1
|
Bouteiller P, Biré R, Foss AJ, Guérin T, Lance E. Analysis of total microcystins by Lemieux oxidation and liquid chromatography-mass spectrometry in fish and mussels tissues: Optimization and comparison of protocols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175339. [PMID: 39117191 DOI: 10.1016/j.scitotenv.2024.175339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microcystins (MCs) can be detected in various matrices in two forms: a freely extractable fraction and a total (free and covalently protein-bound) fraction. Although the majority of MCs analyses are limited to the free fraction, they do not allow the analysis of all MCs variants or protein-bound forms. Other methods, known as total MCs analysis methods, enable simultaneous analysis of all MCs variants, as well as bound forms, which may be a major form of toxin accumulation in organisms. Among these techniques, the chemical oxidation method (e.g. Lemieux) allows the detection of total forms of MC (and nodularins) by oxidizing the common part to all MC and nodularins, and analyzing the resultant MMPB product (2-methyl-3-methoxy-4-phenylbutyric acid). However, the execution of this method in the context of health monitoring is challenging due to the variability of the protocols, the recoveries obtained with these protocols, and the important matrix effects associated with the method. The objectives of this study were i) to optimize an existing protocol of chemical oxidation "Lemieux1" on fresh fish fillet matrices, ii) to compare two existing protocols ("Lemieux1" and "Lemieux2"), and iii) apply Lemieux oxidation to fish fillets and livers naturally contaminated with MCs-producing cyanobacteria and to freshwater mussels contaminated with MCs in laboratories. Optimization of the "Lemieux1" protocol, in particular in the oxidation and SPE (solid phase extraction) steps improved the method's yields on the fresh fish fillet matrix (from <5 % to around 40 %). Moreover, several quantification methods have been compared through various calibration techniques (solvent calibration curve, matrix-matched calibration curve, oxidized MC-LR calibration curve and also by testing the addition of d3-MMPB as an internal standard). Comparison with the "Lemieux2" protocol showed the best results on the same matrix, with yields of around 65 %. MMPB was analyzed using this "Lemieux 2" protocol, in livers of carps sampled during an episode of cyanobacteria proliferation, at concentrations ranging from 17.9 to 27.5 μg/kg MMPB and at concentrations ranging from 50 to 2890 μg/kg MMPB in freshwater mussels laboratory contaminated to MCs.
Collapse
Affiliation(s)
- Pierre Bouteiller
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687 Reims Cedex, France; ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Ronel Biré
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL 32177, USA
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France
| | - Emilie Lance
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687 Reims Cedex, France.
| |
Collapse
|
2
|
Turner AD, Beach DG, Foss A, Samdal IA, Løvberg KLE, Waack J, Edwards C, Lawton LA, Dean KJ, Maskrey BH, Lewis AM. A Feasibility Study into the Production of a Mussel Matrix Reference Material for the Cyanobacterial Toxins Microcystins and Nodularins. Toxins (Basel) 2022; 15:27. [PMID: 36668847 PMCID: PMC9867187 DOI: 10.3390/toxins15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Microcystins and nodularins, produced naturally by certain species of cyanobacteria, have been found to accumulate in aquatic foodstuffs such as fish and shellfish, resulting in a risk to the health of the seafood consumer. Monitoring of toxins in such organisms for risk management purposes requires the availability of certified matrix reference materials to aid method development, validation and routine quality assurance. This study consequently targeted the preparation of a mussel tissue reference material incurred with a range of microcystin analogues and nodularins. Nine targeted analogues were incorporated into the material as confirmed through liquid chromatography with tandem mass spectrometry (LC-MS/MS), with an additional 15 analogues detected using LC coupled to non-targeted high resolution mass spectrometry (LC-HRMS). Toxins in the reference material and additional source tissues were quantified using LC-MS/MS, two different enzyme-linked immunosorbent assay (ELISA) methods and with an oxidative-cleavage method quantifying 3-methoxy-2-methyl-4-phenylbutyric acid (MMPB). Correlations between the concentrations quantified using the different methods were variable, likely relating to differences in assay cross-reactivities and differences in the abilities of each method to detect bound toxins. A consensus concentration of total soluble toxins determined from the four independent test methods was 2425 ± 575 µg/kg wet weight. A mean 43 ± 9% of bound toxins were present in addition to the freely extractable soluble form (57 ± 9%). The reference material produced was homogenous and stable when stored in the freezer for six months without any post-production stabilization applied. Consequently, a cyanotoxin shellfish reference material has been produced which demonstrates the feasibility of developing certified seafood matrix reference materials for a large range of cyanotoxins and could provide a valuable future resource for cyanotoxin risk monitoring, management and mitigation.
Collapse
Affiliation(s)
- Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | - Amanda Foss
- Greenwater Laboratories, 205 Zeagler Drive, Suite 302, Palatka, FL 32177, USA
| | | | | | - Julia Waack
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Christine Edwards
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Linda A. Lawton
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Karl J. Dean
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Benjamin H. Maskrey
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Adam M. Lewis
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| |
Collapse
|
3
|
Bouteiller P, Lance E, Guérin T, Biré R. Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review. Toxins (Basel) 2022; 14:toxins14080550. [PMID: 36006212 PMCID: PMC9416067 DOI: 10.3390/toxins14080550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microcystins (MCs) are cyclic heptapeptidic toxins produced by many cyanobacteria. Microcystins can be accumulated in various matrices in two forms: a free cellular fraction and a covalently protein-bound form. To detect and quantify the concentration of microcystins, a panel of techniques on various matrices (water, sediments, and animal tissues) is available. The analysis of MCs can concern the free or the total (free plus covalently bound) fractions. Free-form analyses of MCs are the most common and easiest to detect, whereas total-form analyses are much less frequent and more complex to achieve. The objective of this review is to summarize the different methods of extraction and analysis that have been developed for total forms. Four extraction methods were identified: MMPB (2-methyl-3-methoxy-4-phenylbutyric acid) method, deconjugation at basic pH, ozonolysis, and laser irradiation desorption. The study of the bibliography on the methods of extraction and analysis of the total forms of MCs showed that the reference method for the subject remains the MMPB method even if alternative methods and, in particular, deconjugation at basic pH, showed results encouraging the continuation of the methodological development on different matrices and on naturally-contaminated samples.
Collapse
Affiliation(s)
- Pierre Bouteiller
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| | - Emilie Lance
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- UMR MNHN/CNRS MCAM, Muséum National d’Histoire Naturelle, F-75005 Paris, France
- Correspondence:
| | - Thierry Guérin
- Strategy and Programs Department, ANSES, F-94701 Maisons-Alfort, France
| | - Ronel Biré
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| |
Collapse
|
4
|
Threshold values on environmental chemical contaminants in seafood in the European Economic Area. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Shartau RB, Snyman HN, Turcotte L, McCarron P, Bradshaw JC, Johnson SC. Acute microcystin exposure induces reversible histopathological changes in Chinook Salmon (Oncorhynchus tshawytscha) and Atlantic Salmon (Salmo salar). JOURNAL OF FISH DISEASES 2022; 45:729-742. [PMID: 35235682 DOI: 10.1111/jfd.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Atlantic Salmon (Salmo salar) and Chinook Salmon (Oncorhynchus tshawytscha) develop a severe liver disease called net-pen liver disease (NPLD), which is characterized by hepatic lesions that include megalocytosis and loss of gross liver structure. Based on studies where salmonids have been exposed to microcystin (MC) via intraperitoneal injection, NPLD is believed to be caused by MC exposure, a hepatotoxin produced by cyanobacteria. Despite the link between MC and NPLD, it remains uncertain if environmentally relevant MC exposure is responsible for NPLD. To determine if we could produce histopathology consistent with NPLD, we compared the response of Atlantic and Chinook Salmon sub-lethal MC exposure. Salmon were orally gavaged with saline or MC containing algal paste and sampled over 2 weeks post-exposure. Liver lesions appeared by 6 h but were resolved 2-weeks post-exposure; histopathological changes observed in other tissues were not as widespread, nor was their severity as great as those in the liver. There was no evidence for NPLD due to the absence of hepatic megalocytosis. These results indicate that the development of NPLD is not due to acute MC exposure but may be associated with higher MC concentration occurring in food, long-term exposure through drinking of contaminated seawater and/or interactions with other marine toxins.
Collapse
Affiliation(s)
- Ryan B Shartau
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Heindrich N Snyman
- Animal Health Laboratory, University of Guelph, Kemptville, Ontario, Canada
| | - Lenora Turcotte
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Julia C Bradshaw
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| |
Collapse
|
6
|
Camacho-Muñoz D, Waack J, Turner AD, Lewis AM, Lawton LA, Edwards C. Rapid uptake and slow depuration: Health risks following cyanotoxin accumulation in mussels? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116400. [PMID: 33421845 PMCID: PMC7859834 DOI: 10.1016/j.envpol.2020.116400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 12/25/2020] [Indexed: 05/04/2023]
Abstract
Freshwater cyanobacteria produce highly toxic secondary metabolites, which can be transported downstream by rivers and waterways into the sea. Estuarine and coastal aquaculture sites exposed to toxic cyanobacteria raise concerns that shellfish may accumulate and transfer cyanotoxins in the food web. This study aims to describe the competitive pattern of uptake and depuration of a wide range of microcystins (MC-LR, MC-LF, MC-LW, MC-LY, [Asp3]-MC-LR/[Dha7]-MC-LR, MC-HilR) and nodularins (NOD cyclic and linear) within the common blue mussel Mytilus edulis exposed to a combined culture of Microcystis aeruginosa and Nodularia spumigena into the coastal environment. Different distribution profiles of MCs/NODs in the experimental system were observed. The majority of MCs/NODs were present intracellularly which is representative of healthy cyanobacterial cultures, with MC-LR and NOD the most abundant analogues. Higher removal rate was observed for NOD (≈96%) compared to MCs (≈50%) from the water phase. Accumulation of toxins in M. edulis was fast, reaching up to 3.4 μg/g shellfish tissue four days after the end of the 3-days exposure period, with NOD (1.72 μg/g) and MC-LR (0.74 μg/g) as the dominant toxins, followed by MC-LF (0.35 μg/g) and MC-LW (0.31 μg/g). Following the end of the exposure period depuration was incomplete after 27 days (0.49 μg/g of MCs/NODs). MCs/NODs were also present in faecal material and extrapallial fluid after 24 h of exposure with MCs the main contributors to the total cyanotoxin load in faecal material and NOD in the extrapallial fluid. Maximum concentration of MCs/NODs accumulated in a typical portion of mussels (20 mussels, ≈4 g each) was beyond greater the acute, seasonal and lifetime tolerable daily intake. Even after 27 days of depuration, consuming mussels harvested during even short term harmful algae blooms in close proximity to shellfish beds might carry a high health risk, highlighting the need for testing.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Julia Waack
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK; Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| |
Collapse
|
7
|
Srivastava BD, Srivastava M, Srivastav SK, Urata M, Suzuki N, Srivastav AK. Ameliorative effects of jamun seed and orange peel extracts on microcystin LR induced alterations in calcitonin cells and parathyroid gland of rats. Microsc Res Tech 2020; 84:571-578. [PMID: 33135864 DOI: 10.1002/jemt.23615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/07/2020] [Accepted: 09/19/2020] [Indexed: 11/09/2022]
Abstract
This study investigated changes in calcitonin cells (C-cells) and parathyroid glands (PTG) induced by microcystin LR (MCLR) exposure to rats and evaluated ameliorative effects of jamun (Syzygium cumini) seed (JSE) and orange (Citrus sinensis) peel (OPE) extracts. Wistar rats were treated as-Group A (control), Group B (MCLR), Group C (MCLR + JSE), Group D (MCLT + OPE), Group E (OPE) and Group F (JSE). Microcystin dose was (10 μg/kg body wt/day whereas OPE and JSE dose was 200 mg/kg body wt/day. Thyroid and PTG were fixed on 15 and 30 days following the treatment. C-cells of treated rats for 15 days with MCLR; MCLR + JSE and MCLR + OPE exhibit degranulation, mitochondrial swelling and prominent RER. In MCLR treated rats few cells completely lack secretory granules. After 30 days MCLR treatment accumulation of secretory granules and degeneration were noticed in C-cells. C-cell nuclear volume (NV) of MCLR, MCLR + JSE and MCLT + OPE treated rats show an increase. In MCLR, MCLR + JSE and MCLR + OPE treated rats PTG exhibit hyperchromatic nuclei, nuclear elongation and increased NV after 15 days. After 30 days MCLR treatment nuclei of PTG become more hyperchromatic, more elongated, show degeneration of nuclei and increase in NV. NV is increased in Group C and Group D. PTG remain unaltered 30 days following treatment with OPE and JSE. Microcystin LR provoke physiological effects on the blood calcium and alterations in C cells and PTG, which cause serious threat to organism. These changes can be protected by JSE and OPE.
