1
|
Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model. Sci Rep 2018; 8:6154. [PMID: 29670142 PMCID: PMC5906678 DOI: 10.1038/s41598-018-24474-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Lead (Pb) isotopes provide valuable insights into the origin of Pb within a sample, typically allowing for reliable fingerprinting of their source. This is useful for a variety of applications, from tracing sources of pollution-related Pb, to the origins of Pb in archaeological artefacts. However, current approaches investigate source proportions via graphical means, or simple mixing models. As such, an approach, which quantitatively assesses source proportions and fingerprints the signature of analysed Pb, especially for larger numbers of sources, would be valuable. Here we use an advanced Bayesian isotope mixing model for three such applications: tracing dust sources in pre-anthropogenic environmental samples, tracking changing ore exploitation during the Roman period, and identifying the source of Pb in a Roman-age mining artefact. These examples indicate this approach can understand changing Pb sources deposited during both pre-anthropogenic times, when natural cycling of Pb dominated, and the Roman period, one marked by significant anthropogenic pollution. Our archaeometric investigation indicates clear input of Pb from Romanian ores previously speculated, but not proven, to have been the Pb source. Our approach can be applied to a range of disciplines, providing a new method for robustly tracing sources of Pb observed within a variety of environments.
Collapse
|
2
|
Francová A, Chrastný V, Šillerová H, Vítková M, Kocourková J, Komárek M. Evaluating the suitability of different environmental samples for tracing atmospheric pollution in industrial areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:286-297. [PMID: 27667678 DOI: 10.1016/j.envpol.2016.09.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Samples of lichens, snow and particulate matter (PM10, 24 h) are used for the source identification of air pollution in the heavily industrialized region of Ostrava, Upper Silesia, Czech Republic. An integrated approach that uses different environmental samples for metal concentration and Pb isotope analyses was applied. The broad range of isotope ratios in the samples indicates a combination of different pollution sources, the strongest among them being the metallurgical industry, bituminous coal combustion and traffic. Snow samples are proven as the most relevant indicator for tracing metal(loid)s and recent local contamination in the atmosphere. Lichens can be successfully used as tracers of the long-term activity of local and remote sources of contamination. The combination of PM10 with snow can provide very useful information for evaluation of current pollution sources.
Collapse
Affiliation(s)
- Anna Francová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic.
| | - Hana Šillerová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic
| | - Jana Kocourková
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic
| |
Collapse
|
3
|
Walraven N, van Os BJH, Klaver GT, Middelburg JJ, Davies GR. The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:888-900. [PMID: 24342096 DOI: 10.1016/j.scitotenv.2013.11.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 05/28/2023]
Abstract
In this study the origin, behaviour and fate of anthropogenic Pb in sandy roadside soils were assessed by measuring soil characteristics, Pb isotope composition and content. In 1991 and 2003 samples were taken at different depth intervals at approximately 8 and 75 m from two highways in The Netherlands. The Pb isotope composition of the litter layer ((206)Pb/(207)Pb=1.12-1.14) differs from the deeper soil samples ((206)Pb/(207)Pb=1.20-1.21). Based on a mixing model it is concluded that the samples contain two Pb sources: natural Pb and anthropogenic Pb, the latter mainly derived from gasoline. (206)Pb/(207)Pb ratios demonstrate that the roadside soils were polluted to a depth of ~15 cm. Within this depth interval, anthropogenic Pb content is associated with organic matter. Although Pb pollution only reached a depth of ~15 cm, this does not mean that the topsoils retain all anthropogenic Pb. Due to the low pH and negligible binding capacity of soils at depths >15 cm, anthropogenic Pb migrated towards groundwater after reaching depths of >15 cm. The Pb isotope composition of the groundwater ((206)Pb/(207)Pb=1.135-1.185) establishes that groundwater is polluted with anthropogenic Pb. The contribution of anthropogenic Pb to the groundwater varies between ~30 and 100%. Based on the difference in soil Pb content and Pb isotope compositions over a period of 12 years, downward Pb migration is calculated to vary from 72 ± 95 to 324 ± 279 mg m(-2)y(-1). Assuming that the downward Pb flux is constant over time, it is calculated that 35-90% of the atmospherically delivered Pb has migrated to the groundwater.
