1
|
Rawding PA, Bu J, Wang J, Kim D, Drelich AJ, Kim Y, Hong S. Dendrimers for cancer immunotherapy: Avidity-based drug delivery vehicles for effective anti-tumor immune response. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1752. [PMID: 34414690 PMCID: PMC9485970 DOI: 10.1002/wnan.1752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy, or the utilization of a patient's own immune system to treat cancer, has shifted the paradigm of cancer treatment. Despite meaningful responses being observed in multiple studies, currently available immunotherapy platforms have only proven effective to a small subset of patients. To address this, nanoparticles have been utilized as a novel carrier for immunotherapeutic drugs, achieving robust anti-tumor effects with increased adaptive and durable responses. Specifically, dendrimer nanoparticles have attracted a great deal of scientific interest due to their versatility in various therapeutic applications, resulting from their unique physicochemical properties and chemically well-defined architecture. This review offers a comprehensive overview of dendrimer-based immunotherapy technologies, including their formulations, biological functionalities, and therapeutic applications. Common formulations include: (1) modulators of cytokine secretion of immune cells (adjuvants); (2) facilitators of the recognition of tumorous antigens (vaccines); (3) stimulators of immune effectors to selectively attack cells expressing specific antigens (antibodies); and (4) inhibitors of immune-suppressive responses (immune checkpoint inhibitors). On-going works and prospects of dendrimer-based immunotherapies are also discussed. Overall, this review provides a critical overview on rapidly growing dendrimer-based immunotherapy technologies and serves as a guideline for researchers and clinicians who are interested in this field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Piper A Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianxin Wang
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Adam J Drelich
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Youngsoo Kim
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
A bio-safe multiple antigenic peptide (MAP) enzyme-linked immunoassay for the detection of antibodies to infectious bronchitis virus in chickens. 3 Biotech 2020; 10:437. [PMID: 32999814 DOI: 10.1007/s13205-020-02422-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
The objective of the study was to develop a bio-safe synthetic peptide ELISA for the detection of antibodies against the infectious bronchitis virus (IBV) using a novel multiple antigenic peptide approach (MAP). After initial ELISA optimization, diagnostic sensitivity (DSn) and specificity (DSp) for the linear peptides were determined using receiver operator curve (ROC) analysis. The peptide IBVP1 showed 90.44% DSn and 88.64% DSp at ROC cut off 22.8% while IBVP2 showed 88.24% DSn and 85.23% DSp at ROC cut off 23.05%. The multimerization of linear peptides to MAP design resulted in the improvement of the diagnostic efficiency up to 94.85% DSn and 92.05% DSp for IBVM1 with 19.95% cut off. A similar improvement in the performance was also observed with 92.65% DSn and 90.91% DSp for IBVM2 at 20.72% cut off. All the peptides were tested for diagnostic specificity and did not show the cross-reactivity with Newcastle disease virus and infectious bursal disease virus positive serum samples. In addition, repeatability testing for all linear and multimeric peptide showed that the coefficient of variation for intra-assay was within the expected limits, ranging from 2.4 to 10.4% and inter-assay coefficient of variation was ranging from 5.56 to 14.3%. In a nutshell, the present study used predicted B cell epitope, the synthetic peptide in linear and multimeric design for IBV antibody detection. The study also highlights peptide antigen with modified scaffold design could be a safe alternative to whole virion-based ELISA for IBV antibody detection.