Collapse
Affiliation(s)
| | - Manish Srivastava
- Department of Chemistry, Digvijai Nath P.G. College, Gorakhpur, Uttar Pradesh, India
| | | | - Makoto Urata
- Institute of Noto SATOUMI Education Research, Noto-cho, Ishikawa, Japan.,Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa, Japan
| | - Ajai Kumar Srivastav
- Department of Zoology, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
8
|
Free or Protein-Bound Microcystin Accumulation by Freshwater Bivalves as a Tool to Evaluate Water Contamination by Microcystin-Producing Cyanobacteria? APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyanobacterial proliferations display rapid spatiotemporal variations that can interfere in the assessment of water contamination levels by microcystins (MC), and make necessary the use of integrative tools. This study evaluates the pertinence of bivalves Anodonta anatina and Dreissena polymorpha as bioindicators of the presence of MC-producing cyanobacteria in water. Ingested MC accumulates into two fractions in bivalve tissues—the cellular free and the protein-bound fractions—both forming the total MC fraction. Mussels were exposed to the cyanobacteria Planktothrix agardhii at densities producing an equivalent of 1, 10 and 100 µg/L of intracellular MC, with the evaluation of: (i) cyanobacterial cells and MC daily intake by mussels, (ii) free and total MC kinetics in whole individuals (using all the tissues) or only in the digestive gland, during and after the exposure, (iii) bioaccumulation factors. For each species, the kinetics of the two accumulation fractions were compared to evaluate which one best reflect levels and dynamics of MC-producing cyanobacteria in water. Results showed that the dynamic of free MC in bivalve tissues better highlight the dynamic of intracellular MC in water. Using whole D. polymorpha may be appropriate to reveal and discriminate the water contamination levels above densities of cyanobacteria producing 1 µg MC/L. Digestive glands of A. anatina appeared more sensitive to reveal low environmental concentration, but without direct correlation with levels of water contamination. Further experimentations in situ are necessary to confirm those results in order to propose the use of freshwater bivalves for a biomonitoring of MC-producing cyanobacteria in fresh waters.
Collapse
|
9
|
Carella F, Miele C, De Vico G. Nodular-like growth and axial thickening in gorgonians are a defensive response to endolithic cyanobacteria, involving amyloid deposition. DISEASES OF AQUATIC ORGANISMS 2020; 138:155-169. [PMID: 32162614 DOI: 10.3354/dao03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An accurate approach to coral disease study is critical for understanding the global decline of coral populations. Such an approach should involve the proper use of medical concepts and terminology to avoid confusion and promote clarity in the coral disease literature. Inflammatory and neoplastic disorders have been frequently confused in corals. They are both reported as 'growth anomalies' because of their possible gross similarity, but in fact they are very different types of lesions and pathologic phenomena. In this work, we assessed the distribution and prevalence of growth anomalies, externally visible as nodular-like lesions, in the soft corals Eunicella cavolinii and E. singularis in 2008-2009 in 3 different areas along the Campanian coastline of Italy. Histopathology revealed them as chronic inflammatory lesions, resembling chronic inflammatory lesions of vertebrates, encapsulating an unidentified pathogen. Congo red and Masson Fontana histochemistry highlighted an amoebocyte infiltration with the presence of new apposition of melanin coupled with amyloid sheets intended as part of the defensive response, as reported in other invertebrates. A parallel molecular analysis of 16S rRNA of the lesions suggested that the causative agent is an endolithic cyanobacterium belonging to the order Nostocales. This is the first study assessing the presence of amyloid fibrils in corals.
Collapse
Affiliation(s)
- Francesca Carella
- Laboratory of Marine Pathology, Department of Biology, University of Naples Federico II, 80134 Naples, Italy
| | | | | |
Collapse
|
10
|
Díez-Quijada L, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem Toxicol 2018; 125:106-132. [PMID: 30597222 DOI: 10.1016/j.fct.2018.12.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
Abstract
The occurrence of cyanobacterial toxins is being increasingly reported. This is a reason for concern as they can induce toxic effects both in humans and in the environment. Among them, microcystins (MCs) are the best described and most diverse group of cyanobacterial toxins, and MC-LR and MC-RR are the congeners most widely investigated. However, the number of MC variants has also increased in recent years. Some of these minority variants have been shown to have a different toxicokinetic and toxicodynamic profile, but research focused on them is still limited. Moreover, in some water bodies these minority variants can be the predominant toxins. Nonetheless, MC-LR is the only one used for risk evaluation purposes at present. In order to contribute to more realistic risk assessments in the future, the aim of this review was to compile the available information in the scientific literature regarding the occurrence and concentration of minority MCs in water and food samples, and their toxic effects. The data retrieved demonstrate the congener-specific toxicity of MCs, as well as many data gaps in relation to analytical or mechanistic aspects, among others. Therefore, further research is needed to improve the toxicological characterization of these toxins and the exposure scenarios.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| |
Collapse
|
11
|
Brown A, Foss A, Miller MA, Gibson Q. Detection of cyanotoxins (microcystins/nodularins) in livers from estuarine and coastal bottlenose dolphins (Tursiops truncatus) from Northeast Florida. HARMFUL ALGAE 2018; 76:22-34. [PMID: 29887202 DOI: 10.1016/j.hal.2018.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 05/21/2023]
Abstract
Microcystins/Nodularins (MCs/NODs) are potent hepatotoxic cyanotoxins produced by harmful algal blooms (HABs) that occur frequently in the upper basin of the St. Johns River (SJR), Jacksonville, FL, USA. Areas downstream of bloom locations provide critical habitat for an estuarine population of bottlenose dolphins (Tursiops truncatus). Since 2010, approximately 30 of these dolphins have stranded and died within this impaired watershed; the cause of death was inconclusive for a majority of these individuals. For the current study, environmental exposure to MCs/NODs was investigated as a potential cause of dolphin mortality. Stranded dolphins from 2013 to 2017 were categorized into estuarine (n = 17) and coastal (n = 10) populations. Because estuarine dolphins inhabit areas with frequent or recurring cyanoblooms, they were considered as a comparatively high-risk group for cyanotoxin exposure in relation to coastal animals. All available liver samples from estuarine dolphins were tested regardless of stranding date, and samples from coastal individuals that stranded outside of the known cyanotoxin bloom season were assessed as controls. The MMPB (2-methyl-3-methoxy-4-phenylbutiric acid) technique was used to determine total (bound and free) concentrations of MCs/NODS in liver tissues. Free MCs/NODs extractions were conducted and analyzed using ELISA and LC-MS/MS on MMPB-positive samples to compare test results. MMPB testing resulted in low-level total MCs/NODs detection in some specimens. The Adda ELISA produced high test values that were not supported by concurrent LC-MS/MS analyses, indicative of false positives. Our results indicate that both estuarine and coastal dolphins are exposed to MCs/NODs, with potential toxic and immune health impacts.
Collapse
Affiliation(s)
- Amber Brown
- University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, FL 32224, USA.
| | - Amanda Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL 32177, USA
| | - Melissa A Miller
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, Office of Spill Prevention and Response, Santa Cruz, CA, USA; Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Quincy Gibson
- University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, FL 32224, USA
| |
Collapse
|
12
|
Min BH, Ravikumar Y, Lee DH, Choi KS, Kim BM, Rhee JS. Age-dependent antioxidant responses to the bioconcentration of microcystin-LR in the mysid crustacean, Neomysis awatschensis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:284-292. [PMID: 28947316 DOI: 10.1016/j.envpol.2017.09.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
Microcystins (MCs) are naturally occurring algal toxins in the aquatic environment and pose a serious threat to the ecosystem. In general, aquatic populations are structured by organisms of different ages, with varying degrees of biochemical and physiological responses. In this study, juvenile and adult marine mysids (Neomysis awatschensis) were exposed to MC-Leucine Arginine (MC-LR) (0.1, 1, and 10 μg L-1) for 7 days, and the bioconcentration dynamics and responses of antioxidant defense system were measured during the exposure and additional depuration periods (7 days). MC-LR bioconcentrated in a dose-dependent manner, from a threshold concentration of 1 μg L-1 in both stages, and the levels reduced gradually during the depuration phase. Bioconcentration patterns of MC-LR were highly age-specific, as juvenile mysids showed peaks during the exposure period, whereas adults exhibited a peak on the first day of depuration. After exposure to 10 μg L-1 concentration, elevated levels of malondialdehyde (MDA) and glutathione (GSH) were observed during the late (days 5 and 7) exposure and early (days 1 and 3) depuration periods in juvenile mysids, while adult mysids showed a peak on day 7 of the exposure period. Age-specific responses were also observed in the enzymatic activities of glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR). Juvenile mysids showed a significant elevation in all enzymatic activities during the exposure and/or depuration phase upon exposure to 10 μg L-1 MC-LR, but only CAT and SOD enzymes showed significant changes during the exposure and/or depuration periods in adults. Overall, our results indicate the bioconcentration potential of MC-LR and its threshold in the marine mysid, in addition to age-specific MC-LR dynamics and subsequent biochemical responses.
