1
|
Li J, Li X, Wang Y, Meng L, Cui W. Zinc: a potential star for regulating peritoneal fibrosis. Front Pharmacol 2024; 15:1436864. [PMID: 39301569 PMCID: PMC11411568 DOI: 10.3389/fphar.2024.1436864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Peritoneal dialysis (PD) is a commonly used renal replacement therapy for patients with end-stage renal disease (ESRD). During PD, the peritoneum (PM), a semi-permeable membrane, is exposed to nonbiocompatible PD solutions. Peritonitis can occur, leading to structural and functional PM disorders, resulting in peritoneal fibrosis and ultrafiltration failure, which are important reasons for patients with ESRD to discontinue PD. Increasing evidence suggests that oxidative stress (OS) plays a key role in the pathogenesis of peritoneal fibrosis. Furthermore, zinc deficiency is often present to a certain extent in patients undergoing PD. As an essential trace element, zinc is also an antioxidant, potentially playing an anti-OS role and slowing down peritoneal fibrosis progression. This study summarises and analyses recent research conducted by domestic and foreign scholars on the possible mechanisms through which zinc prevents peritoneal fibrosis.
Collapse
Affiliation(s)
- Jian Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xinyang Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yangwei Wang
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Lingfei Meng
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Sahu C, Jena G. Combination treatment of zinc and selenium intervention ameliorated BPA-exposed germ cell damage in SD rats: elucidation of molecular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6685-6704. [PMID: 38498059 DOI: 10.1007/s00210-024-03044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Bisphenol A (BPA) is a commonly used environmental toxicant, is easily exposed to the human body and causes testicular damage, sperm abnormalities, DNA damage and apoptosis, and interferes in the process spermatogenesis and steroidal hormone production along with obstruction in testes and epididymis development. Zinc (Zn), a potent regulator of antioxidant balance, is responsible for cellular homeostasis, enzymes and proteins activities during spermatogenesis for cell defence mechanisms in the testes. Selenium (Se) is required for spermatogenesis, antioxidant action and in the activities of different selenoproteins. Both Zn and Se are essential simultaneously for the proper regulation of spermatogenesis and sperm maturation as well as protection against chemical and disease-associated germ cell toxicity. Thus, the study aimed to understand the importance and beneficial effect of Zn and Se co-treatment against BPA-exposed testicular damage in rats. BPA 100 and 200 mg/kg/day was exposed through an oral gavage. Zn (3 mg/kg/day) i.p. and Se (0.5 mg/kg/day) i.p. were injected for 8 weeks. The testicular toxicity was evaluated by measuring body and organs weight, biochemical investigations, sperm parameters, testicular and epididymal histopathology, quantification DNA damage by halo assay, DNA breaks (TUNEL assay), immunohistochemistry and western blot. Results revealed that Zn and Se co-treatment ameliorated BPA-associated male gonadal toxicity in rat as revealed by decreased SGPT, SGOT and BUN levels in serum, reduced testes and epididymis tissue injury, DNA breaks, apoptosis, expressions of 8-OHdG, γ-H2AX and NFκB with an increased serum testosterone and catalase levels. These findings suggest that Zn and Se co-treatment could be a beneficial and protective option against BPA-exposed testicular and epididymal toxicity.
Collapse
Affiliation(s)
- Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S., Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
3
|
Padoan F, Piccoli E, Pietrobelli A, Moreno LA, Piacentini G, Pecoraro L. The Role of Zinc in Developed Countries in Pediatric Patients: A 360-Degree View. Biomolecules 2024; 14:718. [PMID: 38927121 PMCID: PMC11201578 DOI: 10.3390/biom14060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc is an important trace element for growth and health at pediatric ages. Zinc is fundamental in inflammatory pathways, oxidative balance, and immune function. Zinc exhibits anti-inflammatory properties by modulating Nuclear Factor-kappa (NF-κB) activity and reducing histamine release from basophils, leukocytes, and mast cells. Furthermore, its antioxidant activity protects against oxidative damage and chronic diseases. Finally, zinc improves the ability to trigger effective immune responses against pathogens by contributing to the maturation of lymphocytes, the production of cytokines, and the regulation of apoptosis. Given these properties, zinc can be considered an adjunctive therapy in treating and preventing respiratory, nephrological, and gastrointestinal diseases, both acute and chronic. This review aims to deepen the role and metabolism of zinc, focusing on the role of supplementation in developed countries in pediatric diseases.
Collapse
Affiliation(s)
- Flavia Padoan
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Elena Piccoli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Angelo Pietrobelli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Luis A. Moreno
- Growth, Exercise, Nutrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, 50001 Zaragoza, Spain
| | - Giorgio Piacentini
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| |
Collapse
|
4
|
Schmidt KE, Höving AL, Nowak K, an Mey N, Kiani Zahrani S, Nemeita B, Riedel L, Majewski A, Kaltschmidt B, Knabbe C, Kaltschmidt C. Serum Induces the Subunit-Specific Activation of NF-κB in Proliferating Human Cardiac Stem Cells. Int J Mol Sci 2024; 25:3593. [PMID: 38612406 PMCID: PMC11012129 DOI: 10.3390/ijms25073593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often linked to ageing and are the major cause of death worldwide. The declined proliferation of adult stem cells in the heart often impedes its regenerative potential. Thus, an investigation of the proliferative potential of adult human cardiac stem cells (hCSCs) might be of great interest for improving cell-based treatments of cardiovascular diseases. The application of human blood serum was already shown to enhance hCSC proliferation and reduce senescence. Here, the underlying signalling pathways of serum-mediated hCSC proliferation were studied. We are the first to demonstrate the involvement of the transcription factor NF-κB in the serum-mediated proliferative response of hCSCs by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). RNA-Sequencing (RNA-Seq) revealed ATF6B, COX5B, and TNFRSF14 as potential targets of NF-κB that are involved in serum-induced hCSC proliferation.
Collapse
Affiliation(s)
- Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Anna L. Höving
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Katja Nowak
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Nike an Mey
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Sina Kiani Zahrani
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Britta Nemeita
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Lena Riedel
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Agnes Majewski
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany;
| | - Cornelius Knabbe
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| |
Collapse
|
5
|
Rizwan M, Cheng K, Gang Y, Hou Y, Wang C. Immunomodulatory Effects of Vitamin D and Zinc on Viral Infection. Biol Trace Elem Res 2024:10.1007/s12011-024-04139-y. [PMID: 38451442 DOI: 10.1007/s12011-024-04139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Several nutrients are crucial in enhancing the immune system and preserving the structural integrity of bodily tissue barriers. Vitamin D (VD) and zinc (Zn) have received considerable interest due to their immunomodulatory properties and ability to enhance the body's immune defenses. Due to their antiviral, anti-inflammatory, antioxidative, and immunomodulatory properties, the two nutritional powerhouses VD and Zn are crucial for innate and adaptive immunity. As observed with COVID-19, deficiencies in these micronutrients impair immune responses, increasing susceptibility to viral infections and severe disease. Ensuring an adequate intake of VD and Zn emerges as a promising strategy for fortifying the immune system. Ongoing clinical trials are actively investigating their potential therapeutic advantages. Beyond the immediate context of the pandemic, these micronutrients offer valuable tools for enhancing immunity and overall well-being, especially in the face of future viral threats. This analysis emphasizes the enduring significance of VD and Zn as both treatment and preventive measures against potential viral challenges beyond the current health crisis. The overview delves into the immunomodulatory potential of VD and Zn in combating viral infections, with particular attention to their effects on animals. It provides a comprehensive summary of current research findings regarding their individual and synergistic impacts on immune function, underlining their potential in treating and preventing viral infections. Overall, this overview underscores the need for further research to understand how VD and Zn can modulate the immune response in combatting viral diseases in animals.