Collapse
|
3
|
Rodrigues-da-Silva RN, Correa-Moreira D, Soares IF, de-Luca PM, Totino PRR, Morgado FN, Oliveira Henriques MDGD, Peixoto Candea AL, Singh B, Galinski MR, Moreno A, Oliveira-Ferreira J, Lima-Junior JDC. Immunogenicity of synthetic peptide constructs based on PvMSP9 E795-A808, a linear B-cell epitope of the P. vivax Merozoite Surface Protein-9. Vaccine 2018; 37:306-313. [PMID: 30509693 DOI: 10.1016/j.vaccine.2018.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
Abstract
Plasmodium vivax Merozoite Surface Protein-9 (PvMSP-9) is a malaria vaccine candidate naturally immunogenic in humans and able to induce high antibody titers in animals when delivered as a recombinant protein. Recently, we identified the sequence EAAPENAEPVHENA (PvMSP9E795-A808) as the main linear B-cell epitope in naturally exposed individuals. However, the potential of PvMSP9E795-A808 as an immunogen in experimental animal models remained unexplored. Here we assess the immunogenicity of PvMSP9E795-A808 using synthetic peptides. The peptides tested in BALB/c mice include two repeats of the sequence EAAPENAEPVHENA tested alone (peptide RII), or linked to an autologous (PvMSP9 peptide pL; pLRII) or heterologous (p2 tetanus toxin universal T cell epitope; TTRII) T cell epitope. Immune responses were evaluated by ELISA, FLUOROSPOT, and indirect immunofluorescence. We show that all of the peptide constructs tested were immunogenic eliciting specific IgG antibodies at different levels, with a prevalence of IgG1 and IgG2. Animals immunized with synthetic peptides containing T cell epitopes (pLRII or TTRII) had more efficient antibody responses that resulted in higher antibody titers able to recognize the native protein by immunofluorescence. Relevantly, the frequency of IFN-γ secreting SFC elicited by immunization with TTRII synthetic peptide was comparable to that reported to the PvMSP9-Nt recombinant protein. Taken together, our study indicates that PvMSP9E795-A808 is highly immunogenic in mice and further studies to evaluate its value as promising vaccine target are warranted. Moreover, our study supports the critical role of CD4 T cell epitopes to enhance humoral responses induced by subunit based vaccines.
Collapse
Affiliation(s)
| | - Daniely Correa-Moreira
- Laboratory of Taxonomy, Biochemistry and Fungi Bioprospecting, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabela Ferreira Soares
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Paula Melo de-Luca
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Paulo Renato Rivas Totino
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernanda Nazaré Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Joseli Oliveira-Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Josué da Costa Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Epitope mapping of Brugia malayi ALT-2 and the development of a multi-epitope vaccine for lymphatic filariasis. J Helminthol 2016; 91:43-54. [PMID: 26892175 DOI: 10.1017/s0022149x16000055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human lymphatic filariasis is a neglected tropical disease, causing permanent and long-term disability with severe immunopathology. Abundant larval transcript (ALT) plays a crucial role in parasite establishment in the host, due to its multi-faceted ability in host immune regulation. Although ALT protein is a key filarial target, its exact function is yet to be explored. Here, we report epitope mapping and a structural model of Brugia malayi ALT-2, leading to development of a multi-epitope vaccine. Structural analysis revealed that ALT represents unique parasitic defence proteins belonging to a toxin family that carries a 'knottin' fold. ALT-2 has been a favourite vaccine antigen and was protective in filarial models. Due to the immunological significance of ALT-2, we mapped B-cell epitopes systematically and identified two epitope clusters, 1-30 and 89-128. To explore the prophylactic potential of epitope clusters, a recombinant multi-epitopic gene comprising the epitopic domains was engineered and the protective efficacy of recombinant ALT epitope protein (AEP) was tested in the permissive model, Mastomys coucha. AEP elicited potent antibody responses with predominant IgG1 isotype and conferred significantly high protection (74.59%) compared to ALT-2 (61.95%). This proved that these epitopic domains are responsible for the protective efficacy of ALT-2 and engineering protective epitopes as a multi-epitope protein may be a novel vaccine strategy for complex parasitic infections.