Collapse
Affiliation(s)
- Byung-Hwa Min
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Yuvaraj Ravikumar
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Do-Hee Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Kwang Seek Choi
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea; Institute of Green Environmental Research Center, 169, Gaetbeol-ro, Yeonsugu, Incheon 21999, South Korea.
| |
Collapse
|
13
|
Pham TL, Shimizu K, Dao TS, Motoo U. First report on free and covalently bound microcystins in fish and bivalves from Vietnam: Assessment of risks to humans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2953-2957. [PMID: 28493476 DOI: 10.1002/etc.3858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/09/2017] [Accepted: 05/10/2017] [Indexed: 05/21/2023]
Abstract
The free and covalently bound microcystins (MCs) in 3 fish and 2 bivalves from the Dau Tieng Reservoir in Vietnam were investigated for the first time in the present study. The results showed that all species were contaminated with MCs. Our findings indicate that eating the muscle of fish from the Dau Tieng Reservoir is safe but that eating the bivalves is not safe during toxic cyanobacterial bloom episodes. Environ Toxicol Chem 2017;36:2953-2957. © 2017 SETAC.
Collapse
Affiliation(s)
- Thanh-Luu Pham
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Vietnam Academy of Science and Technology (VAST), Institute of Tropical Biology, Ho Chi Minh City, Vietnam
| | | | - Thanh-Son Dao
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- University of Technology, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Utsumi Motoo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Analysis of microcystin-LR and nodularin using triple quad liquid chromatography-tandem mass spectrometry and histopathology in experimental fish. Toxicon 2017; 138:82-88. [PMID: 28803056 DOI: 10.1016/j.toxicon.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/24/2017] [Accepted: 08/06/2017] [Indexed: 11/21/2022]
Abstract
Microcystins (MCs) are hepatotoxic cyanobacterial metabolites produced sporadically in aquatic environments under favorable environmental conditions. Affinity of these toxins to covalently bind with protein phosphatases poses a challenge in their detection. Lemieux oxidation to release 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB), a common moiety to all MCs congeners, has been used in detection of these compounds, however a lack of sensitivity has limited the usefulness of the method. In this study, modifications of the oxidation and solid phase extraction procedures, combined with a sensitive LC/MS/MS (liquid chromatography/mass spectrometry) detection, have resulted in 25 ng/g method detection limits in both liver and plasma samples. Samples harvested from six fingerling channel catfish (Ictalurus punctatus) dosed intraperitoneally with a sublethal MC-LR dose of 250 μg/kg were analyzed, and microcystin concentrations ranging from 370 to 670 ng/g in plasma and 566-1030 ng/g in liver were detected. Similarly, 250 μg/kg nodularin-dosed channel catfish fish were found to contain 835-1520 ng/g in plasma and 933-1140 ng/g in liver. Detection of the toxins in serum and liver combined with the presence of histopathological lesions consistent with these hepatocellular toxin in exposed fish and no positive findings in the control fish demonstrates the usefulness of this analytical procedure for the diagnosis of suspected algal toxicity cases.
Collapse
|
15
|
Kim YD, Kim WJ, Shin YK, Lee DH, Kim YJ, Kim JK, Rhee JS. Microcystin-LR bioconcentration induces antioxidant responses in the digestive gland of two marine bivalves Crassostrea gigas and Mytilus edulis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:119-129. [PMID: 28500903 DOI: 10.1016/j.aquatox.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
Microcystins (MCs) are a major group of potent cyanobacterial toxins found in freshwater and even brackish waterbodies. To understand the putative correlation between bioconcentration of MCs and antioxidant responses of the digestive gland of bivalves, Pacific oyster Crassostrea gigas and blue mussel Mytilus edulis were exposed to different concentrations (0.1, 1, 10 and 20μgL-1) of MC-Leucine-Arginine (LR) for seven days. MC-LR bioconcentrated in the digestive glands of both bivalves during exposure period. The levels were slightly reduced when the bivalves were exposed to seawater during depuration (7days), while approximately 0.1μgL-1 of MC-LR was observed in the 10 and 20μgL-1 exposed bivalves at the end of depuration. Intracellular malondialdehyde (MDA) and glutathione (GSH) levels were significantly elevated in the 10 and 20μgL-1 exposed bivalves at 7day, and the levels were maintained during depuration in both bivalves. Overall, significant higher levels of enzymatic activities of antioxidant defense systems such as glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed in the 10 and 20μgL-1 exposed bivalves. Interestingly, most of higher levels of Pacific oyster were detected at exposure period, while blue mussel showed higher levels at depuration phase, suggesting a species-specific sensitivity upon MC-LR. These patterns were correlated with the bioconcentration patterns of MC-LR as Pacific oyster was highly accumulated by MC-LR during exposure period, but blue mussel showed prolonged high levels of MC-LR for depuration phase. Our results will be useful to understand species-specific bioconcentration of MC-LR in bivalves and their effects on intracellular oxidative status via accumulation.
Collapse
Affiliation(s)
- Young Dae Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 46083, South Korea
| | - Won Jin Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 46083, South Korea
| | - Yun Kyung Shin
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 46083, South Korea
| | - Do-Hee Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Youn-Jung Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jang Kyun Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea; Institute of Green Environmental Research Center, 169, Gaetbeol-ro, Yeonsugu, Incheon 21999, South Korea.
| |
Collapse
|
16
|
Wu L, Wang S, Tao M, Xie P, Chen J. Quantitative analysis of glutathione and cysteine S-conjugates of microcystin-LR in the liver, kidney and muscle of common carp (Cyprinus carpio) in Lake Taihu. JOURNAL OF WATER AND HEALTH 2017; 15:300-307. [PMID: 28362311 DOI: 10.2166/wh.2016.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue distribution of microcystin (MC)-LR-GSH, MC-LR-Cys and MC-LR of omnivorous fish in Lake Taihu was investigated. MC-LR and MC-LR-Cys were detected in liver, kidney and muscle. The concentration of MC-LR in liver and kidney was 0.052 μg g-1 DW and 0.067 μg g-1 DW, respectively. MC-LR-Cys appeared to be an important metabolite with average contents of 1.104 μg g-1 DW and 0.724 μg g-1 DW in liver and kidney, and the MC-LR-Cys/MC-LR ratio in liver and kidney reaching as high as 21.4 and 10.8. High MC-LR-Cys/MC-LR ratio and a significant correlation between MC-LR-Cys and MC-LR concentration in liver, suggest that liver is more active in detoxification of MC-LR by formation of MC-LR-Cys for omnivorous fish. Furthermore, there might be a balance between the accumulation and depuration/metabolism of MC-LR-Cys in kidney. The MC-LR-Cys can be formed in kidney directly, or transported from liver or other tissues, while the MC-LR-Cys in kidney might be dissociated to MC-LR or excreted. Although MC-LR and its metabolites were scarcely detected in muscle, it is necessary to investigate the distribution of toxic metabolites in edible muscle.
Collapse
Affiliation(s)
- Laiyan Wu
- Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Songbo Wang
- Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Min Tao
- Life Sciences college of Neijiang Normal University, Neijiang 641000, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China E-mail:
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China E-mail:
| |
Collapse
|
17
|
Domínguez-Pérez D, Rodríguez AA, Osorio H, Azevedo J, Castañeda O, Vasconcelos V, Antunes A. Microcystin-LR Detected in a Low Molecular Weight Fraction from a Crude Extract of Zoanthus sociatus. Toxins (Basel) 2017; 9:E89. [PMID: 28257074 PMCID: PMC5371844 DOI: 10.3390/toxins9030089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Cnidarian constitutes a great source of bioactive compounds. However, research involving peptides from organisms belonging to the order Zoanthidea has received very little attention, contrasting to the numerous studies of the order Actiniaria, from which hundreds of toxic peptides and proteins have been reported. In this work, we performed a mass spectrometry analysis of a low molecular weight (LMW) fraction previously reported as lethal to mice. The low molecular weight (LMW) fraction was obtained by gel filtration of a Zoanthus sociatus (order Zoanthidea) crude extract with a Sephadex G-50, and then analyzed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry (MS) in positive ion reflector mode from m/z 700 to m/z 4000. Afterwards, some of the most intense and representative MS ions were fragmented by MS/MS with no significant results obtained by Protein Pilot protein identification software and the Mascot algorithm search. However, microcystin masses were detected by mass-matching against libraries of non-ribosomal peptide database (NORINE). Subsequent reversed-phase C18 HPLC (in isocratic elution mode) and mass spectrometry analyses corroborated the presence of the cyanotoxin Microcystin-LR (MC-LR). To the best of our knowledge, this finding constitutes the first report of MC-LR in Z. sociatus, and one of the few evidences of such cyanotoxin in cnidarians.
Collapse
Affiliation(s)
- Dany Domínguez-Pérez
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Armando Alexei Rodríguez
- Department of Experimental and Clinical Peptide Chemistry, Hanover Medical School (MHH), Feodor-Lynen-Straße 31, D-30625 Hannover, Germany.
| | - Hugo Osorio
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Joana Azevedo
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Olga Castañeda
- Faculty of Biology, University of La Habana, 25 St 455, CP 10400 La Habana, Cuba.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
18
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
19
|
Gibble CM, Peacock MB, Kudela RM. Evidence of freshwater algal toxins in marine shellfish: Implications for human and aquatic health. HARMFUL ALGAE 2016; 59:59-66. [PMID: 28073507 DOI: 10.1016/j.hal.2016.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
The occurrence of freshwater harmful algal bloom toxins impacting the coastal ocean is an emerging threat, and the potential for invertebrate prey items to concentrate toxin and cause harm to human and wildlife consumers is not yet fully recognized. We examined toxin uptake and release in marine mussels for both particulate and dissolved phases of the hepatotoxin microcystin, produced by the freshwater cyanobacterial genus Microcystis. We also extended our experimental investigation of particulate toxin to include oysters (Crassostrea sp.) grown commercially for aquaculture. California mussels (Mytilus californianus) and oysters were exposed to Microcystis and microcystin toxin for 24h at varying concentrations, and then were placed in constantly flowing seawater and sampled through time simulating riverine flushing events to the coastal ocean. Mussels exposed to particulate microcystin purged the toxin slowly, with toxin detectable for at least 8 weeks post-exposure and maximum toxin of 39.11ng/g after exposure to 26.65μg/L microcystins. Dissolved toxin was also taken up by California mussels, with maximum concentrations of 20.74ng/g after exposure to 7.74μg/L microcystin, but was purged more rapidly. Oysters also took up particulate toxin but purged it more quickly than mussels. Additionally, naturally occurring marine mussels collected from San Francisco Bay tested positive for high levels of microcystin toxin. These results suggest that ephemeral discharge of Microcystis or microcystin to estuaries and the coastal ocean accumulate in higher trophic levels for weeks to months following exposure.
