1
|
Ray P, Jaiswal S, Ferrer-Torres D, Wang Z, Nancarrow D, Curtin M, Martinho MS, Lacy SM, Kasturirangan S, Thomas D, Spence JR, Truttmann MC, Lagisetty KH, Lawrence TS, Wang TD, Beer DG, Ray D. GRAIL1 Stabilizes Misfolded Mutant p53 through a Ubiquitin Ligase-Independent, Chaperone Regulatory Function. Mol Cancer Res 2024; 22:996-1010. [PMID: 39018356 DOI: 10.1158/1541-7786.mcr-24-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Frequent (>70%) TP53 mutations often promote its protein stabilization, driving esophageal adenocarcinoma (EAC) development linked to poor survival and therapy resistance. We previously reported that during Barrett's esophagus progression to EAC, an isoform switch occurs in the E3 ubiquitin ligase RNF128 (aka GRAIL-gene related to anergy in lymphocytes), enriching isoform 1 (hereby GRAIL1) and stabilizing the mutant p53 protein. Consequently, GRAIL1 knockdown degrades mutant p53. But, how GRAIL1 stabilizes the mutant p53 protein remains unclear. In search for a mechanism, here, we performed biochemical and cell biology studies to identify that GRAIL has a binding domain (315-PMCKCDILKA-325) for heat shock protein 40/DNAJ. This interaction can influence DNAJ chaperone activity to modulate misfolded mutant p53 stability. As predicted, either the overexpression of a GRAIL fragment (Frag-J) encompassing the DNAJ binding domain or a cell-permeable peptide (Pep-J) encoding the above 10 amino acids can bind and inhibit DNAJ-Hsp70 co-chaperone activity, thus degrading misfolded mutant p53. Consequently, either Frag-J or Pep-J can reduce the survival of mutant p53 containing dysplastic Barrett's esophagus and EAC cells and inhibit the growth of patient-derived organoids of dysplastic Barrett's esophagus in 3D cultures. The misfolded mutant p53 targeting and growth inhibitory effects of Pep-J are comparable with simvastatin, a cholesterol-lowering drug that can degrade misfolded mutant p53 also via inhibiting DNAJA1, although by a distinct mechanism. Implications: We identified a novel ubiquitin ligase-independent, chaperone-regulating domain in GRAIL and further synthesized a first-in-class novel misfolded mutant p53 degrading peptide having future translational potential.
Collapse
Affiliation(s)
- Paramita Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Sangeeta Jaiswal
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Zhuwen Wang
- Department of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Derek Nancarrow
- Department of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Meghan Curtin
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - May San Martinho
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Shannon M Lacy
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Matthias C Truttmann
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kiran H Lagisetty
- Department of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Thomas D Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - David G Beer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
2
|
Lima CR, Antunes D, Caffarena E, Carels N. Structural Characterization of Heat Shock Protein 90β and Molecular Interactions with Geldanamycin and Ritonavir: A Computational Study. Int J Mol Sci 2024; 25:8782. [PMID: 39201468 PMCID: PMC11354266 DOI: 10.3390/ijms25168782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Drug repositioning is an important therapeutic strategy for treating breast cancer. Hsp90β chaperone is an attractive target for inhibiting cell progression. Its structure has a disordered and flexible linker region between the N-terminal and central domains. Geldanamycin was the first Hsp90β inhibitor to interact specifically at the N-terminal site. Owing to the toxicity of geldanamycin, we investigated the repositioning of ritonavir as an Hsp90β inhibitor, taking advantage of its proven efficacy against cancer. In this study, we used molecular modeling techniques to analyze the contribution of the Hsp90β linker region to the flexibility and interaction between the ligands geldanamycin, ritonavir, and Hsp90β. Our findings indicate that the linker region is responsible for the fluctuation and overall protein motion without disturbing the interaction between the inhibitors and the N-terminus. We also found that ritonavir established similar interactions with the substrate ATP triphosphate, filling the same pharmacophore zone.
Collapse
Affiliation(s)
- Carlyle Ribeiro Lima
- Laboratory of Biological System Modeling, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Deborah Antunes
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
| | - Ernesto Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
3
|
Zhao Z, Xu LD, Zhang F, Liang QZ, Jiao Y, Shi FS, He B, Xu P, Huang YW. Heat shock protein 90 facilitates SARS-CoV-2 structural protein-mediated virion assembly and promotes virus-induced pyroptosis. J Biol Chem 2023; 299:104668. [PMID: 37011862 PMCID: PMC10066589 DOI: 10.1016/j.jbc.2023.104668] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Inhibition of heat shock protein 90 (Hsp90), a prominent molecular chaperone, effectively limits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but little is known about any interaction between Hsp90 and SARS-CoV-2 proteins. Here, we systematically analyzed the effects of the chaperone isoforms Hsp90α and Hsp90β on individual SARS-CoV-2 viral proteins. Five SARS-CoV-2 proteins, namely nucleocapsid (N), membrane (M), and accessory proteins Orf3, Orf7a, and Orf7b were found to be novel clients of Hsp90β in particular. Pharmacological inhibition of Hsp90 with 17-DMAG results in N protein proteasome-dependent degradation. Hsp90 depletion-induced N protein degradation is independent of CHIP, a ubiquitin E3 ligase previously identified for Hsp90 client proteins, but alleviated by FBXO10, an E3 ligase identified by subsequent siRNA screening. We also provide evidence that Hsp90 depletion may suppress SARS-CoV-2 assembly partially through induced M or N degradation. Additionally, we found that GSDMD-mediated pyroptotic cell death triggered by SARS-CoV-2 was mitigated by inhibition of Hsp90. These findings collectively highlight a beneficial role for targeting of Hsp90 during SARS-CoV-2 infection, directly inhibiting virion production and reducing inflammatory injury by preventing the pyroptosis that contributes to severe SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Zhuangzhuang Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Ling-Dong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fei Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qi-Zhang Liang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yajuan Jiao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Shu Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Kang J, Lee HJ, Lee J, Hong J, Hong Kim Y, Disis ML, Gim JA, Park KH. Novel peptide-based vaccine targeting heat shock protein 90 induces effective antitumor immunity in a HER2+ breast cancer murine model. J Immunother Cancer 2022; 10:jitc-2022-004702. [PMID: 36109084 PMCID: PMC9478831 DOI: 10.1136/jitc-2022-004702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background Heat shock protein 90 (HSP90) is a protein chaperone for most of the important signal transduction pathways in human epidermal growth factor receptor 2-positive (HER2+) breast cancer, including human epidermal growth factor receptor 2, estrogen receptor, progesterone receptor and Akt. The aim of our study is to identify peptide-based vaccines and to develop an effective immunotherapeutics for the treatment of HER2+ breast cancer. Methods HSP90-derived major histocompatibility complex (MHC) class II epitopes were selected using in silico algorithms and validated by enzyme-linked immunospot (ELISPOT). In vivo antitumor efficacy was evaluated in MMTVneu-transgenic mice. HSP90 peptide-specific systemic T-cell responses were assessed using interferon gamma ELISPOT assay, and immune microenvironment in tumors was evaluated using multiplex immunohistochemistry and TCRβ sequencing. Results First, candidate HSP90-derived MHC class II epitopes with high binding affinities across multiple human HLA class II genotypes were identified using in silico algorithms. Among the top 10 peptides, p485 and p527 were selected as promising Th1 immunity-inducing epitopes with low potential for Th2 immunity induction. The selected MHC class II HSP90 peptides induced strong antigen-specific T cell responses, which was induced by cross-priming of CD8+ T cells in vivo. The HSP90 peptide vaccines were effective in the established tumor model, and their efficacy was further enhanced when combined with stimulator of interferon genes (STING) agonist and/or anticytotoxic T lymphocyte-associated antigen-4 antibody in MMTVneu-transgenic mice. Increased tumor rejection was associated with increased systemic HSP90-specific T-cell responses, increased T-cell recruitment in tumor microenvironment, intermolecular epitope spreading, and increased rearrangement of TCRβ by STING agonist. Conclusions In conclusion, we have provided the first preclinical evidence of the action mechanism of HSP90 peptide vaccines with a distinct potential for improving breast cancer treatment.
Collapse
Affiliation(s)
- Jinho Kang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hye-Jin Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jimin Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jinhwa Hong
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Yeul Hong Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Mary L Disis
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jeong-An Gim
- Center for Research Support, Korea University College of Medicine, Seoul, South Korea
| | - Kyong Hwa Park
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Somogyvári M, Khatatneh S, Sőti C. Hsp90: From Cellular to Organismal Proteostasis. Cells 2022; 11:cells11162479. [PMID: 36010556 PMCID: PMC9406713 DOI: 10.3390/cells11162479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Assuring a healthy proteome is indispensable for survival and organismal health. Proteome disbalance and the loss of the proteostasis buffer are hallmarks of various diseases. The essential molecular chaperone Hsp90 is a regulator of the heat shock response via HSF1 and a stabilizer of a plethora of signaling proteins. In this review, we summarize the role of Hsp90 in the cellular and organismal regulation of proteome maintenance.
