1
|
Kumar S, Arora A, Chaudhary R, Kumar R, Len C, Mukherjee M, Singh BK, Parmar VS. Recent Advances in the Synthesis of Acyclic Nucleosides and Their Therapeutic Applications. Top Curr Chem (Cham) 2024; 382:34. [PMID: 39441318 DOI: 10.1007/s41061-024-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
DNA is commonly known as the "molecule of life" because it holds the genetic instructions for all living organisms on Earth. The utilization of modified nucleosides holds the potential to transform the management of a wide range of human illnesses. Modified nucleosides and their role directly led to the 2023 Nobel prize. Acyclic nucleosides, due to their distinctive physiochemical and biological characteristics, rank among the most adaptable modified nucleosides in the field of medicinal chemistry. Acyclic nucleosides are more resistant to chemical and biological deterioration, and their adaptable acyclic structure makes it possible for them to interact with various enzymes. A phosphonate group, which is linked via an aliphatic functionality to a purine or a pyrimidine base, distinguishes acyclic nucleoside phosphonates (ANPs) from other nucleotide analogs. Acyclic nucleosides and their derivatives have demonstrated various biological activities such as anti-viral, anti-bacterial, anti-cancer, anti-microbial, etc. Ganciclovir, Famciclovir, and Penciclovir are the acyclic nucleoside-based drugs approved by FDA for the treatment of various diseases. Thus, acyclic nucleosides are extremely useful for generating a variety of unique bioactive chemicals. Their biological activities as well as selectivity is significantly influenced by the stereochemistry of the acyclic nucleosides because chiral acyclic nucleosides have drawn a lot of interest due to their intriguing biological functions and potential as medicines. For example, tenofovir's (R) enantiomer is roughly 50 times more potent against HIV than its (S) counterpart. We can confidently state, "The most promising developments are yet to come in the realm of acyclic nucleosides!" Herein, we have covered the most current developments in the field of chemical synthesis and therapeutic applications of acyclic nucleosides based upon our continued interest and activity in this field since mid-1990's.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
- Department of Chemistry and Environmental Science, Medgar Evers College, 1638 Bedford Avenue, Brooklyn, NY, 11225, USA
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Riya Chaudhary
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, 842002, India
| | - Christophe Len
- Chimie ParisTech, PSL Research University, CNRS, UMR8060, Institute of Chemistry for Life and Health Sciences, 11 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry and Research Studies, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India.
- Department of Chemistry and Environmental Science, Medgar Evers College, 1638 Bedford Avenue, Brooklyn, NY, 11225, USA.
- Amity Institute of Click Chemistry and Research Studies, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India.
- Nanoscience Program, CUNY Graduate Center and Departments of Chemistry, Medgar Evers College and City College, 160 Convent Avenue, New York, NY, 10031, USA.
| |
Collapse
|
2
|
Egorov M, Goujon JY, Sicard M, Moal C, Pairel S, Le Bot R. Design, Synthesis, and Characterization of HBP-Vectorized Methotrexate Prodrug Molecule 1102-39: Evaluation of In Vitro Cytotoxicity Activity in Cell Culture Models, Preliminary In Vivo Safety and Efficacy Results in Rodents. ACS OMEGA 2024; 9:42433-42447. [PMID: 39431075 PMCID: PMC11483398 DOI: 10.1021/acsomega.4c06029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
A novel bone-targeted prodrug, 1102-39, is discussed with the aim of enhancing the therapeutic effects of methotrexate (MTX) within bone tissues while minimizing systemic toxicity. Within the 1102-39 molecule, the central linker part forms a cleavable ester group, with MTX being also linked by a stable imine bond to the specially designed hydroxybisphosphonic (HBP) vector. Synthesized through a convergent approach starting from MTX, this prodrug advantageously modulates MTX's activity by selective esterification of its α-carboxyl group. In vitro tests revealed a 10-fold reduction in cytotoxicity compared to standard MTX, in alignment with prodrug behavior and correlated with gradual MTX release. In vivo in rodents, 1102-39 displayed preliminary encouraging antitumor effects on orthotopic osteosarcoma. Furthermore, various aspects of designing molecules for selective therapy in bone tissue based on bisphosphonate molecules as vectors for delivering active compounds to the bone are discussed. The 1102-39 molecule exhibits strong affinity for hydroxyapatite and a progressive release of MTX in aqueous environments, enhancing the safety and efficacy of bone-specific treatments and enabling sustained activity within bone and bone joints in the therapy of tumor and inflammation.
Collapse
Affiliation(s)
- Maxim Egorov
- Atlanthera, 3 rue Aronnax, Saint-Herblain, 44821, France
| | | | - Marie Sicard
- Atlanthera, 3 rue Aronnax, Saint-Herblain, 44821, France
| | | | - Samuel Pairel
- Atlanthera, 3 rue Aronnax, Saint-Herblain, 44821, France
| | - Ronan Le Bot
- Atlanthera, 3 rue Aronnax, Saint-Herblain, 44821, France
| |
Collapse
|
3
|
Xu Q, Sharif M, James E, Dismorr JO, Tucker JHR, Willcox BE, Mehellou Y. Phosphonodiamidate prodrugs of phosphoantigens (ProPAgens) exhibit potent Vγ9/Vδ2 T cell activation and eradication of cancer cells. RSC Med Chem 2024; 15:2462-2473. [PMID: 39026632 PMCID: PMC11253855 DOI: 10.1039/d4md00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
The phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) is an established activator of Vγ9/Vδ2 T cells and stimulates downstream effector functions including cytotoxicity and cytokine production. In order to improve its drug-like properties, we herein report the design, synthesis, serum stability, in vitro metabolism, and biological evaluation of a new class of symmetrical phosphonodiamidate prodrugs of methylene and difluoromethylene monophosphonate derivatives of HMBPP. These prodrugs, termed phosphonodiamidate ProPAgens, were synthesized in good yields, exhibited excellent serum stability (>7 h), and their in vitro metabolism was shown to be initiated by carboxypeptidase Y. These phosphonodiamidate ProPAgens triggered potent activation of Vγ9/Vδ2 T cells, which translated into efficient Vγ9/Vδ2 T cell-mediated eradication of bladder cancer cells in vitro. Together, these findings showcase the potential of these phosphonodiamidate ProPAgens as Vγ9/Vδ2 T cell modulators that could be further developed as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Qin Xu
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
| | - Maria Sharif
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham B15 2TT UK
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Birmingham B15 2TT UK
| | - Edward James
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
| | - Jack O Dismorr
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - James H R Tucker
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham B15 2TT UK
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Birmingham B15 2TT UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
- Medicines Discovery Institute, Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|
4
|
Moreau F, Atamanyuk D, Blaukopf M, Barath M, Herczeg M, Xavier NM, Monbrun J, Airiau E, Henryon V, Leroy F, Floquet S, Bonnard D, Szabla R, Brown C, Junop MS, Kosma P, Gerusz V. Potentiating Activity of GmhA Inhibitors on Gram-Negative Bacteria. J Med Chem 2024; 67:6610-6623. [PMID: 38598312 PMCID: PMC11056994 DOI: 10.1021/acs.jmedchem.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.
