prepared as spherical beads. The structural modifications of the beads during the preparation steps (dropping in liquid nitrogen and lyophilization, thermal treatment, washing with water, and treatment with NaOH) were monitored by FT-IR spectroscopy. The hydrogel beads have a porous inner structure, as shown by SEM microscopy; moreover, they are stable in acidic and basic pH due to the covalent crosslinking. The swelling degree is strongly influenced by the pH since the beads possess ionizable amine and carboxylic groups. The binding capacity for Cu2+ ions was examined in batch mode as a function of sorbent composition, pH, contact time, and the initial concentration of Cu2+. The kinetic data were well-fitted with the pseudo-second-order kinetic, while the sorption equilibrium data were better fitted with Langmuir and Sips isotherms. The maximum equilibrium sorption capacity was higher for the beads obtained with a 3:1 molar ratio between the maleic copolymer and chitosan (142.4 mg Cu2+ g-1), compared with the beads obtained using a 1:1 molar ratio (103.7 mg Cu2+ g-1). The beads show a high degree of reusability since no notable decrease in the sorption capacity was observed after five consecutive sorption/desorption cycles.
Collapse
Affiliation(s)
- Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Irina Mihaela Pelin
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
7
|
Nguyen HN, Tran PT, Le NAT, Nguyen QH, Bui DD. Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots. THE PLANT PATHOLOGY JOURNAL 2024; 40:261-271. [PMID: 38835297 PMCID: PMC11162862 DOI: 10.5423/ppj.oa.10.2023.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/16/2024] [Accepted: 03/16/2024] [Indexed: 06/06/2024]
Abstract
Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CSCu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.
Collapse
Affiliation(s)
- Hong Nhung Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Phuoc Tho Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Nghiem Anh Tuan Le
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | | | - Duy Du Bui
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
8
|
Lopez E, Gómez M, Becar I, Zapata P, Pizarro J, Navlani-García M, Cazorla-Amorós D, Presser V, Gómez T, Cárdenas C. Removal of Mo(VI), Pb(II), and Cu(II) from wastewater using electrospun cellulose acetate/chitosan biopolymer fibers. Int J Biol Macromol 2024; 269:132160. [PMID: 38718995 DOI: 10.1016/j.ijbiomac.2024.132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
Environmentally friendly polymers such as cellulose acetate (CA) and chitosan (CS) were used to obtain electrospun fibers for Cu2+, Pb2+, and Mo6+ capture. The solvents dichloromethane (DCM) and dimethylformamide (DMF) allowed the development of a surface area of 148 m2 g-1 for CA fibers and 113 m2 g-1 for cellulose acetate/chitosan (CA/CS) fibers. The fibers were characterized by IR-DRIFT, SEM, TEM, CO2 sorption isotherms at 273 K, Hg porosimetry, TGA, stress-strain tests, and XPS. The CA/CS fibers had a higher adsorption capacity than CA fibers without affecting their physicochemical properties. The capture capacity reached 102 mg g-1 for Cu2+, 49.3 mg g-1 for Pb2+, and 13.1 mg g-1 for Mo6+. Furthermore, optimal pH, adsorption times qt, and C0 were studied for the evaluation of kinetic models and adsorption isotherms. Finally, a proposal for adsorbate-adsorbent interactions is presented as a possible capture mechanism where, in the case of Mo6+, a computational study is presented. The results demonstrate the potential to evaluate the fibers in tailings wastewater from copper mining.
Collapse
Affiliation(s)
- Esmeralda Lopez
- Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile.
| | - Mauricio Gómez
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile.
| | - Ian Becar
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Paula Zapata
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Jaime Pizarro
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Miriam Navlani-García
- Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Diego Cazorla-Amorós
- Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Department of Material Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany; Saarene - Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Tatiana Gómez
- Theoretical and Computational Chemistry Center, Institute of Applied Sciences, Faculty of Engineering, Universidad Autonoma de Chile, Santiago, Chile
| | - Carlos Cárdenas
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Av. Las Palmeras 3425, Ñuñoa, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Av. Ecuador 3493, Santiago 9170124, Chile
| |
Collapse
|
9
|
Ahmad M, Naik MUD, Tariq MR, Khan I, Zhang L, Zhang B. Advances in natural polysaccharides for gold recovery from e-waste: Recent developments in preparation with structural features. Int J Biol Macromol 2024; 261:129688. [PMID: 38280695 DOI: 10.1016/j.ijbiomac.2024.129688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
The increasing demand for gold because of its high market price and its wide use in the electronic industry has attracted interest in gold recovery from electronic waste (e-waste). Gold is being dumped as solid e-waste which contains gold concentrations ten times higher than gold ores. Adsorption is a widely used approach for extracting gold from e-waste due to its simplicity, low cost, high efficiency, and reusability of adsorbent material. Natural polysaccharides received increased attention due to their natural abundance, multi-functionality, biodegradability, and nontoxicity. In this review, a brief history, and advancements in this technology were evaluated with recent developments in the preparation and mechanism advancements of natural polysaccharides for efficient gold recovery. Moreover, we have discussed some bifunctional modified polysaccharides with detailed gold adsorption mechanisms. The modified adsorbent materials developed from polysaccharides coupled with inorganic/organic functional groups would demonstrate an efficient technology for the development of new bio-based materials for efficient gold recovery from e-waste. Also, future views are recommended for highlighting the direction to achieve fast and effective gold recovery from e-waste in a friendly and sustainable manner.
Collapse
Affiliation(s)
- Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Xian Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, 710129, China
| | - Mehraj Ud-Din Naik
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Rizwan Tariq
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an 710072, China.
| |
Collapse
|
10
|
Udoetok IA, Karoyo AH, Mohamed MH, Wilson LD. Chitosan Biocomposites with Variable Cross-Linking and Copper-Doping for Enhanced Phosphate Removal. Molecules 2024; 29:445. [PMID: 38257359 PMCID: PMC10820908 DOI: 10.3390/molecules29020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The fabrication of chitosan (CH) biocomposite beads with variable copper (Cu2+) ion doping was achieved with a glutaraldehyde cross-linker (CL) through three distinct methods: (1) formation of CH beads was followed by imbibition of Cu(II) ions (CH-b-Cu) without CL; (2) cross-linking of the CH beads, followed by imbibition of Cu(II) ions (CH-b-CL-Cu); and (3) cross-linking of pristine CH, followed by bead formation with Cu(II) imbibing onto the beads (CH-CL-b-Cu). The biocomposites (CH-b-Cu, CH-b-CL-Cu, and CH-CL-b-Cu) were characterized via spectroscopy (FTIR, 13C solid NMR, XPS), SEM, TGA, equilibrium solvent swelling methods, and phosphate adsorption isotherms. The results reveal variable cross-linking and Cu(II) doping of the CH beads, in accordance with the step-wise design strategy. CH-CL-b-Cu exhibited the greatest pillaring of chitosan fibrils with greater cross-linking, along with low Cu(II) loading, reduced solvent swelling, and attenuated uptake of phosphate dianions. Equilibrium and kinetic uptake results at pH 8.5 and 295 K reveal that the non-CL Cu-imbibed beads (CH-b-Cu) display the highest affinity for phosphate (Qm = 133 ± 45 mg/g), in agreement with the highest loading of Cu(II) and enhanced water swelling. Regeneration studies demonstrated the sustainability and cost-effectiveness of Cu-imbibed chitosan beads for controlled phosphate removal, whilst maintaining over 80% regenerability across several adsorption-desorption cycles. This study offers a facile synthetic approach for controlled Cu2+ ion doping onto chitosan-based beads, enabling tailored phosphate oxyanion uptake from aqueous media by employing a sustainable polysaccharide biocomposite adsorbent for water remediation by mitigation of eutrophication.