Collapse
Affiliation(s)
- N Walraven
- GeoConnect, Meester Dekkerstraat 4, 1901 PV Castricum, The Netherlands.
| | - B J H van Os
- Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, P.O. Box 1600, 3800 BP Amersfoort, The Netherlands.
| | - G Th Klaver
- BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2, France.
| | - J J Middelburg
- University Utrecht, Faculty of Geosciences, P.O. Box 80021, 3508 TA Utrecht, The Netherlands.
| | - G R Davies
- VU University Amsterdam, Faculty of Earth and Life Sciences, Petrology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Álvarez-Iglesias P, Rubio B, Millos J. Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ría de Vigo (NW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 437:22-35. [PMID: 22903001 DOI: 10.1016/j.scitotenv.2012.07.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 06/01/2023]
Abstract
San Simón Bay, the inner part of the Ría de Vigo (NW Spain), an area previously identified as highly polluted by Pb, was selected for the application of Pb stable isotope ratios as a fingerprinting tool in subtidal and intertidal sediment cores. Lead isotopic ratios were determined by inductively coupled plasma mass spectrometry on extracts from bulk samples after total acid digestion. Depth-wise profiles of (206)Pb/(207)Pb, (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb and (208)Pb/(207)Pb ratios showed, in general, an upward decrease for both intertidal and subtidal sediments as a consequence of the anthropogenic activities over the last century, or centuries. Waste channel samples from a nearby ceramic factory showed characteristic Pb stable isotope ratios different from those typical of coal and petrol. Natural isotope ratios from non-polluted samples were established for the study area, differentiating sediments from granitic or schist-gneiss sources. A binary mixing model employed on the polluted samples allowed estimating the anthropogenic inputs to the bay. These inputs represented between 25 and 98% of Pb inputs in intertidal samples, and 9-84% in subtidal samples, their contributions varying with time. Anthropogenic sources were apportioned according to a three-source model. Coal combustion-related emissions were the main anthropogenic source Pb to the bay (60-70%) before the establishment of the ceramic factory in the area (in the 1970s) which has since constituted the main source (95-100%), followed by petrol-related emissions. The Pb inputs history for the intertidal area was determined for the 20th century, and, for the subtidal area, the 19th and 20th centuries.
Collapse
Affiliation(s)
- P Álvarez-Iglesias
- Department of Marine Geosciences and Land Use Management, Faculty of Marine Sciences, University of Vigo, Spain.
| | | | | |
Collapse
|
5
|
Geagea ML, Stille P, Gauthier-Lafaye F, Millet M. Tracing of industrial aerosol sources in an urban environment using Pb, Sr, and Nd isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:692-698. [PMID: 18323089 DOI: 10.1021/es071704c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A comprehensive Pb-Sr-Nd isotope tracer study of atmospheric trace metal pollution has been performed in the urban environment of Strasbourg-Kehl. Filter dust of the principal pollutant sources (waste incinerators, thermal power plant and steel plant) and soot of car and ship exhausts have been analyzed. In addition tree barks (as biomonitors) and PM10 have been analyzed to trace and determine the distribution of the pollution in the environment. The industrial sources have highly variable epsilonNd values (-9.7 and -12.5 for incinerators and -17.5 for steel plant). Much higher epsilonNd values have been found for soot of car exhausts (-6 and -6.9). These high values make the Nd isotope system a powerful tool for the discrimination of traffic emissions but especially for the identification of diesel derived particles in the urban environment. The 206Pb/207Pb isotope ratios of gasoline are low (1.089) compared to diesel soot (1.159). The 26Pb/207Pb ratios of 1.151-1.152 for the steel plant and 1.152 for the solid waste incinerator are close to the Pb isotope ratio of diesel. The 87Sr/ 8Sr isotope ratios of the principal industrial sources vary significantly: 0.7095 for the domestic solid waste incinerator, 0.709 for the steel plant, and 0.7087 for car exhaust soot. PM10 aerosols collected in the urban center of Strasbourg show the influence of the pollutant sources at 3-7 km distance from the center. Most of the aerosols Pb isotopic compositions suggest Pb admixtures from at least three sources: a natural background and in function of the wind direction the domestic waste incinerator (S-wind) or the steel plant and the chemical waste incinerator (NE-wind). The traffic contribution can only be estimated with help of Nd isotopes. Therefore the clear identification of different pollutant sources in the urban environment is only possible by combining the three different isotope systems and is based on the fact that significant differences exist between the Pb, Sr, and Nd isotope ratios of the natural atmospheric background and pollutants containing Pb, Sr, and Nd of industrial origin with similar variable 206Pb/207Pb, 87Sr/ 86Sr, and 143Nd/144Nd.