Collapse
Affiliation(s)
- Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Ke Cheng
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yang Gang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yuntao Hou
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel) 2023; 12:1942. [PMID: 38001795 PMCID: PMC10669546 DOI: 10.3390/antiox12111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein-DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Panagiotis Briassoulis
- Second Department of Anesthesiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Marianna Miliaraki
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
8
|
Ergun DD, Ozsobaci NP, Yilmaz T, Ozcelik D, Kalkan MT. Assessing the effect of selenium on cyclin D1 level and nuclear factor kappa b activity in NIH/3T3 fibroblast cells at 2100 MHz electromagnetic field exposure. Electromagn Biol Med 2023; 42:123-132. [PMID: 37638990 DOI: 10.1080/15368378.2023.2252457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Although there are numerous studies on the health impacts of electromagnetic field (EMF) of mobile phone operation frequency 2100 MHz, the published works present contradicting results. Long-term exposure to mobile phone frequencies has unclear health hazards. Therefore, it is important to investigate the molecular mechanism of possible biological effects in mobile phone exposure and to determine the corresponding biological markers. Towards this end, this study was designed to assess the effect of 200 nM selenium (Se) on cell viability% [trypan blue], cell cycle biomarker [cyclin D1] and the transcription factor [nuclear factor kappa b (NF-κB)] in NIH/3T3 fibroblast cells when exposed to 2100 MHz mobile phone frequency. When 2100 MHz EMF was exposed to NIH/3T3 fibroblast cells, the cell viability% was reduced, whereas cyclin D1 level and NF-kB activity increased. Also we show that Se supplementation decreases the effects of 2100 MHz EMF on these parameters. Although future studies will be required to investigate the biological effects of EMF emitted by mobile phones, the results obtained here provide an insight into the molecular mechanisms and specifically underlying selenium's protective effect against 2100 MHz EMF exposure.
Collapse
Affiliation(s)
- Dilek Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Nural Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tuba Yilmaz
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Dervis Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mustafa Tunaya Kalkan
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
9
|
Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Gudkov A, Buzdin A, Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022; 10:biomedicines10051072. [PMID: 35625809 PMCID: PMC9139143 DOI: 10.3390/biomedicines10051072] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, manganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation defense, transcriptional regulation and the immune response. The misregulation of expression or mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion carriers have been detected, suggesting that particular mechanisms influenced by both ions might be required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials. We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement current therapeutic strategies.
Collapse
Affiliation(s)
- Julian Markovich Rozenberg
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Correspondence:
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| | - Elena Koroleva
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Kristina Kremenchutckaya
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Alexander Gudkov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
- OmicsWay Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Oncobox Ltd., 121205 Moscow, Russia
| | - Nicolas Borisov
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| |
Collapse
|
10
|
Abstract
Zn2+ ions are essential in many physiological processes, including enzyme catalysis, protein structural stabilization, and the regulation of many proteins. The affinities of proteins for Zn2+ ions span several orders of magnitude, with catalytic Zn2+ ions generally held more tightly than structural or regulatory ones. Metal carrier proteins, most of which are not specific for Zn2+, bind these ions with a broad range of affinities that overlap those of catalytic, structural, and regulatory Zn2+ ions and are thought to be responsible for distributing the metal through most cells, tissues, and fluid compartments. While little is known about how many proteins obtain or release these ions, there is now considerable experimental evidence suggesting that metal carrier proteins may be responsible for transferring metals to and from some Zn2+-dependent proteins, thus serving as a major regulatory factor for them. In this review, the biological roles of Zn2+ and structures of Zn2+ binding sites are examined, and experimental evidence demonstrating the direct participation of metal carrier proteins in enzyme regulation is discussed. Mechanisms of metal ion transfer are also offered, and the potential physiological significance of this phenomenon is explored.
Collapse
|
11
|
Duzgun Ergun D, Pastaci Ozsobaci N, Yilmaz T, Ozcelik D, Kalkan MT. Zinc affects nuclear factor kappa b and DNA methyltransferase activity in C3H cancer fibroblast cells induced by a 2100 MHz electromagnetic field. Electromagn Biol Med 2022; 41:93-100. [PMID: 34994293 DOI: 10.1080/15368378.2021.2019760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The use of mobile phones is becoming widespread with the development of technology, and as a result, its effects on human health are becoming more and more important every day. Studies have reported that the electromagnetic field (EMF) emitted by mobile phones may have adverse effects on the biological systems. In order to evaluate the effect of zinc (Zn) on C3H cancer fibroblast cells exposed to 2100 MHz EMF, we analyzed cell viability%, nuclear factor kappa b (NF-κB) and DNA methyltransferase (DNMT) activities. Cells were divided to following groups: Control, sham control, 2100 MHz EMF, 50 µM Zn + 2100 MHz EMF, 100 µM Zn + 2100 MHz EMF, and 200 µM Zn + 2100 MHz EMF for 2 h. We measurement cell viability, NF-κB and DNMT activities. There was increased cell viability % in the 2100 MHz EMF group compared to the control group, while the cell viability % was decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to 2100 MHz EMF. NF-κB and DNMT activities were a significant increase in the 2100 MHz EMF group compared to the control group, although were statistically decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to the 2100 MHz EMF group. Our results demonstrate that 2100 MHz EMF exposure in cancer fibroblast cells induce NF-κB and DNMT activities, whereas zinc supplementation reduce NF-κB and DNMT activities-induced 2100 MHz EMF.
Collapse
Affiliation(s)
- D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - T Yilmaz
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - D Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - M T Kalkan
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
12
|
Planeta Kepp K. Bioinorganic Chemistry of Zinc in Relation to the Immune System. Chembiochem 2021; 23:e202100554. [PMID: 34889510 DOI: 10.1002/cbic.202100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Indexed: 01/18/2023]
Abstract
Zinc is well-known to have a central role in human inflammation and immunity and is itself an anti-inflammatory and antiviral agent. Despite its massively documented role in such processes, the underlying chemistry of zinc in relation to specific proteins and pathways of the immune system has not received much focus. This short review provides an overview of this topic, with emphasis on the structures of key proteins, zinc coordination chemistry, and probable mechanisms involved in zinc-based immunity, with some focus points for future chemical and biological research.
Collapse
Affiliation(s)
- Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Dai H, Wang L, Li L, Huang Z, Ye L. Metallothionein 1: A New Spotlight on Inflammatory Diseases. Front Immunol 2021; 12:739918. [PMID: 34804020 PMCID: PMC8602684 DOI: 10.3389/fimmu.2021.739918] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023] Open
Abstract
MT1 has been demonstrated to be an essential stress protein in maintaining physiological balance and regulating immune homeostasis. While the immunological involvement of MT1 in central nervous system disorders and cancer has been extensively investigated, mounting evidence suggests that MT1 has a broader role in inflammatory diseases and can shape innate and adaptive immunity. In this review, we will first summarize the biological features of MT1 and the regulators that influence MT1 expression, emphasizing metal, inflammation, and immunosuppressive factors. We will then focus on the immunoregulatory function of MT1 on diverse immune cells and the signaling pathways regulated by MT1. Finally, we will discuss recent advances in our knowledge of the biological role of MT1 in several inflammatory diseases to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanying Dai
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Lu Wang
- Respiratory Medicine Department, Shenzhen University General Hospital, Shenzhen, China
| | - Lingyun Li
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Liang Ye
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
14
|
Yang J, Liu L, Li M, Huang X, Yang H, Li K. Naringenin inhibits pro‑inflammatory cytokine production in macrophages through inducing MT1G to suppress the activation of NF‑κB. Mol Immunol 2021; 137:155-162. [PMID: 34252709 DOI: 10.1016/j.molimm.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 01/02/2023]
Abstract
Naringenin (Nar) is a flavanone that has been suggested to provide human health benefits such as anti-inflammatory, anti-oxidant and anti-cancer properties. However, the mechanisms underlying these benefits are complex and still not fully understood. In this study, we investigated the effect of Nar on the inflammatory response of macrophages and its underlying mechanism. In lipopolysaccharide (LPS)-stimulated human macrophages, Nar inhibited the activation of NF-κB pathway and suppressed the downstream expression of pro-inflammatory factors. In addition, Nar was also able to induce metallothionein 1 G (MT1G) expression, and the inhibitory effects of Nar on the production of pro-inflammatory cytokines was dependent on MT1G. Mechanistically, we found that MT1G-mediated inhibition of pro-inflammatory cytokines responses might be through repressing NF-κB activation via zinc chelation. Overall, this study reveals a novel mechanism of Nar on inflammatory responses, the suppression of NF-κB activation through upregulation of MT1G.