Collapse
Affiliation(s)
- Corinne M Gibble
- Ocean Sciences Department, 1156 High Street, University of California, Santa Cruz, CA 95064, USA.
| | - Melissa B Peacock
- Ocean Sciences Department, 1156 High Street, University of California, Santa Cruz, CA 95064, USA; San Francisco Estuary Institute, 4911 Central Avenue, Richmond Ca 94804, USA; Native Environmental Science, Northwest Indian College, 2522 Kwina Rd, Bellingham, Wa, 98226, USA.
| | - Raphael M Kudela
- Ocean Sciences Department, 1156 High Street, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
20
|
Lance E, Desprat J, Holbech BF, Gérard C, Bormans M, Lawton LA, Edwards C, Wiegand C. Accumulation and detoxication responses of the gastropod Lymnaea stagnalis to single and combined exposures to natural (cyanobacteria) and anthropogenic (the herbicide RoundUp(®) Flash) stressors. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:116-24. [PMID: 27267390 DOI: 10.1016/j.aquatox.2016.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 05/21/2023]
Abstract
Freshwater gastropods are increasingly exposed to multiple stressors in the field such as the herbicide glyphosate in Roundup formulations and cyanobacterial blooms either producing or not producing microcystins (MCs), potentially leading to interacting effects. Here, the responses of Lymnaea stagnalis to a 21-day exposure to non-MC or MC-producing (33μgL(-1)) Planktothrix agardhii alone or in combination with the commercial formulation RoundUp(®) Flash at a concentration of 1μgL(-1) glyphosate, followed by 14days of depuration, were studied via i) accumulation of free and bound MCs in tissues, and ii) activities of anti-oxidant (catalase CAT) and biotransformation (glutathione-S-transferase GST) enzymes. During the intoxication, the cyanobacterial exposure induced an early increase of CAT activity, independently of the MC content, probably related to the production of secondary cyanobacterial metabolites. The GST activity was induced by RoundUp(®) Flash alone or in combination with non MC-producing cyanobacteria, but was inhibited by MC-producing cyanobacteria with or without RoundUp(®) Flash. Moreover, MC accumulation in L. stagnalis was 3.2 times increased when snails were concomitantly exposed to MC-producing cyanobacteria with RoundUp(®), suggesting interacting effects of MCs on biotransformation processes. The potent inhibition of detoxication systems by MCs and RoundUp(®) Flash was reversible during the depuration, during which CAT and GST activities were significantly higher in snails previously exposed to MC-producing cyanobacteria with or without RoundUp(®) Flash than in other conditions, probably related to the oxidative stress caused by accumulated MCs remaining in tissues.
Collapse
Affiliation(s)
- Emilie Lance
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; UMR-I 02 SEBIO, Bat 18, Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex, France.
| | - Julia Desprat
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; UMR 5023-LEHNA, Université Lyon 1, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Bâtiment Darwin C, F-69622 Villeurbanne Cedex France, France
| | - Bente Frost Holbech
- IDEAS Research Institute, School of Pharmacy & Life Sciences, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Claudia Gérard
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Myriam Bormans
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Linda A Lawton
- IDEAS Research Institute, School of Pharmacy & Life Sciences, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Christine Edwards
- IDEAS Research Institute, School of Pharmacy & Life Sciences, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Claudia Wiegand
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; University of Southern Denmark, Institute of Biology, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
21
|
Yuan J, Gu Z, Zheng Y, Zhang Y, Gao J, Chen S, Wang Z. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:8-18. [PMID: 27218425 DOI: 10.1016/j.aquatox.2016.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
MC-LR is one of major microcystin isoforms with potent hepatotoxicity. In the present study, we aim to: 1) explore the dynamics of MC-LR accumulation and elimination in different tissues of male red swamp crayfish Procambarus clarkii; 2) reveal the mechanisms underlying hepatic antioxidation and detoxification. In the semi-static toxicity tests under the water temperature of 25±2°C, P. clarkii were exposed to 0.1, 1, 10 and 100μg/L MC-LR for 7days for accumulation and subsequently relocated to freshwater for another 7days to depurate MC-LR. MC-LR was measured in the hepatopancreas, intestine, abdominal muscle and gill by HPLC. The enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST), content of glutathione (GSH), and transcripts of Mn-sod, cat, gpx1, Mu-gst, heat shock protein90 (hsp90), hsp70 and hsp60 in hepatopancreas were detected. The results showed that P. clarkii accumulated more MC-LR in intestine, and less in abdominal muscle and gill during accumulation period and eliminated the toxin more quickly in gill and abdominal muscle, and comparatively slowly in intestine during depuration period. The fast increase of SOD and CAT activities at early stage, subsequent decrease at later stage of accumulation period and then fast increase during depuration period were partially consistent with the transcriptional changes of their respective genes. GPx was activated by longer MC-LR exposure and gpx1 mRNA expression showed uncoordinated regulation pattern compared with its enzyme. Hsp genes were up-regulated when P. clarkii was exposed to MC-LR.
Collapse
Affiliation(s)
- Julin Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China.
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Pham TL, Shimizu K, Kanazawa A, Gao Y, Dao TS, Utsumi M. Microcystin accumulation and biochemical responses in the edible clam Corbiculaleana P. exposed to cyanobacterial crude extract. J Environ Sci (China) 2016; 44:120-130. [PMID: 27266308 DOI: 10.1016/j.jes.2015.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 06/06/2023]
Abstract
We investigated the accumulation and effects of cyanobacterial crude extract (CCE) containing microcystins (MCs) on the edible clam Corbiculaleana P. Toxic effects were evaluated through the activity of antioxidant and detoxification enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferases (GSTs) from gills, foot, mantle and remaining soft tissues. Clams were exposed to CCE containing 400μg MC-LReq/L for 10days and were then kept in toxin-free water for 5days. Clam accumulated MCs (up to 3.41±0.63μg/g dry weight (DW) of unbound MC and 0.31±0.013μg/g DW of covalently bound MC). Detoxification and antioxidant enzymes in different organs responded differently to CCE during the experiment. The activity of SOD, CAT, and GST in the gills and mantle increased in MC-treated clams. In contrast, CAT and GST activity was significantly inhibited in the foot and mostly only slightly changed in the remaining tissues. The responses of biotransformation, antioxidant enzyme activity to CCE and the fast elimination of MCs during depuration help to explain how the clam can survive for long periods (over a week) during the decay of toxic cyanobacterial blooms in nature.
Collapse
Affiliation(s)
- Thanh-Luu Pham
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Vietnam Academy of Science and Technology (VAST), Institute of Tropical Biology, 85 Tran Quoc Toan St., Dist. 3, Ho Chi Minh City, Viet Nam.
| | - Kazuya Shimizu
- Faculty of Life Sciences, Toyo University, Ora-gun, Gunma 374-0193, Japan
| | - Ayako Kanazawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yu Gao
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao 266590, China
| | - Thanh-Son Dao
- Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Viet Nam
| | - Motoo Utsumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
23
|
Sabatini SE, Brena BM, Pirez M, de Molina MDCR, Luquet CM. Oxidative effects and toxin bioaccumulation after dietary microcystin intoxication in the hepatopancreas of the crab Neohelice (Chasmagnathus) granulata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:136-141. [PMID: 26070043 DOI: 10.1016/j.ecoenv.2015.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
We studied the accumulation and depuration of microcystin-LR (MCLR) in the hepatopancreas of the crab Neohelice granulata fed twice weekly with either non toxic or MCLR-producing Microcystis aeruginosa (strain NPDC1 or NPJB, respectively) during seven weeks. We also analyzed MCLR effects on the oxidative stress- and detoxification-related variables, superoxide dismutase and glutathione-S-transferase activities, and the levels of reduced glutathione and lipid peroxidation (as thiobarbituric acid reactive substances, TBARS). Hepatopancreas MCLR content slightly increased during the first three weeks, up to 8.81±1.84ngg(-1) wet tissue mass (WTM) and then started to decrease to a minimum of 1.57±0.74ngg(-1) WTM at the seventh week (p<0.05 with respect to that in the first week). TBARS levels were about 55% higher in treated than in control N. granulata (p<0.001 and p<0.05) during the first three weeks of the experimental period. GSH content became 50% lower than in control individuals (p<0.01) during weeks 6 and 7. SOD activity was increased by about 2-fold (p<0.05 or p<0.001) from week 3 to 7 in treated crabs with respect to control ones, while GST activity was about 70% higher in treated than in control crabs from week 4 to week 7 (p<0.05). Our data suggest that in the hepatopancreas of N. granulata MCLR accumulation and oxidative damage are limited and reversed by detoxification-excretion and antioxidant mechanisms. The activation of these defensive mechanisms becomes evident at 3-4 weeks after the start of the intoxication.