Collapse
|
6
|
Ko JC, Chen JC, Hsieh JM, Tseng PY, Chiang CS, Liu LL, Chien CC, Huang IH, Chang QZ, Mu BC, Lin YW. Heat shock protein 90 inhibitor 17-AAG down-regulates thymidine phosphorylase expression and potentiates the cytotoxic effect of tamoxifen and erlotinib in human lung squamous carcinoma cells. Biochem Pharmacol 2022; 204:115207. [PMID: 35961402 DOI: 10.1016/j.bcp.2022.115207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
Elevated thymidine phosphorylase (TP) levels, a key enzyme in the pyrimidine nucleoside salvage pathway, in cancer cells, are related to a poor prognosis in a variety of cancers. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is involved in the stabilization and maturation of many oncogenic proteins. The aim of this study is to elucidate whether Hsp90 inhibitor 17-AAG could enhance tamoxifen- and erlotinib-induced cytotoxicity in nonsmall cell lung cancer (NSCLC) cells via modulating TP expression in two squamous NSCLC cell lines, H520 and H1703. We found that 17-AAG reduced TP expression via inactivating the MKK1/2-ERK1/2-mitogen-activated protein kinase (MAPK) pathway. TP knockdown with siRNA or ERK1/2 MAPK inactivation with the pharmacological inhibitor U0126 could enhance the cytotoxic and growth inhibitory effects of 17-AAG. In contrast, MKK1-CA or MKK2-CA (a constitutively active form of MKK1/2) vector-enforced expression could reduce the cytotoxic and cell growth inhibitory effects of 17-AAG. Furthermore, 17-AAG enhanced the cytotoxic and cell growth inhibitory effects of tamoxifen and erlotinib in NSCLC cells, which were associated with TP expression downregulation and MKK1/2-ERK1/2 signal inactivation. Taken together, Hsp90 inhibition downregulates TP, enhancing the tamoxifen- and erlotinib-induced cytotoxicity in H520 and H1703 cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Jou-Min Hsieh
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Pei-Yu Tseng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chen-Shan Chiang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Li-Ling Liu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chin-Cheng Chien
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - I-Hsiang Huang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Qiao-Zhen Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Bo-Cheng Mu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
7
|
Nikotina AD, Vladimirova SA, Kokoreva NE, Komarova EY, Aksenov ND, Efremov S, Leonova E, Pavlov R, Kartsev VG, Zhang Z, Margulis BA, Guzhova IV. Combined Cytotoxic Effect of Inhibitors of Proteostasis on Human Colon Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15080923. [PMID: 35893747 PMCID: PMC9331496 DOI: 10.3390/ph15080923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Despite significant progress in the diagnosis and treatment of colorectal cancer, drug resistance continues to be a major limitation of therapy. In this regard, studies aimed at creating combination therapy are gaining popularity. One of the most promising adjuvants are inhibitors of the proteostasis system, chaperone machinery, and autophagy. The main HSP regulator, HSF1, is overactivated in cancer cells and autophagy sustains the survival of malignant cells. In this work, we focused on the selection of combination therapy for the treatment of rectal cancer cells obtained from patients after tumor biopsy without prior treatment. We characterized the migration, proliferation, and chaperone status in the resulting lines and also found them to be resistant to a number of drugs widely used in the clinic. However, these cells were sensitive to the autophagy inhibitor, chloroquine. For combination therapy, we used an HSF1 activity inhibitor discovered earlier in our laboratory, the cardenolide CL-43, which has already been proven as an auxiliary component of combined therapy in established cell lines. CL-43 effectively suppressed HSF1 activity and Hsp70 expression in all investigated cells. We tested the autophagy inhibitor, chloroquine, in combination with CL-43. Our results indicate that the use of an inhibitor of HSF1 activity in combination with an autophagy inhibitor results in effective cancer cell death, therefore, this therapeutic approach may be a promising treatment regimen for certain patients.
Collapse
Affiliation(s)
- Alina D. Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Snezhana A. Vladimirova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Nadezhda E. Kokoreva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Elena Y. Komarova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Nikolay D. Aksenov
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Sergey Efremov
- Saint-Petersburg State University Hospital, Fontanka River enb.154, 190103 St. Petersburg, Russia; (S.E.); (E.L.); (R.P.)
| | - Elizaveta Leonova
- Saint-Petersburg State University Hospital, Fontanka River enb.154, 190103 St. Petersburg, Russia; (S.E.); (E.L.); (R.P.)
| | - Rostislav Pavlov
- Saint-Petersburg State University Hospital, Fontanka River enb.154, 190103 St. Petersburg, Russia; (S.E.); (E.L.); (R.P.)
| | - Viktor G. Kartsev
- InterBioScreen, Institutsky Ave. 7a, Chernogolovka, 142432 Moscow, Russia;
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China;
| | - Boris A. Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Irina V. Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
- Correspondence: ; Tel.: +7-(921)786-4860
| |
Collapse
|
8
|
Bjorklund DM, Morgan RML, Oberoi J, Day KLIM, Galliou PA, Prodromou C. Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant. Biomolecules 2022; 12:biom12070905. [PMID: 35883461 PMCID: PMC9313131 DOI: 10.3390/biom12070905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The kinome specific co-chaperone, CDC37 (cell division cycle 37), is responsible for delivering BRAF (B-Rapidly Accelerated Fibrosarcoma) to the Hsp90 (heat shock protein 90) complex, where it is then translocated to the RAS (protooncogene product p21) complex at the plasma membrane for RAS mediated dimerization and subsequent activation. We identify a bipartite interaction between CDC37 and BRAF and delimitate the essential structural elements of CDC37 involved in BRAF recognition. We find an extended and conserved CDC37 motif, 20HPNID---SL--W31, responsible for recognizing the C-lobe of BRAF kinase domain, while the c-terminal domain of CDC37 is responsible for the second of the bipartite interaction with BRAF. We show that dimerization of BRAF, independent of nucleotide binding, can act as a potent signal that prevents CDC37 recognition and discuss the implications of mutations in BRAF and the consequences on signaling in a clinical setting, particularly for class 2 BRAF mutations.
Collapse
Affiliation(s)
- Dennis M. Bjorklund
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK;
| | - R. Marc L. Morgan
- Department of Life Sciences, Faculty of Natural Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK;
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK;
| | | | - Panagiota A. Galliou
- Laboratory of Biological Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Chrisostomos Prodromou
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK;
- Correspondence:
| |
Collapse
|
9
|
Li L, Wu D, Deng S, Li J, Zhang F, Zou Y, Zhang T, Xu Y. NVP-AUY922 alleviates radiation-induced lung injury via inhibition of autophagy-dependent ferroptosis. Cell Death Dis 2022; 8:86. [PMID: 35220409 PMCID: PMC8882174 DOI: 10.1038/s41420-022-00887-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
Radiation-induced lung injury (RILI) is a common complication of radiotherapy for which no effective interventions are available. NVP-AUY922, a resorcinylic isoxazole amide drug, exhibits anti-inflammatory, immunomodulatory, and therapeutic effects against various types of cancers. In this study, we explore the role and underlying mechanisms of NVP-AUY922 in the treatment of RILI. We established a model of BEAS-2B cell injury and a mouse model of RILI. Cell proliferation, death, gross weight, and survival rates of mice, and histological parameters were assessed. Additionally, inflammation-related indices and indicators related to ferroptosis were evaluated. Furthermore, immunofluorescence and co-immunoprecipitation were used to determine the interaction between GPX4, LAMP-2A, and HSC70. NVP-AUY922 significantly ameliorated radiation-induced lung tissue damage, inflammatory cell infiltration, proinflammatory cytokine release, and lung epithelial BEAS-2B cell damage. NVP-AUY922 markedly limited the activation of ferroptosis, which is involved in RILI. Mechanistically, NVP-AUY922 prevented chaperone-mediated autophagy of the GPX4 pathway in vitro and in vivo, and the autophagy inhibitor Baf-A1 significantly increased the level of GPX4 and alleviated lung inflammation. NVP-AUY922 can alleviate RILI by inhibiting chaperone-mediated lysosomal degradation of GPX4, demonstrating its potential as a novel protective agent against RILI.