Collapse
Affiliation(s)
| | | | | | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada (A.H.K.)
| |
Collapse
|
11
|
Lončarević A, Malbaša Z, Kovačić M, Ostojić K, Angaïts A, Skoko Ž, Szpunar J, Urlić I, Gallego Ferrer G, Rogina A. Copper-zinc/chitosan complex hydrogels: Rheological, degradation and biological properties. Int J Biol Macromol 2023; 251:126373. [PMID: 37595698 DOI: 10.1016/j.ijbiomac.2023.126373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Polymer hydrogels crosslinked by therapeutic metal ions have attracted increased interest in recent years due to their unique and versatile properties. Chitosan hydrogels are widely investigated for various biomedical applications such as tissue engineering and drug delivery. Copper and zinc ions are considered as therapeutic metal ions, that have important roles in bone regeneration. The aim of this study was to investigate the physicochemical and biological properties of bimetallic-chitosan complex hydrogels with different cupric and zinc ions content. Scanning electron microscopy (SEM) revealed changes in the morphology from the microstructure with larger, tubular pores for aerogels with higher Zn content, to the sheets-like structure with long pores for samples with higher Cu content. FTIR analysis indicated the formation of bimetallic-chitosan aerogels. The obtained X-ray diffraction patterns showed a broadening of chitosan's characteristic diffraction maximum, while characterization of physical properties showed decreased swelling ability and increased shear modulus with higher Cu content. ICP-MS results showed a negligible amount of copper and zinc ions released under physiological conditions during 24 h indicating a strong physical crosslink between metal ions and chitosan chains. Furthermore, accelerated in vitro degradation showed that hydrogels maintained good stability during four weeks of lysozyme activity. The MTT assay indicated that the cytotoxicity of Cu2+-Zn2+/chitosan complexes could be adjusted by the amount of cupric ions. All results imply that Cu2+ and Zn2+ ions act as physical crosslinkers of the polymer network. Also, results are in agreement with the prediction of density functional theory (DFT) which indicated stronger chitosan-Cu tetrahedral aqua complex interactions in comparison to the chitosan-[Zn(H2O)4]2+ interactions.
Collapse
Affiliation(s)
- Andrea Lončarević
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia.
| | - Zoran Malbaša
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia.
| | - Marin Kovačić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia.
| | - Karla Ostojić
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | - Ange Angaïts
- Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254 CNRS-University of Pau, Hélioparc, 2, Av. Pr. Angot, 64053 Pau, France.
| | - Željko Skoko
- University of Zagreb, Faculty of Science, Department of Physics, Bijenička c. 32, HR-10000 Zagreb, Croatia.
| | - Joanna Szpunar
- Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254 CNRS-University of Pau, Hélioparc, 2, Av. Pr. Angot, 64053 Pau, France.
| | - Inga Urlić
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | - Gloria Gallego Ferrer
- Centre for Biomaterial and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Anamarija Rogina
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Duan Q, Yang T, Chen J, Liu J, Gao L, Zhang J, Lin S. Ba-modified peanut shell biochar (PSB): preparation and adsorption of Pb(II) from water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1795-1820. [PMID: 37830997 PMCID: wst_2023_305 DOI: 10.2166/wst.2023.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The impact of Ba-modified peanut shell biochar (Ba-PSB) on Pb(II) removal was studied and BaCl2 was used as a modifier. It was shown that the PSB obtained at 750 °C had the best adsorption effect, and the Ba-PSB had a larger specific surface area and a good adsorption effect on Pb(II). At pH = 5, concentration was 400 mg/L, time was 14 h, and temperature was 55 °C, the loading amount of black peanut shell biochar (BPSB), red peanut shell biochar (RPSB), Ba-BPSB, and Ba-RPSB reached 128.050, 98.217, 379.330, and 364.910 mg/g, respectively. In addition, based on the non-linear fitting, it was found that the quasi-second-order kinetic model, and isothermal model could be applied to describe Pb(II) adsorption on PSB and Ba-PSB. The adsorption behavior of PSB unmodified and modified was a spontaneous process. Moreover, chemical modification of BPSB, RPSB, Ba-BPSB, and Ba-RPSB for hindering of -COOH and -OH groups revealed 81.81, 77.08, 86.90, and 83.65% removal of Pb(II), respectively, which was due to the participation of -COOH, while 17.61, 21.70, 12.77, and 15.06% was from -OH group, respectively. The increase of cation strength (Na+, K+, Ca2+, and Mg2+) will reduce the adsorption capacity of PSB for Pb(II).
Collapse
Affiliation(s)
- Qianqian Duan
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China E-mail:
| | - Tianrui Yang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Jingyi Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Liping Gao
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Junfei Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| | - Shitao Lin
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiudadao, Hefei 230601, China
| |
Collapse
|
13
|
Xu S, Zhang H, Li Y, Liu J, Li R, Xing Y. Thermoreversible and tunable supramolecular hydrogels based on chitosan and metal cations. Int J Biol Macromol 2023; 242:124906. [PMID: 37210055 DOI: 10.1016/j.ijbiomac.2023.124906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
A new thermoreversible and tunable hydrogel CS-M with high water content prepared by metal cation (M = Cu2+, Zn2+, Cd2+ and Ni2+) and chitosan (CS) was reported. The influence of metal cations on the thermosensitive gelation of CS-M systems were studied. All prepared CS-M systems were in the transparent and stable sol state and could become the gel state at gelation temperature (Tg). These systems after gelation could recover to its original sol state at low temperature. CS-Cu hydrogel was mainly investigated and characterized due to its large Tg scale (32-80 °C), appropriate pH range (4.0-4.6) and low Cu2+ concentration. The result showed that the Tg range was influenced and could be tuned by adjusting Cu2+ concentration and system pH within an appropriate range. The influence of anions (Cl-, NO3- and Ac-) in cupric salts in the CS-Cu system was also investigated. Scale application as heat insulation window was investigated outdoors. The different supramolecular interactions of the -NH2 group in chitosan at different temperatures were proposed to dominate the thermoreversible process of CS-Cu hydrogel.
Collapse
Affiliation(s)
- Shikuan Xu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hongmei Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yiwen Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jingjing Liu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Rong Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yanjun Xing
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Lončarević A, Ostojić K, Urlić I, Rogina A. Preparation and Properties of Bimetallic Chitosan Spherical Microgels. Polymers (Basel) 2023; 15:polym15061480. [PMID: 36987262 PMCID: PMC10057022 DOI: 10.3390/polym15061480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The aim of this work was to prepare bimetallic chitosan microgels with high sphericity and investigate the influences of metal-ion type and content on the size, morphology, swelling, degradation and biological properties of microgels. Amino and hydroxyl groups of chitosan (deacetylation degree, DD, of 83.2% and 96.9%) served as ligands in the Cu2+–Zn2+/chitosan complexes with various contents of cupric and zinc ions. The electrohydrodynamic atomization process was used to produce highly spherical microgels with a narrow size distribution and with surface morphology changing from wrinkled to smooth by increasing Cu2+ ions’ quantity in bimetallic systems for both used chitosans. The size of the bimetallic chitosan particles was estimated to be between 60 and 110 µm for both used chitosans, and FTIR spectroscopy indicated the formation of complexes through physical interactions between the chitosans’ functional groups and metal ions. The swelling capacity of bimetallic chitosan particles decreases as the DD and copper (II) ion content increase as a result of stronger complexation with respect to zinc (II) ions. Bimetallic chitosan microgels showed good stability during four weeks of enzymatic degradation, and bimetallic systems with smaller amounts of Cu2+ ions showed good cytocompatibility for both used chitosans.