Collapse
Affiliation(s)
- Jie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Lin Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Mengmeng Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
15
|
Aziz J, Rahman MT, Vaithilingam RD. Dysregulation of metallothionein and zinc aggravates periodontal diseases. J Trace Elem Med Biol 2021; 66:126754. [PMID: 33831799 DOI: 10.1016/j.jtemb.2021.126754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periodontitis (PD) is a multifaceted inflammatory disease connected to bacterial infection that results in the destruction of tooth supporting structures and eventually tooth loss. Given their involvement in infection and inflammation, both metallothionein (MT) and zinc (Zn) might play vital roles in the development and progression of PD. More specifically, both MT and Zn are heavily involved in regulating immune functions, controlling bacterial infection, balancing inflammatory responses, and reducing oxidative stress, all of which are associated with the pathogenesis of PD. OBJECTIVE This review paper will explore the physiological functions of MT and Zn and hypothesise how dysregulation could negatively affect periodontal health, leading to PD. FINDINGS Bacterial lipopolysaccharide (LPS) derived from periodontal pathogens, namely P. gingivalis initiates the acute phase response, thus upregulating the expression of MT which leads to the subsequent deficiency of Zn, a hallmark of periodontal disease. This deficiency leads to ineffective NETosis, increases the permeability of the gingival epithelium, and disrupts the humoral immune response, collectively contributing to PD. In addition, the presence of LPS in Zn deficient conditions favours M1 macrophage polarisation and maturation of dendritic cells, and also inhibits the anti-inflammatory activity of regulatory T cells. Collectively, these observations could theoretically give rise to the chronic inflammation seen in PD. CONCLUSION A disrupted MT and Zn homeostasis is expected to exert an adverse impact on periodontal health and contribute to the development and progression of PD.
Collapse
Affiliation(s)
- Jazli Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Dept. of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
16
|
Metallothioneins in Inflammatory Bowel Diseases: Importance in Pathogenesis and Potential Therapy Target. Can J Gastroenterol Hepatol 2021; 2021:6665697. [PMID: 33987146 PMCID: PMC8093040 DOI: 10.1155/2021/6665697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Immunological disorders, increased oxidative stress, and damage to the epithelial barrier play an important role in the pathogenesis of inflammatory bowel diseases (IBDs). In the treatment of patients with Crohn's disease (CD) and ulcerative colitis (UC), it is increasingly common to use biological drugs that selectively affect individual components of the inflammatory cascade. However, administering the medicines currently available does not always result in obtaining and maintaining remission, and it may also lead to the development of resistance to a given agent over time. Metallothioneins (MTs) belong to the group of low molecular weight proteins, which, among others, regulate the inflammation and homeostasis of heavy metals as well as participating in the regulation of the intensity of oxidative stress. The results of the studies conducted so far do not clearly indicate the role of MTs in the process of inflammation in patients with IBD. However, there are reports that suggest the possibility of using MTs as a potential target in the treatment of this group of patients.
Collapse
|
17
|
Xia P, Lian S, Wu Y, Yan L, Quan G, Zhu G. Zinc is an important inter-kingdom signal between the host and microbe. Vet Res 2021; 52:39. [PMID: 33663613 PMCID: PMC7931793 DOI: 10.1186/s13567-021-00913-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) is an essential trace element in living organisms and plays a vital role in the regulation of both microbial virulence and host immune responses. A growing number of studies have shown that zinc deficiency or the internal Zn concentration does not meet the needs of animals and microbes, leading to an imbalance in zinc homeostasis and intracellular signalling pathway dysregulation. Competition for zinc ions (Zn2+) between microbes and the host exists in the use of Zn2+ to maintain cell structure and physiological functions. It also affects the interplay between microbial virulence factors and their specific receptors in the host. This review will focus on the role of Zn in the crosstalk between the host and microbe, especially for changes in microbial pathogenesis and nociceptive neuron-immune interactions, as it may lead to new ways to prevent or treat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants (Basel) 2021; 10:89. [PMID: 33440661 PMCID: PMC7826537 DOI: 10.3390/antiox10010089] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The human eye, the highly specialized organ of vision, is greatly influenced by oxidants of endogenous and exogenous origin. Oxidative stress affects all structures of the human eye with special emphasis on the ocular surface, the lens, the retina and its retinal pigment epithelium, which are considered natural barriers of antioxidant protection, contributing to the onset and/or progression of eye diseases. These ocular structures contain a complex antioxidant defense system slightly different along the eye depending on cell tissue. In addition to widely studied enzymatic antioxidants, including superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxins and selenoproteins, inter alia, metallothioneins (MTs) are considered antioxidant proteins of growing interest with further cell-mediated functions. This family of cysteine rich and low molecular mass proteins captures and neutralizes free radicals in a redox-dependent mechanism involving zinc binding and release. The state of the art of MTs, including the isoforms classification, the main functions described to date, the Zn-MT redox cycle as antioxidant defense system, and the antioxidant activity of Zn-MTs in the ocular surface, lens, retina and its retinal pigment epithelium, dependent on the number of occupied zinc-binding sites, will be comprehensively reviewed.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Montserrat García
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Rosario Pereiro
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| |
Collapse
|
19
|
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019; 10:696-710. [PMID: 31305906 PMCID: PMC6628855 DOI: 10.1093/advances/nmz013] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Zinc is an essential trace element that is crucial for growth, development, and the maintenance of immune function. Its influence reaches all organs and cell types, representing an integral component of approximately 10% of the human proteome, and encompassing hundreds of key enzymes and transcription factors. Zinc deficiency is strikingly common, affecting up to a quarter of the population in developing countries, but also affecting distinct populations in the developed world as a result of lifestyle, age, and disease-mediated factors. Consequently, zinc status is a critical factor that can influence antiviral immunity, particularly as zinc-deficient populations are often most at risk of acquiring viral infections such as HIV or hepatitis C virus. This review summarizes current basic science and clinical evidence examining zinc as a direct antiviral, as well as a stimulant of antiviral immunity. An abundance of evidence has accumulated over the past 50 y to demonstrate the antiviral activity of zinc against a variety of viruses, and via numerous mechanisms. The therapeutic use of zinc for viral infections such as herpes simplex virus and the common cold has stemmed from these findings; however, there remains much to be learned regarding the antiviral mechanisms and clinical benefit of zinc supplementation as a preventative and therapeutic treatment for viral infections.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephanie Obeid
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Golo Ahlenstiel
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
20
|
Palmitic Acid and β-Hydroxybutyrate Induce Inflammatory Responses in Bovine Endometrial Cells by Activating Oxidative Stress-Mediated NF-κB Signaling. Molecules 2019; 24:molecules24132421. [PMID: 31266188 PMCID: PMC6650895 DOI: 10.3390/molecules24132421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ketosis is a nutritional metabolic disease in dairy cows, and researches indicated that ketonic cows always accompany reproductive problems. When ketosis occurs, the levels of non-esterified fatty acids (NEFAs) and β-hydroxybutyrate (BHBA) in the blood increase significantly. Palmitic acid (PA) is a main component of saturated fatty acids composing NEFA. The aim of this study was to investigate whether high levels of PA and BHBA induce inflammatory responses and regulatory mechanisms in bovine endometrial cells (BEND). Using an enzyme-linked immunosorbent assay, quantitative real-time PCR, and western blotting, we evaluated oxidative stress, pro-inflammatory factors, and the nuclear factor (NF)-κB pathway in cultured BEND cells treated with different concentrations of PA, BHBA, pyrrolidinedithiocarbamate (PDTC, an NF-κB pathway inhibitor), and N-acetylcysteine (NAC, an antioxidant). The content of malondialdehyde was significantly higher, the content of glutathione was lower, and antioxidant activity-glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity-was lower in treated cells compared with control cells. PA- and BHBA-induced oxidative stress activated the NF-κB signaling pathway and upregulated the release of pro-inflammatory factors. Moreover, PA- and BHBA-induced activation of NF-κB-mediated inflammatory responses was inhibited by PDTC and NAC. High concentrations of PA and BHBA induce inflammatory responses in BEND cells by activating oxidative stress-mediated NF-κB signaling.