Collapse
|
10
|
H. Abdellattif M, Elkamhawy A, Nada H. Synthesis, Biological Evaluation, and In Silico Studies of New Heterocycles Incorporating 4,5,6,7-Tetrabromophthalimide Moiety as Potential Antibacterial and Anticancer Agents. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Schrader L, Winter M, Errbii M, Delabie J, Oettler J, Gadau J. Inhibition of HSP90 causes morphological variation in the invasive ant
Cardiocondyla obscurior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:333-340. [DOI: 10.1002/jez.b.23035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/16/2023]
Affiliation(s)
- Lukas Schrader
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Miles Winter
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Jacques Delabie
- Laboratório de Mirmecologia Cocoa Research Center‐CEPLAC & UESC‐DCAA Itabuna Bahia Brazil
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie University of Regensburg Regensburg Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| |
Collapse
|
12
|
Aghamiri SS, Singh V, Naldi A, Helikar T, Soliman S, Niarakis A. Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics 2021; 36:4473-4482. [PMID: 32403123 PMCID: PMC7575051 DOI: 10.1093/bioinformatics/btaa484] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Motivation Molecular interaction maps have emerged as a meaningful way of representing biological mechanisms in a comprehensive and systematic manner. However, their static nature provides limited insights to the emerging behaviour of the described biological system under different conditions. Computational modelling provides the means to study dynamic properties through in silico simulations and perturbations. We aim to bridge the gap between static and dynamic representations of biological systems with CaSQ, a software tool that infers Boolean rules based on the topology and semantics of molecular interaction maps built with CellDesigner. Results We developed CaSQ by defining conversion rules and logical formulas for inferred Boolean models according to the topology and the annotations of the starting molecular interaction maps. We used CaSQ to produce executable files of existing molecular maps that differ in size, complexity and the use of Systems Biology Graphical Notation (SBGN) standards. We also compared, where possible, the manually built logical models corresponding to a molecular map to the ones inferred by CaSQ. The tool is able to process large and complex maps built with CellDesigner (either following SBGN standards or not) and produce Boolean models in a standard output format, Systems Biology Marked Up Language-qualitative (SBML-qual), that can be further analyzed using popular modelling tools. References, annotations and layout of the CellDesigner molecular map are retained in the obtained model, facilitating interoperability and model reusability. Availability and implementation The present tool is available online: https://lifeware.inria.fr/∼soliman/post/casq/ and distributed as a Python package under the GNU GPLv3 license. The code can be accessed here: https://gitlab.inria.fr/soliman/casq. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sara Sadat Aghamiri
- GenHotel, Département de Biologie, Univ. èvry, Université Paris-Saclay, Genopole, èvry 91025, France
| | - Vidisha Singh
- GenHotel, Département de Biologie, Univ. èvry, Université Paris-Saclay, Genopole, èvry 91025, France
| | - Aurélien Naldi
- Département de Biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), ècole Normale Supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Sylvain Soliman
- Lifeware Group, Inria Saclay-île de France, Palaiseau 91120, France
| | - Anna Niarakis
- GenHotel, Département de Biologie, Univ. èvry, Université Paris-Saclay, Genopole, èvry 91025, France
| |
Collapse
|
13
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
14
|
Ramos CHI, Ayinde KS. Are Hsp90 inhibitors good candidates against Covid-19? Curr Protein Pept Sci 2020; 22:CPPS-EPUB-111407. [PMID: 33176644 DOI: 10.2174/1389203721666201111160925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 01/18/2023]
Abstract
Drug reposition, or repurposing, has become a promising strategy in therapeutics due to its advantages in several aspects of drug therapy. General drug development is expensive and can take more than 10 years to go through the designing, development, and necessary approval steps. However, established drugs have already overcome these steps and thus a potential candidate may be already available decreasing the risks and costs involved. Viruses invade cells, usually provoking biochemical changes, leading to tissue damage, alteration of normal physiological condition in organisms and can even result in death. Inside the cell, the virus finds the machinery necessary for its multiplication, as for instance the protein quality control system, which involves chaperones and Hsps (heat shock proteins) that, in addition to physiological functions, help in the stabilization of viral proteins. Recently, many inhibitors of Hsp90 have been developed as therapeutic strategies against diseases such as the Hsp90 inhibitors used in anticancer therapy. Several shreds of evidence indicate that these inhibitors can also be used as therapeutic strategies against viruses. Therefore, since a drug treatment for COVID-19 is urgently needed, this review aims to discuss the potential use of Hsp90 inhibitors in the treatment of this globally threatening disease.
Collapse
Affiliation(s)
- Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970. Brazil
| | - Kehinde S Ayinde
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970. Brazil
| |
Collapse
|
15
|
Astl L, Stetz G, Verkhivker GM. Dissecting Molecular Principles of the Hsp90 Chaperone Regulation by Allosteric Modulators Using a Hierarchical Simulation Approach and Network Modeling of Allosteric Interactions: Conformational Selection Dictates the Diversity of Protein Responses and Ligand-Specific Functional Mechanisms. J Chem Theory Comput 2020; 16:6656-6677. [PMID: 32941034 DOI: 10.1021/acs.jctc.0c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conformational plasticity of the Hsp90 molecular chaperones underlies the diversity of functional mechanisms that these versatile molecular machines employ to coordinate their vast protein clientele in the cellular environment. Despite a steady progress in studies of the Hsp90 machinery, a great deal remains unknown about molecular principles and ligand-specific functional mechanisms of the Hsp90 regulation by allosteric modulators that attracted significant attention because of their therapeutic potential. Due to structural complexity and dynamic nature of the Hsp90 responses to allosteric modulators, the atomistic details about the mode of action of these small molecules continue to be fairly scarce and controversial. In this work, we employ an integrative strategy that encompassed atomistic simulations of the Hsp90 proteins and hierarchical modeling of Hsp90-ligand binding with network analysis to explore functional mechanisms of the Hsp90 regulation by a panel of allosteric modulators (novobiocin, KU-135, KU-174, and KU-32) with different models of action. The results show that functional mechanisms of allosteric modulation in the Hsp90 proteins may be driven by conformational selection principles in which ligands elicit pre-existing states of the unbound chaperone to drive ligand-specific protein responses and distinct scenarios of Hsp90 regulation. We found that novobiocin can selectively sequester an ensemble of open chaperone conformations and inhibit the progression of the functional cycle through a cascade of cumulative dynamic changes. In contrast, KU-32 displayed unique preferences toward partially closed dynamic states, inducing robust allosteric signaling and stimulation of the ATPase cycle. The proposed model of the Hsp90 regulation by allosteric modulators reconciled diverse experimental data and showed that allosteric modulators may operate via targeted exploitation of dynamic landscapes eliciting vastly different protein responses and diverse mechanisms of action.
Collapse
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
16
|
Nagata E, Fujii N, Kohara S, Okada C, Satoh T, Takekoshi S, Takao M, Mihara B, Takizawa S. Inositol hexakisphosphate kinase 2 promotes cell death of anterior horn cells in the spinal cord of patients with amyotrophic lateral sclerosis. Mol Biol Rep 2020; 47:6479-6485. [PMID: 32929655 DOI: 10.1007/s11033-020-05688-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/26/2020] [Indexed: 11/25/2022]
Abstract
We have previously reported that inositol hexakisphosphate kinase (InsP6K)2 mediates cell death. InsP6K2 is abundantly expressed in anterior horn cells of the mammalian spinal cord. We investigated the role of InsP6K2 in spinal cords of patients with amyotrophic lateral sclerosis (ALS). Autopsy specimens of lumbar spinal cords from ten patients with sporadic ALS and five non-neurological disease patients (NNDPs) were obtained. We performed quantitative real-time PCR, immunostaining, and western blotting for InsP6K1, InsP6K2, InsP6K3, protein kinase B (Akt), casein kinase 2 (CK2), and 90-kDa heat-shock protein (HSP90). In contrast to InsP6K1 and InsP6K3 mRNA expression, InsP6K2 levels in anterior horn cells of the spinal cord were significantly increased in ALS patients compared to NNDPs. In ALS patients, InsP6K2 translocated from the nucleus to the cytoplasm. However, we observed a decrease in HSP90, CK2, and Akt activity in ALS patients compared to NNDPs. A previous study reported that InsP6K2 activity is suppressed after binding to HSP90 and subsequent phosphorylation and degradation by CK2, thus decreasing InsP6K2 activity. However, InsP7, which is generated by InsP6K2, can compete with Akt for PH domain binding. Consequently, InsP7 can inhibit Akt phosphorylation. Our results suggest that InsP6K2 is activated in the spinal cord of patients with ALS and may play an important role in ALS by inducing cell death mechanisms via Akt, CK2, and HSP90 pathways.
Collapse
Affiliation(s)
- Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Tadayuki Satoh
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Susumu Takekoshi
- Department of Clinical Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
| | - Ban Mihara
- Department of Neurology, Mihara Memorial Hospital, Gunma, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
17
|
Grp94 Regulates the Recruitment of Aneural AChR Clusters for the Assembly of Postsynaptic Specializations by Modulating ADF/Cofilin Activity and Turnover. eNeuro 2020; 7:ENEURO.0025-20.2020. [PMID: 32747457 PMCID: PMC7540925 DOI: 10.1523/eneuro.0025-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Temperature is a physiological factor that affects neuronal growth and synaptic homeostasis at the invertebrate neuromuscular junctions (NMJs); however, whether temperature stress could also regulate the structure and function of the vertebrate NMJs remains unclear. In this study, we use Xenopus laevis primary cultures as a vertebrate model system for investigating the involvement of heat shock protein 90 (HSP90) family of stress proteins in NMJ development. First, cold temperature treatment or HSP90 inhibition attenuates the formation of aneural acetylcholine receptor (AChR) clusters, but increases their stability after they are formed, in cultured muscles. HSP90 inhibition specifically affects the stability of aneural AChR clusters and their associated intracellular scaffolding protein rapsyn, instead of causing a global change in cell metabolism and protein expression in Xenopus muscle cultures. Upon synaptogenic stimulation, a specific HSP90 family member, glucose-regulated protein 94 (Grp94), modulates the phosphorylation and dynamic turnover of actin depolymerizing factor (ADF)/cofilin at aneural AChR clusters, leading to the recruitment of AChR molecules from aneural clusters to the assembly of agrin-induced postsynaptic specializations. Finally, postsynaptic Grp94 knock-down significantly inhibits nerve-induced AChR clustering and postsynaptic activity in nerve-muscle co-cultures as demonstrated by live-cell imaging and electrophysiological recording, respectively. Collectively, this study suggests that temperature-dependent alteration in Grp94 expression and activity inhibits the assembly of postsynaptic specializations through modulating ADF/cofilin phosphorylation and activity at aneural AChR clusters, which prevents AChR molecules from being recruited to the postsynaptic sites via actin-dependent vesicular trafficking, at developing vertebrate NMJs.