Collapse
Affiliation(s)
- François Moreau
- Mutabilis, 102 Avenue Gaston Roussel, Romainville 93230, France
| | | | - Markus Blaukopf
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
| | - Marek Barath
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
- Institute
of Chemistry, Center for Glycomics, Slovak
Academy of Sciences, Dúbravská cesta 9, Bratislava SK-845 38, Slovakia
| | - Mihály Herczeg
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
- Department
of Pharmaceutical Chemistry, University
of Debrecen, Debrecen 4032, Hungary
| | - Nuno M. Xavier
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, Lisboa 1749-016, Portugal
| | | | | | | | - Frédéric Leroy
- Carbosynth
Limited, 8&9 Old
Station Business Park, Compton, Berkshire RG20 6NE, U.K.
| | | | - Damien Bonnard
- Mutabilis, 102 Avenue Gaston Roussel, Romainville 93230, France
| | - Robert Szabla
- Department
of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Chris Brown
- Department
of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Murray S. Junop
- Department
of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
| | - Vincent Gerusz
- Mutabilis, 102 Avenue Gaston Roussel, Romainville 93230, France
| |
Collapse
|
5
|
Boutin R, Lee HF, Guan TL, Nguyen TT, Huang XF, Waller DD, Lu J, Christine Chio II, Michel RP, Sebag M, Tsantrizos YS. Discovery and Evaluation of C6-Substituted Pyrazolopyrimidine-Based Bisphosphonate Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase and Evaluation of Their Antitumor Efficacy in Multiple Myeloma, Pancreatic Ductal Adenocarcinoma, and Colorectal Cancer. J Med Chem 2023; 66:15776-15800. [PMID: 37982711 PMCID: PMC10832233 DOI: 10.1021/acs.jmedchem.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Novel C6-substituted pyrazolo[3,4-d]pyrimidine- and C2-substituted purine-based bisphosphonate (C6-PyraP-BP and C2-Pur-BP, respectively) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) were designed and evaluated for their ability to block the proliferation of multiple myeloma (MM), pancreatic ductal adenocarcinoma (PDAC), and colorectal cancer (CRC) cells. Pyrazolo[3,4-d]pyrimidine analogs were identified that induce selective intracellular target engagement leading to apoptosis and downregulate the prenylation of Rap-1A in MM, PDAC, and CRC cells. The C6-PyraP-BP inhibitor RB-07-16 was found to exhibit antitumor efficacy in xenograft mouse models of MM and PDAC, significantly reducing tumor growth without substantially increasing liver enzymes or causing significant histopathologic damage, usually associated with hepatotoxicity. RB-07-16 is a metabolically stable compound in cross-species liver microsomes, does not inhibit key CYP 450 enzymes, and exhibits good systemic circulation in rat. Collectively, the current studies provide encouraging support for further optimization of the pyrazolo[3,4-d]pyrimidine-based GGPPS inhibitors as potential human therapeutics for various cancers.
Collapse
Affiliation(s)
- Rebecca Boutin
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
| | - Hiu-Fung Lee
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
| | - Tian Lai Guan
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
| | - Tan Trieu Nguyen
- Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
| | - Xian Fang Huang
- Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
| | - Daniel D Waller
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jordan Lu
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - René P Michel
- Department of Pathology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Michael Sebag
- Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Québec H4A 3J1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
| |
Collapse
|
6
|
Dürr-Mayer T, Schmidt A, Wiesler S, Huck T, Mayer A, Jessen HJ. Non-Hydrolysable Analogues of Cyclic and Branched Condensed Phosphates: Chemistry and Chemical Proteomics. Chemistry 2023; 29:e202302400. [PMID: 37646539 DOI: 10.1002/chem.202302400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Studies into the biology of condensed phosphates almost exclusively cover linear polyphosphates. However, there is evidence for the presence of cyclic polyphosphates (metaphosphates) in organisms and for enzymatic digestion of branched phosphates (ultraphosphates) with alkaline phosphatase. Further research of non-linear condensed phosphates in biology would profit from interactome data of such molecules, however, their stability in biological media is limited. Here we present syntheses of modified, non-hydrolysable analogues of cyclic and branched condensed phosphates, called meta- and ultraphosphonates, and their application in a chemical proteomics approach using yeast cell extracts. We identify putative interactors with overlapping hits for structurally related capture compounds underlining the quality of our results. The datasets serve as starting point to study the biological relevance and functions of meta- and ultraphosphates. In addition, we examine the reactivity of meta- and ultraphosphonates with implications for their "hydrolysable" analogues: Efforts to increase the ring-sizes of meta- or cyclic ultraphosphonates revealed a strong preference to form trimetaphosphate-analogue structures by cyclization and/or ring-contraction. Using carbodiimides for condensation, the so far inaccessible dianhydro product of ultraphosphonate, corresponding to P4 O11 2- , was selectively obtained and then ring-opened by different nucleophiles yielding modified cyclic ultraphosphonates.
Collapse
Affiliation(s)
- Tobias Dürr-Mayer
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Andrea Schmidt
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-CH-1066, Epalinges, Switzerland
| | - Stefan Wiesler
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Tamara Huck
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-CH-1066, Epalinges, Switzerland
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg
| |
Collapse
|
7
|
Gomes MAGB, Bauduin A, Le Roux C, Fouinneteau R, Berthe W, Berchel M, Couthon H, Jaffrès PA. Synthesis of ether lipids: natural compounds and analogues. Beilstein J Org Chem 2023; 19:1299-1369. [PMID: 37701305 PMCID: PMC10494250 DOI: 10.3762/bjoc.19.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Ether lipids are compounds present in many living organisms including humans that feature an ether bond linkage at the sn-1 position of the glycerol. This class of lipids features singular structural roles and biological functions. Alkyl ether lipids and alkenyl ether lipids (also identified as plasmalogens) correspond to the two sub-classes of naturally occurring ether lipids. In 1979 the discovery of the structure of the platelet-activating factor (PAF) that belongs to the alkyl ether class of lipids increased the interest in these bioactive lipids and further promoted the synthesis of non-natural ether lipids that was initiated in the late 60's with the development of edelfosine (an anticancer drug). More recently, ohmline, a glyco glycero ether lipid that modulates selectively SK3 ion channels and reduces in vivo the occurrence of bone metastases, and other glyco glycero ether also identified as GAEL (glycosylated antitumor ether lipids) that exhibit promising anticancer properties renew the interest in this class of compounds. Indeed, ether lipid represent a new and promising class of compounds featuring the capacity to modulate selectively the activity of some membrane proteins or, for other compounds, feature antiproliferative properties via an original mechanism of action. The increasing interest in studying ether lipids for fundamental and applied researches invited to review the methodologies developed to prepare ether lipids. In this review we focus on the synthetic method used for the preparation of alkyl ether lipids either naturally occurring ether lipids (e.g., PAF) or synthetic derivatives that were developed to study their biological properties. The synthesis of neutral or charged ether lipids are reported with the aim to assemble in this review the most frequently used methodologies to prepare this specific class of compounds.
Collapse
Affiliation(s)
| | - Alicia Bauduin
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Chloé Le Roux
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Romain Fouinneteau
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Wilfried Berthe
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Mathieu Berchel
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Hélène Couthon
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| |
Collapse
|
8
|
Mustafa D, Overhulse JM, Kashemirov BA, McKenna CE. Microwave-Accelerated McKenna Synthesis of Phosphonic Acids: An Investigation. Molecules 2023; 28:molecules28083497. [PMID: 37110732 PMCID: PMC10144917 DOI: 10.3390/molecules28083497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphonic acids represent one of the most important categories of organophosphorus compounds, with myriad examples found in chemical biology, medicine, materials, and other domains. Phosphonic acids are rapidly and conveniently prepared from their simple dialkyl esters by silyldealkylation with bromotrimethylsilane (BTMS), followed by desilylation upon contact with water or methanol. Introduced originally by McKenna, the BTMS route to phosphonic acids has long been a favored method due to its convenience, high yields, very mild conditions, and chemoselectivity. We systematically investigated microwave irradiation as a means to accelerate the BTMS silyldealkylations (MW-BTMS) of a series of dialkyl methylphosphonates with respect to solvent polarity (ACN, dioxane, neat BTMS, DMF, and sulfolane), alkyl group (Me, Et, and iPr), electron-withdrawing P-substitution, and phosphonate-carboxylate triester chemoselectivity. Control reactions were performed using conventional heating. We also applied MW-BTMS to the preparation of three acyclic nucleoside phosphonates (ANPs, an important class of antiviral and anticancer drugs), which were reported to undergo partial nucleoside degradation under MW hydrolysis with HCl at 130-140 °C (MW-HCl, a proposed alternative to BTMS). In all cases, MW-BTMS dramatically accelerated quantitative silyldealkylation compared to BTMS with conventional heating and was highly chemoselective, confirming it to be an important enhancement of the conventional BTMS method with significant advantages over the MW-HCl method.