Collapse
Affiliation(s)
- Sebastián E Sabatini
- IQUIBICEN-Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2° Pabellón, 4° piso, Ciudad Universitaria, (CP 1428) Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2° Pabellón, 4° piso, Ciudad Universitaria, (1428) Buenos Aires, Argentina.
| | - Beatríz M Brena
- Departamento de Biociencias, Cátedras de Bioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - Macarena Pirez
- Departamento de Biociencias, Cátedras de Bioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - María Del Carmen Ríos de Molina
- IQUIBICEN-Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2° Pabellón, 4° piso, Ciudad Universitaria, (CP 1428) Buenos Aires, Argentina.
| | - Carlos M Luquet
- LEA, INIBIOMA-CONICET-Universidad Nacional del Comahue, CEAN, Junín de los Andes, Argentina.
| |
Collapse
|
24
|
Pham TL, Shimizu K, Dao TS, Hong-Do LC, Utsumi M. Microcystin uptake and biochemical responses in the freshwater clam Corbicula leana P. exposed to toxic and non-toxic Microcystis aeruginosa: Evidence of tolerance to cyanotoxins. Toxicol Rep 2015; 2:88-98. [PMID: 28962341 PMCID: PMC5598480 DOI: 10.1016/j.toxrep.2015.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/25/2015] [Accepted: 01/25/2015] [Indexed: 01/06/2023] Open
Abstract
We investigated the accumulation and adverse effects of toxic and non-toxic Microcystis in the edible clam Corbicula leana. Treated clams were exposed to toxic Microcystis at 100 μg of MC (microcystin)-LReq L-1 for 10 days. The experimental organism was then placed in toxin-free water and fed on non-toxic Microcystis for the following 10 days for depuration. Filtering rates (FRs) by C. leana of toxic and non-toxic Microcystis and of the green alga Chlorella vulgaris as a control were estimated. Adverse effects were evaluated though the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). Clam accumulated MCs (up to 12.7 ± 2.5 μg g-1 dry weight (DW) of free MC and 4.2 ± 0.6 μg g-1 DW of covalently bound MC). Our results suggest that although both toxic and non-toxic cyanobacteria caused adverse effects by inducing the detoxification and antioxidant defense system, the clam was quite resistant to cyanotoxins. The estimated MC concentration in C. leana was far beyond the World Health Organization's (WHO) provisional tolerable daily intake (0.04 μg kg-1 day-1), suggesting that consuming clams harvested during cyanobacterial blooms carries a high health risk.
Collapse
Affiliation(s)
- Thanh-Luu Pham
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Tropical Biology, 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, Viet Nam
| | - Kazuya Shimizu
- Faculty of Life Sciences, Toyo University, Ora-gun, Gunma 374-0193, Japan
| | - Thanh-Son Dao
- Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
| | - Lan-Chi Hong-Do
- Vietnam National University–Ho Chi Minh City, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Motoo Utsumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding author. Tel.: +81 29 853 4656; fax: +81 29 853 7198.
| |
Collapse
|
25
|
Barda I, Kankaanaää H, Purina I, Balode M, Sjövall O, Meriluoto J. Bioaccumulation of hepatotoxins - a considerable risk in the Latvian environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:313-320. [PMID: 25463728 DOI: 10.1016/j.envpol.2014.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/01/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
The Gulf of Riga, river Daugava and several interconnected lakes around the City of Riga, Latvia, form adynamic brackish-freshwater system favouring occurrence of toxic cyanobacteria. We examined bioaccumulation of microcystins and nodularin-R in aquatic organisms in Latvian lakes, the Gulf of Riga and west coast of open Baltic Sea in 2002-2007. The freshwater unionids accumulated toxins efficiently,followed by snails. In contrast, Dreissena polymorpha and most lake fishes (except roach) accumulated much less hepatotoxins. Significant nodularin-R concentrations were detected also in marine clams and flounders. No transfer of nodularin-R and microcystins between lake and brackish water systems took place. Lake mussels can transfer hepatotoxins to higher organisms, and also effectively remove toxins from the water column. Obvious health risks to aquatic organisms and humans are discussed.
Collapse
Affiliation(s)
- Ieva Barda
- Latvian Institute of Aquatic Ecology, 8 Daugavgrivas Str., LV-1048 Rıga, Latvia.
| | | | | | | | | | | |
Collapse
|
26
|
Schmidt JR, Wilhelm SW, Boyer GL. The fate of microcystins in the environment and challenges for monitoring. Toxins (Basel) 2014; 6:3354-87. [PMID: 25514094 PMCID: PMC4280539 DOI: 10.3390/toxins6123354] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 02/03/2023] Open
Abstract
Microcystins are secondary metabolites produced by cyanobacteria that act as hepatotoxins in higher organisms. These toxins can be altered through abiotic processes, such as photodegradation and adsorption, as well as through biological processes via metabolism and bacterial degradation. Some species of bacteria can degrade microcystins, and many other organisms metabolize microcystins into a series of conjugated products. There are toxicokinetic models used to examine microcystin uptake and elimination, which can be difficult to compare due to differences in compartmentalization and speciation. Metabolites of microcystins are formed as a detoxification mechanism, and little is known about how quickly these metabolites are formed. In summary, microcystins can undergo abiotic and biotic processes that alter the toxicity and structure of the microcystin molecule. The environmental impact and toxicity of these alterations and the metabolism of microcystins remains uncertain, making it difficult to establish guidelines for human health. Here, we present the current state of knowledge regarding the alterations microcystins can undergo in the environment.
Collapse
Affiliation(s)
- Justine R Schmidt
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA.
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA.
| | - Gregory L Boyer
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA.
| |
Collapse
|
27
|
Bieczynski F, De Anna JS, Pirez M, Brena BM, Villanueva SSM, Luquet CM. Cellular transport of microcystin-LR in rainbow trout (Oncorhynchus mykiss) across the intestinal wall: possible involvement of multidrug resistance-associated proteins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:97-106. [PMID: 24865614 DOI: 10.1016/j.aquatox.2014.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/12/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
We studied Abcc mediated-transport in middle and posterior intestine of the rainbow trout, Oncorhynchus mykiss. Luminal and serosal transport were evaluated in everted and non-everted intestinal sacs, respectively, incubated with 1-chloro-2,4-dinitrobenzene (CDNB; 200 μM). CDNB enters the cells and is conjugated with glutathione via glutathione S-transferase (GST) to form 2,4-dinitrophenyl-S-glutathione (DNP-SG), a known Abcc substrate. DNP-SG concentration in the bath was recorded every 10 min, in order to calculate the mass-specific transport rate. For evaluating the possible involvement of Abcc proteins in microcystin-LR (MCLR) transport, 1.135 μM MCLR was added to the bath or inside the sacs, in everted or non-everted preparations, respectively. Both luminal and serosal DNP-SG efflux were significantly inhibited by MCLR. A concentration-response curve obtained using strips from middle intestine yielded an IC50 value of 1.33 μM MCLR. The Abcc inhibitor, MK571 produced concentration-dependent inhibition of DNP-SG similar to that produced by MCLR. Since competition of MCLR and CDNB as GST substrates could bias the DNP-SG transport results, we evaluated the effects of MCLR on calcein efflux, which does not depend on GST activity. We applied the non-fluorescent, cell-permeant compound calcein-AM (0.25 μM) to middle intestinal strips and recorded the efflux of its hydrolysis product, the fluorescent Abcc substrate calcein. 2.27 μM MCLR and 3 μM MK571 inhibited calcein efflux (17.39 and 20.2%, respectively). Finally, MCLR interaction with Abcc transporters was evaluated by measuring its toxic intracellular effects. Middle intestinal segments were incubated in saline solution with 1.135 μM MCLR (MC1), 2.27 μM MCLR (MC2), 3 μM MK571 (MK) or 1.135 μM MCLR+3 μM MK571 (MC1/MK). After 1h, GSH concentration, protein phosphatase 1 and 2A (PP1, PP2A) and GST activities were measured in each segment. MC1did not produce significant effect while MC1/MK and MC2 significantly inhibited PP1and PP2A in similar proportions (34-49%). MK alone significantly increased PP2A activity (40%) with no effect in any other variable. GST activity and GSH concentration were not affected by any treatment. Concentration-response curves for MCLR (1.135 to 13.62 μM) alone or plus 3 or 6 μM MK571 were obtained using PP1 activity as response variable. The IC50 values were 1.0, 0.52, and 0.37 μM, respectively. Our results suggest that O. mykiss enterocytes are capable of eliminating MCLR by GST-mediated conjugation and luminal excretion through an Abcc-like apical transporter. This mechanism would prevent toxic effects and reduce the toxin uptake into the blood, which is likely mediated by basolateral Abccs.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Laboratorio de Ecotoxicología Acuática, INIBIOMA-(CONICET-UNCo), CEAN-Ruta 61 km 3, Paraje San Cabao, 8371 Junín de los Andes, Neuquén, Argentina.
| | - Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, INIBIOMA-(CONICET-UNCo), CEAN-Ruta 61 km 3, Paraje San Cabao, 8371 Junín de los Andes, Neuquén, Argentina
| | - Macarena Pirez
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Av. A. Navarro 3051, piso 2, 11600 Montevideo, Uruguay
| | - Beatríz M Brena
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Av. A. Navarro 3051, piso 2, 11600 Montevideo, Uruguay
| | - Silvina S M Villanueva
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000 Rosario, Santa Fe, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA-(CONICET-UNCo), CEAN-Ruta 61 km 3, Paraje San Cabao, 8371 Junín de los Andes, Neuquén, Argentina
| |
Collapse
|
28
|
Jia J, Luo W, Lu Y, Giesy JP. Bioaccumulation of microcystins (MCs) in four fish species from Lake Taihu, China: assessment of risks to humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:224-232. [PMID: 24784747 DOI: 10.1016/j.scitotenv.2014.04.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Microcystins (MCs) are the toxic products of harmful algal blooms and they accumulate in fish. The accumulation of MCs in fish living in different trophic levels from different parts of Lake Taihu was determined. This information was then used to evaluate the risks posed by the MCs in fish to human health. The concentrations of three MCs, MC-LR, MC-YR and MC-RR, were quantified in the following four fish species: silver carp (Hypophthalmichthys molitrix), bighead carp (Aristichthys nobilis), crucian carp (Carassius auratus) and common carp (Cyprinus carpio), using high performance liquid chromatography interfaced with tandem (triple quadrupole) mass spectrometry. The mean concentrations of MCs in the muscle, the kidney, the intestinal wall and the heart were significantly different among the four fishes except in the liver. C. carpio contained the highest mean concentration of MCs in the muscle (31.7 ± 12.1 ng/g, dry mass (dm)), whereas C. auratus had the highest mean concentrations of MCs in the liver (45.4 ± 44.5 ng/g, dm), kidney (114 ± 51.1 ng/g, dm), intestinal wall (2.04 × 10(3)± 4.43 × 10(3)ng/g, dm) and heart (59.5 ± 26.7 ng/g, dm). The mean concentration of MCs in the intestinal walls of the fish species was significantly higher than in other organs (p<0.01). The fish from Meiliang Bay had significantly higher concentrations of MCs than those from the centre, west or south banks of the lake (p<0.01). The body lengths and masses of the fish were negatively correlated with the concentrations of MCs in the kidney (p<0.05) and heart (p<0.01). The average daily intake (ADI) of MCs in the muscle of all fishes exceeded the provisional tolerable daily intake (TDI) set by World Health Organization. The estimated daily intakes of MCs in 55.6% of the muscle samples exceeded the TDI. The MCs in the tissues of the fish from Lake Taihu pose potential risks to the health of humans who consume these four fish species.