Collapse
Affiliation(s)
- Andrea Lončarević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia
- Correspondence: (A.L.); (A.R.)
| | - Karla Ostojić
- Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Inga Urlić
- Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia
- Correspondence: (A.L.); (A.R.)
| |
Collapse
|
15
|
Bejan A, Marin L. Outstanding Sorption of Copper (II) Ions on Porous Phenothiazine-Imine-Chitosan Materials. Gels 2023; 9:gels9020134. [PMID: 36826303 PMCID: PMC9957313 DOI: 10.3390/gels9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The aim of this work was to investigate the ability of a solid-state material, prepared by crosslinking chitosan with a phenothiazine-based aldehyde, to remove copper (II) ions from aqueous solutions, in a fast and selective manner. The metal uptake experiments, including the retention, sensibility, and selectivity against eight different metal ions, were realized via batch adsorption studies. The capacity of the material to retain copper (II) ions was investigated by spectrophotometric measurements, using poly(ethyleneimine) complexation agent, which allowed detection in a concentration range of 5-500 µM. The forces driving the copper sorption were monitored using various methods, such as FTIR spectroscopy, X-ray diffraction, SEM-EDAX technique, and optical polarized microscopy, and the adsorption kinetics were assessed by fitting the in vitro sorption data on different mathematical models. The phenothiazine-imine-chitosan material proved high ability to recover copper from aqueous media, reaching a maximum retention capacity of 4.394 g Cu (II)/g adsorbent when using a 0.5 M copper solution, which is an outstanding value compared to other chitosan-based materials reported in the literature to this date. It was concluded that the high ability of the studied xerogel to retain Cu (II) ions was the result of both physio- and chemo-sorption processes. This particular behavior was favored on one hand by the porous nature of the material and on the other hand by the presence of amine, hydroxyl, imine, and amide groups with the role of copper ligands.
Collapse
|
16
|
Adsorption Characteristics for Cu(II) and Phosphate in Chitosan Beads under Single and Mixed Conditions. Polymers (Basel) 2023; 15:polym15020421. [PMID: 36679301 PMCID: PMC9866462 DOI: 10.3390/polym15020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Chitosan, a natural organic polymer, has shown bifunctional characteristics in the removal of cationic and anionic contaminants from water and wastewater treatment. In particular, cationic Cu(II) and anionic phosphate can simultaneously interact with chitosan owing to the presence of the amino group in the form of NH2 and NH3+ in chitosan. To gain greater insight into the bifunctional adsorption characteristics of chitosan, its adsorption capacity for Cu(II) and phosphate was tested under single and mixed (co-ion) conditions to investigate the interactions between four types of chitosan beads and NH2 and NH3+. In the single condition, Cu(II) uptake was reduced from 0.243 to 0.0197 mmol/g due to the crosslinking and drying processes, whereas no significant reduction in phosphate uptake was observed, indicating that the crosslinking agent only interacted with NH2 to decrease the number of available adsorption sites for Cu(II). Under the mixed condition, the simultaneous presence of the two ions clearly increased the uptake of each other, with the adsorption of phosphate being more influenced than that of Cu(II). The comparison of the rate constant, k1 or k2, using pseudo-first- and pseudo-second-order models confirmed that phosphate reached equilibrium faster than Cu(II), suggesting that electrostatic interaction was preferred over coordination. In addition, under mixed conditions, co-ion competition slowed down the adsorption kinetics for both Cu(II) and phosphate.
Collapse
|
17
|
Zaw Win M, Hye Park J, Htet Naing H, Woo Hong M, Oo W, Bok Yi K. Analysis of Preservative Ability of Chitosan on CO Adsorption of CuCl-Alumina-Based Composites. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Martínez ME, Rangel-Méndez JR, Gimeno M, Tecante A, Lapidus GT, Shirai K. Removal of Heavy Metal Ions from Wastewater with Poly-ε-Caprolactone-Reinforced Chitosan Composite. Polymers (Basel) 2022; 14:polym14235196. [PMID: 36501593 PMCID: PMC9740919 DOI: 10.3390/polym14235196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Currently, the requirements for adsorbent materials are based on their environmentally friendly production and biodegradability. However, they are also related to the design of materials to sustain many cycles in pursuit of low cost and profitable devices for water treatments. In this regard, a chitosan reinforced with poly-ε-caprolactone thermoplastic composite was prepared and characterized by scanning electron microscopy; Fourier transforms infrared spectroscopy, X-ray diffraction analysis, mechanical properties, as well as erosion and swelling assays. The isotherm and kinetic data were fitted with Freundlich and pseudo-second-order models, respectively. The adsorption equilibrium capacities at pH 6 of Zn(II), Cu(II), Fe(II), and Al(III) were 165.59 ± 3.41 mg/g, 3.91 ± 0.02 mg/g, 10.72 ± 0.11 mg/g, and 1.99 ± 0.22 mg/g, respectively. The adsorbent material lost approximately 6% of the initial mass in the adsorption-desorption processes.
Collapse
Affiliation(s)
- Manuel E. Martínez
- Laboratorio de Biopolímeros y Planta Piloto de Bioprocesos de Residuos Agroindustriales y de Alimentos, Unidad Iztapalapa, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Av. Ferrocarril San Rafael Atlixco número 186, Colonia Leyes de Reforma 1a sección, Alcaldía de Iztapalapa, Mexico City 09310, Mexico
| | - José René Rangel-Méndez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José No. 2055, San Luis Potosi 76210, Mexico
| | - Miquel Gimeno
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Mexico City 04510, Mexico
| | - Alberto Tecante
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Mexico City 04510, Mexico
| | - Gretchen T. Lapidus
- Unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana, Avenida Ferrocarril San Rafael Atlixco número 186, Colonia Leyes de Reforma 1a Sección, Alcaldía de Iztapalapa, Mexico City 09310, Mexico
| | - Keiko Shirai
- Laboratorio de Biopolímeros y Planta Piloto de Bioprocesos de Residuos Agroindustriales y de Alimentos, Unidad Iztapalapa, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Av. Ferrocarril San Rafael Atlixco número 186, Colonia Leyes de Reforma 1a sección, Alcaldía de Iztapalapa, Mexico City 09310, Mexico
- Correspondence:
| |
Collapse
|
19
|
Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis. Drug Deliv Transl Res 2022; 12:2649-2666. [PMID: 35499715 DOI: 10.1007/s13346-022-01152-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Natural biodegradable polymers generally include polysaccharides (starch, alginate, chitin/chitosan, hyaluronic acid derivatives, etc.) and proteins (collagen, gelatin, fibrin, etc.). In transdermal drug delivery systems (TDDS), these polymers play a vital role in controlling the device's drug release. It is possible that natural polymers can be used for TDDS to attain predetermined drug delivery rates due to their physicochemical properties. These polymers can be employed to market products and scale production because they are readily available and inexpensive. As a result of these polymers, new pharmaceutical delivery systems can be developed that is both regulated and targeted. The focus of this article is the application of a biodegradable polymeric platform based on natural polymers for TDDS. Due to their biocompatibility and biodegradability, natural biodegradable polymers are frequently used in biomedical applications. Additionally, these natural biodegradable polymers are being studied for their characteristics and behaviors.