Collapse
|
21
|
Hagmeyer S, Cristóvão JS, Mulvihill JJE, Boeckers TM, Gomes CM, Grabrucker AM. Zinc Binding to S100B Affords Regulation of Trace Metal Homeostasis and Excitotoxicity in the Brain. Front Mol Neurosci 2018; 10:456. [PMID: 29386995 PMCID: PMC5776125 DOI: 10.3389/fnmol.2017.00456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Neuronal metal ions such as zinc are essential for brain function. In particular synaptic processes are tightly related to metal and protein homeostasis, for example through extracellular metal-binding proteins. One such protein is neuronal S100B, a calcium and zinc binding damage-associated molecular pattern (DAMP), whose chronic upregulation is associated with aging, Alzheimer’s disease (AD), motor neuron disease and traumatic brain injury (TBI). Despite gained insights on the structure of S100B, it remains unclear how its calcium and zinc binding properties regulate its function on cellular level. Here we report a novel role of S100B in trace metal homeostasis, in particular the regulation of zinc levels in the brain. Our results show that S100B at increased extracellular levels is not toxic, persists at high levels, and is taken up into neurons, as shown by cell culture and biochemical analysis. Combining protein bioimaging and zinc quantitation, along with a zinc-binding impaired S100B variant, we conclude that S100B effectively scavenges zinc ions through specific binding, resulting in a redistribution of the intracellular zinc pool. Our results indicate that scavenging of zinc by increased levels of S100B affects calcium levels in vitro. Thereby S100B is able to mediate the cross talk between calcium and zinc homeostasis. Further, we investigated a possible new neuro-protective role of S100B in excitotoxicity via its effects on calcium and zinc homeostasis. Exposure of cells to zinc-S100B but not the zinc-binding impaired S100B results in an inhibition of excitotoxicity. We conclude that in addition to its known functions, S100B acts as sensor and regulator of elevated zinc levels in the brain and this metal-buffering activity is tied to a neuroprotective role.
Collapse
Affiliation(s)
- Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Department of Neurology, Neurocenter of Ulm University, Ulm, Germany.,Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| | - Joana S Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
22
|
Saad AA, El-Sikaily A, Kassem H. Metallothionein and Glutathione Content as Biomarkers of Metal Pollution in Mussels and Local Fishermen in Abu Qir Bay, Egypt. J Health Pollut 2016; 6:50-60. [PMID: 30524805 PMCID: PMC6221500 DOI: 10.5696/2156-9614-6-12.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND When heavy metals accumulate in air, soil, and water, the risk of human exposure increases among industrial workers, as well as in people living near polluted areas. Heavy metals adversely affect a variety of bodily systems such as the cardiovascular, respiratory, endocrine, immune, and reproductive systems. In addition, long-term exposure and accumulation of heavy metals in the body may disturb oxidative stress genes and thus increase the susceptibility to various diseases. OBJECTIVES The aim of this study is to estimate the metallothionein concentration in both mussel samples from Abu Qir Bay, Egypt and the blood of local fishermen as a biomarker of exposure to metal pollution. METHODS Levels of metallothionein and heavy metals were measured in mussels. Blood levels of metallothionein and heavy metals of local fishermen were measured and compared with a control group. The effect of heavy metal exposure on oxidative stress status was investigated through the determination of malondialdehyde (MDA), catalase and glutathione content. RESULTS The results of this study showed high concentrations of metallothionein in mussels and in fishermen's blood, accompanied by high concentrations of metals such as cadmium (Cd), copper (Cu), lead (Pb), chromium (Cr), and zinc (Zn). At the same time, a significant decrease in glutathione content and catalase enzyme activity was associated with a significant increase in the malondialdehyde concentrations in sera of fishermen. CONCLUSIONS The present study found that the El Maadiya region is polluted with heavy metals, inducing oxidative stress in fishermen in the vicinity. These results reveal the necessity of further environmental monitoring in the study area in order to evaluate other types of pollutants and their effects on human health.
Collapse
Affiliation(s)
- Aziza A. Saad
- Applied Medical Chemistry, Medical Research Institute, Alexandria University, Egypt
| | - Amany El-Sikaily
- Marine Pollution Department, National Institute of Oceanography and Fisheries, Ministry of Scientific Research, Egypt
| | - Hany Kassem
- Applied Medical Chemistry, Medical Research Institute, Alexandria University, Egypt
| |
Collapse
|
23
|
Schott-Ohly P, Lgssiar A, Partke HJ, Hassan M, Friesen N, Gleichmann H. Prevention of Spontaneous and Experimentally Induced Diabetes in Mice with Zinc Sulfate-Enriched Drinking Water is Associated with Activation and Reduction of NF-κB and AP-1 in Islets, Respectively. Exp Biol Med (Maywood) 2016; 229:1177-85. [PMID: 15564445 DOI: 10.1177/153537020422901113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, we reported that zinc sulfate-enriched (25 mM) drinking water (Zn2+) protected male C57BL/6 mice from diabetes induced by multiple low doses of streptozotocin (MLD-STZ) and that MLD-STZ activates the transcription factors nuclear factor (NF)-κB and activator protein (AP)-1 in islets of these mice. Therefore, we studied the effect of Zn2+ on spontaneous diabetes in female nonobese diabetic (NOD) mice and on the activity of NF-κB and AP-1 in islets of NOD and MLD-STZ–injected male C57BL/6 mice. We hypothesized that Zn2+ may affect NF-κB, which may play a key role in immune-mediated diabetogenesis. Here we continuously administered Zn2+ to NOD mice, to both parents and their F1 offspring, and treated C57BL/6 male mice with MLD-STZ either alone or in addition to Zn2+. We assessed effects of Zn2+ on insulitis and peri-insulitis in 8-week-old NOD mice and analyzed NF-κB and AP-1 activities in islets. Zn2+ significantly prevented diabetes in female F1 offspring and significantly reduced insulitis and peri-insulitis. Zn2+ significantly stimulated NF-κB and AP-1 activation in NOD mice, in contrast, in C57BL/6 mice, Zn2+ significantly reduced their activation by MLD-STZ. These data demonstrate that NF-κB may play a critical role in immune-mediated diabetes. Depending on the mode of β-cell destruction, Zn2+ may prevent apoptosis through activation of NF-κB in NOD mice or prevent inflammatory immune destruction through inhibition of NF-κB in MLD-STZ-treated C57BL/6 mice.
Collapse
Affiliation(s)
- Patricia Schott-Ohly
- German Diabetes Center, German Diabetes Research Institute, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Pan W, Lin L, Zhang N, Yuan F, Hua X, Wang Y, Mo L. Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-κB/COX-2 Pathways. Cell Mol Neurobiol 2016; 36:1179-88. [PMID: 26683659 DOI: 10.1007/s10571-015-0315-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
Dexmedetomidine has been reported to provide neuroprotection against hypoxia-induced damage. However, the underlying mechanisms remain unclear. We examined whether dexmedetomidine's neuroprotective effects were mediated by the NF-κB/COX-2 pathways. Adult male C57BL/6 mice were subjected to a 30-min hypoxic treatment followed by recovery to normal conditions. They received dexmedetomidine (16 or 160 μg/kg) or 25 mg/kg atipamezole, an α2-adrenoreceptor antagonist, intraperitoneally before exposure to hypoxia. The whole brain was harvested 6, 18, or 36 h after the hypoxia to determine the histopathological outcome and cleaved caspase-3, Bax/Bcl, NF-κB, and COX-2 levels. Hypoxia treatment induced significant neurotoxicity, including destruction of the tissue structure and upregulation of the protein levels of caspase-3, the ratio of Bax/Bcl-2, NF-κB, and COX-2. Dexmedetomidine pretreatment effectively improved histological outcome and restored levels of caspase-3, the Bax/Bcl-2 ratio, NF-κB, and COX-2. Atipamezole reversed the neuroprotection induced by dexmedetomidine. Neuroprotection was achieved by PDTC and NS-398, inhibitors of NF-κB and COX-2, respectively. Dexmedetomidine use before hypoxia provides neuroprotection. Inhibition of NF-κB/COX-2 pathways activation may contribute to the neuroprotection of dexmedetomidine.