Collapse
|
18
|
Transcriptomics-Based Screening Identifies Pharmacological Inhibition of Hsp90 as a Means to Defer Aging. Cell Rep 2020; 27:467-480.e6. [PMID: 30970250 PMCID: PMC6459000 DOI: 10.1016/j.celrep.2019.03.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Aging strongly influences human morbidity and mortality. Thus, aging-preventive compounds could greatly improve our health and lifespan. Here we screened for such compounds, known as geroprotectors, employing the power of transcriptomics to predict biological age. Using age-stratified human tissue transcriptomes and machine learning, we generated age classifiers and applied these to transcriptomic changes induced by 1,309 different compounds in human cells, ranking these compounds by their ability to induce a “youthful” transcriptional state. Testing the top candidates in C. elegans, we identified two Hsp90 inhibitors, monorden and tanespimycin, which extended the animals’ lifespan and improved their health. Hsp90 inhibition induces expression of heat shock proteins known to improve protein homeostasis. Consistently, monorden treatment improved the survival of C. elegans under proteotoxic stress, and its benefits depended on the cytosolic unfolded protein response-inducing transcription factor HSF-1. Taken together, our method represents an innovative geroprotector screening approach and was able to identify a class that acts by improving protein homeostasis. Transcriptome-based age classifiers can distinguish young versus old tissues Application of age classifiers to drug-induced transcriptomes finds geroprotectors Validation of geroprotectors in C. elegans highlights Hsp90 inhibitors Hsp90 inhibitors act through HSF-1 to improve health and extend lifespan
Collapse
|
19
|
Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering Anti-Cancer Drugs via Computational Methods. Front Pharmacol 2020; 11:733. [PMID: 32508653 PMCID: PMC7251168 DOI: 10.3389/fphar.2020.00733] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
New drug discovery has been acknowledged as a complicated, expensive, time-consuming, and challenging project. It has been estimated that around 12 years and 2.7 billion USD, on average, are demanded for a new drug discovery via traditional drug development pipeline. How to reduce the research cost and speed up the development process of new drug discovery has become a challenging, urgent question for the pharmaceutical industry. Computer-aided drug discovery (CADD) has emerged as a powerful, and promising technology for faster, cheaper, and more effective drug design. Recently, the rapid growth of computational tools for drug discovery, including anticancer therapies, has exhibited a significant and outstanding impact on anticancer drug design, and has also provided fruitful insights into the area of cancer therapy. In this work, we discussed the different subareas of the computer-aided drug discovery process with a focus on anticancer drugs.
Collapse
Affiliation(s)
- Wenqiang Cui
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Adnane Aouidate
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shouguo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuliyang Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
20
|
Discovery of novel heat shock protein (Hsp90) inhibitors based on luminespib with potent antitumor activity. Bioorg Med Chem Lett 2020; 30:127165. [PMID: 32305165 DOI: 10.1016/j.bmcl.2020.127165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022]
Abstract
A series of isosteric surrogates of the 4-phenyl group in luminespib were investigated as new scaffolds of the Hsp90 inhibitor for the discovery of novel antitumor agents. Among the synthesized surrogates of isoxazole and pyrazole, compounds 4a, 5e and 12b exhibited potent Hsp90 inhibition in ATPase activity and Her2 degradation assays and significant antitumor activity in A2780 and HCT116 cell lines. Animal studies indicated that compared to luminespib, their activities were superior in A2780 or NCI-H1975 tumor xenograft models. A molecular modeling study demonstrated that compound 4a could fit nicely into the N-terminal ATP binding pocket.
Collapse
|
21
|
Gao C, Peng YN, Wang HZ, Fang SL, Zhang M, Zhao Q, Liu J. Inhibition of Heat Shock Protein 90 as a Novel Platform for the Treatment of Cancer. Curr Pharm Des 2020; 25:849-855. [PMID: 31244417 DOI: 10.2174/1381612825666190503145944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90 (Hsp90) plays an essential role in various physiological and pathological processes. It activates client proteins to participate in tumor progression. Blocking Hsp90 could enable effective antitumor effects in many tumor types, such as multiple myeloma and colon cancer. Recently, it has motivated an interest in Hsp90 inhibitors that bind to the N-terminal or C-terminal ATP pocket as antitumor drugs. We reviewed the data from experimental and clinical trials on Hsp90 inhibitors in the treatment of different malignancies to explore and summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Chang Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ya-Nan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hai-Zhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shi-Lin Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
22
|
The Right Tool for the Job: An Overview of Hsp90 Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:135-146. [DOI: 10.1007/978-3-030-40204-4_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Park S, Park JA, Jeon JH, Lee Y. Traditional and Novel Mechanisms of Heat Shock Protein 90 (HSP90) Inhibition in Cancer Chemotherapy Including HSP90 Cleavage. Biomol Ther (Seoul) 2019; 27:423-434. [PMID: 31113013 PMCID: PMC6720532 DOI: 10.4062/biomolther.2019.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
HSP90 is a molecular chaperone that increases the stability of client proteins. Cancer cells show higher HSP90 expression than normal cells because many client proteins play an important role in the growth and survival of cancer cells. HSP90 inhibitors mainly bind to the ATP binding site of HSP90 and inhibit HSP90 activity, and these inhibitors can be distinguished as ansamycin and non-ansamycin depending on the structure. In addition, the histone deacetylase inhibitors inhibit the activity of HSP90 through acetylation of HSP90. These HSP90 inhibitors have undergone or are undergoing clinical trials for the treatment of cancer. On the other hand, recent studies have reported that various reagents induce cleavage of HSP90, resulting in reduced HSP90 client proteins and growth suppression in cancer cells. Cleavage of HSP90 can be divided into enzymatic cleavage and non-enzymatic cleavage. Therefore, reagents inducing cleavage of HSP90 can be classified as another class of HSP90 inhibitors. We discuss that the cleavage of HSP90 can be another mechanism in the cancer treatment by HSP90 inhibition.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae-Hyung Jeon
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
24
|
Li F, Song X, Su G, Wang Y, Wang Z, Qing S, Jia J, Wang Y, Huang L, Zheng K, Wang Y. AT-533, a Hsp90 inhibitor, attenuates HSV-1-induced inflammation. Biochem Pharmacol 2019; 166:82-92. [PMID: 31071330 DOI: 10.1016/j.bcp.2019.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
Inflammatory events are tightly associated with the death caused by Herpes simplex virus 1 (HSV-1) infection of the brain. Heat shock protein 90 (Hsp90) is a molecular chaperone that is stimulated in response to many stressful conditions (e.g., inflammation and hypoxia) and Hsp90 inhibitors are suggested to be potent inhibitors of the inflammatory response. The aim of this study was to investigate the effect of Hsp90 inhibitor AT-533 on HSV-1-induced inflammation. AT-533 at a non-antiviral concentration was found to show a prominent inhibitory effect on the production of cytokines induced by HSV-1 infection, such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and interleukin 1β (IL-1β). Mechanically, HSV-1 early infection induced inflammation through NF-κB signaling and NLRP3 inflammasome activation, as illustrated by the nuclear translocation of NF-κB and the enhanced cleavage of caspase-1. Besides, HSV-1 enhanced the interaction between NLRP3 and Hsp90. Moreover, AT-533 reduced the nuclear translocation of NF-κB and inflammasome activation via inhibiting the chaperone function of Hsp90. Furthermore, AT-533 inhibited the cleavage of pro-IL-1β to mature IL-1β in a NLRP3-independent manner. In summary, AT-533 may be a promising therapeutic strategy in HSV-1-infected inflammation management.