Collapse
|
20
|
Stamer KS, Pigaleva MA, Pestrikova AA, Nikolaev AY, Naumkin AV, Abramchuk SS, Sadykova VS, Kuvarina AE, Talanova VN, Gallyamov MO. Water Saturated with Pressurized CO 2 as a Tool to Create Various 3D Morphologies of Composites Based on Chitosan and Copper Nanoparticles. Molecules 2022; 27:7261. [PMID: 36364089 PMCID: PMC9658215 DOI: 10.3390/molecules27217261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
Methods for creating various 3D morphologies of composites based on chitosan and copper nanoparticles stabilized by it in carbonic acid solutions formed under high pressure of saturating CO2 were developed. This work includes a comprehensive analysis of the regularities of copper nanoparticles stabilization and reduction with chitosan, studied by IR and UV-vis spectroscopies, XPS, TEM and rheology. Chitosan can partially reduce Cu2+ ions in aqueous solutions to small-sized, spherical copper nanoparticles with a low degree of polydispersity; the process is accompanied by the formation of an elastic polymer hydrogel. The resulting composites demonstrate antimicrobial activity against both fungi and bacteria. Exposing the hydrogels to the mixture of He or H2 gases and CO2 fluid under high pressure makes it possible to increase the porosity of hydrogels significantly, as well as decrease their pore size. Composite capsules show sufficient resistance to various conditions and reusable catalytic activity in the reduction of nitrobenzene to aniline reaction. The relative simplicity of the proposed method and at the same time its profound advantages (such as environmental friendliness, extra purity) indicate an interesting role of this study for various applications of materials based on chitosan and metals.
Collapse
Affiliation(s)
- Katerina S. Stamer
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Marina A. Pigaleva
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Anastasiya A. Pestrikova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Alexander Y. Nikolaev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Alexander V. Naumkin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Sergei S. Abramchuk
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Vera S. Sadykova
- FSBI Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Anastasia E. Kuvarina
- FSBI Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Valeriya N. Talanova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Marat O. Gallyamov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| |
Collapse
|
21
|
Mutlu N, Liverani L, Kurtuldu F, Galusek D, Boccaccini AR. Zinc improves antibacterial, anti-inflammatory and cell motility activity of chitosan for wound healing applications. Int J Biol Macromol 2022; 213:845-857. [PMID: 35667458 PMCID: PMC9240323 DOI: 10.1016/j.ijbiomac.2022.05.199] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
We report the successful preparation and characterization of chitosan-Zn complex (ChiZn) in the form of films, intended to enhance the biological performance of chitosan by the presence of Zn as antibacterial agent and biologically active ion. The influence of Zn chelation on morphology and structure of chitosan was assessed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and infrared spectroscopy. The biodegradability study of ChiZn showed a sustained release of Zn up to 2 mg/mL. No toxic response was observed toward stromal cell line ST-2 in indirect contact with the ChiZn films. The dissolution product of ChiZn showed improved wound closure (88% closure) compared to the positive control group (70% closure). Moreover, ChiZn exhibited antibacterial activity against S. aureus together with a slight increase (~30%) in the secretion of VEGF and moderate decrease in nitric oxide evolution. Our findings indicate that ChiZn could be used as a safe and effective wound healing agent.
Collapse
Affiliation(s)
- Nurshen Mutlu
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Fatih Kurtuldu
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Dušan Galusek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, FunGlass, 911 50 Trenčín, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
22
|
Passieux R, Sudre G, Montembault A, Renard M, Hagege A, Alcouffe P, Haddane A, Vandesteene M, Boucard N, Bordenave L, David L. Cytocompatibility / Antibacterial Activity Trade-off for Knittable Wet-Spun Chitosan Monofilaments Functionalized by the In Situ Incorporation of Cu 2+ and Zn 2. ACS Biomater Sci Eng 2022; 8:1735-1748. [PMID: 35226455 DOI: 10.1021/acsbiomaterials.2c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The wet spinning of cytocompatible, bioresorbable, and knittable chitosan (CTS) monofilaments would be advantageous for a variety of surgical applications. The complexation capacity of chitosan with Cu2+ or Zn2+ can be leveraged to enhance its antibacterial activity, but not at the expense of cytocompatibility. In this work, a wet-spinning process was adapted for the in situ incorporation of Cu2+ or Zn2+ with chitosan dopes to produce monofilaments at different drawing ratios (τtot) with various cation/glucosamine molar ratios, evaluated in the fibers (rCu,f and rZn,f). Cytocompatibility and antibacterial activity of wet-spun monofilaments were, respectively, quantified by in vitro live-dead assays on balb 3T3 and by different evaluations of the proliferation inhibition of Staphylococcus epidermidis (Gram+) and Escherichia coli (Gram-). Knittability was tested by a specific tensile test using a knitting needle and evaluated with an industrial knitting machine. It was found that rCu,f = 0.01 and rZn,f = 0.03 significantly increase the antibacterial activity without compromising cytocompatibility. Wet spinning with τtot = 1.6 allowed the production of knittable CTS-Cu monofilaments, as confirmed by knitting assays under industrial conditions.
Collapse
Affiliation(s)
- Renaud Passieux
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France.,INSERM, U1026, BIOTIS Laboratory, Université de Bordeaux, Bordeaux F-33000, France.,MDB Texinov, Saint Didier de la Tour 38110, France
| | - Guillaume Sudre
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | - Alexandra Montembault
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | - Martine Renard
- CIC-IT INSERM; CHU de Bordeaux, Université de Bordeaux, Pessac 33600, France
| | - Agnès Hagege
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institute of Analytical Sciences (ISA) UMR 5280, Villeurbanne 69100, France
| | - Pierre Alcouffe
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | - Ali Haddane
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | | | | | - Laurence Bordenave
- INSERM, U1026, BIOTIS Laboratory, Université de Bordeaux, Bordeaux F-33000, France
| | - Laurent David
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| |
Collapse
|
23
|
Akhtar MA, Hadzhieva Z, Ilyas K, Ali MS, Peukert W, Boccaccini AR. Facile Synthesis of Gallium (III)-Chitosan Complexes as Antibacterial Biomaterial. Pharmaceutics 2021; 13:1702. [PMID: 34683993 PMCID: PMC8541496 DOI: 10.3390/pharmaceutics13101702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Even though antibiotic treatment remains one of the most common tools to handle bacterial infections, the excessive antibiotic concentration at the target site may lead to undesired effects. Aiming at the fabrication of antibiotic-free biomaterials for antibacterial applications, in this work, we propose the synthesis of gallium (III)-chitosan (Ga (III)-CS) complexes with six different gallium concentrations via an in situ precipitation method. Fourier Transform infrared spectroscopy indicated the chelation of chitosan with Ga (III) by peak shifts and changes in the relative absorbance of key spectral bands, while energy-dispersive X-ray spectroscopy indicated the homogenous distribution of the metal ions within the polymer matrix. Additionally, similar to CS, all Ga (III)-CS complexes showed hydrophobic behavior during static contact-angle measurements. The antibacterial property of the complexes against both Gram-negative and Gram-positive bacteria was positively correlated with the Ga (III) concentration. Moreover, cell studies confirmed the nontoxic behavior of the complexes against the human osteosarcoma cell line (MG-63 cells) and mouse embryonic fibroblasts cell line (MEFs). Based on the results of this study, new antibiotic-free antibacterial biomaterials based on Ga (III)-CS can be developed, expanding the scope of CS applications in the biomedical field.