Collapse
Affiliation(s)
- Junmei Jia
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Wei Luo
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yonglong Lu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Canada; Department of Zoology, National Food Safety and Toxicology Center and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Li L, Liang XF, He S, Li G, Wen Z, Cai W, Shen D. Transcriptional responses of mu-, pi- and omega-class glutathione S-transferase genes in the hepatopancreas of Cipangopaludina cahayensis exposed to microcystin-LR. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Cadel-Six S, Moyenga D, Magny S, Trotereau S, Edery M, Krys S. Detection of free and covalently bound microcystins in different tissues (liver, intestines, gills, and muscles) of rainbow trout (Oncorhynchus mykiss) by liquid chromatography-tandem mass spectrometry: method characterization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:333-9. [PMID: 24316797 DOI: 10.1016/j.envpol.2013.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 05/21/2023]
Abstract
So far only a few publications have explored the development of extraction methods of cyanotoxin extracted from complex matrices. With regard to cyanobacterial microcystins (MCs), the data on the contamination of the flesh of aquatic organisms is hard to compare and very limited due to the lack of validated methods. In recent years, evidence that both free and bound fractions of toxin are found in these tissues has highlighted the need to develop effective methods of quantification. Several techniques do exist, but only the Lemieux oxidation has so far been used to investigate complex tissue matrices. In this study, protocols based on the Lemieux approach were adapted for the quantitative chemical analysis of free MC-LR and MMPB derived from bound toxin in the tissues of juvenile trout gavaged with MC-LR. Afterwards, the NF V03 110 guideline was used to characterize the protocols elaborated and evaluate their effectiveness.
Collapse
Affiliation(s)
- Sabrina Cadel-Six
- Unité de Caractérisation des Toxines, ANSES, 23 avenue du Général de Gaulle, 94706 Maisons-Alfort, France.
| | - David Moyenga
- UMR 7245 CNRS-MNHN Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Stéphanie Magny
- Unité de Caractérisation des Toxines, ANSES, 23 avenue du Général de Gaulle, 94706 Maisons-Alfort, France
| | - Sophie Trotereau
- Unité de Caractérisation des Toxines, ANSES, 23 avenue du Général de Gaulle, 94706 Maisons-Alfort, France
| | - Marc Edery
- UMR 7245 CNRS-MNHN Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Sophie Krys
- Unité de Caractérisation des Toxines, ANSES, 23 avenue du Général de Gaulle, 94706 Maisons-Alfort, France
| |
Collapse
|
31
|
Freitas M, Azevedo J, Carvalho AP, Campos A, Vasconcelos V. Effects of storage, processing and proteolytic digestion on microcystin-LR concentration in edible clams. Food Chem Toxicol 2014; 66:217-23. [PMID: 24491263 DOI: 10.1016/j.fct.2014.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 01/08/2014] [Accepted: 01/24/2014] [Indexed: 11/28/2022]
Abstract
Accumulation of microcystin-LR (MC-LR) in edible aquatic organisms, particularly in bivalves, is widely documented. In this study, the effects of food storage and processing conditions on the free MC-LR concentration in clams (Corbicula fluminea) fed MC-LR-producing Microcystisaeruginosa (1×10(5) cell/mL) for four days, and the bioaccessibility of MC-LR after in vitro proteolytic digestion were investigated. The concentration of free MC-LR in clams decreased sequentially over the time with unrefrigerated and refrigerated storage and increased with freezing storage. Overall, cooking for short periods of time resulted in a significantly higher concentration (P<0.05) of free MC-LR in clams, specifically microwave (MW) radiation treatment for 0.5 (57.5%) and 1 min (59%) and boiling treatment for 5 (163.4%) and 15 min (213.4%). The bioaccessibility of MC-LR after proteolytic digestion was reduced to 83%, potentially because of MC-LR degradation by pancreatic enzymes. Our results suggest that risk assessment based on direct comparison between MC-LR concentrations determined in raw food products and the tolerable daily intake (TDI) value set for the MC-LR might not be representative of true human exposure.
Collapse
Affiliation(s)
- Marisa Freitas
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Polytechnic Institute of Porto, Escola Superior de Tecnologia da Saúde do Porto, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, 440-330 Gaia, Portugal
| | - Joana Azevedo
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Polytechnic Institute of Porto, Escola Superior de Tecnologia da Saúde do Porto, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, 440-330 Gaia, Portugal
| | - António Paulo Carvalho
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
32
|
Lance E, Petit A, Sanchez W, Paty C, Gérard C, Bormans M. Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. HARMFUL ALGAE 2014; 31:9-17. [PMID: 28040116 DOI: 10.1016/j.hal.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 06/06/2023]
Abstract
According to our previous results the gastropod Lymnaea stagnalis exposed to MC-producing cyanobacteria accumulates microcystins (MCs) both as free and covalently bound forms in its tissues, therefore representing a potential risk of MC transfer through the food web. This study demonstrates in a laboratory experiment the transfer of free and bound MCs from L. stagnalis intoxicated by MC-producing Planktothrix agardhii ingestion to the fish Gasterosteus aculeatus. Fish were fed during five days with digestive glands of L. stagnalis containing various concentrations of free and bound MCs, then with toxin-free digestive glands during a 5-day depuration period. MC accumulation was measured in gastropod digestive gland and in various fish organs (liver, muscle, kidney, and gills). The impact on fish was evaluated through detoxification enzyme (glutathion-S-transferase, glutathion peroxydase and superoxyde dismutase) activities, hepatic histopathology, and modifications in gill ventilation, feeding and locomotion. G. aculeatus ingestion rate was similar with intoxicated and toxin-free diet. Fish accumulated MCs (up to 3.96±0.14μgg-1DW) in all organs and in decreasing order in liver, muscle, kidney and gills. Hepatic histopathology was moderate. Glutathion peroxydase was activated in gills during intoxication suggesting a slight reactive oxygen species production, but without any impact on gill ventilation. Intoxication via ingestion of MC-intoxicated snails impacted fish locomotion. Intoxicated fish remained significantly less mobile than controls during the intoxication period possibly due to a lower health condition, whereas they showed a greater mobility during the depuration period that might be related to an acute foraging for food. During depuration, MC elimination was total in gills and kidney, but partial in liver and muscle. Our results assess the MC transfer from gastropods to fish and the potential risk induced by bound MCs in the food web.
Collapse
Affiliation(s)
- Emilie Lance
- Unité de Recherche Interactions Animal-Environnement, EA 4689, Bat 18, Campus du Moulin de la Housse, BP 1039, 51687 REIMS Cedex 2, France.
| | - Anais Petit
- UMR CNRS 6553, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Wilfried Sanchez
- National Institute for Industrial Environnement and Risks, Verneuil sur Halatte, France
| | - Christelle Paty
- UMR INRA Bio3P, Université de Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Claudia Gérard
- UMR CNRS 6553, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Myriam Bormans
- UMR CNRS 6553, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| |
Collapse
|
33
|
Bieczynski F, Bianchi VA, Luquet CM. Accumulation and biochemical effects of microcystin-LR on the Patagonian pejerrey (Odontesthes hatcheri) fed with the toxic cyanobacteria Microcystis aeruginosa. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1309-1321. [PMID: 23504082 DOI: 10.1007/s10695-013-9785-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 03/07/2013] [Indexed: 06/01/2023]
Abstract
We studied accumulation and biochemical effects of microcystin-LR (MCLR) in Odontesthes hatcheri after dietary administration of the cyanobacteria Microcystis aeruginosa (1.3 μg MCLR/g body mass, incorporated in standard fish food). After 12 h, MCLR content in liver did not differ between fish fed with crushed or intact cells, demonstrating O. hatcheri's capacity to digest cyanobacteria and absorb MCLR. In the second experiment, fish received toxic cells, non-toxic cells, or control food; MCLR accumulation was monitored for 48 h. Protein phosphatase 1 (PP1), catalase (CAT), glutathione-S-transferase (GST) activities, and lipid peroxidation (as MDA) were measured in liver and intestine. Methanol-extractable MCLR was determined by PP1 inhibition assay (PPIA); extractable and protein-bound MCLR were measured by Lemieux oxidation-gas chromatography/mass spectrometry (GC/MS). MCLR accumulated rapidly up to 22.9 and 9.4 μg MCLR/g in intestine and liver, respectively, followed by a decreasing tendency. Protein-bound MCLR represented 66 to ca. 100 % of total MCLR in both tissues. PP1 activity remained unchanged in intestine but was increased in liver of MCLR treated fish.CAT and GST activities and MDA content were significantly increased by MCLR only in liver. We conclude that O. hatcheri is able to digest cyanobacteria, accumulating MCLR mostly bound to proteins. Our data suggest that this freshwater fish can be adversely affected by cyanobacterial blooms. However, the rapid decrease of the detectable MCLR in both tissues could imply that sublethal toxin accumulation is rapidly reversed.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Laboratory of Aquatic Ecotoxicology, INIBIOMA (CONICET-UNCo), Epulafquen 30 Casa 2, 8371, Junín de los Andes, Neuquén, Argentina,
| | | | | |
Collapse
|
34
|
Variations in the microcystin content of different fish species collected from a eutrophic lake. Toxins (Basel) 2013; 5:992-1009. [PMID: 23676698 PMCID: PMC3709275 DOI: 10.3390/toxins5050992] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/30/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022] Open
Abstract
Microcystins produced from cyanobacteria can accumulate in fish tissues. Liquid chromatography coupled with tandem quadrupole mass spectrometry (LC-MS/MS) is an attractive alternative to immunoassays for the determination of low concentrations of microcystins in tissues. Fish taken from Grand Lake St. Marys, a eutrophic lake in Ohio, USA, were analyzed for microcystin-LR in their fillets using LC-MS/MS. Of 129 fish tested for microcystins, only black crappie (Pomoxis nigromaculatus) and common carp (Cyprinus carpio) tested positive for microcystin-LR. Less than 10% of Pomoxis and 7% of Cyprinus samples contained measurable levels of microcystin-LR. Statistical analysis yielded a p-value of 0.07 between Pomoxis and the pooled results of the other four fish species. However, this comparison was complicated by the large difference in sample size between species. Further sampling in Grand Lake St. Marys for microcystin-LR would help determine if microcystin-LR exposure occurs through foodweb transfer.