Collapse
Affiliation(s)
- Wanying Pan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Lin Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Nan Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Fuli Yuan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xiaoxiao Hua
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yueting Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Liqiu Mo
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
25
|
Maremanda KP, Khan S, Jena GB. Role of Zinc Supplementation in Testicular and Epididymal Damages in Diabetic Rat: Involvement of Nrf2, SOD1, and GPX5. Biol Trace Elem Res 2016; 173:452-64. [PMID: 27025721 DOI: 10.1007/s12011-016-0674-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/14/2016] [Indexed: 12/29/2022]
Abstract
Zinc (Zn) is one of the most important trace elements required for several biological processes. Diabetes negatively affects many organs, and diabetic patients are often hypozincemic. The present study aims to investigate the role of Zn supplementation in the testes, epididymis, and sperms of streptozotocin (STZ)-induced diabetic rat. Serum, testicular, and sperm Zn contents were found to be altered in diabetic rat. Biochemical, histopathological, and protein expression profiles were determined to decipher the role of Zn in protecting the cellular perturbations. Further, histopathological analyses of testes and epididymis showed deranged architecture along with other noted abnormalities. Diabetic testes showed decreased Nrf2, HO-1, SOD1, PCNA, and Bcl-2 expressions whereas increased COX-2, NF-κB, MT, IL-6, and p-ERK levels. SOD1 and GPX5 were decreased in the epididymis of diabetic rat, whereas Zn supplementation attenuated these changes. The present results demonstrate the beneficial role of Zn supplementation in diabetes-associated testicular alterations of rat.
Collapse
Affiliation(s)
- Krishna Prahlad Maremanda
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India
| | - Sabbir Khan
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India
| | - G B Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India.
| |
Collapse
|
26
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins: Structure and Functions. METALLOTHIONEINS IN NORMAL AND CANCER CELLS 2016. [DOI: 10.1007/978-3-319-27472-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Nowakowski AB, Meeusen JW, Menden H, Tomasiewicz H, Petering DH. Chemical–Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes. Inorg Chem 2015; 54:11637-47. [DOI: 10.1021/acs.inorgchem.5b01535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Andrew B. Nowakowski
- Department of Chemistry
and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Jeffrey W. Meeusen
- Department of Chemistry
and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Heather Menden
- Department of Chemistry
and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | | | - David H. Petering
- Department of Chemistry
and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
28
|
Jing L, Li L, Zhao J, Zhao J, Sun Z, Peng S. Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins. Xenobiotica 2015; 46:715-25. [PMID: 26599915 DOI: 10.3109/00498254.2015.1110760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Cardiotoxicity is an important factor that limits the clinical use of doxorubicin (Dox). Metallothionein (MT) can antagonize the Dox-induced cardiotoxicity. Using a proteomics approach we have detected that major peroxiredoxins (Prxs) may be involved in this process. In the present study, we further investigate the mechanisms of the MT effects against Dox-induced cytotoxicity and the interactions between MT and Prxs. 2. We have established a primary cardiomyocyte culture system from MT-I/II null (MT(-/-)) and corresponding wild type (MT(+/+)) neonatal mice, and pretreated the MT(+/+) cardiomyocytes with ZnCl2 to establish the MT overexpression cardiomyocyte model. 3. Based on the results, in MT(+/+) cardiomyocytes, ZnCl2 pretreatment significantly increased the cardiomyocytes MT levels and inhibited the cardiotoxicity of Dox; it can resist LDH leakage, cardiomyocyte apoptosis, DNA damage, ROS accumulation and inhibit the decrease in activity of antioxidant enzymes induced by Dox. Moreover, ZnCl2 enhanced the expression of Prx-2, -3, -5 and -6, it can inhibit the expression of Prxs decrease in MT(+/+) cardiomyocytes induced by Dox, but had no effect in MT(-/-) cardiomyocytes. 4. Therefore, the present study suggests that ZnCl2 can protect the cardiomyocytes from the Dox-induced oxidative injury and can inhibit the changes in Prxs expression through induced MT overexpression.
Collapse
Affiliation(s)
- Li Jing
- a School of Public Health , Capital Medical University , Beijing , PR China and
| | - Lizhong Li
- b Evaluation and Research Center for Toxicology , Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , PR China
| | - Jing Zhao
- b Evaluation and Research Center for Toxicology , Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , PR China
| | - Jun Zhao
- b Evaluation and Research Center for Toxicology , Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , PR China
| | - Zhiwei Sun
- a School of Public Health , Capital Medical University , Beijing , PR China and
| | - Shuangqing Peng
- b Evaluation and Research Center for Toxicology , Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , PR China
| |
Collapse
|
29
|
Squitti R, Siotto M, Polimanti R. Low-copper diet as a preventive strategy for Alzheimer's disease. Neurobiol Aging 2014; 35 Suppl 2:S40-50. [PMID: 24913894 DOI: 10.1016/j.neurobiolaging.2014.02.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/21/2022]
Abstract
Copper is an essential element, and either a copper deficiency or excess can be life threatening. Recent studies have indicated that alteration of copper metabolism is one of the pathogenetic mechanisms of Alzheimer's disease (AD). In light of these findings, many researchers have proposed preventive strategies to reduce AD risk. Because the general population comes in contact with copper mainly through dietary intake, that is, food 75% and drinking water 25%, a low-copper diet can reduce the risk of AD in individuals with an altered copper metabolism. We suggest that a diet-gene interplay is at the basis of the "copper phenotype" of sporadic AD. Herein, we describe the pathways regulating copper homeostasis, the adverse sequelae related to its derangements, the pathogenic mechanism of the AD copper phenotype, indications for a low-copper diet, and future perspectives to improve this preventive strategy.
Collapse
Affiliation(s)
- Rosanna Squitti
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, "San Giovanni Calibita" Fatebenefratelli Hospital, Rome, Italy; Laboratorio di Neurodegenerazione, IRCCS San Raffaele Pisana, Rome, Italy.
| | | | - Renato Polimanti
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
30
|
Pan Y, Huang J, Xing R, Yin X, Cui J, Li W, Yu J, Lu Y. Metallothionein 2A inhibits NF-κB pathway activation and predicts clinical outcome segregated with TNM stage in gastric cancer patients following radical resection. J Transl Med 2013; 11:173. [PMID: 23870553 PMCID: PMC3726370 DOI: 10.1186/1479-5876-11-173] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/10/2013] [Indexed: 12/26/2022] Open
Abstract
Background Metallothionein 2A (MT2A) as a stress protein, plays a protective role in gastric mucosal barrier. Its role in the development of gastric cancer (GC) is unclear. The mechanism of MT2A will be investigated in gastric tumorigenesis. Methods MT2A expression was detected in 973 gastric specimens. The biological function was determined through ectopic expressing MT2A in vitro and in vivo. The possible downstream effectors of MT2A were investigated in NF-κB signaling. The protein levels of MT2A, IκB-α and p-IκB-α (ser32/36) expression were analyzed in a subset of 258 patients by IHC staining. The prognostic effects of MT2A, status of IκB-α and TNM stage were evaluated using the Kaplan-Meier method and compared using the log-rank test. Results Decreased MT2A expression was detected in cell lines and primary tumors of GC. In clinical data, loss of MT2A (MT2A + in Normal (n =171, 76.0%); Intestinal metaplasia (n = 118, 50.8%); GC (n = 684. 22.4%, P < 0.001)) was associated with poor prognosis (P < 0.001), advanced TNM stage (P = 0.05), and down-regulation of IκB-α expression (P < 0.001). Furthermore, MT2A was the independent prognostic signature segregated from the status of IκB-α and pathological features. In addition, MT2A inhibited cell growth through apoptosis and G2/M arrest, which negatively regulated NF-κB pathway through up-regulation of IκB-α and down-regulation of p-IκB-α and cyclin D1 expression. Conclusions MT2A might play a tumor suppressive activity through inhibiting NF-κB signaling and may be a prognostic biomarker and potential target for individual therapy of GC patients.