Collapse
Affiliation(s)
- Dana Mustafa
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Justin M Overhulse
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Boris A Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Egger M, Koehne I, Wickenhauser D, Schlemmer W, Spirk S, Pietschnig R. Electrochemistry and Stability of 1,1'-Ferrocene-Bisphosphonates. ACS OMEGA 2023; 8:10899-10905. [PMID: 37008129 PMCID: PMC10061590 DOI: 10.1021/acsomega.2c07234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Here, we investigate the electrochemical properties and stability of 1,1'-ferrocene-bisphosphonates in aqueous solutions. 31P NMR spectroscopy enables to track decomposition at extreme pH conditions revealing partial disintegration of the ferrocene core in air and under an argon atmosphere. ESI-MS indicates the decomposition pathways to be different in aqueous H3PO4, phosphate buffer, or NaOH solutions. Cyclovoltammetry exhibits completely reversible redox chemistry of the evaluated bisphosphonates, sodium 1,1'-ferrocene-bis(phosphonate) (3) and sodium 1,1'-ferrocene-bis(methylphosphonate) (8), from pH 1.2 to pH 13. Both the compounds feature freely diffusing species as determined using the Randles-Sevcik analysis. The activation barriers determined by rotating disk electrode measurements revealed asymmetry for oxidation and reduction. The compounds are tested in a hybrid flow battery using anthraquinone-2-sulfonate as the counterside, yielding only moderate performance.
Collapse
Affiliation(s)
- Melissa Egger
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Ingo Koehne
- Institute
of Chemistry and Center for Interdisciplinary Nanostructure Science
and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Dominik Wickenhauser
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Werner Schlemmer
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Stefan Spirk
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Rudolf Pietschnig
- Institute
of Chemistry and Center for Interdisciplinary Nanostructure Science
and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
10
|
McDermott PE, Fearraigh MPÓ, Horan AM, McGarrigle EM. Thiourea-catalysed conjugate additions of amines to vinyl phosphonates and phosphinates. Org Biomol Chem 2023; 21:1027-1032. [PMID: 36607271 DOI: 10.1039/d2ob02116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thiourea catalysts activated α,β-unsaturated phosphonates and phosphinates toward conjugate addition by amines to give β-aminophosphonates and β-aminophosphinates. The organocatalytic methodology was used to synthesise 15 β-aminophosphonates and -phosphinates in yields up to 99%. A gram-scale example furnished the corresponding β-aminophosphonate in an isolated yield of 99% with 97% catalyst recovery. Based on mechanistic experiments, hydrogen bonding between the phosphoryl oxygen and thiourea are proposed to play a crucial role in substrate activation.
Collapse
Affiliation(s)
- Peter E McDermott
- A2P CDT in sustainable chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland. .,Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martin P Ó Fearraigh
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alexandra M Horan
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.,SSPC, the SFI Research Centre for Pharmaceuticals, Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoghan M McGarrigle
- A2P CDT in sustainable chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland. .,Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.,SSPC, the SFI Research Centre for Pharmaceuticals, Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
11
|
Risi G, Devereux M, Prescimone A, Housecroft CE, Constable EC. Back to the future: asymmetrical DπA 2,2'-bipyridine ligands for homoleptic copper(i)-based dyes in dye-sensitised solar cells. RSC Adv 2023; 13:4122-4137. [PMID: 36744279 PMCID: PMC9890583 DOI: 10.1039/d3ra00437f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Metal complexes used as sensitisers in dye-sensitised solar cells (DSCs) are conventionally constructed using a push-pull strategy with electron-releasing and electron-withdrawing (anchoring) ligands. In a new paradigm we have designed new DπA ligands incorporating diarylaminophenyl donor substituents and phosphonic acid anchoring groups. These new ligands function as organic dyes. For two separate classes of DπA ligands with 2,2'-bipyridine metal-binding domains, the DSCs containing the copper(i) complexes [Cu(DπA)2]+ perform better than the push-pull analogues [Cu(DD)(AA)]+. Furthermore, we have shown for the first time that the complexes [Cu(DπA)2]+ perform better than the organic DπA dye in DSCs. The synthetic studies and the device performances are rationalised with the aid of density functional theory (DFT) and time-dependent DFT (TD-DFT) studies.
Collapse
Affiliation(s)
- Guglielmo Risi
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| | - Mike Devereux
- Department of Chemistry, University of BaselKlingelbergstrasse 80CH-4056 BaselSwitzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| | - Catherine E. Housecroft
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| | - Edwin C. Constable
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| |
Collapse
|
12
|
Shearan SJI, Andreoli E, Taddei M. An alternative C–P cross-coupling route for the synthesis of novel V-shaped aryldiphosphonic acids. Beilstein J Org Chem 2022; 18:1518-1523. [DOI: 10.3762/bjoc.18.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The synthesis of phosphonate esters is a topic of interest for various fields, including the preparation of phosphonic acids to be employed as organic linkers for the construction of metal phosphonate materials. We report an alternative method that requires no solvent and involves a different order of addition of reactants to perform the transition-metal-catalyzed C–P cross-coupling reaction, often referred to as the Tavs reaction, employing NiCl2 as a pre-catalyst in the phosphonylation of aryl bromide substrates using triisopropyl phosphite. This new method was employed in the synthesis of three novel aryl diphosphonate esters which were subsequently transformed to phosphonic acids through silylation and hydrolysis.
Collapse
|
13
|
Harmon NM, Gehrke NR, Wiemer DF. Conjugate reduction of vinyl bisphosphonates. Tetrahedron Lett 2022; 106:154078. [PMID: 37521200 PMCID: PMC10373991 DOI: 10.1016/j.tetlet.2022.154078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinyl bisphosphonates can be readily prepared by condensation of an aromatic aldehyde with the tetraester of a methylenebisphosphonate, and reduction of the resulting olefin is an attractive strategy for the preparation of monoalkyl geminal bisphosphonates. Conjugate reduction through use of variations on the Stryker approach has proven to be an efficient method for that reduction, even in the presence of aromatic substituents that also could be reduced. Furthermore, remote olefins in an isoprenoid chain survive this conjugate reduction unaffected, allowing access to isoprenoid-substituted triazole bisphosphonates of interest as potential inhibitors of terpenoid biosynthesis.
Collapse
Affiliation(s)
- Nyema M. Harmon
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1294, USA
| | - Nathaniel R. Gehrke
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1294, USA
| | - David F. Wiemer
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1294, USA
| |
Collapse
|
14
|
Zhao XZ, Wang W, Lountos GT, Tropea JE, Needle D, Pommier Y, Burke TR. Phosphonic acid-containing inhibitors of tyrosyl-DNA phosphodiesterase 1. Front Chem 2022; 10:910953. [PMID: 36051621 PMCID: PMC9424690 DOI: 10.3389/fchem.2022.910953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs stalled type I topoisomerase (TOP1)-DNA complexes by hydrolyzing the phosphodiester bond between the TOP1 Y723 residue and the 3′-phosphate of its DNA substrate. Although TDP1 antagonists could potentially reduce the dose of TOP1 inhibitors needed to achieve effective anticancer effects, the development of validated TDP1 inhibitors has proven to be challenging. This may, in part, be due to the open and extended nature of the TOP1 substrate binding region. We have previously reported imidazopyrazines and imidazopyridines that can inhibit TDP1 catalytic function in vitro. We solved the TDP1 crystal structures with bound inhibitors of this class and found that the dicarboxylic acid functionality within the N-(3,4-dicarboxyphenyl)-2-diphenylimidazo [1,2-a]pyridin-3-amine platform overlaps with aspects of phosphoryl substrate recognition. Yet phosphonic acids could potentially better-replicate cognate TOP1-DNA substrate binding interactions than carboxylic acids. As reported herein, we designed phosphonic acid-containing variants of our previously reported carboxylic acid-containing imidazopyrazine and imidazopyridine inhibitors and effected their synthesis using one-pot Groebke–Blackburn–Bienayme multicomponent reactions. We obtained crystal structures of TDP1 complexed with a subset of inhibitors. We discuss binding interactions of these inhibitors within the context of phosphate-containing substrate and carboxylic acid-based inhibitors. These compounds represent a new structural class of small molecule ligands that mimic aspects of the 3′-processed substrate that results from TDP1 catalysis.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
- *Correspondence: Xue Zhi Zhao,
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joseph E. Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
15
|
Silenko O, Cherenok S, Shulha Y, Kobzar O, Rusanov E, Karpichev Y, Vovk A, Kalchenko V. Thiacalix[4]arene phosphoric acids. Synthesis, structure, and inhibition of glutathione S-transferases. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2011877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Oleg Silenko
- Institute of Organic Chemistry of the NAS of Ukraine, Kyiv-94, Ukraine
| | - Serhii Cherenok
- Institute of Organic Chemistry of the NAS of Ukraine, Kyiv-94, Ukraine
| | - Yurii Shulha
- Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv-94, Ukraine
| | - Oleksandr Kobzar
- Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv-94, Ukraine
| | - Eduard Rusanov
- Institute of Organic Chemistry of the NAS of Ukraine, Kyiv-94, Ukraine
| | | | - Andriy Vovk
- Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv-94, Ukraine
| | - Vitaly Kalchenko
- Institute of Organic Chemistry of the NAS of Ukraine, Kyiv-94, Ukraine
| |
Collapse
|
16
|
Lee HF, Lacbay CM, Boutin R, Matralis AN, Park J, Waller DD, Guan TL, Sebag M, Tsantrizos YS. Synthesis and Evaluation of Structurally Diverse C-2-Substituted Thienopyrimidine-Based Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase. J Med Chem 2022; 65:2471-2496. [PMID: 35077178 DOI: 10.1021/acs.jmedchem.1c01913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.