Collapse
Affiliation(s)
- Majdi Lahd Geagea
- EOST: Centre de Géochimie de la Surface, CNRS-UMR 7517, 1 rue Blessig, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
6
|
Noble SR, Horstwood MSA, Davy P, Pashley V, Spiro B, Smith S. Evolving Pb isotope signatures of London airborne particulate matter (PM10)—constraints from on-filter and solution-mode MC-ICP-MS. ACTA ACUST UNITED AC 2008; 10:830-6. [DOI: 10.1039/b802151a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Geagea ML, Stille P, Millet M, Perrone T. REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2007; 373:404-19. [PMID: 17175008 DOI: 10.1016/j.scitotenv.2006.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 05/13/2023]
Abstract
A comprehensive Pb-Sr-Nd isotope and REE tracer study of atmospheric trace metal pollution by a steel plant situated to the north of the urban communities of Strasbourg (France) and Kehl (Germany) has been performed using tree barks as biomonitors. The 206Pb/207Pb and 208Pb/207Pb isotopic ratios of the steel plant's filter dust are similar to values found in dust of waste incinerators. The 87Sr/86Sr ratio is similar to present-day ratios of Phanerozoic or Precambrian granitic rocks. The 143Nd/144Nd isotopic composition is very low and corresponds to an (Nd) value of -17.5. Such a low value is characteristic of old Precambrian granitic rocks and banded iron formations. Thus, this low (Nd) value might point to the origin of the iron necessary for the steel production. The fact, that this isotopic composition does not occur in crustal rocks of Western Central Europe makes the Nd isotope ratio a powerful tool to trace steel plants atmospheric emissions. The rare earth element (REE) distribution pattern of the steel plant's filter dust shows very specific fractionations like La and Nd enrichments which are traceable in tree barks over a distance of 4 km. The Pb, Sr and Nd isotope ratios not only enable the steel plant's emissions to be traced in a north-easterly direction, along the principal wind pathway but also enables the interference of this emission at 4 km NE from the steel plant with another atmospheric component originating from the Strasbourg Rhine harbour to be identified.
Collapse
Affiliation(s)
- M Lahd Geagea
- EOST - Centre de Géochimie de la Surface, CNRS-UMR 7517, 1 rue Blessig, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
8
|
Kylander M, Weiss D, Jeffries T, Kober B, Dolgopolova A, Garcia-Sanchez R, Coles B. A rapid and reliable method for Pb isotopic analysis of peat and lichens by laser ablation-quadrupole-inductively coupled plasma-mass spectrometry for biomonitoring and sample screening. Anal Chim Acta 2007; 582:116-24. [DOI: 10.1016/j.aca.2006.08.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
|
9
|
Liu Y, MacDonald DA, Yu XY, Hering SV, Collett JL, Henry CS. Analysis of anions in ambient aerosols by microchip capillary electrophoresis. Analyst 2006; 131:1226-31. [PMID: 17066191 DOI: 10.1039/b608945c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass, with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 microM) and low limits-of-detection for sulfate and nitrate, with Au providing the lowest detection limits (1 microM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.
Collapse
Affiliation(s)
- Yan Liu
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | | | | | | | | | | |
Collapse
|
10
|
Carignan J, Libourel G, Cloquet C, Le Forestier L. Lead isotopic composition of fly ash and flue gas residues from municipal solid waste combustors in France: implications for atmospheric lead source tracing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:2018-24. [PMID: 15871232 DOI: 10.1021/es048693x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fly ash and flue gas residues from eight municipal solid waste combustors (MSWC) in France (1992--93 and 1998/ 2002) were analyzed for their Pb isotopic composition. Fly ashes are more representative of solid residual particles, whereas flue gas residues reflect mostly the composition of gas phases. Both sample types contain hundreds to thousands of micrograms of metals per gram. Leaching experiments showed that metals are present in condensed phases, probably as sulfates and chlorides, and suggest that Cd, Pb, and Zn are highly fractionated from one another during volatilization/condensation processes occurring during combustion. Although all the samples analyzed define a fairly restricted range in Pb isotopic compositions (206Pb/207Pb = 1.148-1.158 and 208Pb/206Pb = 2.101-2.114) compared to other environmental samples, some MSWC produce materials having distinct isotopic compositions, whereas others display very similar ones. Isotopic heterogeneity is also measured between samples from a single MSWC. This is interpreted as resulting from the heterogeneity of the waste source materials. The range of Pb isotopic composition of incinerator materials form a well-defined linear array in the 208Pb/206Pb versus 206Pb/207Pb diagram. This array is compatible with the previously reported European standard pollution (ESP) line and most probably represent the average lead isotopic composition of industrial atmospheric emissions in France, with the following ratios: 206Pb/207Pb = 1.154+/-0.003 and 208Pb/206Pb = 2.107+/-0.003 (1sigma).