Collapse
Affiliation(s)
- Yuanming Pan
- Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, No,52 Fucheng Road, Beijing, Haidian District 100142, PR China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Southern PJ. Missing out on the biology of heterosexual HIV-1 transmission. Trends Microbiol 2013; 21:245-52. [DOI: 10.1016/j.tim.2013.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/03/2013] [Accepted: 02/06/2013] [Indexed: 11/16/2022]
|
32
|
Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R. The role of metallothionein in oxidative stress. Int J Mol Sci 2013; 14:6044-66. [PMID: 23502468 PMCID: PMC3634463 DOI: 10.3390/ijms14036044] [Citation(s) in RCA: 510] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 12/15/2022] Open
Abstract
Free radicals are chemical particles containing one or more unpaired electrons, which may be part of the molecule. They cause the molecule to become highly reactive. The free radicals are also known to play a dual role in biological systems, as they can be either beneficial or harmful for living systems. It is clear that there are numerous mechanisms participating on the protection of a cell against free radicals. In this review, our attention is paid to metallothioneins (MTs) as small, cysteine-rich and heavy metal-binding proteins, which participate in an array of protective stress responses. The mechanism of the reaction of metallothioneins with oxidants and electrophilic compounds is discussed. Numerous reports indicate that MT protects cells from exposure to oxidants and electrophiles, which react readily with sulfhydryl groups. Moreover, MT plays a key role in regulation of zinc levels and distribution in the intracellular space. The connections between zinc, MT and cancer are highlighted.
Collapse
Affiliation(s)
- Branislav Ruttkay-Nedecky
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jaromir Gumulec
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Michal Masarik
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-612 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic; E-Mail:
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; E-Mail:
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
33
|
Hermann JC, Chen Y, Wartchow C, Menke J, Gao L, Gleason SK, Haynes NE, Scott N, Petersen A, Gabriel S, Vu B, George KM, Narayanan A, Li SH, Qian H, Beatini N, Niu L, Gan QF. Metal impurities cause false positives in high-throughput screening campaigns. ACS Med Chem Lett 2013; 4:197-200. [PMID: 24900642 DOI: 10.1021/ml3003296] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022] Open
Abstract
Organic impurities in compound libraries are known to often cause false-positive signals in screening campaigns for new leads, but organic impurities do not fully account for all false-positive results. We discovered inorganic impurities in our screening library that can also cause positive signals for a variety of targets and/or readout systems, including biochemical and biosensor assays. We investigated in depth the example of zinc for a specific project and in retrospect in various HTS screens at Roche and propose a straightforward counter screen using the chelator TPEN to rule out inhibition caused by zinc.
Collapse
Affiliation(s)
- Johannes C. Hermann
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Yingsi Chen
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Charles Wartchow
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - John Menke
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Lin Gao
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Shelley K. Gleason
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Nancy-Ellen Haynes
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Nathan Scott
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Ann Petersen
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Stephen Gabriel
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Binh Vu
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Kelly M. George
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Arjun Narayanan
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Shirley H. Li
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Hong Qian
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Nanda Beatini
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Linghao Niu
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Qing-Fen Gan
- Discovery
Chemistry, ‡Discovery Technologies, and §Inflammation Discovery, Roche pRED, 340 Kingsland Street, Nutley, New Jersey
07110, United States
| |
Collapse
|
34
|
Zhang X, Wang J, Fan Y, Yang L, Wang L, Ma J. Zinc supplementation attenuates high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells. Biol Trace Elem Res 2012; 150:229-35. [PMID: 22639383 DOI: 10.1007/s12011-012-9451-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/10/2012] [Indexed: 01/12/2023]
Abstract
Zinc (Zn) plays an important role in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. But its function in the EMT of the peritoneal mesothelial cells (PMCs) remains unknown. Here, we studied the Zn effect on the high glucose (HG)-induced EMT in the rat PMCs (RPMCs) and the underlying molecular mechanisms. We found that Zn supplementation significantly inhibited TGF-β1 and ROS production, and attenuated the HG-induced EMT in the RPMCs, likely through inhibition of MAPK, NF-κB, and TGF-β/Smad pathways.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, the First Affiliated Hospital, China Medical University, 155th Nanjing North Street, Shenyang, Liaoning, 110001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, Eckschlager T, Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 2012; 44:287-301. [PMID: 23050852 DOI: 10.3109/03602532.2012.725414] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metallothioneins (MTs) are involved in protection against oxidative stress (OS) and toxic metals and they participate in zinc metabolism and its homeostasis. Disturbing of zinc homeostasis can lead to formation of reactive oxygen species, which can result in OS causing alterations in immunity, aging, and civilization diseases, but also in cancer development. It is not surprising that altered zinc metabolism and expression of MTs are of great interest in the case of studying of oncogenesis and cancer prognosis. The role of MTs and zinc in cancer development is tightly connected, and the structure and function of MTs are strongly dependent on Zn²⁺ redox state and its binding to proteins. Antiapoptic effects of MTs and their interactions with proteins nuclear factor kappa B, protein kinase C, esophageal cancer-related gene, and p53 as well as the role of MTs in their proliferation, immunomodulation, enzyme activation, and interaction with nitric oxide are reviewed. Utilization of MTs in cancer diagnosis and therapy is summarized and their importance for chemoresistance is also mentioned.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
36
|
Ryu HH, Jung S, Jung TY, Moon KS, Kim IY, Jeong YI, Jin SG, Pei J, Wen M, Jang WY. Role of metallothionein 1E in the migration and invasion of human glioma cell lines. Int J Oncol 2012; 41:1305-13. [PMID: 22843066 DOI: 10.3892/ijo.2012.1570] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/21/2012] [Indexed: 11/06/2022] Open
Abstract
Metallothionein 1E (MT1E) has been found to be highly expressed in motile cell lines. We investigated whether MT1E actually modulates the migration and invasion of human glioma cell lines and the types of factors that have an effect on MT1E. RNA differential display was performed using Genefishing™ technology in the human glioma cell lines U343MG-A, U87MG and U87MG-10'; the results were validated by RT-PCR and northern blot analysis, in order to detect possible genetic changes as the determining factors for migration ability in malignant glioma. MT1E was identified in U87MG, a highly motile cell line. The migration and invasion abilities of human glioma cell lines, and MT1E transfectants were investigated using simple scratch testing and Matrigel invasion assays. Morphological and cytoskeletal (actin, vimentin) changes were documented by light and confocal microscopy. The expression of MT1E in four glioma cell lines was assessed by RT-PCR and western blotting. In addition, the effects of MT1E on the activity of the NF-κB p50/p65 transcription factor, MMP-2 and -9 were examined by western blotting and zymography. The endogenous MT1E expression in the human glioma cell lines was statistically correlated with their migratory abilities and invasion. The U87-MT-AS cells became more round and had decreased stress fibers, compared with the U87MG cells. Endogenous MT1E expression in the four human glioma cell lines was directly correlated with migration. Two antisense MT1E-transfected cell lines showed decreased NF-κB p50 translocation into the nucleus, which led to decreased activity of MMP-9 in conditioned media. It may be postulated that MT1E can enhance the migration and invasion of human glioma cells by inducing MMP-9 inactivation via the upregulation of NF-κB p50.
Collapse
Affiliation(s)
- Hyang-Hwa Ryu
- Department of Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R. Mammalian metallothioneins: properties and functions. Metallomics 2012; 4:739-50. [PMID: 22791193 DOI: 10.1039/c2mt20081c] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metallothioneins (MT) are a family of ubiquitous proteins, whose role is still discussed in numerous papers, but their affinity to some metal ions is undisputable. These cysteine-rich proteins are connected with antioxidant activity and protective effects on biomolecules against free radicals, especially reactive oxygen species. In this review, the connection between zinc(II) ions, reactive oxygen species, heavy metal ions and metallothioneins is demonstrated with respect to effect of these proteins on cell proliferation and a possible negative role in resistance to heavy metal-based and non-heavy metal-based drugs.