Collapse
Affiliation(s)
- Feng Li
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guifeng Su
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yiliang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhaoyang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shurong Qing
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiaoyan Jia
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lianzhou Huang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Liu J, Ma C, Zhang X, You J, Dong M, Chen L, Jiang P, Yun S. Molecular detection of Hsp90 inhibitor suppressing PCV2 replication in host cells. Microb Pathog 2019; 132:51-58. [PMID: 31028862 DOI: 10.1016/j.micpath.2019.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
Porcine Circovirus Type 2 (PCV2) is a pathogen that has the ability to cause devastating disease manifestations in pig populations with major economic implications. Our previous research found that Hsp90 is required for PCV2 production in PK-15 and 3D4/31 cells. The aim of this study was to evaluate the effect of Hsp90 inhibitor regulating PCV2 replication and to explore its underlying mechanism. In PK-15 and 3D4/31 cells treated with 17-AAG after viral adsorption, replication of PCV2 was attenuated as assessed by quantitating the expression of viral protein. Following NF-κB activation it was observed that 24hpi with PCV2 was significantly inhibited in the presence of 17-AAG. The expression of Hsp90 associated client proteins in PCV2-infected cells were also reduced in the presence of 17-AAG. However, treatment with MG-132 failed to rescue 17-AAG mediated reduction of PCV2 production in host cells. Thus, Hsp90 regulates PCV2 by modulating cellular signaling proteins. These results highlight the importance of cellular proteins during PCV2 infection and the possibility of targeting cellular chaperones for developing new anti-rotaviral strategies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Chang Ma
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Xuliang Zhang
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Jinwei You
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Min Dong
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Li Chen
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China.
| |
Collapse
|
26
|
Hoter A, El-Sabban ME, Naim HY. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2018; 19:E2560. [PMID: 30158430 PMCID: PMC6164434 DOI: 10.3390/ijms19092560] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The mammalian HSP90 family of proteins is a cluster of highly conserved molecules that are involved in myriad cellular processes. Their distribution in various cellular compartments underlines their essential roles in cellular homeostasis. HSP90 and its co-chaperones orchestrate crucial physiological processes such as cell survival, cell cycle control, hormone signaling, and apoptosis. Conversely, HSP90, and its secreted forms, contribute to the development and progress of serious pathologies, including cancer and neurodegenerative diseases. Therefore, targeting HSP90 is an attractive strategy for the treatment of neoplasms and other diseases. This manuscript will review the general structure, regulation and function of HSP90 family and their potential role in pathophysiology.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Marwan E El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| |
Collapse
|
27
|
Li Z, Zhou L, Prodromou C, Savic V, Pearl LH. HECTD3 Mediates an HSP90-Dependent Degradation Pathway for Protein Kinase Clients. Cell Rep 2018. [PMID: 28636940 PMCID: PMC5489699 DOI: 10.1016/j.celrep.2017.05.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhibition of the ATPase cycle of the HSP90 chaperone promotes ubiquitylation and proteasomal degradation of its client proteins, which include many oncogenic protein kinases. This provides the rationale for HSP90 inhibitors as cancer therapeutics. However, the mechanism by which HSP90 ATPase inhibition triggers ubiquitylation is not understood, and the E3 ubiquitin ligases involved are largely unknown. Using a siRNA screen, we have identified components of two independent degradation pathways for the HSP90 client kinase CRAF. The first requires CUL5, Elongin B, and Elongin C, while the second requires the E3 ligase HECTD3, which is also involved in the degradation of MASTL and LKB1. HECTD3 associates with HSP90 and CRAF in cells via its N-terminal DOC domain, which is mutationally disrupted in tumor cells with activated MAP kinase signaling. Our data implicate HECTD3 as a tumor suppressor modulating the activity of this important oncogenic signaling pathway. siRNA screen identifies factors regulating HSP90-directed client degradation HECTD3 promotes CRAF degradation after HSP90 ATPase inhibition HECTD3 interacts with HSP90-CDC37-CRAF via its DOC domain CRAF-dependent tumor cells downregulate HECTD3 E3 ligase activity
Collapse
Affiliation(s)
- Zhaobo Li
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QR, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QR, UK
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QR, UK
| | - Velibor Savic
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QR, UK; Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PX, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QR, UK.
| |
Collapse
|
28
|
Heske CM, Mendoza A, Edessa LD, Baumgart JT, Lee S, Trepel J, Proia DA, Neckers L, Helman LJ. STA-8666, a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of pediatric sarcoma. Oncotarget 2018; 7:65540-65552. [PMID: 27608846 PMCID: PMC5323173 DOI: 10.18632/oncotarget.11869] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
Long-term survival in patients with metastatic, relapsed, or recurrent Ewing sarcoma and rhabdomyosarcoma is dismal. Irinotecan, a topoisomerase 1 inhibitor, has activity in these sarcomas, but due to poor bioavailability of its active metabolite (SN-38) has had limited clinical efficacy. In this study we have evaluated the efficacy and toxicity of STA-8666, a novel drug conjugate which uses an HSP90 inhibitor to facilitate intracellular, tumor-targeted delivery of the topoisomerase 1 inhibitor SN-38, thus preferentially delivering and concentrating SN-38 within tumor tissue. We present in vivo evidence from mouse xenograft models that STA-8666 results in more persistent inhibition of topoisomerase 1 and prolonged DNA damage compared to irinotecan. This translates into superior antitumor efficacy and survival in multiple aggressive models of both diseases in mouse xenografts, as well as in an irinotecan-resistant model of pediatric osteosarcoma, demonstrated by dramatic tumor shrinkage, durable remission and prolonged complete regressions following short-term treatment, compared to conventional irinotecan. Gene expression analysis performed on xenograft tumors treated with either irinotecan or STA-8666 showed that STA-8666 affected expression of DNA damage and repair genes more robustly than irinotecan. These results suggest that STA-8666 may be a promising new agent for patients with pediatric-type sarcoma.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leah D Edessa
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua T Baumgart
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jane Trepel
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Len Neckers
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lee J Helman
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Karayazi Atici Ö, Urbanska A, Gopinathan SG, Boutillon F, Goffin V, Shemanko CS. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage. Endocrinology 2018; 159:907-930. [PMID: 29186352 DOI: 10.1210/en.2017-00652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents.
Collapse
Affiliation(s)
- Ödül Karayazi Atici
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Urbanska
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sesha Gopal Gopinathan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Florence Boutillon
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Carrie S Shemanko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Giordano C, Albani D, Gloria A, Tunesi M, Batelli S, Russo T, Forloni G, Ambrosio L, Cigada A. Multidisciplinary Perspectives for Alzheimer's and Parkinson's Diseases: Hydrogels for Protein Delivery and Cell-Based Drug Delivery as Therapeutic Strategies. Int J Artif Organs 2018; 32:836-50. [DOI: 10.1177/039139880903201202] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.
Collapse
Affiliation(s)
- Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| | - Diego Albani
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Antonio Gloria
- Institute of Composite and Biomedical Materials, National Research Council, Naples - Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| | - Sara Batelli
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Teresa Russo
- Department of Materials and Production Engineering, University of Naples “Federico II”, Naples - Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials, National Research Council, Naples - Italy
| | - Alberto Cigada
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| |
Collapse
|
31
|
Kim MK. Analysis of the Correlation between Expressions of HSP90α, HSP90β, and GRP94, and the Clinicopathologic Characteristics in Tissues of Non-Small Cell Lung Cancer Patients. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.4.460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mi Kyeong Kim
- Department of Clinical Laboratory Science, Gimhae College, Gimhae, Korea
| |
Collapse
|
32
|
Crouch B, Murphy H, Belonwu S, Martinez A, Gallagher J, Hall A, Soo MS, Lee M, Hughes P, Haystead T, Ramanujam N. Leveraging ectopic Hsp90 expression to assay the presence of tumor cells and aggressive tumor phenotypes in breast specimens. Sci Rep 2017; 7:17487. [PMID: 29235516 PMCID: PMC5727497 DOI: 10.1038/s41598-017-17832-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
Hsp90 has been studied extensively as a therapeutic target in breast cancer in pre-clinical and clinical trials, demonstrating a variety of roles in metastatic progression. The evidence to date suggests a compelling opportunity to leverage attributes of Hsp90 expression beyond therapeutics with potential applications in breast cancer diagnosis, prognosis, and recurrence risk assessment. In this study, we developed a completely non-destructive strategy using HS-27, a fluorescently-tethered Hsp90 inhibitor, to assay Hsp90 expression on intact tissue specimens with comparable contrast to in vivo administration routes, and demonstrate the feasibility of our approach in breast cancer patients. In addition to Hsp90 inhibition being most effective in glycolytic tumors, we found ectopic Hsp90 expression to be highest in glycolytic tumors reinforcing its role as an indicator of aggressive disease. This work sets the stage for immediately using Hsp90 to improve outcomes for breast cancer patients without affecting traditional care pathways.
Collapse
Affiliation(s)
- Brian Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| | - Helen Murphy
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Stella Belonwu
- Duke University Trinity College of Arts and Sciences, Durham, NC 27710, USA
| | - Amy Martinez
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Jennifer Gallagher
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Allison Hall
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mary Scott Soo
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marianne Lee
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
33
|
Cavenagh J, Oakervee H, Baetiong-Caguioa P, Davies F, Gharibo M, Rabin N, Kurman M, Novak B, Shiraishi N, Nakashima D, Akinaga S, Yong K. A phase I/II study of KW-2478, an Hsp90 inhibitor, in combination with bortezomib in patients with relapsed/refractory multiple myeloma. Br J Cancer 2017; 117:1295-1302. [PMID: 28873084 PMCID: PMC5672925 DOI: 10.1038/bjc.2017.302] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/07/2017] [Accepted: 08/08/2017] [Indexed: 01/17/2023] Open
Abstract
Background: KW-2478 is a novel non-ansamycin Hsp90 inhibitor with modest single-agent activity in relapsed/refractory myeloma but which shows synergistic antimyeloma activity with bortezomib (BTZ) in preclinical studies. This study determined the safety, preliminary clinical activity, and pharmacokinetics of KW-2478, an Hsp90 inhibitor, in combination with BTZ in patients with relapsed/refractory multiple myeloma (MM). Methods: Phase I dose escalation determined the recommended phase II dose (RP2D) of KW-2478 plus BTZ, which was then used during phase II. Results: The maximum tolerated dose was not reached during phase I and the RP2D was KW-2478 175 mg m−2 plus BTZ 1.3 mg m−2 on days 1, 4, 8, and 11 every 3 weeks. In the efficacy evaluable phase I/II population treated at the RP2D (n=79), the objective response rate was 39.2% (95% confidence interval: 28.4–50.9%), clinical benefit rate 51.9% (40.4–63.3%), median progression-free survival 6.7 (5.9-not reached (NR)) months, and median duration of response 5.5 (4.9-NR) months. In the phase I/II safety population (n=95), the most frequently observed treatment-related grade 3/4 adverse events were diarrhoea, fatigue, and neutropenia (each in 7.4% of patients), and nausea and thrombocytopenia (each in 5.3%). Conclusions: KW-2478 plus BTZ was well tolerated with no apparent overlapping toxicity in patients with relapsed/refractory MM. The antimyeloma activity of KW-2478 in combination with BTZ as scheduled in this trial appeared relatively modest; however, the good tolerability of the combination would support further exploration of alternate dosing schedules and combinations.