Collapse
Affiliation(s)
- Hiu-Fung Lee
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Cyrus M Lacbay
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Rebecca Boutin
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Alexios N Matralis
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Daniel D Waller
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Tian Lai Guan
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Michael Sebag
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
17
|
Harmon N, Poe MM, Huang X, Singh R, Foust BJ, Hsiao CHC, Wiemer DF, Wiemer AJ. Synthesis and Metabolism of BTN3A1 Ligands: Studies on Diene Modifications to the Phosphoantigen Scaffold. ACS Med Chem Lett 2022; 13:164-170. [PMID: 35178171 PMCID: PMC8842111 DOI: 10.1021/acsmedchemlett.1c00408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Phosphoantigens (pAgs) are small organophosphorus compounds such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) that trigger an immune response. These molecules bind to butyrophilin 3A1 (part of the HMBPP receptor) and activate Vγ9Vδ2 T cells. To explore the structure-activity relationships underlying this process, we evaluated a series of novel diene analogs of HMBPP. Here we report that prodrug forms of [(1E)-4-methylpenta-1,3-dien-1-yl] phosphonic acid that lack the allylic alcohol of HMBPP but instead contained a diene scaffold exhibit mid-nanomolar potency for the activation of Vγ9Vδ2 T cells. The compounds also trigger the production of T-cell interferon γ upon exposure to loaded K562 cells. Although both the allylic alcohol and the diene scaffold boost pAg activity, the combination of the two decreases the activity and results in glutathione conjugation. Together, these data show that the diene scaffold results in intermediate pAgs that may have implications for the mechanisms regulating the HMBPP receptor.
Collapse
Affiliation(s)
- Nyema
M. Harmon
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Michael M. Poe
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Xueting Huang
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Rohit Singh
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Benjamin J. Foust
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Chia-Hung Christine Hsiao
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - David F. Wiemer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States,Department
of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United States
| | - Andrew J. Wiemer
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States,Institute
for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United States,
| |
Collapse
|
18
|
Dussart-Gautheret J, Deschamp J, Legigan T, Monteil M, Migianu-Griffoni E, Lecouvey M. One-Pot Synthesis of Phosphinylphosphonate Derivatives and Their Anti-Tumor Evaluations. Molecules 2021; 26:molecules26247609. [PMID: 34946699 PMCID: PMC8703271 DOI: 10.3390/molecules26247609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
This paper reports on the synthesis of new hydroxymethylene-(phosphinyl)phosphonates (HMPPs). A methodology has been developed to propose an optimized one-pot procedure without any intermediate purifications. Various aliphatic and (hetero)aromatic HMPPs were synthesized in good to excellent yields (53–98%) and the influence of electron withdrawing/donating group substitution on aromatic substrates was studied. In addition, the one-pot synthesis of HMPP was monitored by 31P NMR spectroscopy, allowing effective control of the end of the reaction and identification of all phosphorylated intermediate species, which enabled us to propose a reaction mechanism. Optimized experimental conditions were applied to the preparation of biological relevant aminoalkyl-HMPPs. A preliminary study of the complexation to hydroxyapatite (bone matrix) was carried out in order to verify its lower affinity towards bone compared to bisphosphonate molecules. Moreover, in vitro anti-tumor activity study revealed encouraging antiproliferative activities on three human cancer cell lines (breast, pancreas and lung).
Collapse
|
19
|
Feriancová L, Kmentová I, Micjan M, Pavúk M, Weis M, Putala M. Synthesis and Effect of the Structure of Bithienyl-Terminated Surfactants for Dielectric Layer Modification in Organic Transistor. MATERIALS 2021; 14:ma14216345. [PMID: 34771870 PMCID: PMC8585473 DOI: 10.3390/ma14216345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
A series of bithienyl-terminated surfactants with various alkyl chain lengths (from C8 to C13) and phosphono or chlorodimethylsilyl anchoring groups were synthesized by palladium-catalyzed hydrophosphonation, or platinum-catalyzed hydrosilylation as a key step. Surfactants were tested in pentacene or α-sexithiophene-based organic field-effect transistors (OFETs) for the modification of the dielectric surface. The studied surfactants increased the effective mobility of the α-sexithiophene-based device by up to one order of magnitude. The length of alkyl chain showed to be significant for the pentacene-based device, as the effective mobility only increased in the case of dielectric modification with bithienylundecylphosphonic acid. AFM allowed a better understanding of the morphology of semiconductors on bare SiO2 and surfaces treated with bithienylundecylphosphonic acid.
Collapse
Affiliation(s)
- Lucia Feriancová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (L.F.); (I.K.)
| | - Iveta Kmentová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (L.F.); (I.K.)
| | - Michal Micjan
- Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia;
| | - Milan Pavúk
- Institute of Nuclear and Physical Engineering, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia;
| | - Martin Weis
- Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia;
- Correspondence: (M.W.); (M.P.); Tel.: +421-910942310 (M.W.); +421-2-90149323 (M.P.)
| | - Martin Putala
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (L.F.); (I.K.)
- Correspondence: (M.W.); (M.P.); Tel.: +421-910942310 (M.W.); +421-2-90149323 (M.P.)
| |
Collapse
|
20
|
Staiger A, Paren BA, Zunker R, Hoang S, Häußler M, Winey KI, Mecking S. Anhydrous Proton Transport within Phosphonic Acid Layers in Monodisperse Telechelic Polyethylenes. J Am Chem Soc 2021; 143:16725-16733. [PMID: 34585919 DOI: 10.1021/jacs.1c08031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymers bearing phosphonic acid groups have been proposed as anhydrous proton-conducting membranes at elevated operating temperatures for applications in fuel cells. However, the synthesis of phosphonated polymers and the control over the nanostructure of such polymers is challenging. Here, we report the straightforward synthesis of phosphonic acid-terminated, long-chain aliphatic materials with precisely 26 and 48 carbon atoms (C26PA2 and C48PA2). These materials combine the structuring ability of monodisperse polyethylenes with the ability of phosphonic acid groups to form strong hydrogen-bonding networks. Anhydride formation is absent so that charge carrier loss by a condensation reaction is avoided even at elevated temperatures. Below the melting temperature (Tm), both materials exhibit a crystalline polyethylene backbone and a layered morphology with planar phosphonic acid aggregates separated by 29 and 55 Å for C26PA2 and C48PA2, respectively. Above Tm, the amorphous polyethylene (PE) segments coexist with the layered aggregates. This phenomenon is especially pronounced for the C26PA2 and is identified as a thermotropic smectic liquid crystalline phase. Under these conditions, an extraordinarily high correlation length (940 Å) along the layer normal is observed, demonstrating the strength of the hydrogen bond network formed by the phosphonic acid groups. The proton conductivity in both materials in the absence of water reaches 10-4 S/cm at 150 °C. These new precise phosphonic acid-based materials illustrate the importance of controlling the chemistry to form self-assembled nanoscale aggregates that facilitate rapid proton conductivity.