Collapse
|
35
|
Gutiérrez-Praena D, Jos Á, Pichardo S, Moreno IM, Cameán AM. Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: a review. Food Chem Toxicol 2012. [PMID: 23200893 DOI: 10.1016/j.fct.2012.10.062] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microcystins (MCs) and cylindrospermopsin (CYN) are among the cyanotoxins which occur naturally, produced by different cyanobacteria species when they grow or proliferate under favorable environmental conditions. From a toxicological point of view, their relevance is due to the deleterious effects that they have been reported to induce in a wide range of organisms, including humans. Cyanotoxins intake from contaminated water and food is an important source of human exposure. Various edible aquatic organisms, plants, and food supplements based on algae, can bioaccumulate these toxins. A thorough review of the scientific data available on this topic is provided, the studies on MCs being much more numerous than those focused on CYN. The scientific literature suggests that these cyanotoxins can be accumulated at concentrations higher than their respective recommended tolerable daily intake (TDI). Finally, the influence of different cooking procedures on their levels in food has been considered. In this regard, again studies on the matter dealing with CYN have been not yet raised. MCs contents have been reported to be reduced in muscle of fish after boiling, or cooking in a microwave-oven, although the effect of other traditional cooking processes such as frying, roasting or grilling have not been demonstrated.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Praena
- Nutrición y Bromatología, Toxicología y Medicina Legal Department, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
36
|
Suchy P, Berry J. Detection of total microcystin in fish tissues based on lemieux oxidation, and recovery of 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB) by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY 2012; 92:1443-1456. [PMID: 23264717 PMCID: PMC3526195 DOI: 10.1080/03067319.2011.620703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microcystins (MCs) are widespread cyanobacterial toxins in freshwater systems, and have been linked to both acute and chronic health effects. A growing number of studies suggest that MC can bioaccumulate in food webs. Although, several methods (i.e. ELISA, LC-MS) have been developed for analysis of MC in water, extraction (for subsequent analysis) of the toxin from biological matrices (i.e. animal tissues) is impeded owing to covalent binding of toxins and active sites of their cellular targets, i.e. protein phosphatases. As an alternative approach, chromatographic methods for analysis of a unique marker, 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB), the product of the Lemieux oxidation of MCs, have been previously developed, and shown to measure total (bound and unbound) MC. Application, however, has been limited by poor recovery of the analyte. An improved recovery method is proposed - specifically the use of solidphase microextraction (SPME). The MMPB analogue, 4-phenylbutanoic acid (4PB), and oxidized MC, were used to develop methods, and we specifically investigated several SPME fibres, and post-oxidation steps. Specifically, a method employing post-oxidation methyl esterification, followed by headspace SPME recovery of MMPB, was developed, and subsequently applied to analysis of environmental samples (i.e. fish tissues) previously shown to contain MCs. The method shows high linearity for both water and tissues spiked with MC, and an improved limit of quantitation of approximately 140 ng g(-1). Evaluation of field samples by SPME-GC/MS detected considerably higher levels of MC, than detected by conventional methods (i.e. ELISA), and it is proposed that this technique reveals MC (particularly in the bound form) that is not detected by these methods. These results indicate that the developed method provides improved detection capability for MC in biological matrices, and will enhance our ability to understand bioaccumulation in freshwater food webs, as well as monitor exposure.
Collapse
Affiliation(s)
- Patricia Suchy
- Department of Chemistry and Biochemistry (Marine Science Program), Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - John Berry
- Department of Chemistry and Biochemistry (Marine Science Program), Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| |
Collapse
|
37
|
Yang Z, Wu H, Li Y. Toxic effect on tissues and differentially expressed genes in hepatopancreas identified by suppression subtractive hybridization of freshwater pearl mussel (Hyriopsis cumingii) following microcystin-LR challenge. ENVIRONMENTAL TOXICOLOGY 2012; 27:393-403. [PMID: 20957730 DOI: 10.1002/tox.20652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/08/2010] [Accepted: 08/10/2010] [Indexed: 05/30/2023]
Abstract
Microcystins are a family of potent hepatotoxins produced by freshwater cyanobacteria and can cause animal intoxications and human diseases. In this study, the effect of microcystin-LR (MC-LR) on the tissues of freshwater pearl mussel (Hyriopsis cumingii) was evaluated and differentially expressed genes in the hepatopancreas of the mussel exposed to MC-LR were identified. HPLC analysis of cell extracts from various tissues of the mussel indicated that the hepatopancreas had the highest MC-LR levels (55.78 ± 6.73 μg g⁻¹ DW) after 15-day exposure. The MC-LR concentration in gill or muscle was an order of magnitude less than in hepatopancreas or gonad. Subtractive cDNA library was constructed by suppression subtractive hybridization (SSH), and ∼400 positive clones were sequenced, from which 98 high quality sequences were obtained by BLAST analysis. The screening identified numerous genes involved in apoptosis, signal transduction, cytoskeletal remodel, innate immunity, material and energy metabolism, translation and transcription which were extensively discussed. The results of this study add large amount of information to the mussel genome data, and for the first time present the basic data on toxicity effect of MC-LR on mussel.
Collapse
Affiliation(s)
- Ziyan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | | | | |
Collapse
|
38
|
Li Y, Han X. Microcystin-LR causes cytotoxicity effects in rat testicular Sertoli cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:318-326. [PMID: 22301162 DOI: 10.1016/j.etap.2011.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/01/2011] [Accepted: 12/17/2011] [Indexed: 05/31/2023]
Abstract
Microcystins (MCs) are produced by cyanobacteria. The most toxic and widely distributed MC is microcystin-LR (MC-LR). The aim of this study was to investigate whether exposure to MC-LR could induce oxidative stress, leading the further toxicity effects on Sertoli cells in vitro. Sertoli cells obtained from rats were cultured with a medium containing 0, 0.5, 5, 50 or 500 nM/l MC-LR. We examined the decrease of mitochondrial membrane potential (MMP), the increase of reactive oxygen species (ROS) production, the increase of lipid peroxidation and decrease of superoxide dismutase (SOD) activity in Sertoli cells after treatment with MC-LR in vitro, and higher expression of caspase-9 and caspase-3, the increase of apoptosis rate. Therefore, we deduced that direct exposure to microcystin-LR could induce oxidative stress generation in Sertoli cells, and subsequently depressed cellular viability and caused cells to undergo apoptosis, resulting in the reproductive toxicity in male rats.
Collapse
Affiliation(s)
- Yan Li
- Life Science School, Nanjing University, Nanjing, Jiangsu 210093, PR China.
| | | |
Collapse
|
39
|
Wu X, Wang C, Xiao B, Wang Y, Zheng N, Liu J. Optimal strategies for determination of free/extractable and total microcystins in lake sediment. Anal Chim Acta 2012; 709:66-72. [DOI: 10.1016/j.aca.2011.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/28/2022]
|
40
|
Sabatini SE, Brena BM, Luquet CM, San Julián M, Pirez M, Carmen Ríos de Molina MD. Microcystin accumulation and antioxidant responses in the freshwater clam Diplodon chilensis patagonicus upon subchronic exposure to toxic Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1188-1194. [PMID: 21477863 DOI: 10.1016/j.ecoenv.2011.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/14/2011] [Accepted: 03/20/2011] [Indexed: 05/30/2023]
Abstract
We investigated the accumulation and toxicity of microcystin-LR (MCLR) in the digestive gland of the freshwater clam Diplodon chilensis patagonicus. Treated clams were fed with a toxic strain of Microcystis aeruginosa (NPJB1) during 6 weeks and control clams received the non-toxic strain NPDC1. Filtration rate was estimated for both groups. Toxic effects were evaluated through the hepatosomatic index (HSI) and different oxidative stress biomarkers, lipid peroxidation (content of thiobarbituric reactive substances-TBARS), protein oxidation (carbonyl groups) and reduced glutathione (GSH) levels, and enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST). The extractable MCLR measured by ELISA in digestive gland extracts showed little or no change during the first 3 weeks and increased significantly at weeks 5 and 6. HSI was reduced by 30% in treated clams at weeks 5 and 6. No significant oxidative damage to lipids or proteins was. All the antioxidant defense parameters analyzed were significantly increased at week 5 or 6. GSH increased in treated clams at week 5, reaching 62% increase at week 6. SOD, CAT and GST activities were significantly increased in treated clams by 50%, 66% and 60%, respectively, at the end of the experiment. D. chilensis patagonicus can be exposed to prolonged cyanobacterial blooms accumulating significant quantities of MCLR, which could be a risk for mammals and birds, which feed on this species and, in a lesser extent, to humans.
Collapse
Affiliation(s)
- Sebastián E Sabatini
- Department of Biological Chemistry, College of Exact and Natural Sciences, University of Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
41
|
Dong G, Zhu X, Han D, Yang Y, Song L, Xie S. Response and recovery of hybrid sturgeon from subchronic oral administration of cyanobacteria. ENVIRONMENTAL TOXICOLOGY 2011; 26:161-170. [PMID: 19852075 DOI: 10.1002/tox.20540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A 90-day growth trial was conducted on hybrid sturgeon (Acipenser baeri ♀ × A. gueldenstaedtii ♂) to investigate the effect of dietary inclusion of cyanobacteria on growth, feed utilization, and fish tissue microcystins (MCs) accumulation and the recovery of fish when they were free of cyanobacteria. Four diets were formualted isonitrogenous and isocaloric to contain different MCs concentrations: the control diet (free of cyanobacteria), low cyanobacteria diet (LCD, 26.60 μg MCs/g diet), medium cyanobacteria diet (MCD, 78.82 μg MCs/g diet), and high cyanobacteria diet (HCD, 201.03 μg MCs/g diet). During the first 47 days, each diet was fed to fish in five replicates and then all fish were fed the control diet during the next 43 days. The results showed that a dose-dependent decrease in feeding rate (FR) and specific growth rate (SGR) were observed in the fish fed with MCD and HCD. MCs contents in fish liver, intestine, and dorsal white muscle increased with dietary MCs and were time dependent (P < 0.05). After the 43-day recovery, there were no significant differences in FR or SGR between the fish previously fed LCD or MCD and the fish fed with the control diet (P > 0.05), while the fish previously fed HCD showed higher FR and SGR than those fed the control diet (P < 0.05). MCs clearance in fish liver and intestine showed time-dependence during the 43-day recovery.
Collapse
Affiliation(s)
- Guifang Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
42
|
Miller MA, Kudela RM, Mekebri A, Crane D, Oates SC, Tinker MT, Staedler M, Miller WA, Toy-Choutka S, Dominik C, Hardin D, Langlois G, Murray M, Ward K, Jessup DA. Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters. PLoS One 2010; 5:e12576. [PMID: 20844747 PMCID: PMC2936937 DOI: 10.1371/journal.pone.0012576] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/02/2010] [Indexed: 12/05/2022] Open
Abstract
"Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal bloom" in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface.