Collapse
|
5
|
Zhang L, Miao L, Gong X, Zhang H, Yang L, Shi Y, Kong W, Jiang C, Shan Y. Multiple antigen peptide mimetics containing gp41 membrane-proximal external region elicit broad neutralizing antibodies against human immunodeficiency virus type 1 in guinea pigs. J Pept Sci 2013; 19:491-8. [DOI: 10.1002/psc.2526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Lishuang Zhang
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Liang Miao
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Xin Gong
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Huayan Zhang
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Lan Yang
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Yuhua Shi
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Wei Kong
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Chunlai Jiang
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Yaming Shan
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| |
Collapse
|
6
|
Przysiecki C, Lucas B, Mitchell R, Carapau D, Wen Z, Xu H, Wang XM, Nahas D, Wu C, Hepler R, Ottinger E, Ter Meulen J, Kaslow D, Shiver J, Nardin E. Sporozoite neutralizing antibodies elicited in mice and rhesus macaques immunized with a Plasmodium falciparum repeat peptide conjugated to meningococcal outer membrane protein complex. Front Cell Infect Microbiol 2012; 2:146. [PMID: 23226683 PMCID: PMC3510440 DOI: 10.3389/fcimb.2012.00146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/06/2012] [Indexed: 11/13/2022] Open
Abstract
Antibodies that neutralize infectivity of malaria sporozoites target the central repeat region of the circumsporozoite (CS) protein, which in Plasmodium falciparum is comprised primarily of 30-40 tandem NANP tetramer repeats. We evaluated immunogenicity of an alum-adsorbed (NANP)(6) peptide conjugated to an outer membrane protein complex (OMPC) derived from Neisseria meningitidis, a carrier protein used in a licensed Haemophilus influenzae pediatric vaccine. Mice immunized with (NANP)(6)-OMPC adsorbed to Merck's alum adjuvant (MAA), with or without Iscomatrix® as co-adjuvant, developed high levels of anti-repeat peptide antibody that inhibited in vitro invasion of human hepatoma cells by transgenic P. berghei sporozoites that express P. falciparum CS repeats (PfPb). Inhibition of sporozoite invasion in vitro correlated with in vivo resistance to challenge by the bites of PfPb-infected mosquitoes. Challenged mice had >90% reduction of hepatic stage parasites as measured by real-time PCR, and either sterile immunity, i.e., no detectable blood stage parasites, or delayed prepatent periods which indicate neutralization of a majority, but not all, sporozoites. Rhesus macaques immunized with two doses of (NANP)(6)-OMPC/MAA formulated with Iscomatrix® developed anti-repeat antibodies that persisted for ~2 years. A third dose of (NANP)(6)-OMPC/MAA+ Iscomatrix® at that time elicited strong anamnestic antibody responses. Rhesus macaque immune sera obtained post second and third dose of vaccine displayed high levels of sporozoite neutralizing activity in vitro that correlated with presence of high anti-repeat antibody titers. These preclinical studies in mice of different MHC haplotypes and a non-human primate support use of CS peptide-OMPC conjugates as a highly immunogenic platform to evaluate CS protective epitopes. Potential pre-erythrocytic vaccines can be combined with sexual blood stage vaccines as a multi-antigen malaria vaccine to block invasion and transmission of Plasmodium parasites.
Collapse
Affiliation(s)
- Craig Przysiecki
- Vaccines Research, Merck Research Laboratories, West Point PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans? J Parasitol Res 2011; 2011:965369. [PMID: 21603205 PMCID: PMC3095412 DOI: 10.1155/2011/965369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/18/2011] [Indexed: 12/25/2022] Open
Abstract
In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.
Collapse
|
8
|
Heegaard PMH, Boas U, Sorensen NS. Dendrimers for vaccine and immunostimulatory uses. A review. Bioconjug Chem 2009; 21:405-18. [PMID: 19886668 DOI: 10.1021/bc900290d] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dendrimers are well-defined (monodisperse) synthetic globular polymers with a range of interesting chemical and biological properties. Chemical properties include the presence of multiple accessible surface functional groups that can be used for coupling biologically relevant molecules and methods that allow for precise heterofunctionalization of surface groups. Biologically, dendrimers are highly biocompatible and have predictable biodistribution and cell membrane interacting characteristics determined by their size and surface charge. Dendrimers have optimal characteristics to fill the need for efficient immunostimulating compounds (adjuvants) that can increase the efficiency of vaccines, as dendrimers can provide molecularly defined multivalent scaffolds to produce highly defined conjugates with small molecule immunostimulators and/or antigens. The review gives an overview on the use of dendrimers as molecularly defined carriers/presenters of small antigens, including constructs that have built-in immunostimulatory (adjuvant) properties, and as stand-alone adjuvants that can be mixed with antigens to provide efficient vaccine formulations. These approaches allow the preparation of molecularly defined vaccines with highly predictable and specific properties and enable knowledge-based vaccine design substituting the traditional empirically based approaches for vaccine development and production.