Collapse
Affiliation(s)
- Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ghosh D, Sen K, Das AK. Structure and coordination in mono and dinuclear Zn(II)-pyrrolidine dithiocarbamate complexes. Struct Chem 2011. [DOI: 10.1007/s11224-011-9863-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Chen QG, Zhang Z, Yang Q, Shan GY, Yu XY, Kong CZ. The role of zinc transporter ZIP4 in prostate carcinoma. Urol Oncol 2011; 30:906-11. [PMID: 21803616 DOI: 10.1016/j.urolonc.2010.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Normal prostate tissues have a unique function of accumulating high levels of zinc. This capability is lost during the early stage in the development of prostate malignancy. ZIP4 is an important zinc transporter. In this study, we explore the expression of ZIP4 in prostate carcinoma and invest the functional contributions of ZIP4 to cancer growth in vitro. METHODS ZIP4 expression was detected in 14 prostate carcinoma and 20 BPH tissues by real-time RT-PCR and western blot. To invest the biological function of ZIP4 in prostate carcinoma cells, ZIP4 stable over-expression in cells was established in prostate carcinoma cell line DU145 (DU145-ZIP4) and ZIP4 short hairpin RNA(shRNA) expression in stable cells was also established in prostate carcinoma cell line 22RV1(22RV1-shRNA). The proliferation, migration, and invasion ability of the prostate carcinoma cells were detected. RESULTS The expression of ZIP4 mRNA and protein are significantly down-regulated in prostate carcinoma tissues compared with that in BPH tissues. However, we found that there was no correlation between the ZIP4 expression and the pathologic grade of prostate carcinoma. In in vitro studies, over-expression of ZIP4 not only inhibits the proliferation but also inhibits the invasive ability of prostate carcinoma cell line DU145-ZIP4. At the same time, we found silencing of ZIP4 was associated with increased cell proliferation and invasion ability in 22RV1-shRNA cell line. However, both DU145-ZIP4 and 22RV1-shRNA cells showed a significant reduction on cell migration ability compared with the control. CONCLUSION The results indicate that ZIP4 expression is down-regulated in prostate carcinoma and it may serve as a promising biomarker for prostate carcinoma. ZIP4 has an inhibitory effect on prostate carcinoma cell proliferation and invasion. It suggests that ZIP4 may be a tumor suppressor gene and down-regulation of ZIP4 may be a critical early event in the development of prostate carcinoma.
Collapse
Affiliation(s)
- Qi-guang Chen
- First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
40
|
Correlation between metallothionein (MT) expression and selected prognostic factors in ductal breast cancers. Folia Histochem Cytobiol 2010; 48:242-8. [DOI: 10.2478/v10042-010-0011-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Shahid M, Rüffer T, Lang H, Awan SA, Ahmad S. Synthesis and crystal structure of a dinuclear zinc(II)-dithiocarbamate complex, bis {[(μ 2-pyrrolidinedithiocarbamato-S,S′)(pyrrolidinedithiocarbamato-S,S′)zinc(II)]}. J COORD CHEM 2009. [DOI: 10.1080/00958970802255741] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mariam Shahid
- a Department of Chemistry , University of Engineering and Technology , Lahore 54890, Pakistan
| | - Tobias Rüffer
- b Technische Universitat Chemnitz, Institut fur Chemie, Lehrstuhl fur Anorganische Chemie , Straße der Nationen 62, 09111, Chemnitz, Germany
| | - Heinrich Lang
- b Technische Universitat Chemnitz, Institut fur Chemie, Lehrstuhl fur Anorganische Chemie , Straße der Nationen 62, 09111, Chemnitz, Germany
| | | | - Saeed Ahmad
- a Department of Chemistry , University of Engineering and Technology , Lahore 54890, Pakistan
| |
Collapse
|
42
|
Shahid M, Rüffer T, Lang H, Awan SA, Ahmad S. Synthesis and crystal structure of a dinuclear zinc(II)-dithiocarbamate complex, bis {[(μ 2-pyrrolidinedithiocarbamato-S,S′)(pyrrolidinedithiocarbamato-S,S′)zinc(II)]}. J COORD CHEM 2009. [DOI: https://doi.org/10.1080/00958970802255741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mariam Shahid
- a Department of Chemistry , University of Engineering and Technology , Lahore 54890, Pakistan
| | - Tobias Rüffer
- b Technische Universitat Chemnitz, Institut fur Chemie, Lehrstuhl fur Anorganische Chemie , Straße der Nationen 62, 09111, Chemnitz, Germany
| | - Heinrich Lang
- b Technische Universitat Chemnitz, Institut fur Chemie, Lehrstuhl fur Anorganische Chemie , Straße der Nationen 62, 09111, Chemnitz, Germany
| | | | - Saeed Ahmad
- a Department of Chemistry , University of Engineering and Technology , Lahore 54890, Pakistan
| |
Collapse
|
43
|
Emeny RT, Marusov G, Lawrence DA, Pederson-Lane J, Yin X, Lynes MA. Manipulations of metallothionein gene dose accelerate the response to Listeria monocytogenes. Chem Biol Interact 2009; 181:243-53. [DOI: 10.1016/j.cbi.2009.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/24/2009] [Accepted: 06/24/2009] [Indexed: 01/26/2023]
|
44
|
Kim HG, Hwang YP, Han EH, Choi CY, Yeo CY, Kim JY, Lee KY, Jeong HG. Metallothionein-III provides neuronal protection through activation of nuclear factor-kappaB via the TrkA/phosphatidylinositol-3 kinase/Akt signaling pathway. Toxicol Sci 2009; 112:435-49. [PMID: 19767621 DOI: 10.1093/toxsci/kfp230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metallothionein (MT)-III is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. The present study investigated the mechanisms of MT-III protection of neuronal cells from hypoxia or DNA damage-induced cell death. MT-III reduced the hydrogen peroxide- or DNA damage-induced effects on neuronal cells, including the cell death, the activation of caspase-3 and -9, and the release of mitochondrial cytochrome c to the cytoplasm in a dose-dependent manner. MT-III also increased the activation of Akt, the phosphorylation and degradation of IkappaB, the nuclear translocation/accumulation and the transcriptional activity of nuclear factor-kappaB (NF-kappaB) in neuronal cells in a dose-dependent manner. The MT-III-induced antiapoptotic effects and increase in NF-kappaB activity were blocked by specific inhibitors of TrkA, phosphatidylinositol-3 kinase (PI3K), Akt, or NF-kappaB, indicating that MT-III provides neuronal protection by activating NF-kappaB through the TrkA/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hyung Gyun Kim
- Department of Pharmacy and Research Center for Proteineous Materials, College of Pharmacy, Chosun University, Gwangju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Evidence for a potential role of metallothioneins in inflammatory bowel diseases. Mediators Inflamm 2009; 2009:729172. [PMID: 19727408 PMCID: PMC2734936 DOI: 10.1155/2009/729172] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 07/03/2009] [Indexed: 01/23/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic, relapsing, immune-mediated disorders of the intestine, including Crohn's disease and ulcerative colitis. Recent studies underscore the importance of the damaged epithelial barrier and the dysregulated innate immune system in their pathogenesis. Metallothioneins (MTs) are a family of small proteins with a high and conserved cysteine content that are rapidly upregulated in response to an inflammatory stimulus. Herein, we review the current knowledge regarding the expression and potential role of MTs in IBD. MTs exert a central position in zinc homeostasis, modulate the activation of the transcription factor nuclear factor (NF)-kappaB, and serve as antioxidants. In addition, MTs could be involved in IBD through their antiapoptotic effects or through specific immunomodulating extracellular effects. Reports on MT expression in IBD are contradictory but clearly demonstrate a deviant MT expression supporting the idea that these aberrations in IBD require further clarification.
Collapse
|
46
|
Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszeń M. Zinc supplementation attenuates ethanol- and acetaldehyde-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS) production and by influencing intracellular signaling. Biochem Pharmacol 2009; 78:301-14. [PMID: 19376089 DOI: 10.1016/j.bcp.2009.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS Zinc has been reported to prevent and reverse liver fibrosis in vivo; however, the mechanisms of its action are poorly understood. We therefore aimed to determine the antifibrotic potential of zinc. METHODS Assessed was the influence of preincubation of rat HSCs with 30 microM ZnCl2 on ethanol- (in the presence of 4-methyl pyrazole (4-MP)) or acetaldehyde-induced toxicity, apoptosis, migration, expression of smooth muscle alpha-actin (alpha-SMA) and procollagen I, release of reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-alpha), tumor growth factor-beta1 (TGF-beta1), metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMPs) production. Intracellular signals such as nuclear factor-kappaB (NFkappaB), C-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) induced by ethanol and its metabolite were also assessed. RESULTS 30 microM zinc protected HSCs against ethanol and acetaldehyde toxicity and inhibited their apoptosis. Zinc inhibited the production of ROS by HSCs treated with ethanol and acetaldehyde and inhibited their migration. Zinc also inhibited ethanol- and acetaldehyde-induced TGF-beta1 and TNF-alpha production. Zinc down-regulated ethanol- and acetaldehyde-induced production of TIMP-1 and TIMP-2 and decreased the activity of MMP-2. In ethanol- and acetaldehyde-induced HSCs, zinc inhibited the activation of the p38 MAPK as well as the JNK transduction pathways and phosphorylation of IkappaB and Smad 3. CONCLUSION The results indicated that zinc supplementation inhibited ethanol- and acetaldehyde-induced activation of HSCs on different levels, acting as an antioxidant and inhibitor of MAPK, TGF-beta and NFkappaB/IkappaB transduction signaling. The remarkable inhibition of several markers of HCS activation makes zinc a promising agent for antifibrotic combination therapies.