Collapse
Affiliation(s)
- Muhammad Asim Akhtar
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.A.A.); (Z.H.); (K.I.)
| | - Zoya Hadzhieva
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.A.A.); (Z.H.); (K.I.)
| | - Kanwal Ilyas
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.A.A.); (Z.H.); (K.I.)
| | - Muhammad Saad Ali
- Department of Chemical and Biological Engineering, Institute of Particle Technology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.S.A.); (W.P.)
| | - Wolfgang Peukert
- Department of Chemical and Biological Engineering, Institute of Particle Technology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.S.A.); (W.P.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.A.A.); (Z.H.); (K.I.)
| |
Collapse
|
24
|
Taketa TB, Mahl CRA, Calais GB, Beppu MM. Amino acid-functionalized chitosan beads for in vitro copper ions uptake in the presence of histidine. Int J Biol Macromol 2021; 188:421-431. [PMID: 34371051 DOI: 10.1016/j.ijbiomac.2021.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
One of the hallmarks of Alzheimer's Disease (AD) is the anomalous binding involving amyloid-β (Aβ) peptide and metal ions, such as copper, formed through histidine (His) residues. Herein, adsorption experiments were performed to test the in vitro ability of chitosan to uptake copper ions in the presence of histidine. The characterization of the beads was assessed before and after the adsorption process by scanning electron microscope, X-ray diffraction and Fourier-transform infrared spectroscopy. Amino acid functionalization of chitosan-based beads promoted an increase in the copper ions adsorption capacity (2.47 mmol of Cu(II)/gram of adsorbent). Nevertheless, depending on the order of addition of histidine to the system, different adsorption behaviors were observed. The kinetics showed that, once the Cu(II)-His bond was established, functionalized beads were less efficient to capture Cu(II), which promoted a decrease in the overall adsorption capacity. However, when chitosan and histidine were simultaneously added to the Cu(II) solution, there was no decrease in adsorption capacity. To sum up, chitosan-based materials are an interesting model to provide a better understanding on the biomolecules‑copper interactions that occur in AD, as well as a possible chelating agent that can interfere in the bonds between Aβ residues and copper ions.
Collapse
Affiliation(s)
- Thiago B Taketa
- School of Chemical Engineering, University of Campinas, SP, Brazil
| | - Cynthia R A Mahl
- School of Chemical Engineering, University of Campinas, SP, Brazil
| | | | - Marisa M Beppu
- School of Chemical Engineering, University of Campinas, SP, Brazil.
| |
Collapse
|
25
|
Kharitonov DS, Kasach AA, Gibala A, Zimowska M, Kurilo II, Wrzesińska A, Szyk-Warszyńska L, Warszyński P. Anodic Electrodeposition of Chitosan-AgNP Composites Using In Situ Coordination with Copper Ions. MATERIALS 2021; 14:ma14112754. [PMID: 34071001 PMCID: PMC8197130 DOI: 10.3390/ma14112754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Chitosan is an attractive material for biomedical applications. A novel approach for the anodic electrodeposition of chitosan–AgNP composites using in situ coordination with copper ions is proposed in this work. The surface and cross-section morphology of the obtained coating with varying concentrations of AgNPs were evaluated by SEM, and surface functional groups were analyzed with FT-IR spectroscopy. The mechanism of the formation of the coating based on the chelation of Cu(II) ions with chitosan was discussed. The antibacterial activity of the coatings towards Staphylococcus epidermidis ATCC 35984/RP62A bacteria was analyzed using the live–dead approach. The presented results indicate that the obtained chitosan–AgNP-based films possess some limited anti-biofilm-forming properties and exhibit moderate antibacterial efficiency at high AgNP loads.
Collapse
Affiliation(s)
- Dmitry S. Kharitonov
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
- Correspondence: (D.S.K.); (A.A.K.)
| | - Aliaksandr A. Kasach
- Department of Chemistry, Electrochemical Production Technology and Materials for Electronic Equipment, Chemical Technology and Engineering Faculty, Belarusian State Technological University, Sverdlova 13a, 220006 Minsk, Belarus
- Correspondence: (D.S.K.); (A.A.K.)
| | - Agnieszka Gibala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Małgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
| | - Irina I. Kurilo
- Department of Physical, Colloid and Analytical Chemistry, Organic Substances Technology Faculty, Belarusian State Technological University, Sverdlova 13a, 220006 Minsk, Belarus;
| | - Angelika Wrzesińska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
| |
Collapse
|
26
|
Feiz E, Mahyari M, Ghaieni HR, Tavangar S. Copper on chitosan-modified cellulose filter paper as an efficient dip catalyst for ATRP of MMA. Sci Rep 2021; 11:8257. [PMID: 33859302 PMCID: PMC8050047 DOI: 10.1038/s41598-021-87755-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/01/2021] [Indexed: 11/09/2022] Open
Abstract
Achieving an efficient catalyst in the ATRP system with a simple design, preparation from available materials, and high recyclability is a significant challenging issue. To attain the goal, herein, we used chitosan (CS)-modified cellulose filter paper (FP) as a green support for the synthesis of dip catalyst. The preparation of this catalyst involved surface treatment of the FP strips by CS coating through a dipping method, which increased the affinity of the substrate for adsorbing copper ions in the next step. The Cu@CS-FP catalyst was prepared without the requirement of any ligands. The synthesized dip-catalyst, in the form of the strips, was employed for the first time in the ATRP reaction of methyl methacrylate to assay catalytic activity. Catalytic insertion/ removal (ON/OFF) experiments were carried out during the polymerization. A reasonable control over the molecular weight with high conversion (68%) and polydispersity index of 1.32 under mild reaction conditions were obtained. Significantly, because of the facile separation of the catalyst, the amount of copper that remained in the polymer was very low (2.7 ppm). Also, the recyclability of the catalyst was investigated for five runs. The conversion in the final run was 64% without a loss of catalyst efficiency.
Collapse
Affiliation(s)
- Elham Feiz
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Mojtaba Mahyari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | - Hamid Reza Ghaieni
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Saeed Tavangar
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
27
|
Hetta AAF, Attallah OA, Mamdouh W. Quality evaluation of oil recovered from
Euthynnus affinis
(Kawakawa) fish using ecofriendly chitosan/oil‐non‐centrifuged sequential purification technique. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alia A. F. Hetta
- Department of Chemistry School of Sciences and Engineering (SSE) The American University in Cairo (AUC) New Cairo Egypt
| | - Olivia A. Attallah
- Pharmaceutical Chemistry Department Faculty of Pharmacy Heliopolis University Cairo Egypt
| | - Wael Mamdouh
- Department of Chemistry School of Sciences and Engineering (SSE) The American University in Cairo (AUC) New Cairo Egypt
| |
Collapse
|
28
|
Weerasundara L, Ok YS, Bundschuh J. Selective removal of arsenic in water: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115668. [PMID: 33017746 DOI: 10.1016/j.envpol.2020.115668] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 05/28/2023]
Abstract
Selective removal of arsenic (As) is the key challenge for any of As removal mechanisms as this not only increases the efficiency of removal of the main As species (neutral As(III) and As(V) hydroxyl-anions) but also allows for a significant reduction of waste as it does not co-remove other solutes. Selective removal has a number of benefits: it increases the capacity and lifetime of units while lowering the cost of the process. Therefore, a sustainable selective mitigation method should be considered concerning the economic resources available, the ability of infrastructure to sustain water treatment, and the options for reuse and/or safe disposal of treatment residuals. Several methods of selective As removal have been developed, such as precipitation, adsorption and modified iron and ligand exchange. The biggest challenge in selective removal of As is the presence of phosphate in water which is chemically comparable with As(V). There are two types of mechanisms involved with As removal: Coulombic or ion exchange; and Lewis acid-base interaction. Solution pH is one of the major controlling factors limiting removal efficiency since most of the above-mentioned methods depend on complexation through electrostatic effects. The different features of two different As species make the selective removal process more difficult, especially under natural conditions. Most of the selective As removal methods involve hydrated Fe(III) oxides through Lewis acid-base interaction. Microbiological methods have been studied recently for selective removal of As, and although there have been only a small number of studies, the method shows remarkable results and indicates positive prospects for the future.