Collapse
Affiliation(s)
- Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Benjamin A Paren
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robin Zunker
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Son Hoang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Manuel Häußler
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
21
|
Biteau NG, Roy V, Lambry JC, Becker HF, Myllykallio H, Agrofoglio LA. Synthesis of acyclic nucleoside phosphonates targeting flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. Bioorg Med Chem 2021; 46:116351. [PMID: 34391120 DOI: 10.1016/j.bmc.2021.116351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Flavin-Dependent Thymidylate Synthase (FDTS) encoded by ThyX gene was discovered as a new class of thymidylate synthase involved in the de novo synthesis of dTMP named only in 30 % of human pathogenic bacteria. This target was pursed for the development of new antibacterial agents against multiresistant pathogens. We have developed a new class of ANPs based on the mimic of two natural's cofactors (dUMP and FAD) as inhibitors against Mycobacterium tuberculosis ThyX. Several synthetic efforts were performed to optimize regioselective N1-alkylation, cross-coupling metathesis and Sonogashira cross-coupling. Compound 19c showed a poor 31.8% inhibitory effect on ThyX at 200 μM.
Collapse
Affiliation(s)
| | - Vincent Roy
- ICOA, Univ. Orléans, CNRS UMR 7311, F-45067 Orléans, France.
| | | | - Hubert F Becker
- LOB, INSERM U696-CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau, France; Sorbonne Université, Faculté des Sciences et Ingénierie, 75005 Paris, France
| | - Hannu Myllykallio
- LOB, INSERM U696-CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|
22
|
Fairweather AER, Goetz DB, Schroeder CM, Bhuiyan NH, Varney ML, Wiemer DF, Holstein SA. Impact of α-modifications on the activity of triazole bisphosphonates as geranylgeranyl diphosphate synthase inhibitors. Bioorg Med Chem 2021; 44:116307. [PMID: 34298413 DOI: 10.1016/j.bmc.2021.116307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Agents that inhibit the enzyme geranylgeranyl diphosphate synthase (GGDPS) have anti-cancer activity and our prior studies have investigated the structure-function relationship for a family of isoprenoid triazole bisphosphonates as GGDPS inhibitors. To further explore this structure-function relationship, a series of novel α-modified triazole phosphonates was prepared and evaluated for activity as GGDPS inhibitors in enzyme and cell-based assays. These studies revealed flexibility at the α position of the bisphosphonate derivatives with respect to being able to accommodate a variety of substituents without significantly affecting potency compared to the parent unsubstituted inhibitor. However, the monophosphonate derivatives lacked activity. These studies further our understanding of the structure-function relationship of the triazole-based GGDPS inhibitors and lay the foundation for future studies evaluating the impact of α-modifications on in vivo activity.
Collapse
Affiliation(s)
| | - Daniel B Goetz
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Chloe M Schroeder
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Nazmul H Bhuiyan
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
23
|
Sedghizadeh PP, Sun S, Jones AC, Sodagar E, Cherian P, Chen C, Junka AF, Neighbors JD, McKenna CE, Russell RGG, Ebetino FH. Bisphosphonates in dentistry: Historical perspectives, adverse effects, and novel applications. Bone 2021; 147:115933. [PMID: 33757899 PMCID: PMC8076070 DOI: 10.1016/j.bone.2021.115933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Studies of the potential role of bisphosphonates in dentistry date back to physical chemical research in the 1960s, and the genesis of the discovery of bisphosphonate pharmacology in part can be linked to some of this work. Since that time, parallel research on the effects of bisphosphonates on bone metabolism continued, while efforts in the dental field included studies of bisphosphonate effects on dental calculus, caries, and alveolar bone loss. While some utility of this drug class in the dental field was identified, leading to their experimental use in various dentrifice formulations and in some dental applications clinically, adverse effects of bisphosphonates in the jaws have also received attention. Most recently, certain bisphosphonates, particularly those with strong bone targeting properties, but limited biochemical effects (low potency bisphosphonates), are being studied as a local remedy for the concerns of adverse effects associated with other more potent members of this drug class. Additionally, low potency bisphosphonate analogs are under study as vectors to target active drugs to the mineral surfaces of the jawbones. These latter efforts have been devised for the prevention and treatment of oral problems, such as infections associated with oral surgery and implants. Advances in the utility and mechanistic understanding of the bisphosphonate class may enable additional oral therapeutic options for the management of multiple aspects of dental health.
Collapse
Affiliation(s)
- Parish P Sedghizadeh
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America.
| | - Shuting Sun
- BioVinc LLC, Pasadena, California, United States of America
| | - Allan C Jones
- General Dental Practice; Torrance, California, United States
| | - Esmat Sodagar
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Philip Cherian
- BioVinc LLC, Pasadena, California, United States of America
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Adam F Junka
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw; Wroclaw Research Centre EIT, Wroclaw, Poland
| | - Jeffrey D Neighbors
- BioVinc LLC, Pasadena, California, United States of America; Department of Pharmacology and Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States of America
| | - R Graham G Russell
- The Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, University of Oxford, United Kingdom; The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, University of Sheffield, United Kingdom
| | - Frank H Ebetino
- BioVinc LLC, Pasadena, California, United States of America.
| |
Collapse
|
24
|
Harsági N, Keglevich G. The Hydrolysis of Phosphinates and Phosphonates: A Review. Molecules 2021; 26:molecules26102840. [PMID: 34064764 PMCID: PMC8150351 DOI: 10.3390/molecules26102840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Phosphinic and phosphonic acids are useful intermediates and biologically active compounds which may be prepared from their esters, phosphinates and phosphonates, respectively, by hydrolysis or dealkylation. The hydrolysis may take place both under acidic and basic conditions, but the C-O bond may also be cleaved by trimethylsilyl halides. The hydrolysis of P-esters is a challenging task because, in most cases, the optimized reaction conditions have not yet been explored. Despite the importance of the hydrolysis of P-esters, this field has not yet been fully surveyed. In order to fill this gap, examples of acidic and alkaline hydrolysis, as well as the dealkylation of phosphinates and phosphonates, are summarized in this review.
Collapse
|
25
|
Challenging synthesis of bisphosphonate derivatives with reduced steric hindrance. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler G, Han J. Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001464] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Shevchuk
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Qian Wang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jingcheng Xu
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haibo Mei
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
27
|
Haratipour P, Minard C, Nakhjiri M, Negahbani A, Chamberlain BT, Osuna J, Upton TG, Zhao M, Kashemirov BA, McKenna CE. Completing the β,γ-CXY-dNTP Stereochemical Probe Toolkit: Synthetic Access to the dCTP Diastereomers and 31P and 19F NMR Correlations with Absolute Configurations. J Org Chem 2020; 85:14592-14609. [PMID: 33125847 DOI: 10.1021/acs.joc.0c01204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside 5'-triphosphate (dNTP) analogues in which the β,γ-oxygen is mimicked by a CXY group (β,γ-CXY-dNTPs) have provided information about DNA polymerase catalysis and fidelity. Definition of CXY stereochemistry is important to elucidate precise binding modes. We previously reported the (R)- and (S)-β,γ-CHX-dGTP diastereomers (X = F, Cl), prepared via P,C-dimorpholinamide CHCl (6a, 6b) and CHF (7a, 7b) bisphosphonates (BPs) equipped with an (R)-mandelic acid as a chiral auxiliary, with final deprotection using H2/Pd. This method also affords the β,γ-CHCl-dTTP (11a, 11b), β,γ-CHF (12a, 12b), and β,γ-CHCl (13a, 13b) dATP diastereomers as documented here, but the reductive deprotection step is not compatible with dCTP or the bromo substituent in β,γ-CHBr-dNTP analogues. To complete assembly of the toolkit, we describe an alternative synthetic strategy featuring ethylbenzylamine or phenylglycine-derived chiral BP synthons incorporating a photolabile protecting group. After acid-catalyzed removal of the (R)-(+)-α-ethylbenzylamine auxiliary, coupling with activated dCMP and photochemical deprotection, the individual diastereomers of β,γ-CHBr- (33a, 33b), β,γ-CHCl- (34a, 34b), β,γ-CHF-dCTP (35a, 35b) were obtained. The β,γ-CH(CH3)-dATPs (44a, 44b) were obtained using a methyl (R)-(-)-phenylglycinate auxiliary. 31P and 19F NMR Δδ values are correlated with CXY stereochemistry and pKa2-4 values for 13 CXY-bisphosphonic acids and imidodiphosphonic acid are tabulated.