Collapse
Affiliation(s)
- J Cavenagh
- Department of Haematology, St Bartholomew's Hospital, West Smithfield, London SE24 9LG, UK
| | - H Oakervee
- Department of Haematology, St Bartholomew's Hospital, West Smithfield, London SE24 9LG, UK
| | - P Baetiong-Caguioa
- Benavides Cancer Institute, University of Santo Tomas Hospital, Manila and St Luke's Medical Center, Quezon City, The Philippines
| | - F Davies
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - M Gharibo
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08901, USA
| | - N Rabin
- UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - M Kurman
- Kyowa Kirin Pharmaceutical Development, Inc., Princeton, NJ 08540, USA
| | - B Novak
- Kyowa Kirin Pharmaceutical Development, Inc., Princeton, NJ 08540, USA
| | - N Shiraishi
- R&D Division, Kyowa Hakko Kirin Co. Ltd., Tokyo 100-0004, Japan
| | - D Nakashima
- R&D Division, Kyowa Hakko Kirin Co. Ltd., Tokyo 100-0004, Japan
| | - S Akinaga
- R&D Division, Kyowa Hakko Kirin Co. Ltd., Tokyo 100-0004, Japan
| | - K Yong
- UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
34
|
Park S, Park JA, Yoo H, Park HB, Lee Y. Proteasome inhibitor-induced cleavage of HSP90 is mediated by ROS generation and caspase 10-activation in human leukemic cells. Redox Biol 2017; 13:470-476. [PMID: 28715732 PMCID: PMC5512190 DOI: 10.1016/j.redox.2017.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that supports the stability of client proteins. The proteasome is one of the targets for cancer therapy, and studies are underway to use proteasome inhibitors as anti-cancer drugs. In this study, we found that HSP90 was cleaved to a 55 kDa protein after treatment with proteasome inhibitors including MG132 in leukemia cells but was not cleaved in other tissue-derived cells. HSP90 has two major isoforms (HSP90α and HSP90β), and both were cleaved by MG132 treatment. MG132 treatment also induced a decrease in HSP90 client proteins. MG132 treatment generated ROS, and the cleavage of HSP90 was blocked by a ROS scavenger, N-acetylcysteine (NAC). MG132 activated several caspases, and the activation was reduced by pretreatment with NAC. Based on an inhibitor study, the cleavage of HSP90 induced by MG132 was dependent on caspase 10 activation. Furthermore, active recombinant caspase 10 induced HSP90 cleavage in vitro. MG132 upregulated VDUP-1 expression and reduced the GSH levels implying that the regulation of redox-related proteins is involved. Taken all together, our results suggest that the cleavage of HSP90 by MG132 treatment is mediated by ROS generation and caspase 10 activation. HSP90 cleavage may provide an additional mechanism involved in the anti-cancer effects of proteasome inhibitors. Proteasome inhibitors induce cleavage of HSP90. MG132 induces ROS generation via VDUP-1 upregulation and GSH downregulation. ROS-mediated active caspase 10 cleaves HSP90.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hwanmin Yoo
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Han-Bum Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
35
|
Abstract
Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy.
Collapse
|
36
|
Prabhu S, Ananthanarayanan P, Aziz SK, Rai S, Mutalik S, Sadashiva SRB. Enhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicity. Toxicol Appl Pharmacol 2017; 320:60-72. [DOI: 10.1016/j.taap.2017.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/15/2022]
|
37
|
Zhang Z, Li HM, Zhou C, Li Q, Ma L, Zhang Z, Sun Y, Wang L, Zhang X, Zhu B, Hong YS, Wu CZ, Liu H. Non-benzoquinone geldanamycin analogs trigger various forms of death in human breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:149. [PMID: 27658586 PMCID: PMC5034425 DOI: 10.1186/s13046-016-0428-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/14/2016] [Indexed: 11/22/2022]
Abstract
Background Hsp90 proteins are important therapeutic targets for many anti-cancer drugs in clinical trials. Geldanamycin (GA) was identified as the first natural inhibitor of Hsp90, increasing evidence suggests that GA was not a good choice for clinical trials. In this study, we investigated two new non-benzoquinone geldanamycin analogs of Hsp90 inhibitors, DHQ3 and 17-demethoxy-reblastatin (17-DR), to explore the molecular mechanisms of their anti-cancer activity in vivo and vitro. Methods MTT and colony formation assays were used to measure cell viability. Flow cytometry, DAPI staining, ATP assay, electron microscopy, western blots, siRNAs transfection and immunofluorescence were used to determine the molecular mechanism of DHQ3- or 17-DR-induced different forms of death in human breast cancer MDA-MB-231 cells. Malachite green reagent was used to measure ATPase activity of the analogs. Results DHQ3 and 17-DR presented efficiently inhibitory effect in MDA-MB-231 cell lines, and DHQ3 induced necroptosis by activation of the RIP1-RIP3-MLKL necroptosis cascade. And DHQ3-induced cell death was inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), but not by a caspase inhibitor z-VAD-fmk. On the other hand, 17-DR induced apoptosis in MDA-MB-231 cells, indicating a caspase-dependent killing mechanism. We further demonstrated that down-regulation of RIP1 and RIP3 by siRNA protected against DHQ3 but not 17-DR induced cell death. These results were confirmed by electron microscopy. DHQ3 and 17-DR induced the degradation of Hsp90 client proteins, and they showed strong antitumor effects in MDA-MB-231 cell-xenografted nude mice. Conclusions These findings supported that DHQ3 and 17-DR induce different forms of death in some cancer cell line via activation of different pathways. All of the results provided evidence for its anti-tumorigentic action with low hepatotoxicity in vivo, making them promising anti-breast cancer agents.
Collapse
Affiliation(s)
- Zhirui Zhang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Hong-Mei Li
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Can Zhou
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Qixiang Li
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Linyan Ma
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Zixuan Zhang
- Department of Clinical medicine, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Yiming Sun
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Lirong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Computational Chemical Genomics Screening Center, Pittsburgh, PA, USA
| | - Xudong Zhang
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Bing Zhu
- Department of Gastrointestinal Surgery, The first Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Young-Soo Hong
- Chemical Biology Research Center, KRIBB, Cheongju, 28116, Republic of Korea
| | - Cheng-Zhu Wu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China.
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China.
| |
Collapse
|
38
|
Cavanaugh A, Juengst B, Sheridan K, Danella JF, Williams H. Combined inhibition of heat shock proteins 90 and 70 leads to simultaneous degradation of the oncogenic signaling proteins involved in muscle invasive bladder cancer. Oncotarget 2016; 6:39821-38. [PMID: 26556859 PMCID: PMC4741863 DOI: 10.18632/oncotarget.5496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 90 (HSP90) plays a critical role in the survival of cancer cells including muscle invasive bladder cancer (MIBC). The addiction of tumor cells to HSP90 has promoted the development of numerous HSP90 inhibitors and their use in clinical trials. This study evaluated the role of inhibiting HSP90 using STA9090 (STA) alone or in combination with the HSP70 inhibitor VER155008 (VER) in several human MIBC cell lines. While both STA and VER inhibited MIBC cell growth and migration and promoted apoptosis, combination therapy was more effective. Therefore, the signaling pathways involved in MIBC were systematically interrogated following STA and/or VER treatments. STA and not VER reduced the expression of proteins in the p53/Rb, PI3K and SWI/SWF pathways. Interestingly, STA was not as effective as VER or combination therapy in degrading proteins involved in the histone modification pathway such as KDM6A (demethylase) and EP300 (acetyltransferase) as predicted by The Cancer Genome Atlas (TCGA) data. This data suggests that dual HSP90 and HSP70 inhibition can simultaneously disrupt the key signaling pathways in MIBC.