Collapse
Affiliation(s)
- Melissa A Miller
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Game, Office of Spill Prevention and Response, Santa Cruz, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Smith JL, Schulz KL, Zimba PV, Boyer GL. Possible mechanism for the foodweb transfer of covalently bound microcystins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:757-61. [PMID: 20071028 DOI: 10.1016/j.ecoenv.2009.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 05/21/2023]
Abstract
Microcystins (MCs) are cyanobacterial toxins that inhibit protein phosphatases 1 and 2A (PP1, PP2A) within an animal through both reversible and covalent interactions. Only MCs that have accumulated in animal tissue in reversible interactions are currently considered when estimating risk to higher trophic levels and humans through food web exposure. However, the majority of MCs is likely covalently bound to target proteins in tissues and these MCs are not quantified or included in these assessments. These covalently bound MCs may be made bioavailable in the digestive system of a consumer through the digestion of their attached protein phosphatase. Three common digestive enzymes, pepsin, chymotrypsin, and trypsin, did not digest cyclic MC-LR and MC-LY, but were very active against a control peptide with typical linkages and standard amino acids in "L" conformation, supporting the possibility for MC-peptide formation during gut passage. To test if digestion products could be biologically active in the consumer, four predicted MC-peptides were synthesized and assayed for activity against PP1 by the protein phosphatase inhibition assay (PPIA). All four MC-peptides were active against PP1 and comparably half (58%) as inhibitory as the parent toxin. This in vitro study demonstrated that MCs covalently bound to proteins may represent a reservoir of potential toxicity for consumers.
Collapse
Affiliation(s)
- Juliette L Smith
- Department of Environmental and Forest Biology, State University of New York, Syracuse, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
44
|
Lance E, Neffling MR, Gérard C, Meriluoto J, Bormans M. Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:674-80. [PMID: 19906474 DOI: 10.1016/j.envpol.2009.10.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/28/2009] [Accepted: 10/15/2009] [Indexed: 05/21/2023]
Abstract
Accumulation of free microcystins (MCs) in freshwater gastropods has been demonstrated but accumulation of MCs covalently bound to tissues has never been considered so far. Here, we follow the accumulation of total (free and bound) MCs in Lymnaea stagnalis exposed to i) dissolved MC-LR (33 and 100 microg L(-1)) and ii) Planktothrix agardhii suspensions producing 5 and 33 microg MC-LR equivalents L(-1) over a 5-week period, and after a 3-week depuration period. Snails exposed to dissolved MC-LR accumulated up to 0.26 microg total MCs g(-1) dry weight (DW), with no detection of bound MCs. Snails exposed to MCs producing P. agardhii accumulated up to 69.9 microg total MCs g(-1) DW, of which from 17.7 to 66.7% were bound. After depuration, up to 15.3 microg g(-1) DW of bound MCs were detected in snails previously exposed to toxic cyanobacteria, representing a potential source of MCs transfer through the food web.
Collapse
Affiliation(s)
- Emilie Lance
- UMR CNRS Ecobio 6553, University of Rennes 1, Campus de Beaulieu, 265 Avenue du Général Leclerc, 35042 Rennes Cedex, France.
| | | | | | | | | |
Collapse
|
45
|
Neffling MR, Lance E, Meriluoto J. Detection of free and covalently bound microcystins in animal tissues by liquid chromatography-tandem mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:948-52. [PMID: 19910094 DOI: 10.1016/j.envpol.2009.10.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/22/2009] [Accepted: 10/15/2009] [Indexed: 05/21/2023]
Abstract
Microcystins are cyanobacterial hepatotoxins capable of accumulation into animal tissues. The toxins act by inhibiting specific protein phosphatases and both non-covalent and covalent interactions occur. The 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) method determines the total, i.e. the sum of free and protein-bound microcystin in tissues. The aim of the method development in this paper was to tackle the problems with the MMPB methodology: the rather laborious workflow and the loss of material during different steps of the method. In the optimised workflow the oxidation recovery was of acceptable level (29-40%), the extraction efficiency good (62-97%), but the signal suppression effect from the matrix remained severe in our system (16-37% signal left). The extraction efficiency for the determination of the free, extractable microcystins, was found to be good, 52-100%, depending on the sample and the toxin variant and concentration.
Collapse
Affiliation(s)
- Milla-Riina Neffling
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6 A, Biocity 3rd floor, FI-20520, Turku, Finland.
| | | | | |
Collapse
|
46
|
Zhang D, Xie P, Chen J. Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 84:202-207. [PMID: 19937313 DOI: 10.1007/s00128-009-9910-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 11/06/2009] [Indexed: 05/28/2023]
Abstract
In this study, bighead carp treated with two doses, i.e. 400 and 580 microg MC-LReq (Microcystin-LR equivalent)/kg bw. After dosing bighead carp with 400 and 580 microg MC-LReq/Kg bw, the mean concentrations of microcystins (MCs) was significantly higher in boiled muscle than unboiled controls. These results indicate that the potential threat of microcystins contaminated fish to humans has been underestimated. The increase in microcystins occurs by the release of phosphatase-bound microcystins by boiling.
Collapse
Affiliation(s)
- Dawen Zhang
- LED, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, People's Republic of China.
| | | | | |
Collapse
|
47
|
Wu X, Xiao B, Li R, Wang Z, Chen X, Chen X. Rapid quantification of total microcystins in cyanobacterial samples by periodate-permanganate oxidation and reversed-phase liquid chromatography. Anal Chim Acta 2009; 651:241-7. [DOI: 10.1016/j.aca.2009.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/14/2009] [Accepted: 08/18/2009] [Indexed: 11/17/2022]
|
48
|
Zhang D, Xie P, Chen J, Dai M, Qiu T, Liu Y, Liang G. Determination of microcystin-LR and its metabolites in snail (Bellamya aeruginosa), shrimp (Macrobrachium nipponensis) and silver carp (Hypophthalmichthys molitrix) from Lake Taihu, China. CHEMOSPHERE 2009; 76:974-81. [PMID: 19473685 DOI: 10.1016/j.chemosphere.2009.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/05/2009] [Accepted: 04/10/2009] [Indexed: 05/21/2023]
Abstract
This paper describes seasonal changes of microcystin-LR (MC-LR) and its glutathione (MC-LR-GSH) and cysteine conjugates (MC-LR-Cys) in three aquatic animals--snail (Bellamya aeruginosa), shrimp (Macrobrachium nipponensis) and silver carp (Hypophthalmichthys molitrix) collected from Lake Taihu, China. MC-LR, MC-LR-GSH, and MC-LR-Cys were determined by liquid chromatography electrospray ionization mass spectrum (LC-ESI-MS). The mean MC-LR concentrations in the hepatopancreas of snail and shrimp and liver of silver carp were 6.61, 0.24, and 0.027 microg g(-1) dry weight (DW), respectively; while the average MC-LR-Cys concentrations were 0.50, 0.97, and 5.72 microg g(-1) DW, respectively. MC-LR-GSH was usually not detectable in these samples. The above results suggest that: (1) in aquatic animals, especially fish, the main excretion form of MC-LR could be MC-LR-Cys, but not MC-LR-GSH, whereas MC-LR-Cys might play an important role in detoxication of MC-LR and (2) that efficiency of MC-LR-Cys formation differs among species. The main detoxication pathway of MC-LR in aquatic animals is suggested as follows: when MC-LR enters into liver/hepatopancreas, it firstly conjugates with polypeptide or protein (including GSH, PP-1 and 2A) containing Cys residues, perhaps also some free cysteine; subsequently, MC-LR-Cys is degraded from these polypeptide or protein; and finally is excreted from animals by the compound of MC-LR-Cys.
Collapse
Affiliation(s)
- Dawen Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Xiao FG, Zhao XL, Tang J, Gu XH, Zhang JP, Niu WM. Necessity of screening water chestnuts for microcystins after cyanobacterial blooms break out. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:256-263. [PMID: 19125218 DOI: 10.1007/s00244-008-9275-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 12/15/2008] [Indexed: 05/27/2023]
Abstract
Water chestnut is one of the most popular vegetables in Asian countries that grows in shallow water. Eighteen water chestnut samples were collected from Lake Tai and six samples were bought at markets in Wuxi, China, in October 2007. Extraction solution of water chestnut was cleaned up with a solid phase extraction column and immunoaffinity chromatography cartridges, then the microcystin (MC) level was detected by indirect competitive enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-mass spectrometry (LC-MS). The results of ELISA showed that there were six samples collected from Lake Tai which contained MCs; the highest level of total MCs was 7.02 ng/g. The results of LC-MS confirmed that MC-LR and MC-RR were present in five samples. The highest level of MC-LR was 1.02 ng/g and that of MC-RR was 4.44 ng/g. Heavy cyanobacterial blooms had occurred, and MCs were detected in water at the points in Lake Tai where MCs occurred in water chestnuts collected in 2007. MCs were not detected in the six samples bought at Wuxi markets. The results suggest that MCs can accumulate in water chestnuts, which is a potential hazard for human health.
Collapse
Affiliation(s)
- Fu-Gang Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, China
| | | | | | | | | | | |
Collapse
|
50
|
Fernandes S, Welker M, Vasconcelos VM. Changes in the GST activity of the mussel Mytilus galloprovincialis during exposure and depuration of microcystins. ACTA ACUST UNITED AC 2009; 311:226-30. [PMID: 19189307 DOI: 10.1002/jez.524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mussels are quite resistant to cyanotoxins and their resistance may be because of an efficient metabolization of cyanotoxins by glutathione-S-transferases (GST) activity. Nevertheless, other secondary metabolites may interfere with the detoxication efficiency. The accumulation and depuration of hepatotoxins produced by the freshwater cyanobacterium Microcystis aeruginosa in the mussel Mytilus galloprovincialis were studied. Mussels were fed twice a day 1.5x10(5) cells/mL of the toxic cyanobacterium, which produces microcystins (MCs) -FR, -LR and -WR, for 4 days. After that period, the animals were placed in toxin-free water and were fed the green algae Ankistrodesmus sp. During 2 weeks, the concentration of the toxin in the mussels was monitored using an ELISA assay. Mussels showed a maximum detectable level of MCs of 0.38 microg/g mussels dry weight (DW) during the accumulation period and 0.37 microg MC/g mussel DW by day 4 of the depuration period. Then there was a decrease trend with peaks of toxin at days 8 and 12 of the depuration period. The activity of the detoxication enzymes GST was studied and the results showed that the peaks of toxin in the mussels coincide with an increase in the activity of GST. These results support the hypothesis that the rise of the toxin level on days 4, 8 and 12 of the depuration period in the mussels may be related to the renewal of protein phosphatases and subsequent release of unbound toxins.
Collapse
Affiliation(s)
- Sandra Fernandes
- Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|