Collapse
Affiliation(s)
- Pouya Haratipour
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Corinne Minard
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Brian T Chamberlain
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Jorge Osuna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Thomas G Upton
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Michelle Zhao
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Kadri H, Taher TE, Xu Q, Sharif M, Ashby E, Bryan RT, Willcox BE, Mehellou Y. Aryloxy Diester Phosphonamidate Prodrugs of Phosphoantigens (ProPAgens) as Potent Activators of Vγ9/Vδ2 T-Cell Immune Responses. J Med Chem 2020; 63:11258-11270. [PMID: 32930595 PMCID: PMC7549095 DOI: 10.1021/acs.jmedchem.0c01232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vγ9/Vδ2 T-cells are activated by pyrophosphate-containing small molecules known as phosphoantigens (PAgs). The presence of the pyrophosphate group in these PAgs has limited their drug-like properties because of its instability and polar nature. In this work, we report a novel and short Grubbs olefin metathesis-mediated synthesis of methylene and difluoromethylene monophosphonate derivatives of the PAg (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBP) as well as their aryloxy diester phosphonamidate prodrugs, termed ProPAgens. These prodrugs showed excellent stability in human serum (t1/2 > 12 h) and potent activation of Vγ9/Vδ2 T-cells (EC50 ranging from 5 fM to 73 nM), which translated into sub-nanomolar γδ T-cell-mediated eradication of bladder cancer cells in vitro. Additionally, a combination of in silico and in vitro enzymatic assays demonstrated the metabolism of these phosphonamidates to release the unmasked PAg monophosphonate species. Collectively, this work establishes HMBP monophosphonate ProPAgens as ideal candidates for further investigation as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Hachemi Kadri
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Taher E Taher
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Qin Xu
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Maria Sharif
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Elizabeth Ashby
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| |
Collapse
|
29
|
Goetz DB, Varney ML, Wiemer DF, Holstein SA. Amides as bioisosteres of triazole-based geranylgeranyl diphosphate synthase inhibitors. Bioorg Med Chem 2020; 28:115604. [PMID: 32690260 DOI: 10.1016/j.bmc.2020.115604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Geranylgeranyl diphosphate synthase (GGDPS) inhibitors are of potential therapeutic interest as a consequence of their activity against the bone marrow cancer multiple myeloma. A series of bisphosphonates linked to an isoprenoid tail through an amide linkage has been prepared and tested for the ability to inhibit GGDPS in enzyme and cell-based assays. The amides were designed as analogues to triazole-based GGDPS inhibitors. Several of the new compounds show GGDPS inhibitory activity in both enzyme and cell assays, with potency dependent on chain length and olefin stereochemistry.
Collapse
Affiliation(s)
- Daniel B Goetz
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
30
|
Justyna K, Małolepsza J, Kusy D, Maniukiewicz W, Błażewska KM. The McKenna reaction - avoiding side reactions in phosphonate deprotection. Beilstein J Org Chem 2020; 16:1436-1446. [PMID: 32647545 PMCID: PMC7323628 DOI: 10.3762/bjoc.16.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
The McKenna reaction is a well-known and popular method for the efficient and mild synthesis of organophosphorus acids. Bromotrimethylsilane (BTMS) is the main reagent in this reaction, which transforms dialkyl phosphonate esters into bis(trimethylsilyl)esters, which are then easily converted into the target acids. However, the versatile character of the McKenna reaction is not always used to its full extent, due to formation of side products. Herein, demonstrated by using model examples we have not only analyzed the typical side processes accompanying the McKenna reaction, but also uncovered new ones. Further, we discovered that some commonly recommended precautions did not always circumvent the side reactions. The proposed results and recommendations may facilitate the synthesis of phosphonic acids.
Collapse
Affiliation(s)
- Katarzyna Justyna
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| | - Damian Kusy
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| |
Collapse
|
31
|
Hydrothermal synthesis and structure of a two-dimensional Fe(III)-organodiphosphonate compound, [Fe(O3PCH2C6H4CH2PO3H)(H2O)], and an Expansion of the Harris Notation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Li C, Saga Y, Onozawa SY, Kobayashi S, Sato K, Fukaya N, Han LB. Wet and Dry Processes for the Selective Transformation of Phosphonates to Phosphonic Acids Catalyzed by Brønsted Acids. J Org Chem 2020; 85:14411-14419. [DOI: 10.1021/acs.joc.0c00550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chunya Li
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yuta Saga
- New Products Development Laboratory, Maruzen Petrochemical Co., Ltd., Ichihara, Chiba 290-8503, Japan
| | - Shun-ya Onozawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Shu Kobayashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiko Sato
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Li-Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
33
|
Design and synthesis of amphiphilic 2-hydroxybenzylphosphonium salts with antimicrobial and antitumor dual action. Bioorg Med Chem Lett 2020; 30:127234. [PMID: 32386856 DOI: 10.1016/j.bmcl.2020.127234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/23/2023]
Abstract
Here we report the synthesis and biological evaluation of a series of new 2-hydroxybenzylphosphonium salts (QPS) with antimicrobial and antitumor dual action. The most active compounds exhibit antimicrobial activity at a micromolar level against Gram-positive bacteria Sa (ATCC 209p and clinical isolates), Bc (1-2 μM) and fungi Tm and Ca, and induced no notable hemolysis at MIC. The change in nature of substituents of the same length led to a drastic change of biological activity. Self-assembly behavior of the octadecyl and oleyl derivatives was studied. QPS demonstrated self-assembly within the micromolar range with the formation of nanosized aggregates capable of the solubilizing hydrophobic probe. The synthesized phosphonium salts were tested for cytotoxicity. The most potent salt was active against on M-Hela cell line with IC50 on the level of doxorubicin and good selectivity. According to the cytofluorimetry analysis, the salts induced mitochondria-dependent apoptosis.
Collapse
|
34
|
Laskowski Ł, Majtyka-Piłat A, Cpałka K, Zubko M, Laskowska M. Synthesis in Silica Nanoreactor: Copper Pyrophosphate Quantum Dots and Silver Oxide Nanocrystallites Inside Silica Mezochannels. MATERIALS 2020; 13:ma13092009. [PMID: 32344810 PMCID: PMC7254358 DOI: 10.3390/ma13092009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
The synthesis routes are presented for the preparation of nanocomposites composed of nanocrystals placed inside SBA-15 silica pores. The procedures assume treating the silica channels as nanoreactors, where nanocrystals are created as a result of thermal decomposition of internal functional units. Its sizes and chemical composition can be modified by the change of functional group types and density inside silica channels. The procedure is demonstrated by the example of copper pyrophosphate quantum dots and silver oxide nanoparticles inside silica mezochannels. The method can be easily adopted to other types of nanocrystals that can be synthesized inside silica nanoreactors.
Collapse
Affiliation(s)
- Łukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Anna Majtyka-Piłat
- Silesian Center for Education and Interdisciplinary Research, Institute of Materials Science, Faculty of Computer Science and Materials Science, University of Silesia, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (A.M.-P.); (M.Z.)
| | - Krzysztof Cpałka
- Institute of Computational Intelligence, Czestochowa University of Technology, 42-200 Czestochowa, Poland;
| | - Maciej Zubko
- Silesian Center for Education and Interdisciplinary Research, Institute of Materials Science, Faculty of Computer Science and Materials Science, University of Silesia, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (A.M.-P.); (M.Z.)