Collapse
Affiliation(s)
- Alice Cavanaugh
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Brendon Juengst
- Penn State University, Department of Plant Biology, State College, PA, USA
| | - Kathleen Sheridan
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - John F Danella
- Department of Urology, Geisinger Health System, Danville, PA, USA
| | - Heinric Williams
- Weis Center for Research, Geisinger Health System, Danville, PA, USA.,Department of Urology, Geisinger Health System, Danville, PA, USA
| |
Collapse
|
39
|
Liu J, Zhang X, Ma C, You J, Dong M, Yun S, Jiang P. Heat shock protein 90 is essential for replication of porcine circovirus type 2 in PK-15 cells. Virus Res 2016; 224:29-37. [PMID: 27553861 DOI: 10.1016/j.virusres.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Porcine circovirus type 2 (PCV2) is recognized as the causative agent of porcine circovirus-associated disease (PCVAD). However, the mechanism of PCV2 replication has not been understood completely. Heat shock protein 90 (Hsp90) plays an important role in viral genome replication, viral genes expression, and viral particle packaging. In this study, we firstly found that inhibition of Hsp90 by pretreatment of host cells with 17-AAG, a specific inhibitor of Hsp90, or blocking Hsp90α/Hsp90β with siRNA, resulted in significantly reduced viral replication in PK-15 cells. But inhibition of Hsp90 by 17-AAG did not affect PCV2 entry into the host cells. Meanwhile, over-expression of Hsp90α/Hsp90β enhanced PCV2 genome replication and virion production. In addition, Hsp90β was enriched in the nuclear zone in the cells infected with PCV2. But it did not interact with the viral Cap/Rep proteins. It suggested that Hsp90 is required for PCV2 production in PK-15 cells culture. It should be helpful for further evaluating the mechanism of replication and pathogenesis of PCV2 and developing novel antiviral therapies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Xuliang Zhang
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Chang Ma
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Jinwei You
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Min Dong
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
40
|
Baby ST, Sharma S, Enaganti S, Cherian PR. Molecular docking and pharmacophore studies of heterocyclic compounds as Heat shock protein 90 (Hsp90) Inhibitors. Bioinformation 2016; 12:149-155. [PMID: 28232775 PMCID: PMC5289218 DOI: 10.6026/97320630012149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 11/30/2022] Open
Abstract
Heat Shock Protein 90 was a key molecular chaperone involved in the proteome stability maintenance and its interference in many signaling networks associated with cancer progression, makes it of an important target for cancer therapeutics. The present study aimed to identify potential lead molecule among the selected heterocyclic compounds against Human Hsp90 (PDB: 1YET) through docking using GOLD 3.1 and pharmacophore studies using Discovery studio 2.1. On the basis of the GOLD Fitness scores, the compounds Q1G and T21 showed better binding affinity. Further the analyzed structure pharmacophore results are in consistence with the docking results indicating that both these compounds show antagonistic activity towards HSP90 respectively.
Collapse
Affiliation(s)
- Suby T Baby
- Faculty of Pharmaceutical Sciences, Jodhpur National
University, Jodhpur, Rajasthan 342003, India
| | - Shailendra Sharma
- Faculty of Pharmaceutical Sciences, Jodhpur National
University, Jodhpur, Rajasthan 342003, India
| | - Sreenivas Enaganti
- Bioinformatics division, Averin biotech, Nallakunta,
Hyderabad, Telangana 500044, India
| | - P. Roby Cherian
- Jazan University, P.O.Box 114, Jazan 45142, Kingdom of
Saudi Arabia
| |
Collapse
|
41
|
Mondal SK, Jinka S, Pal K, Nelli S, Dutta SK, Wang E, Ahmad A, AlKharfy KM, Mukhopadhyay D, Banerjee R. Glucocorticoid Receptor-Targeted Liposomal Codelivery of Lipophilic Drug and Anti-Hsp90 Gene: Strategy to Induce Drug-Sensitivity, EMT-Reversal, and Reduced Malignancy in Aggressive Tumors. Mol Pharm 2016; 13:2507-23. [PMID: 27184196 DOI: 10.1021/acs.molpharmaceut.6b00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many cancers including the late stage ones become drug-resistant and undergo epithelial-to-mesenchymal transition (EMT). These lead to enhanced invasion, migration, and metastasis toward manifesting its aggressiveness and malignancy. One of the key hallmarks of cancer is its overdependence on glycolysis as its preferred energy metabolism pathway. The strict avoidance of alternate energy pathway gluconeogenesis by cancer cells points to a yet-to-be hoisted role of glucocorticoid receptor (GR) especially in tumor microenvironment, where cells are known to become drug-sensitive through induction of gluconeogenesis. However, since GR is involved in metabolism, anti-inflammatory reactions, immunity besides inducing gluconeogenesis, a greater role of GR in tumor microenvironment is envisaged. We have shown previously that GR, although ubiquitously expressed in all cells; afford to be an effective cytoplasmic target for killing cancer cells selectively. Herein, we report the therapeutic use of a newly developed GR-targeted liposomal concoction (DXE) coformulating a lipophilic drug (ESC8) and an anti-Hsp90 anticancer gene against aggressive tumor models. This induced drug-sensitivity and apoptosis while reversing EMT in tumor cells toward effective retardation of aggressive growth in pancreas and skin tumor models. Additionally, the ESC8-free lipid formulation upon cotreatment with hydrophilic drugs, gemcitabine and doxorubicin, could effectively sensitize and kill pancreatic cancer and melanoma cells, respectively. The formulation-triggered EMT-reversal was GR-dependent. Overall, we found a new strategy for drug sensitization that led to the advent of new GR-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Sujan Kumar Mondal
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi 110001, India
| | - Sudhakar Jinka
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi 110001, India
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Jacksonville, Florida 32224, United States
| | - Swetha Nelli
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Jacksonville, Florida 32224, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Jacksonville, Florida 32224, United States
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, King Saud University , Riyadh 11451, Saudi Arabia
| | - Khalid M AlKharfy
- Department of Clinical Pharmacy, King Saud University , Riyadh 11451, Saudi Arabia
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Jacksonville, Florida 32224, United States
| | - Rajkumar Banerjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi 110001, India
| |
Collapse
|
42
|
Wendel T, Zhen Y, Suo Z, Bruheim S, Wiedlocha A. The novel HSP90 inhibitor NVP-AUY922 shows synergistic anti-leukemic activity with cytarabine in vivo. Exp Cell Res 2015; 340:220-6. [PMID: 26748184 DOI: 10.1016/j.yexcr.2015.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/29/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023]
Abstract
HSP90 is a molecular chaperone essential for stability, activity and intracellular sorting of many proteins, including oncoproteins, such as tyrosine kinases, transcription factors and cell cycle regulatory proteins. Therefore, inhibitors of HSP90 are being investigated for their potential as anti-cancer drugs. Here we show that the HSP90 inhibitor NVP-AUY922 induced degradation of the fusion oncoprotein FOP2-FGFR1 in a human acute myeloid leukemia (AML) cell line, KG-1a. Concordantly, downstream signaling cascades, such as STAT1, STAT3 and PLCγ were abrogated. At concentrations that caused FOP2-FGFR1 degradation and signaling abrogation, NVP-AUY922 treatment caused significant cell death and inhibition of proliferation of KG-1a cells in vitro. In an animal model for AML, NVP-AUY922 administrated alone showed no anti-leukemic activity. However, when NVP-AUY922 was administered in combination with cytarabine, the two compounds showed significant synergistic anti-leukemic activity in vivo. Thus NVP-AUY922 and cytarabine combination therapy might be a prospective strategy for AML treatment.
Collapse
Affiliation(s)
- Torunn Wendel
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Yan Zhen
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Zenhe Suo
- Department of Pathology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Skjalg Bruheim
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
43
|
Yong K, Cavet J, Johnson P, Morgan G, Williams C, Nakashima D, Akinaga S, Oakervee H, Cavenagh J. Phase I study of KW-2478, a novel Hsp90 inhibitor, in patients with B-cell malignancies. Br J Cancer 2015; 114:7-13. [PMID: 26695442 PMCID: PMC4716540 DOI: 10.1038/bjc.2015.422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/12/2015] [Accepted: 10/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND KW-2478 is a novel, non-ansamycin, non-purine heat-shock protein 90 (Hsp90) inhibitor. METHODS In this phase I, multicentre study, KW-2478 was administered intravenously over 1 h at doses ranging from 14 to 176 mg m(-2) once daily on days 1-5 of a 14-day cycle in a standard 3+3 design in 27 patients (22 with multiple myeloma and 5 with non-Hodgkin lymphoma). Patients enrolled had relapsed/refractory disease previously treated with ⩾2 regimens. RESULTS There were no dose-limiting toxicities, thus the maximum-tolerated dose was not reached. KW-2478 was well tolerated and did not manifest significant retinal or ocular toxicity. The most common treatment-related adverse events were diarrhoea (33.3%), fatigue (29.6%), headache (25.9%), hypertension (22.2%), nausea (14.8%), vomiting (7.4%), and dizziness (7.4%). Plasma concentrations peaked at the end of infusion and decayed in a biphasic manner with a terminal half-life of ∼6 h. Target inhibition was inferred from the increase in Hsp70 levels in peripheral blood mononuclear cells at doses ⩾71 mg m(-2). Twenty-four of 25 (96%) evaluable patients showed stable disease, with five being free of disease progression for ⩾6 months. CONCLUSIONS Preliminary clinical response data were encouraging and warrant further investigation of KW-2478 in combination regimens for relapsed/refractory B-cell malignancies.