Collapse
Affiliation(s)
- Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Agnieszka Szuster-Ciesielska, Akademicka 19, 20-033 Lublin, Poland.
| | | | | | | |
Collapse
|
47
|
Martínez-Montemayor MM, Hill GM, Raney NE, Rilington VD, Tempelman RJ, Link JE, Wilkinson CP, Ramos AM, Ernst CW. Gene expression profiling in hepatic tissue of newly weaned pigs fed pharmacological zinc and phytase supplemented diets. BMC Genomics 2008; 9:421. [PMID: 18799003 PMCID: PMC2566318 DOI: 10.1186/1471-2164-9-421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 09/17/2008] [Indexed: 12/17/2022] Open
Abstract
Background Zinc (Zn) is an essential trace element. However, Zn bioavailability from commonly consumed plants may be reduced due to phytic acid. Zn supplementation has been used to treat diarrheal disease in children, and in the U.S. swine industry at pharmacological levels to promote growth and fecal consistency, but underlying mechanisms explaining these beneficial effects remain unknown. Moreover, adding supplemental phytase improves Zn bioavailability. Thus, we hypothesized that benefits of pharmacological Zn supplementation result from changes in gene expression that could be further affected by supplemental phytase. The goal of this study was to investigate the effects of feeding newly weaned pigs dietary Zn (150, 1,000, or 2,000 mg Zn/kg) as Zn oxide with or without phytase [500 phytase units (FTU)/kg] for 14 d on hepatic gene expression. Liver RNA from pigs fed 150, 1,000, or 2,000 mg Zn/kg, or 1,000 mg Zn/kg with phytase (n = 4 per treatment) was reverse transcribed and examined using the differential display reverse transcription polymerase chain reaction technique. Liver RNA from pigs fed 150 or 2,000 mg Zn/kg (n = 4 per treatment) was also evaluated using a 70-mer oligonucleotide microarray. Results Expressed sequence tags for 61 putatively differentially expressed transcripts were cloned and sequenced. In addition, interrogation of a 13,297 element oligonucleotide microarray revealed 650 annotated transcripts (FDR ≤ 0.05) affected by pharmacological Zn supplementation. Seven transcripts exhibiting differential expression in pigs fed pharmacological Zn with sequence similarities to genes encoding GLO1, PRDX4, ACY1, ORM1, CPB2, GSTM4, and HSP70.2 were selected for confirmation. Relative hepatic GLO1 (P < 0.0007), PRDX4 (P < 0.009) and ACY1 (P < 0.01) mRNA abundances were confirmed to be greater in pigs fed 1,000 (n = 8) and 2,000 (n = 8) mg Zn/kg than in pigs fed 150 (n = 7) mg Zn/kg. Relative hepatic HSP70.2 (P < 0.002) mRNA abundance was confirmed to be lower in pigs fed 2,000 mg Zn/kg than in pigs fed 150 or 1,000 mg Zn/kg. Conclusion Results suggest that feeding pharmacological Zn (1,000 or 2,000 mg Zn/kg) affects genes involved in reducing oxidative stress and in amino acid metabolism, which are essential for cell detoxification and proper cell function.
Collapse
|
48
|
Alterations in the content of metal elements and fatty acids in hepatic ischaemia-reperfusion: induction of apoptotic and necrotic cell death. Dig Dis Sci 2008; 53:1325-33. [PMID: 17934863 DOI: 10.1007/s10620-007-0001-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/21/2007] [Indexed: 12/09/2022]
Abstract
Ischaemia and reperfusion are related to oxidative stress, which alters with the redox-homeostasis of the liver cells. Our aim was to reveal the correlations between changes of metal element and fatty acid concentration (two main components of redox-balance) and apoptotic and necrotic processes of hepatic ischaemia-reperfusion. Wistar rats were divided into three groups: control, sham-operated and reperfusion. Hepatic ischaemia was induced for 45 min in the left lateral, left medial and right medial lobes followed by 24 h of reperfusion. Global redox parameters and glutathione peroxidase and superoxide dismutase activity were detected by luminometry and spectrophotometry. Routine laboratory measurements, fatty acid composition (with gas chromatography) as well as metal ion concentration of liver (with ICP-OES) were determined. Metallothionein activity was measured by atomic absorption spectrometry. Immunohistochemical and histological examinations were carried out to investigate apoptotic and necrotic changes in the liver. During reperfusion, global antioxidant parameters decreased and superoxide dismutase level of the liver was significantly lower than in the sham-operated group. Changes in the metal element concentration are essential for cellular biochemical pathways, and significant correlations were found between decrease in Cu and Zn content and decreased superoxide dismutase activity. Necrotic lesions along with increased number of apoptotic cells were found in the liver after 24 h of reperfusion. Alterations in the metal element and fatty acid content was found in the liver tissue during 24 h of ischaemia-reperfusion along with increase in the number of apoptotic cells and significant disturbance of the antioxidant balance. Study of the metal element content of the liver during hepatic ischaemia-reperfusion may provide new supportive strategies for liver surgery and transplantation.
Collapse
|
49
|
Blázovics A, Sárdi E, Szentmihályi K, Váli L, Takács-Hájos M, Stefanovits-Bányai E. Extreme consumption of Beta vulgaris var. rubra can cause metal ion accumulation in the liver. ACTA BIOLOGICA HUNGARICA 2007; 58:281-6. [PMID: 17899785 DOI: 10.1556/abiol.58.2007.3.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Redox homeostasis can be considered as the cumulative action of all free radical reactions and antioxidant defences in different tissues, which provide suitable conditions for life. Transition metal ions are ubiquitous in biological systems. Beta vulgaris var. rubra (table beet root) contains several bioactive agents (e.g. betain, betanin, vulgaxanthine, polyphenols, folic acid) and different metal elements (e.g. Al, B, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Zn), which act on the various physiological routes. Therefore we studied the effect of this metal rich vegetable on element content of the liver in healthy rats. Male Wistar rats (n = 7) (200 +/- 20 g) were treated with lyophilised powder of table beet root (2 g/kg b.w.) added into the rat chow for 10 days. Five healthy animals served as control. We found significant accumulation of Cu, Fe, Mg, Mn, Zn and P in the liver, which was proved by ICP-AES measurements. We suppose that the extreme consumption of table beet root can cause several disturbances not only in cases of healthy patients but, e.g. in patients suffering with metal accumulating diseases, e.g. porphyria cutanea tarda, haemochromatosis or Wilson disease-although moderate consumption may be beneficial in iron-deficiency anaemia and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Anna Blázovics
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
50
|
Stamoulis I, Kouraklis G, Theocharis S. Zinc and the liver: an active interaction. Dig Dis Sci 2007; 52:1595-612. [PMID: 17415640 DOI: 10.1007/s10620-006-9462-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/19/2006] [Indexed: 02/06/2023]
Abstract
Zinc is an essential trace element, exerting important antioxidant, anti-inflammatory, and antiapoptotic effects. It affects growth and development and participates in processes such as aging and cancer induction. The liver is important for the regulation of zinc homeostasis, while zinc is necessary for proper liver function. Decreased zinc levels have been implicated in both acute and chronic liver disease states, and zinc deficiency has been implicated in the pathogenesis of liver diseases. Zinc supplementation offers protection in experimental animal models of acute and chronic liver injury, but these hepatoprotective properties have not been fully elucidated. In the present review, data on zinc homeostasis, its implication in the pathogenesis of liver diseases, and its effect on acute and chronic liver diseases are presented. It is concluded that zinc could protect against liver diseases, although up to now the underlying pathophysiology of zinc and liver interactions have not been defined.
Collapse
Affiliation(s)
- Ioannis Stamoulis
- Department of Forensic Medicine and Toxicology, University of Athens, Medical School, Goudi, Athens, Greece
| | | | | |
Collapse
|