Collapse
Affiliation(s)
- Lakshika Weerasundara
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| | - Yong-Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
29
|
Nomaki H, Chen C, Oda K, Tsuchiya M, Tame A, Uematsu K, Isobe N. Abundant Chitinous Structures in Chilostomella (Foraminifera, Rhizaria) and Their Potential Functions. J Eukaryot Microbiol 2021; 68:e12828. [PMID: 33128276 PMCID: PMC7894498 DOI: 10.1111/jeu.12828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/28/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022]
Abstract
Benthic foraminifera, members of Rhizaria, inhabit a broad range of marine environments and are particularly common in hypoxic sediments. The biology of benthic foraminifera is key to understanding benthic ecosystems and relevant biogeochemical cycles, especially in hypoxic environments. Chilostomella is a foraminiferal genus commonly found in hypoxic deep-sea sediments and has poorly understood ecological characteristics. For example, the carbon isotopic compositions of their lipids are substantially different from other co-occurring genera, probably reflecting unique features of its metabolism. Here, we investigated the cytoplasmic and ultrastructural features of Chilostomella ovoidea from bathyal sediments of Sagami Bay, Japan, based on serial semi-thin sections examined using an optical microscope followed by a three-dimensional reconstruction, combined with TEM observations of ultra-thin sections. Observations by TEM revealed the presence of abundant electron-dense structures dividing the cytoplasm. Based on histochemical staining, these structures are shown to be composed of chitin. Our 3D reconstruction revealed chitinous structures in the final seven chambers. These exhibited a plate-like morphology in the final chambers but became rolled up in earlier chambers (toward the proloculus). These chitinous, plate-like structures may function to partition the cytoplasm in a chamber to increase the surface/volume ratio and/or act as a reactive site for some metabolic functions.
Collapse
Affiliation(s)
- Hidetaka Nomaki
- SUGAR, X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)2‐15 Natsushima‐choYokosukaKanagawa237‐0061Japan
| | - Chong Chen
- SUGAR, X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)2‐15 Natsushima‐choYokosukaKanagawa237‐0061Japan
| | - Kaya Oda
- SUGAR, X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)2‐15 Natsushima‐choYokosukaKanagawa237‐0061Japan
| | - Masashi Tsuchiya
- Research Institute for Global Change (RIGC)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawa
237‐0061Japan
| | - Akihiro Tame
- Marine Works Japan Ltd.3‐54‐1 Oppamahigashi‐choYokosukaKanagawa237‐0063Japan
| | - Katsuyuki Uematsu
- Marine Works Japan Ltd.3‐54‐1 Oppamahigashi‐choYokosukaKanagawa237‐0063Japan
| | - Noriyuki Isobe
- Research Institute for Marine Resources Utilization (MRU)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawa237‐0061Japan
| |
Collapse
|
30
|
EL. Mouaden K, Chauhan DS, Quraishi M, Bazzi L, Hilali M. Cinnamaldehyde-modified chitosan as a bio-derived corrosion inhibitor for acid pickling of copper: Microwave synthesis, experimental and computational study. Int J Biol Macromol 2020; 164:3709-3717. [DOI: 10.1016/j.ijbiomac.2020.08.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
|
31
|
Evaluation of thermodynamic parameters via reaction stoichiometry and the corrected Langmuir parameter for sorption of Cu(II) on chitosan and chitosan blended PVA films. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Probing the Molecular Interactions of Chitosan Films in Acidic Solutions with Different Salt Ions. COATINGS 2020. [DOI: 10.3390/coatings10111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding the interaction mechanisms of chitosan films plays a central role in a wide range of its applications, such as bioadhesive, drug delivery, wound healing, tissue engineering, and wastewater treatment for heavy metal ions. Here, we investigated the molecular interactions between chitosan films in acidic solutions with different salt ions using a surface forces apparatus (SFA). The results showed that chitosan can be adsorbed to mica surfaces by electrostatic interaction under acidic conditions. The force measurements demonstrated that the interactions depend on the salt types, concentrations, and contact time. With the addition of 1 mM LaCl3 and NaCl into the acetic acid (HAc) buffer solution, the cohesion between chitosan films enhanced by about 45% and 20%, respectively, after a contact time of 60 min. The enhanced cohesion induced by the combination of partly intermolecular complexation formation in a bridge model and conformation adjustment of chitosan under contact time in 1 mM LaCl3 solution. However, the cohesion reduced rapidly and even disappeared when the salt concentration increased to 10 mM and 100 mM. We proposed that the cross-linked structures of chitosan mainly contribute to the significant reduction of chitosan cohesion in LaCl3 solution. In comparison, the decrease in cohesion capacity in NaCl solution mainly results from the enhanced hydration effect. Our findings may provide insights into the interaction mechanisms of chitosan films under nanoconfinement in acidic conditions and suggestions for the development of chitosan-based materials.
Collapse
|
33
|
Sahebjamee N, Soltanieh M, Mousavi SM, Heydarinasab A. Preparation and characterization of porous chitosan–based membrane with enhanced copper ion adsorption performance. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Rogina A, Vidović D, Antunović M, Ivanković M, Ivanković H. Metal ion-assisted formation of porous chitosan-based microspheres for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1776283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Dorina Vidović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Maja Antunović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
35
|
Multifunctional magnetite nanoparticles for drug delivery: Preparation, characterisation, antibacterial properties and drug release kinetics. Int J Pharm 2020; 587:119658. [PMID: 32682959 DOI: 10.1016/j.ijpharm.2020.119658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023]
Abstract
Multifunctional nanoparticles (NPs) with magnetic (M) and antibacterial properties were prepared for drug delivery purposes by a method involving co-precipitation synthesis. Partial and complete substitutions of ferrous ions (Fe2+) by copper ions (Cu2+) were carried out for the preparation of the magnetite NPs, which are designated as Cu0.5M and CuM, respectively, in this work. In addition, chitosan and ciprofloxacin were hybridized with the NPs from the previous step to achieve multifunctional properties. XRD, TEM, SEM/EDAX, VSM and FTIR were subsequently employed to characterize various properties of the prepared NPs, namely, crystallinity, nanostructure (size), particle morphology, elemental mapping, magnetic strength and chemical composition. Antibacterial properties of the NPs were tested against Bacillus cereus (Gram-positive bacteria), Escherichia coli (Gram-negative bacteria) and Candida albicans (yeast). Efficiency of the ciprofloxacin release was also studied for the drug-loaded NPs. It is demonstrated that the obtained NPs possess mixed phases with crystalline structures that are affected by the degree of Cu ion substitution (5-10 nm (M), 2.5-3.5 nm (Cu0.5M) and 11-16 nm (CuM)). Saturation magnetization values of the NPs were recorded as 38.7, 3.5 and 1.3 emu/g, respectively. It was also found that the introduction of Cu ions in the NP samples improved the significance of their antibacterial activity, especially against Escherichia coli. Chitosan and ciprofloxacin were found to have stronger effects against Bacillus cereus and Escherichia coli and lesser effects against Candida albicans. However, the samples containing chitosan, ciprofloxacin and the higher Cu ion concentration exhibited strong influence against Candida albicans. During a study period of 30-days, the amounts of released drug from the tested NPs were 85, 26 and 20% of the originally loaded amount, respectively. Owing to the findings in this paper, the developed NPs are considered to have good potential for drug delivery applications and to study them further such as in pre-clinical studies.