Collapse
Affiliation(s)
- Peter M H Heegaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark, and Chemical Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
9
|
Patarroyo ME, Cifuentes G, Rodríguez R. Structural characterisation of sporozoite components for a multistage, multi-epitope, anti-malarial vaccine. Int J Biochem Cell Biol 2008; 40:543-57. [DOI: 10.1016/j.biocel.2007.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/21/2007] [Accepted: 09/25/2007] [Indexed: 11/30/2022]
|
10
|
Hutchings CL, Birkett AJ, Moore AC, Hill AVS. Combination of protein and viral vaccines induces potent cellular and humoral immune responses and enhanced protection from murine malaria challenge. Infect Immun 2007; 75:5819-26. [PMID: 17908809 PMCID: PMC2168343 DOI: 10.1128/iai.00828-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The search for an efficacious vaccine against malaria is ongoing, and it is now widely believed that to confer protection a vaccine must induce very strong cellular and humoral immunity concurrently. We studied the immune response in mice immunized with the recombinant viral vaccines fowlpox strain FP9 and modified virus Ankara (MVA), a protein vaccine (CV-1866), or a combination of the two; all vaccines express parts of the same preerythrocytic malaria antigen, the Plasmodium berghei circumsporozoite protein (CSP). Mice were then challenged with P. berghei sporozoites to determine the protective efficacies of different vaccine regimens. Two immunizations with the protein vaccine CV-1866, based on the hepatitis B core antigen particle, induced strong humoral immunity to the repeat region of CSP that was weakly protective against sporozoite challenge. Prime-boost with the viral vector vaccines, FP9 followed by MVA, induced strong T-cell immunity to the CD8+ epitope Pb9 and partially protected animals from challenge. Physically mixing CV-1866 with FP9 or MVA and then immunizing with the resultant combinations in a prime-boost regimen induced both cellular and humoral immunity and afforded substantially higher levels of protection (combination, 90%) than either vaccine alone (CV-1866, 12%; FP9/MVA, 37%). For diseases such as malaria in which different potent immune responses are required to protect against different stages, using combinations of partially effective vaccines may offer a more rapid route to achieving deployable levels of efficacy than individual vaccine strategies.
Collapse
MESH Headings
- Animals
- Anopheles/parasitology
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/immunology
- Antibody Affinity/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Epitopes, B-Lymphocyte/immunology
- Female
- Hepatitis B Core Antigens/genetics
- Hepatitis B Core Antigens/immunology
- Malaria/immunology
- Malaria/parasitology
- Malaria/prevention & control
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/pharmacology
- Mice
- Mice, Inbred BALB C
- Plasmodium berghei/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Sporozoites/immunology
- Th1 Cells/immunology
- Vaccines, Combined/genetics
- Vaccines, Combined/immunology
- Vaccines, Combined/pharmacology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- Claire L Hutchings
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom.