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Magdalena Laskowska
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
- Correspondence:
| |
Collapse
|
35
|
Dussart J, Deschamp J, Migianu-Griffoni E, Lecouvey M. From Industrial Method to the Use of Silylated P(III) Reagents for the Synthesis of Relevant Phosphonylated Molecules. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jade Dussart
- Université Sorbonne Paris Nord, CSPBAT, CNRS UMR 7244, UFR SMBH, 1 Rue de Chablis, F-93000 Bobigny, France
| | - Julia Deschamp
- Université Sorbonne Paris Nord, CSPBAT, CNRS UMR 7244, UFR SMBH, 1 Rue de Chablis, F-93000 Bobigny, France
| | - Evelyne Migianu-Griffoni
- Université Sorbonne Paris Nord, CSPBAT, CNRS UMR 7244, UFR SMBH, 1 Rue de Chablis, F-93000 Bobigny, France
| | - Marc Lecouvey
- Université Sorbonne Paris Nord, CSPBAT, CNRS UMR 7244, UFR SMBH, 1 Rue de Chablis, F-93000 Bobigny, France
| |
Collapse
|
36
|
Panigrahi K, Fei X, Kitamura M, Berkowitz DB. Rapid Entry into Biologically Relevant α,α-Difluoroalkylphosphonates Bearing Allyl Protection-Deblocking under Ru(II)/(IV)-Catalysis. Org Lett 2019; 21:9846-9851. [PMID: 31789041 DOI: 10.1021/acs.orglett.9b03707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient synthetic route to α,α-difluoroalkylphosphonates is described. Structurally diverse aldehydes are condensed with LiF2CP(O)(OCH2CH═CH2)2. The resultant alcohols are captured as the pentafluorophenyl thionocarbonates and efficiently deoxygenated with HSnBu3, BEt3, and O2, and then smoothly deblocked with CpRu(IV)(π-allyl)quinoline-2-carboxylate (1-2 mol %) in methanol as an allyl cation scavenger. These mild deprotection conditions provide access to free α,α-difluoroalkylphosphonates in nearly quantitative yield. This methodology is used to rapidly construct new bis-α,α-difluoroalkyl phosphonate inhibitors of PTPIB (protein phosphotyrosine phosphatase-1B).
Collapse
Affiliation(s)
- Kaushik Panigrahi
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Xiang Fei
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Masato Kitamura
- Graduate School of Pharmaceutical Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - David B Berkowitz
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| |
Collapse
|
37
|
Maestro A, Martinez de Marigorta E, Palacios F, Vicario J. Enantioselective Aza-Reformatsky Reaction with Ketimines. Org Lett 2019; 21:9473-9477. [PMID: 31729883 DOI: 10.1021/acs.orglett.9b03669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, an enantioselective aza-Reformatsky reaction using acyclic ketimine substrates is presented. Using α-phosphorated ketimines as electrophilic substrates and a simple BINOL-derived ligand, phosphorated analogues of aspartic acid holding chiral tetrasubstituted carbons are efficiently obtained with excellent enantioselectivity through an asymmetric organocatalytic Reformatsky-type reaction. The phosphorated analogues of aspartic acid have been used for the synthesis of phosphorus-containing enantiopure tetrasubstituted β-lactams.
Collapse
Affiliation(s)
- Aitor Maestro
- Departamento de Química Orgánica I , Facultad de Farmacia, University of the Basque Country , UPV/EHU Paseo de la Universidad 7 , 01006 Vitoria-Gasteiz , Spain
| | - Edorta Martinez de Marigorta
- Departamento de Química Orgánica I , Facultad de Farmacia, University of the Basque Country , UPV/EHU Paseo de la Universidad 7 , 01006 Vitoria-Gasteiz , Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I , Facultad de Farmacia, University of the Basque Country , UPV/EHU Paseo de la Universidad 7 , 01006 Vitoria-Gasteiz , Spain
| | - Javier Vicario
- Departamento de Química Orgánica I , Facultad de Farmacia, University of the Basque Country , UPV/EHU Paseo de la Universidad 7 , 01006 Vitoria-Gasteiz , Spain
| |
Collapse
|
38
|
Lienau C, Gräwert T, Alves Avelar LA, Illarionov B, Held J, Knaab TC, Lungerich B, van Geelen L, Meier D, Geissler S, Cynis H, Riederer U, Buchholz M, Kalscheuer R, Bacher A, Mordmüller B, Fischer M, Kurz T. Novel reverse thia-analogs of fosmidomycin: Synthesis and antiplasmodial activity. Eur J Med Chem 2019; 181:111555. [DOI: 10.1016/j.ejmech.2019.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 01/17/2023]
|
39
|
Dash RP, Tichý T, Veeravalli V, Lam J, Alt J, Wu Y, Tenora L, Majer P, Slusher BS, Rais R. Enhanced Oral Bioavailability of 2-(Phosphonomethyl)-pentanedioic Acid (2-PMPA) from its (5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl (ODOL)-Based Prodrugs. Mol Pharm 2019; 16:4292-4301. [PMID: 31503493 DOI: 10.1021/acs.molpharmaceut.9b00637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
2-(Phosphonomethyl)-pentanedioic acid (2-PMPA) is a potent (IC50 = 300 pM) and selective inhibitor of glutamate carboxypeptidase II (GCPII) with efficacy in multiple neurological and psychiatric disease preclinical models and more recently in models of inflammatory bowel disease (IBD) and cancer. 2-PMPA (1), however, has not been clinically developed due to its poor oral bioavailability (<1%) imparted by its four acidic functionalities (c Log P = -1.14). In an attempt to improve the oral bioavailability of 2-PMPA, we explored a prodrug approach using (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl (ODOL), an FDA-approved promoiety, and systematically masked two (2), three (3), or all four (4) of its acidic groups. The prodrugs were evaluated for in vitro stability and in vivo pharmacokinetics in mice and dog. Prodrugs 2, 3, and 4 were found to be moderately stable at pH 7.4 in phosphate-buffered saline (57, 63, and 54% remaining at 1 h, respectively), but rapidly hydrolyzed in plasma and liver microsomes, across species. In vivo, in a single time-point screening study in mice, 10 mg/kg 2-PMPA equivalent doses of 2, 3, and 4 delivered significantly higher 2-PMPA plasma concentrations (3.65 ± 0.37, 3.56 ± 0.46, and 17.3 ± 5.03 nmol/mL, respectively) versus 2-PMPA (0.25 ± 0.02 nmol/mL). Given that prodrug 4 delivered the highest 2-PMPA levels, we next evaluated it in an extended time-course pharmacokinetic study in mice. 4 demonstrated an 80-fold enhancement in exposure versus oral 2-PMPA (AUC0-t: 52.1 ± 5.9 versus 0.65 ± 0.13 h*nmol/mL) with a calculated absolute oral bioavailability of 50%. In mouse brain, 4 showed similar exposures to that achieved with the IV route (1.2 ± 0.2 versus 1.6 ± 0.2 h*nmol/g). Further, in dogs, relative to orally administered 2-PMPA, 4 delivered a 44-fold enhanced 2-PMPA plasma exposure (AUC0-t for 4: 62.6 h*nmol/mL versus AUC0-t for 2-PMPA: 1.44 h*nmol/mL). These results suggest that ODOL promoieties can serve as a promising strategy for enhancing the oral bioavailability of multiply charged compounds, such as 2-PMPA, and enable its clinical translation.