Collapse
|
36
|
Synthesis of chitosan-acrylic acid/multiwalled carbon nanotubes composite for theranostic 47Sc separation from neutron irradiated titanium target. Int J Biol Macromol 2020; 163:79-86. [PMID: 32603728 DOI: 10.1016/j.ijbiomac.2020.06.249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 11/21/2022]
Abstract
A simple and efficient separation method of carrier-free 47Sc from neutron irradiated titanium target using a novel chitosan-acrylic acid/multiwalled carbon nanotubes (CS-AA/MWCNTs) composite was established. The synthesis of the CS-AA/MWCNTs composite was achieved using gamma radiation-induced template polymerization. The grafting efficiency (GE%) of AA on CS onto the surface of f-MWCNTs reached a maximum of~84% under the optimized conditions (30 wt% CS, 1.0 wt% AA, 0.15 wt% f-MWCNTs, >0.2 wt% N,N'-Methylenebisacrylamide (NMBA), and irradiation dose ~25 kGy). Different analyses (FT-IR, SEM, TGA and DTA) were examined for confirming the structural morphology and mechanical properties of the new synthesized composite. Interestingly, the CS-AA/MWCNTs composite depicted a selective adsorption of Sc(III) rather than Ti(IV) ions at pH 5 with adsorption efficiency of ~93.93%. The ionic exchange separation of no-carrier-added (NCA)47Sc(III) from irradiated TiO2 target on CS-AA/MWCNTs composite packed column efficiently eluted 47Sc(III) by 91 ± 0.8% using 1 M HCl solution. The quality control tests (radionuclidic, radiochemical, and chemical purities) for the eluted 47Sc(III) clarified its high purity and validity for cancer theranostics.
Collapse
|
37
|
Weißpflog J, Gündel A, Vehlow D, Steinbach C, Müller M, Boldt R, Schwarz S, Schwarz D. Solubility and Selectivity Effects of the Anion on the Adsorption of Different Heavy Metal Ions onto Chitosan. Molecules 2020; 25:molecules25112482. [PMID: 32471099 PMCID: PMC7321104 DOI: 10.3390/molecules25112482] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 02/03/2023] Open
Abstract
The biopolymer chitosan is a very efficient adsorber material for the removal of heavy metal ions from aqueous solutions. Due to the solubility properties of chitosan it can be used as both a liquid adsorber and a solid flocculant for water treatment reaching outstanding adsorption capacities for a number of heavy metal ions. However, the type of anion corresponding to the investigated heavy metal ions has a strong influence on the adsorption capacity and sorption mechanism on chitosan. In this work, the adsorption capacity of the heavy metal ions manganese, iron, cobalt, nickel, copper, and zinc were investigated in dependence on their corresponding anions sulfate, chloride, and nitrate by batch experiments. The selectivity of the different heavy metal ions was analyzed by column experiments.
Collapse
|
38
|
Kan Y, Yang Q, Tan Q, Wei Z, Chen Y. Diminishing Cohesion of Chitosan Films in Acidic Solution by Multivalent Metal Cations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4964-4974. [PMID: 32308004 DOI: 10.1021/acs.langmuir.0c00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan is a natural polymer with good biocompatibility, biodegradability, and bioactivity that has great potential for biomedical and industrial applications. Like other natural sugar-based polymers, chitosan molecules own versatile adhesion abilities to bind with various surfaces, owing to multiple functional moieties contained in the chain. To develop the promising biomaterials based on the chitosan chemistry, it is fundamentally important to figure out its adhesion mechanism under a certain condition, which leaves us numbers of open questions. In this work, we characterized the chitosan films adsorbed on a mica substrate in acidic solution and investigated the effects of multivalent salts on the cohesive behaviors of the films by means of the surface forces apparatus. The results showed that the cohesion capacities of chitosan films were reduced to around 30% of their original states after the addition of 10-7 M LaCl3 into 150 mM acetic acid, which could be partially recovered by holding the films at the contact position for a longer time. Surprisingly, the cohesion loss in the films exhibited the dependence on the properties of the metal cations including valance and concentration. The topography of the chitosan-coated surface also showed obvious aggregation in the presence of submicromolar of the salts. Here, we attributed these phenomena regarding cohesion loss to the mechanisms involved in the absorption of metal cations by the chitosan chains, which not only consumed the binding sites but also induced conformation change in the polymer network. Our findings may offer a suggestion for the production of chitosan-based materials to notice the potential impacts of ultralow concentrated salts that are usually neglected even under acidic conditions.
Collapse
Affiliation(s)
- Yajing Kan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, and School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Qiang Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, and School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Qiyan Tan
- School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Zhiyong Wei
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, and School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, and School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
39
|
Gaidhane MK, Ghatole AM, Lanjewar KR. Synthesis of Chromone Functionalized Chitosan Polymer: Application/Screening of Its Physical Parameters. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Electrophoretic Deposition of Copper(II)-Chitosan Complexes for Antibacterial Coatings. Int J Mol Sci 2020; 21:ijms21072637. [PMID: 32290155 PMCID: PMC7177350 DOI: 10.3390/ijms21072637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial infection associated with medical implants is a major threat to healthcare. This work reports the fabrication of Copper(II)–Chitosan (Cu(II)–CS) complex coatings deposited by electrophoretic deposition (EPD) as potential antibacterial candidate to combat microorganisms to reduce implant related infections. The successful deposition of Cu(II)–CS complex coatings on stainless steel was confirmed by physicochemical characterizations. Morphological and elemental analyses by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy verified the uniform distribution of copper in the Chitosan (CS) matrix. Moreover, homogeneous coatings without precipitation of metallic copper were confirmed by X-ray diffraction (XRD) spectroscopy and SEM micrographs. Controlled swelling behavior depicted the chelation of copper with polysaccharide chains that is key to the stability of Cu(II)–CS coatings. All investigated systems exhibited stable degradation rate in phosphate buffered saline (PBS)–lysozyme solution within seven days of incubation. The coatings presented higher mechanical properties with the increase in Cu(II) concentration. The crack-free coatings showed mildly hydrophobic behavior. Antibacterial assays were performed using both Gram-positive and Gram-negative bacteria. Outstanding antibacterial properties of the coatings were confirmed. After 24 h of incubation, cell studies of coatings confirms that up to a certain threshold concentration of Cu(II) were not cytotoxic to human osteoblast-like cells. Overall, our results show that uniform and homogeneous Cu(II)–CS coatings with good antibacterial and enhanced mechanical stability could be successfully deposited by EPD. Such antibiotic-free antibacterial coatings are potential candidates for biomedical implants.
Collapse
|
41
|
Li F, Liu Y, Li Z, Li Q, Liu X, Cui H. Cu(II)-Regulated On-Site Assembly of Highly Chemiluminescent Multifunctionalized Carbon Nanotubes for Inorganic Pyrophosphatase Activity Determination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2903-2909. [PMID: 31851480 DOI: 10.1021/acsami.9b20259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel signal-on chemiluminescence (CL) assay for pyrophosphatase (PPase) activity determination was innovatively developed based on the Cu(II)-regulated on-site assembly of highly chemiluminescent Cu(II), N-(aminobutyl)-N-(ethylisoluminol) (ABEI), gold nanodot, and chitosan multifunctionalized carbon nanotubes (Cu(II)/ABEI-Au/cs-CNTs). First, ABEI-functionalized gold nanodots (ABEI-Au) were assembled on the surface of chitosan-modified carbon nanotubes (cs-CNTs) via the reduction of HAuCl4 with ABEI in a cs-CNT suspension to form ABEI-Au/cs-CNTs. Then, it was found that the catalyst Cu(II) can be selectively, efficiently, and quickly adsorbed onto ABEI-Au/cs-CNTs via the high-affinity interactions between Cu(II) and cs-CNTs to form novel hybrid nanomaterials Cu(II)/ABEI-Au/cs-CNTs. The CL intensity of Cu(II)/ABEI-Au/cs-CNTs was enhanced by about 2 orders of magnitude compared with that of ABEI-Au/cs-CNTs. Furthermore, it was found that in the presence of pyrophosphate ions (PPi), PPi could coordinate with Cu(II) to form a stable PPi-Cu(II) complex and block the assembly of Cu(II)/ABEI-Au/cs-CNTs. After the addition of PPase, PPase could catalyze the hydrolysis of PPi into Pi and release Cu(II) from the PPi-Cu(II) complex. The released free Cu(II) could trigger the on-site assembly of highly chemiluminescent Cu(II)/ABEI-Au/cs-CNTs, resulting in an enhanced CL intensity. The enhanced CL intensity had a good linear relationship with the activity units of PPase ranging from 0.025 to 0.5 U, with a detection limit of 9 mU. The method was employed to monitor the PPase inhibitor efficiently. Cu(II)/ABEI-Au/cs-CNTs with excellent CL may also find more applications in the development of novel CL analytical methods.