| | | | | | | |
Collapse
|
11
|
Espejo F, Bermúdez A, Vanegas M, Rivera Z, Torres E, Salazar LM, Patarroyo ME. Elongating modified conserved peptides eliminates their immunogenicity and protective efficacy against P. falciparum malaria. J Struct Biol 2005; 150:245-58. [PMID: 15890273 DOI: 10.1016/j.jsb.2005.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/18/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Plasmodium falciparum malaria protein peptides were synthesised in the search for more effective routes for inducing a protective immune response against this deadly parasite and this information has been associated with such molecules' three-dimensional structure. These peptides had high red blood cell binding activity and their carboxy- and amino-terminal extremes were elongated for determining their immunogenic and protection-inducing activity against this disease in the Aotus monkey experimental model. 1H-NMR was used for analysing their three-dimensional structure; FAST ELISA, immunofluorescence antibody test, and Western blot were used for identifying their antibody inducing capacity and these previously immunised Aotus were inoculated with a highly infective P. falciparum strain to determine whether these elongated peptides were able to induce protection. This was aimed at establishing an association or correlation between long peptides' three-dimensional structure and their immunogenic and protection-inducing response in these monkeys. Peptides 20026 (25 residue), 20028 (30 residue), and 20030 (35 residues) were synthesised based on elongating the amino-terminal region of the 10022 highly immunogenic and protection-inducing modified peptide. 1H-NMR studies revealed that the first three had Classical type III beta-turn structures, different from the 20-amino acid long modified peptide 10022 which had a distorted type III beta-turn. Humoral immune response analysis showed that even when some antibodies could be generated against the parasite, none of the immunised Aotus could be protected with elongated peptides suggesting that elongating them eliminated modified peptide 10022 immunogenic and protection-inducing capacity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aotus trivirgatus
- Binding, Competitive
- Blotting, Western
- Circular Dichroism
- Enzyme-Linked Immunosorbent Assay
- HLA-DR Antigens/metabolism
- HLA-DRB1 Chains
- Humans
- Macromolecular Substances/chemistry
- Magnetic Resonance Spectroscopy
- Malaria Vaccines
- Malaria, Falciparum/prevention & control
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Plasmodium falciparum
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Fabiola Espejo
- Fundacion Instituto de Inmunología de Colombia (FIDIC), Colombia
| | | | | | | | | | | | | |
Collapse
|
12
|
Volpina OM, Volkova TD, Koroev DO, Ivanov VT, Ozherelkov SV, Khoretonenko MV, Vorovitch MF, Stephenson JR, Timofeev AV. A synthetic peptide based on the NS1 non-structural protein of tick-borne encephalitis virus induces a protective immune response against fatal encephalitis in an experimental animal model. Virus Res 2005; 112:95-9. [PMID: 16022903 DOI: 10.1016/j.virusres.2005.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 03/02/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
Linear immunogenic peptides corresponding to amino acid sequences from the NS1 non-structural protein from tick-borne encephalitis virus (strain Sophyin) were predicted using established algorithms and synthesized. Of the 12 peptides predicted, 11 were able to induce peptide-specific antibodies in BALB/c mice but only 1 of these 11 was able to induce antibodies, which reacted with the native protein in a radio-immune precipitation assay. This peptide corresponds to amino acids 37--55, and forms one of the predicted structurally conserved alpha helices of the virus NS1 protein. It was able to protect 60% of animals against lethal challenge with the homologous highly pathogenic tick-borne encephalitis virus strain, and adoptive transfer experiments indicated the involvement of the antibodies induced by this peptide in its protective activity in mice.
Collapse
Affiliation(s)
- O M Volpina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Iglesias E, Aguilar JC, Cruz LJ, Reyes O. Broader cross-reactivity after conjugation of V3 based multiple antigen peptides to HBsAg. Mol Immunol 2005; 42:99-104. [PMID: 15488948 DOI: 10.1016/j.molimm.2004.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 06/28/2004] [Indexed: 11/20/2022]
Abstract
Vaccines against highly variable pathogens should elicite antibodies to a huge number of clinical isolates. For this purpose, new strategies to overcome the variability are needed. We have previously reported a useful method to conjugate multiple antigen peptides (MAPs) to carrier proteins. Also, we have suggested that these conjugates might enhance cross-reactivity in comparison to other synthetic structures. In this work, MAPs were synthesized and their respective conjugates to HBsAg were obtained. Two peptides from the V3 loop of HIV-1 were included in the MAPs as B cell epitopes because of their variability. Groups of mice were immunized and the immunogenicity and the level of cross-reaction to a panel of five heterologous V3 peptides were studied. Our results show that sera from mice immunized with MAPs coupled to HBsAg recognize a higher number of heterologous peptides (P < 0.05). This behavior was related neither to the immunogenicity nor the antigenicity of the synthetic structures. These results have important implications for the choice of better immunogens against variable epitopes.