Collapse
Affiliation(s)
- Jean Carignan
- CRPG-CNRS, UPR 2300, 54501 Vandoeuvre-les-Nancy, France.
| | | | | | | |
Collapse
|
11
|
Semlali RM, Dessogne JB, Monna F, Bolte J, Azimi S, Navarro N, Denaix L, Loubet M, Chateau C, van Oort F. Modeling lead input and output in soils using lead isotopic geochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:1513-1521. [PMID: 15046354 DOI: 10.1021/es0341384] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of this study is to model downward migration of lead from the plow layer of an experimental site located in Versailles (about 15 km southwest of Paris, France). Since 1928, samples have been collected annually from the topsoil of three control plots maintained in bare fallow. Thirty samples from 10 different years were analyzed for their lead and scandium contents and lead isotopic compositions. The fluxes are simple because of the well-controlled experimental conditions in Versailles: only one output flux, described as a first-order differential function of the anthropogenic lead pool, was taken into account; the inputs were exclusively ascribed to atmospheric deposition. The combination of concentration and isotopic data allows the rate of migration from the plowed topsoil to the underlying horizon and, to a lesser extent, the atmospheric fluxes to be assessed. Both results are in good agreement with the sparse data available. Indeed, the post-depositional migration of lead appears negligible at the human time scale: less than 0.1% of the potentially mobile lead pool migrates downward, out of the first 25 cm of the soil, each year. Assuming future lead inputs equal to 0, at least 700 yr would be required to halve the amount of accumulated lead pollution. Such a low migration rate is compatible with the persistence of a major anthropogenic lead pool deposited before 1928. Knowledge of pollution history seems therefore to be of primary importance.
Collapse
Affiliation(s)
- R M Semlali
- INRA, Unité de Science du Sol, RD10, F-78026 Versailles Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Watson JG, Zhu T, Chow JC, Engelbrecht J, Fujita EM, Wilson WE. Receptor modeling application framework for particle source apportionment. CHEMOSPHERE 2002; 49:1093-1136. [PMID: 12492167 DOI: 10.1016/s0045-6535(02)00243-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Receptor models infer contributions from particulate matter (PM) source types using multivariate measurements of particle chemical and physical properties. Receptor models complement source models that estimate concentrations from emissions inventories and transport meteorology. Enrichment factor, chemical mass balance, multiple linear regression, eigenvector. edge detection, neural network, aerosol evolution, and aerosol equilibrium models have all been used to solve particulate air quality problems, and more than 500 citations of their theory and application document these uses. While elements, ions, and carbons were often used to apportion TSP, PM10, and PM2.5 among many source types, many of these components have been reduced in source emissions such that more complex measurements of carbon fractions, specific organic compounds, single particle characteristics, and isotopic abundances now need to be measured in source and receptor samples. Compliance monitoring networks are not usually designed to obtain data for the observables, locations, and time periods that allow receptor models to be applied. Measurements from existing networks can be used to form conceptual models that allow the needed monitoring network to be optimized. The framework for using receptor models to solve air quality problems consists of: (1) formulating a conceptual model; (2) identifying potential sources; (3) characterizing source emissions; (4) obtaining and analyzing ambient PM samples for major components and source markers; (5) confirming source types with multivariate receptor models; (6) quantifying source contributions with the chemical mass balance; (7) estimating profile changes and the limiting precursor gases for secondary aerosols; and (8) reconciling receptor modeling results with source models, emissions inventories, and receptor data analyses.