Collapse
Affiliation(s)
- K Yong
- UCL Cancer Institute, University College London, Huntley Street, London WC1E 6DD, UK
| | - J Cavet
- Department of Haematology, Christie Hospital/University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - P Johnson
- Cancer Research UK Clinical Centre, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - G Morgan
- Myeloma Institute for Research and Therapy, West Markham Street, Little Rock, AR 72205, USA
| | - C Williams
- Centre for Clinical Haematology, Nottingham University Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - D Nakashima
- Kyowa Hakko Kirin Pharma Inc., Princeton, NJ, USA
| | - S Akinaga
- Kyowa Hakko Kirin Co. Ltd, Tokyo Research Triangle Park, Tokyo 194-8533, Japan
| | - H Oakervee
- Department of Haematology, St. Bartholomew's Hospital, West Smithfield, London SE24 9LG, UK
| | - J Cavenagh
- Department of Haematology, St. Bartholomew's Hospital, West Smithfield, London SE24 9LG, UK
| |
Collapse
|
44
|
HDAC6 Regulates the Chaperone-Mediated Autophagy to Prevent Oxidative Damage in Injured Neurons after Experimental Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7263736. [PMID: 26649145 PMCID: PMC4663006 DOI: 10.1155/2016/7263736] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/10/2015] [Accepted: 07/22/2015] [Indexed: 11/17/2022]
Abstract
Hypoxia-ischemia- (HI-) induced oxidative stress plays a role in secondary pathocellular processes of acute spinal cord injury (SCI) due to HI from many kinds of mechanical trauma. Increasing evidence suggests that the histone deacetylase-6 (HDAC6) plays an important role in cell homeostasis in both physiological and abnormal, stressful, pathological conditions. This paper found that inhibition of HDAC6 accelerated reactive oxygen species (ROS) generation and cell apoptosis in response to the HI. Deficiency of HDAC6 hindered the chaperone-mediated autophagy (CMA) activity to resistance of HI-induced oxidative stress. Furthermore, this study provided the experimental evidence for the potential role of HDAC6 in the regulation of CMA by affecting HSP90 acetylation. Therefore, HDAC6 plays an important role in the function of CMA pathway under the HI stress induced by SCI and it may be a potential therapeutic target in acute SCI model.
Collapse
|
45
|
Pennisi R, Ascenzi P, di Masi A. Hsp90: A New Player in DNA Repair? Biomolecules 2015; 5:2589-618. [PMID: 26501335 PMCID: PMC4693249 DOI: 10.3390/biom5042589] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis), transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR) pathways that include: (i) cell cycle arrest; (ii) transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii) triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| |
Collapse
|
46
|
Nagata E, Nonaka T, Moriya Y, Fujii N, Okada Y, Tsukamoto H, Itoh J, Okada C, Satoh T, Arai T, Hasegawa M, Takizawa S. Inositol Hexakisphosphate Kinase 2 Promotes Cell Death in Cells with Cytoplasmic TDP-43 Aggregation. Mol Neurobiol 2015; 53:5377-83. [PMID: 26440668 DOI: 10.1007/s12035-015-9470-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/30/2015] [Indexed: 12/30/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) has been identified as a major component of ubiquitin-positive inclusions in the brains and spinal cords of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) or amyotrophic lateral sclerosis (ALS). The phosphorylated C-terminal fragment of TDP-43 forms aggregates in the neuronal cytoplasm, possibly resulting in neuronal cell death in patients with FTLD-U or ALS. The inositol pyrophosphate known as diphosphoinositol pentakisphosphate (InsP7) contains highly energetic pyrophosphate bonds. We previously reported that inositol hexakisphosphate kinase type 2 (InsP6K2), which converts inositol hexakisphosphate (InsP6) to InsP7, mediates cell death in mammalian cells. Moreover, InsP6K2 is translocated from the nucleus to the cytosol during apoptosis. In this study, we verified that phosphorylated TDP-43 co-localized and co-bound with InsP6K2 in the cytoplasm of anterior horn cells of the spinal cord. Furthermore, we verified that cell death was augmented in the presence of cytoplasmic TDP-43 aggregations and activated InsP6K2. However, cells with only cytoplasmic TDP-43 aggregation survived because Akt activity increased. In the presence of both TDP-43 aggregation and activated InsP6K2 in the cytoplasm of cells, the expression levels of HSP90 and casein kinase 2 decreased, as the activity of Akt decreased. These conditions may promote cell death. Thus, InsP6K2 could cause neuronal cell death in patients with FTLD-U or ALS. Moreover, InsP6K2 plays an important role in a novel cell death pathway present in FTLD-U and ALS.
Collapse
Affiliation(s)
- Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan.
- , 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Takashi Nonaka
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yusuke Moriya
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Yoshinori Okada
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Hideo Tsukamoto
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Johbu Itoh
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Tadayuki Satoh
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Tetsuaki Arai
- Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
47
|
Wang B, Chen Z, Yu F, Chen Q, Tian Y, Ma S, Wang T, Liu X. Hsp90 regulates autophagy and plays a role in cancer therapy. Tumour Biol 2015; 37:1-6. [DOI: 10.1007/s13277-015-4142-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/31/2015] [Indexed: 01/20/2023] Open
|
48
|
Tung CL, Jian YJ, Syu JJ, Wang TJ, Chang PY, Chen CY, Jian YT, Lin YW. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells. Exp Cell Res 2015; 334:126-35. [DOI: 10.1016/j.yexcr.2015.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 01/21/2023]
|
49
|
Zhu JQ, Ou WB. Therapeutic targets in gastrointestinal stromal tumors. World J Transl Med 2015; 4:25-37. [DOI: 10.5528/wjtm.v4.i1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/14/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common type of mesenchymal tumor of the gastrointestinal tract. The tumorigenesis of GISTs is driven by gain-of-function mutations in KIT or platelet-derived growth factor receptor α (PDGFRA), resulting in constitutive activation of the tyrosine kinase and its downstream signaling pathways. Oncogenic KIT or PDGFRA mutations are compelling therapeutic targets for the treatment of GISTs, and the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GISTs. However, most GIST patients develop clinical resistance to imatinib and other tyrosine kinase inhibitors. Five mechanisms of resistance have been characterized: (1) acquisition of a secondary point mutation in KIT or PDGFRA; (2) genomic amplification of KIT; (3) activation of an alternative receptor tyrosine kinase; (4) loss of KIT oncoprotein expression; and (5) wild-type GIST. Currently, sunitinib is used as a second-line treatment for patients after imatinib failure, and regorafenib has been approved for patients whose disease is progressing on both imatinib and sunitinib. Phase II/III trials are currently in progress to evaluate novel inhibitors and immunotherapies targeting KIT, its downstream effectors such as phosphatidylinositol 3-kinase, protein kinase B and mammalian target of rapamycin, heat shock protein 90, and histone deacetylase inhibitor. Other candidate targets have been identified, including ETV1, AXL, insulin-like growth factor 1 receptor, KRAS, FAS receptor, protein kinase c theta, ANO1 (DOG1), CDC37, and aurora kinase A. These candidates warrant clinical evaluation as novel therapeutic targets in GIST.
Collapse
|
50
|
Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol 2015; 89:6352-63. [PMID: 25855731 PMCID: PMC4474317 DOI: 10.1128/jvi.00315-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoV) are a significant cause of acute gastroenteritis in the developed world, and yet our understanding of the molecular pathways involved in norovirus replication and pathogenesis has been limited by the inability to efficiently culture these viruses in the laboratory. Using the murine norovirus (MNV) model, we have recently identified a network of host factors that interact with the 5' and 3' extremities of the norovirus RNA genome. In addition to a number of well-known cellular RNA binding proteins, the molecular chaperone Hsp90 was identified as a component of the ribonucleoprotein complex. Here, we show that the inhibition of Hsp90 activity negatively impacts norovirus replication in cell culture. Small-molecule-mediated inhibition of Hsp90 activity using 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) revealed that Hsp90 plays a pleiotropic role in the norovirus life cycle but that the stability of the viral capsid protein is integrally linked to Hsp90 activity. Furthermore, we demonstrate that both the MNV-1 and the HuNoV capsid proteins require Hsp90 activity for their stability and that targeting Hsp90 in vivo can significantly reduce virus replication. In summary, we demonstrate that targeting cellular proteostasis can inhibit norovirus replication, identifying a potential novel therapeutic target for the treatment of norovirus infections. IMPORTANCE HuNoV are a major cause of acute gastroenteritis around the world. RNA viruses, including noroviruses, rely heavily on host cell proteins and pathways for all aspects of their life cycle. Here, we identify one such protein, the molecular chaperone Hsp90, as an important factor required during the norovirus life cycle. We demonstrate that both murine and human noroviruses require the activity of Hsp90 for the stability of their capsid proteins. Furthermore, we demonstrate that targeting Hsp90 activity in vivo using small molecule inhibitors also reduces infectious virus production. Given the considerable interest in the development of Hsp90 inhibitors for use in cancer therapeutics, we identify here a new target that could be explored for the development of antiviral strategies to control norovirus outbreaks and treat chronic norovirus infection in immunosuppressed patients.
Collapse
|