Collapse
Affiliation(s)
| | - Tomáš Tichý
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic v.v.i. , Prague 166 10 , Czech Republic
| | | | | | | | | | - Lukáš Tenora
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic v.v.i. , Prague 166 10 , Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic v.v.i. , Prague 166 10 , Czech Republic
| | | | | |
Collapse
|
40
|
Bhuiyan NH, Varney ML, Bhattacharya DS, Payne WM, Mohs AM, Holstein SA, Wiemer DF. ω-Hydroxy isoprenoid bisphosphonates as linkable GGDPS inhibitors. Bioorg Med Chem Lett 2019; 29:126633. [PMID: 31474482 DOI: 10.1016/j.bmcl.2019.126633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
The enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential therapeutic target for multiple myeloma. Malignant plasma cells produce and secrete large amounts of monoclonal protein, and inhibition of GGDPS results in disruption of protein geranylgeranylation which in turn impairs intracellular protein trafficking. Our previous work has demonstrated that some isoprenoid triazole bisphosphonates are potent and selective inhibitors of GGDPS. To explore the possibility of selective delivery of such compounds to plasma cells, new analogues with an ω-hydroxy group have been synthesized and examined for their enzymatic and cellular activity. These studies demonstrate that incorporation of the ω-hydroxy group minimally impairs GGDPS inhibitory activity. Furthermore conjugation of one of the novel ω-hydroxy GGDPS inhibitors to hyaluronic acid resulted in enhanced cellular activity. These results will allow future studies to focus on the in vivo biodistribution of HA-conjugated GGDPS inhibitors.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, United States
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Deep S Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - William M Payne
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, United States; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, United States.
| |
Collapse
|
41
|
Horký F, Císařová I, Schulz J, Štěpnička P. Synthesis and structural characterisation of 1’-(diphenylphosphino)ferrocene-1-phosphonic acid, its ammonium salts and Pd(II) complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Janczewski Ł, Burchacka E, Psurski M, Ciekot J, Gajda A, Gajda T. New diaryl ω-(isothiocyanato)alkylphosphonates and their mercapturic acids as potential antibacterial agents. Life Sci 2019; 219:264-271. [PMID: 30658100 DOI: 10.1016/j.lfs.2019.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 11/17/2022]
Abstract
Thirty-four novel, diaryl ω-(isothiocyanato)alkylphosphonates with chlorine atom and methoxy, dimethoxy, methylsulfanyl, or methoxycarbonyl groups at ortho, meta, or para positions of the phenyl ring, and with an unbranched alkyl chain (n = 2-6) were designed and synthesized in a one-pot reaction in 11-76% yields. All isothiocyanates thus generated were evaluated for the first time for antibacterial activity on Pseudomonas aeruginosa and Staphylococcus aureus bacterial strains, and had satisfactory antibacterial activity in most cases. The highest activity, similar to that of reference gentamicin activity against S. aureus, was seen in compounds 9 and 13 (1.5 ± 0.1 and 2.5 ± 0.2 μM, respectively), whereas for P. aeruginosa more than half of tested compounds proved to be more effective than gentamicin. Additionally, selected isothiocyanates (9, 13, 18, and 23) were transformed in 52-73% yields into mercapturic acids 42-45, which also exhibited satisfactory antibacterial effect against S. aureus strain.
Collapse
Affiliation(s)
- Łukasz Janczewski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Żeromskiego St., 90-924 Łódź, Poland
| | - Ewa Burchacka
- Department of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla St., 53-144 Wrocław, Poland
| | - Jarosław Ciekot
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla St., 53-144 Wrocław, Poland
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Żeromskiego St., 90-924 Łódź, Poland
| | - Tadeusz Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Żeromskiego St., 90-924 Łódź, Poland
| |
Collapse
|
43
|
Forato F, Talebzadeh S, Rousseau N, Mevellec JY, Bujoli B, Knight DA, Queffélec C, Humbert B. Functionalized core–shell Ag@TiO2 nanoparticles for enhanced Raman spectroscopy: a sensitive detection method for Cu(ii) ions. Phys Chem Chem Phys 2019; 21:3066-3072. [DOI: 10.1039/c8cp07504b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A shell-isolated nanoparticle enhanced surface Raman technique for detection of copper(ii).
Collapse
Affiliation(s)
- Florian Forato
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM)
- Université de Nantes
- CNRS
- UMR 6230
- 44322 Nantes Cedex 3
| | - Somayeh Talebzadeh
- Department of Biomedical and Chemical Engineering and Sciences
- Florida Institute of Technology
- Melbourne
- USA
| | - Nicolas Rousseau
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Jean-Yves Mevellec
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Bruno Bujoli
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM)
- Université de Nantes
- CNRS
- UMR 6230
- 44322 Nantes Cedex 3
| | - D. Andrew Knight
- Department of Biomedical and Chemical Engineering and Sciences
- Florida Institute of Technology
- Melbourne
- USA
| | - Clémence Queffélec
- Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM)
- Université de Nantes
- CNRS
- UMR 6230
- 44322 Nantes Cedex 3
| | - Bernard Humbert
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
44
|
Ito Y, Kimura A, Osawa T, Hari Y. Photoredox-Catalyzed Deformylative 1,4-Addition of 2′-Deoxy-5′-O-phthalimidonucleosides for Synthesis of 5′-Carba Analogs of Nucleoside 5′-Phosphates. J Org Chem 2018; 83:10701-10708. [DOI: 10.1021/acs.joc.8b00637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Airi Kimura
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Takashi Osawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
45
|
Lutter M, Jurkschat K. Aryl(dimethylaminomethyl)phosphinic Acid Esters: Syntheses, Structures, and Reactions with Halogen Hydrogen Acids, Tin Halides, and Trimethyl Halosilanes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Lutter
- Lehrstuhl für Anorganische Chemie II Technische Universität Dortmund Otto‐Hahn‐Straße 6 44227 Dortmund Germany
| | - Klaus Jurkschat
- Lehrstuhl für Anorganische Chemie II Technische Universität Dortmund Otto‐Hahn‐Straße 6 44227 Dortmund Germany
| |
Collapse
|
46
|
Kempson J, Zhang H, Wong MKY, Li J, Li P, Wu DR, Rampulla R, Galella MA, Dabros M, Traeger SC, Muthalagu V, Gupta A, Arunachalam PN, Mathur A. Evolution of a Scale-Up Synthesis to a Potent GluN2B Inhibitor and Its Prodrug. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James Kempson
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Huiping Zhang
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Michael K. Y. Wong
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Jianqing Li
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Peng Li
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Dauh-Rurng Wu
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Richard Rampulla
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Michael A. Galella
- Drug Product Science & Technology, Materials Science & Engineering, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Marta Dabros
- Drug Product Science & Technology, Materials Science & Engineering, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Sarah C. Traeger
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| | - Vetrichelvan Muthalagu
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Pirama Nayagam Arunachalam
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Arvind Mathur
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
| |
Collapse
|
47
|
Shen GH, Hong JH. Recent advances in the synthesis of cyclic 5′-nornucleoside phosphonate analogues. Carbohydr Res 2018; 463:47-106. [DOI: 10.1016/j.carres.2018.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
48
|
Lee HH, Nam D, Kim CK, Kim K, Lee Y, Ahn YJ, Lee JB, Kwak JH, Choe W, Choi NS, Hong SY. Molecular Engineered Safer Organic Battery through the Incorporation of Flame Retarding Organophosphonate Moiety. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10096-10101. [PMID: 29498505 DOI: 10.1021/acsami.7b19349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we report the first electrochemical assessment of organophosphonate-based compound as a safe electrode material for lithium-ion batteries, which highlights the reversible redox activity and inherent flame retarding property. Dinickel 1,4-benzenediphosphonate delivers a high reversible capacity of 585 mA h g-1 with stable cycle performance. It expands the scope of organic batteries, which have been mainly dominated by the organic carbonyl family to date. The redox chemistry is elucidated by X-ray absorption spectroscopy and solid-state 31P NMR investigations. Differential scanning calorimetry profiles of the lithiated electrode material exhibit suppressed heat release, delayed onset temperature, and endothermic behavior in the elevated temperature zone.
Collapse
|
49
|
Low JE, Levalois-Grützmacher J. Ethyl ester and silyl ester of imidodiphosphate: An alternative route to access phosphorus-nitrogen-phosphorus bonds via Staudinger reaction. HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia En Low
- Laboratory of Inorganic Chemistry; Department of Chemical and Biosciences; ETH Zürich; Zurich Switzerland
| | - Joëlle Levalois-Grützmacher
- Laboratory of Inorganic Chemistry; Department of Chemical and Biosciences; ETH Zürich; Zurich Switzerland
- Département de Chimie; UFR SEN; Université des Antilles; Pointe-à-Pitre Cedex Guadeloupe
| |
Collapse
|
50
|
He X, Lv W, Shi X, Wei H, Shi M, Wang F. Practical way for the synthesis of 3,3′-bis-substituted benzo[d][1,2]oxaphosphole 2-oxides by phosphonylation of in situ generated o-quinone methides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|