Collapse
Affiliation(s)
- Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230026 , P. R. China
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Yating Liu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Zimu Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230026 , P. R. China
| | - Qi Li
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Xiaoying Liu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
42
|
Mndlovu H, du Toit LC, Kumar P, Choonara YE, Marimuthu T, Kondiah PPD, Pillay V. Bioplatform Fabrication Approaches Affecting Chitosan-Based Interpolymer Complex Properties and Performance as Wound Dressings. Molecules 2020; 25:E222. [PMID: 31935794 PMCID: PMC6982769 DOI: 10.3390/molecules25010222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 02/05/2023] Open
Abstract
Chitosan can form interpolymer complexes (IPCs) with anionic polymers to form biomedical platforms (BMPs) for wound dressing/healing applications. This has resulted in its application in various BMPs such as gauze, nano/microparticles, hydrogels, scaffolds, and films. Notably, wound healing has been highlighted as a noteworthy application due to the remarkable physical, chemical, and mechanical properties enabled though the interaction of these polyelectrolytes. The interaction of chitosan and anionic polymers can improve the properties and performance of BMPs. To this end, the approaches employed in fabricating wound dressings was evaluated for their effect on the property-performance factors contributing to BMP suitability in wound dressing. The use of chitosan in wound dressing applications has had much attention due to its compatible biological properties. Recent advancement includes the control of the degree of crosslinking and incorporation of bioactives in an attempt to enhance the physicochemical and physicomechanical properties of wound dressing BMPs. A critical issue with polyelectrolyte-based BMPs is that their effective translation to wound dressing platforms has yet to be realised due to the unmet challenges faced when mimicking the complex and dynamic wound environment. Novel BMPs stemming from the IPCs of chitosan are discussed in this review to offer new insight into the tailoring of physical, chemical, and mechanical properties via fabrication approaches to develop effective wound dressing candidates. These BMPs may pave the way to new therapeutic developments for improved patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (H.M.); (L.C.d.T.); (P.K.); (Y.E.C.); (T.M.); (P.P.D.K.)
| |
Collapse
|
43
|
Zia Q, Tabassum M, Lu Z, Khawar MT, Song J, Gong H, Meng J, Li Z, Li J. Porous poly(L–lactic acid)/chitosan nanofibres for copper ion adsorption. Carbohydr Polym 2020; 227:115343. [DOI: 10.1016/j.carbpol.2019.115343] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/05/2023]
|
44
|
Reducing-end “clickable” functionalizations of chitosan oligomers for the synthesis of chitosan-based diblock copolymers. Carbohydr Polym 2019; 219:387-394. [DOI: 10.1016/j.carbpol.2019.04.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023]
|
45
|
Al-Jbour ND, Beg MD, Gimbun J, Alam AKMM. An Overview of Chitosan Nanofibers and their Applications in the Drug Delivery Process. Curr Drug Deliv 2019; 16:272-294. [PMID: 30674256 DOI: 10.2174/1567201816666190123121425] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 01/28/2023]
Abstract
Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems.
Collapse
Affiliation(s)
- Nawzat D Al-Jbour
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia
| | - Mohammad D Beg
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia
| | - Jolius Gimbun
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia
| | - A K M Moshiul Alam
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia.,Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
46
|
Igberase E, Osifo P. Application of diethylenetriamine grafted on glyoxal cross-linked chitosan composite for the effective removal of metal ions in batch system. Int J Biol Macromol 2019; 134:1145-1155. [DOI: 10.1016/j.ijbiomac.2019.05.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 01/31/2023]
|
47
|
Yuan D, O'Riordan ED, Jacquier JC. Development of a first order derivative spectrophotometry method to rapidly quantify protein in the presence of chitosan and its application in protein encapsulation systems. Food Chem 2019; 289:1-6. [DOI: 10.1016/j.foodchem.2019.02.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 11/27/2022]
|
48
|
Ospina V, Bernal C, Mesa M. Thermal Hyperactivation and Stabilization of β-Galactosidase from Bacillus circulans through a Silica Sol–Gel Process Mediated by Chitosan–Metal Chelates. ACS APPLIED BIO MATERIALS 2019; 2:3380-3392. [DOI: 10.1021/acsabm.9b00371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Viviana Ospina
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 no. 52-21, Medellín 1226, Colombia
| | - Claudia Bernal
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería de Alimentos, Universidad de La Serena, Raul Bitran, La Serena 1305,Chile
| | - Monica Mesa
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 no. 52-21, Medellín 1226, Colombia
| |
Collapse
|
49
|
Pincus LN, Lounsbury AW, Zimmerman JB. Toward Realizing Multifunctionality: Photoactive and Selective Adsorbents for the Removal of Inorganics in Water Treatment. Acc Chem Res 2019; 52:1206-1214. [PMID: 30969749 DOI: 10.1021/acs.accounts.8b00668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Persistent and potentially toxic inorganic oxoanions (e.g., arsenic and selenium) are one class of contaminants of concern in drinking water for which treatment technologies must be improved. Effective removal of these oxoanions is made difficult by the varying adsorption affinity of the different oxidation states, as well as the presence of background ions with similar chemical structure and behavior that strongly compete for adsorption sites, greatly reducing removal efficiencies. Recent studies pointing to the negative health effects of inorganic oxoanion contaminants have resulted or are expected to result in new regulations lowering their allowable maximum concentration level (MCL) in drinking water. While these regulations are intended to protect human and environmental health, they must also allow for balanced economic costs. As such, the MCLs are often set at levels that are not as health protective due to high treatment costs that continue to present a significant challenge for small (500-3300 people) to very small (25-500 people) communities. In this Account, we focus on the development of novel cost-effective, sustainable, and efficient multifunctional and selective adsorbents that offer solutions to the above challenges through two platforms: nanoenabled and transition-metal cross-linked chitosan (TMCC) and crystal facet engineered nanometal oxides (NMO). These complementary platforms offer treatment solutions at different scales and flow rates (e.g., in a point-of-use device versus a small-scale community system). Multifunctional adsorbents combine processes that traditionally require multiple steps offering the potential for reducing treatment time and costs. Development of selective adsorbents can greatly increase removal efficiencies of target contaminants by either promoting their adsorption or hindering adsorption of competitive ions. The following sections describe (1) synthesis of novel nanoenabled waste sourced bioadsorbents; (2) development of multifunctional adsorbents to simultaneously photo-oxidize arsenite and adsorb arsenate; (3) development of a selective adsorbent for removal of arsenate and selenite over phosphate; (4) investigations of the conventional wisdom that increased surface area yields increased oxoanion removal using selenium sorption on nanohematite as a case study; and (5) crystal engineering of nanohematite to promote selenite adsorption. The novel technologies developed through these research efforts can serve as templates for the creation of future adsorbents tailored for use targeting other oxoanion contaminants of interest.
Collapse
Affiliation(s)
- Lauren N. Pincus
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Amanda W. Lounsbury
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Julie B. Zimmerman
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| |
Collapse
|
50
|
Götzke L, Schaper G, März J, Kaden P, Huittinen N, Stumpf T, Kammerlander KK, Brunner E, Hahn P, Mehnert A, Kersting B, Henle T, Lindoy LF, Zanoni G, Weigand JJ. Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|