Collapse
Affiliation(s)
- John G Watson
- Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Flament P, Bertho ML, Deboudt K, Véron A, Puskaric E. European isotopic signatures for lead in atmospheric aerosols: a source apportionment based upon 206Pb/207Pb ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2002; 296:35-57. [PMID: 12398326 DOI: 10.1016/s0048-9697(02)00021-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To investigate the capability of the lead isotope signature technique to support a source apportionment study at a Continental scale, atmospheric particulate matter was collected at Cap Gris-Nez (Eastern Channel, northern France), over one year (1995-1996). Four days retrospective trajectories of air masses were available during each sampling experiment. Twenty-eight samples, for which the origin of aerosols was unambiguously determined, were selected for isotopic measurements. Considering the Enrichment Factors, EF(Crust) of lead and its size distribution, we show that lead is mostly from anthropogenic origin and mainly associated with [0.4 < diameter < 0.9 microm] particles. The extent to which various Continental sources influence the lead abundance in aerosols is exhibited by considering both the lead concentration and the origin of air masses. Lead concentration is higher by a factor of approximately seven, when air masses are derived from Continental Europe, by comparison with marine air masses. Taking into account these concentrations and the vertical movements of air masses, we compare the different isotopic compositions using a statistical non-parametric test (Kolmogorov-Smirnov). We produce evidence that, for most of the cases, air masses originating from Continental Europe exhibit a more radiogenic composition (1.134 < 206Pb/207Pb < 1.172) than air masses coming from the United Kingdom (1.106 < 206Pb/207Pb < 1.124). Generally, lead isotopic compositions in aerosols are clearly distinct from the gasoline signatures in European countries, strongly suggesting that automotive lead is no longer the major component of this metal in the air. Gasoline and industrial isotopic signatures could explain the origin of lead in our aerosol samples. A source apportionment based upon 206Pb/207Pb ratios, suggests that the difference between British (206Pb/207Pb = 1.122 +/- 0.038) and Continental (206Pb/207Pb = 1.155 +/- 0.022) signatures may be largely explained by differences in the petrol lead content of aerosols (23-62% in Great Britain vs. 10-36% in Continental Europe).
Collapse
Affiliation(s)
- Pascal Flament
- Laboratoire de Biogéochimie et Environnement du Littoral, Université du Littoral-Cĵte d'Opale, CNRS/INSU 8013 ELICO, Wimereux, France.
| | | | | | | | | |
Collapse
|
14
|
Renberg I, Brännvall ML, Bindler R, Emteryd O. Stable lead isotopes and lake sediments--a useful combination for the study of atmospheric lead pollution history. THE SCIENCE OF THE TOTAL ENVIRONMENT 2002; 292:45-54. [PMID: 12108444 DOI: 10.1016/s0048-9697(02)00032-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Analysis of stable lead isotopes and lead concentrations in lake-sediment deposits, not least in varved (annually-laminated) sediments, is a useful method to study lead pollution history. This paper presents details from a study of 31 lakes in Sweden. Using a strong acid digestion of sediment samples and ICP-MS analyses, we have found that Swedish lake sediments have a high natural (pre-pollution) 206[Pb]207[Pb] ratio (mean 1.52+/-0.18, range 1.28-2.01, n=31 lakes). In contrast, atmospheric lead pollution derived from metal smelting processes, coal burning and from alkyl-lead added to petrol has a lower ratio (< 1.2). Consequently, when pollution lead deposition began approximately 3500 years ago, the lead isotope ratio of the sediments started to decline, and in modern sediments it is typically < 1.2. Using the isotope and concentration values and a mixing model, the relative contribution of pollution and natural lead in sediment samples can be calculated. The pollution lead records of the Swedish lake sediments show a consistent picture of the atmospheric lead pollution history. Some noticeable features are the Roman peak (approx. 0 AD), the large and permanent Medieval increase (approx. 1000 AD), peaks at approximately 1200 and 1530 AD, the rapid increase after World War II, the peak in the 1970s, and the large modern decline.
Collapse
Affiliation(s)
- I Renberg
- Department of Ecology and Environmental Science, Umeå University, Sweden.
| | | | | | | |
Collapse
|
15
|
Veysseyre AM, Bollhöfer AF, Rosman KJ, Ferrari CP, Boutron CF. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2001; 35:4463-4469. [PMID: 11757602 DOI: 10.1021/es0105717] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fresh snow samples collected at 15 remote locations and aerosols collected at one location in the French Alps between November 1998 and April 1999 have been analyzed for Pb concentration and isotopic composition by thermal ionization mass spectrometry. The snow samples contained 19-1300 pg/g of Pb with isotopic ratios 206Pb/207Pb (208Pb/207Pb) of 1.1279-1.1607 (2.3983-2.4302). Airborne Pb concentrations at one sampling site ranged from 0.42 to 6.0 ng/m3 with isotopic ratios of 1.1321-1.1427 (2.4029-2.4160). Air mass trajectory analysis combined with isotopic compositions of potential source regions did not show discernible evidence of the long-range atmospheric transport of pollutants. Isotopic ratios in the Alpine snow samples and thus the free troposphere were generally higher than airborne Pb isotopic ratios in urban France, which coupled with the relatively high Pb concentrations suggested a regional anthropogenic Pb source, probably Italy but possibly Eastern Europe.
Collapse
Affiliation(s)
- A M Veysseyre
- Laboratoire de Glaciologie et Géophysique de l'Environnement du CNRS, Saint Martin d'Hères, France
| | | | | | | | | |
Collapse
|