Collapse
Affiliation(s)
- Enrique Iglesias
- Divisiones de Vacunas, Centro de Ingeniería Genética y Biotecnología, Ave. 31 e/158 y 190, Cubanacan Playa, Apdo 6162, 10600 Ciudad Habana, Cuba.
| | | | | | | |
Collapse
|
14
|
Vasconcelos NM, Siddique AB, Ahlborg N, Berzins K. Differential antibody responses to Plasmodium falciparum-derived B-cell epitopes induced by diepitope multiple antigen peptides (MAP) containing different T-cell epitopes. Vaccine 2004; 23:343-52. [PMID: 15530679 DOI: 10.1016/j.vaccine.2004.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 05/03/2004] [Accepted: 06/15/2004] [Indexed: 11/15/2022]
Abstract
Epitopes of universal character are needed when designing subunit vaccines against infectious diseases such as malaria. We have compared the immunogenicity of B-cell epitopes from the Plasmodium falciparum antigen repeats DPNANPNV (PfCS protein) and VTEEI (Pf332) when assembled with four different universal T-cell epitopes in diepitope multiple antigen peptides (MAP). T-epitopes employed were from P. falciparum antigens (CS.T3, [T(*)]4 and EBP3) or from the Clostridium tetani toxin (P2). In association with either of the T-epitopes, the genetic unresponsiveness to the B-epitopes was successfully bypassed. Our results show that the immunogenicity of a T-epitope alone does not necessarily predict the ability of the T-epitope to provide T-cell help when combined with other epitopes in an immunogen. Further, the nature of the immune responses in terms of total IgG antibodies and their subclass distribution, T-cell proliferation and IFN-gamma production, varied with the T-epitope and mouse strain, which may indicate the need for inclusion of a combination of different universal T-epitopes in a future malaria subunit vaccine.
Collapse
Affiliation(s)
- Nina-Maria Vasconcelos
- Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | | | | | | |
Collapse
|
15
|
Kumar KA, Oliveira GA, Edelman R, Nardin E, Nussenzweig V. Quantitative Plasmodium sporozoite neutralization assay (TSNA). J Immunol Methods 2004; 292:157-64. [PMID: 15350520 DOI: 10.1016/j.jim.2004.06.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Accepted: 06/15/2004] [Indexed: 11/18/2022]
Abstract
The circumsporozoite (CS) protein is the major surface protein of Plasmodium sporozoites. Antibodies to the immunodominant repeat domain of CS immobilize sporozoites and prevent infection of hepatocytes. Plasmodium falciparum vaccines containing CS repeats are undergoing human trials in endemic areas, and proof of efficacy has been obtained. The correlates of protection are under investigation. Levels of anti-repeat antibodies in the serum of the human volunteers have been measured mostly by enzyme-linked immunosorbent assay (ELISA) and IFA. Assays that measure the effect of the serum antibodies on parasite infectivity (serum neutralization assays SNAs) are not usually performed because they require a susceptible host and P. falciparum sporozoites are highly infectious only to humans. To overcome this limitation, we developed a new assay named transgenic sporozoite neutralization assay (TSNA) that uses as neutralization target, a transgenic rodent malaria parasite Plasmodium berghei that bears the P. falciparum CS repeats [CS(Pf)]. Following incubation with human serum, CS(Pf) infectivity of HepG2 cells is evaluated by real-time PCR. We have compared ELISA titers and TSNAs in a limited number of sera from humans immunized with (T1B)4 MAP, a peptide vaccine containing P. falciparum CS repeats. A comparison between the two assays did not reach significance (p=0.175) when analyzed by non-parametric Spearman correlation method. Ongoing human trials of CS-based vaccines should provide an opportunity to determine whether TSNAs will provide better correlates of protective immunity than ELISA assays.
Collapse
Affiliation(s)
- Kota Arun Kumar
- Michael Heidelberger Division of Immunology, Department of Pathology, MSB, 131, New York University School of Medicine, 550, First Avenue, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
16
|
Schulze K, Medina E, Chhatwal GS, Guzmán CA. Identification of B- and T-cell epitopes within the fibronectin-binding domain of the SfbI protein of Streptococcus pyogenes. Infect Immun 2004; 71:7197-201. [PMID: 14638816 PMCID: PMC308920 DOI: 10.1128/iai.71.12.7197-7201.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fibronectin-binding repeats of the SfbI protein of Streptococcus pyogenes constitute the minimal domain able to confer protection against lethal infection. We investigated the presence of B- and T-cell epitopes within this region in congenic mice. One linear B-cell epitope was recognized by BALB/b and BALB/k mice, whereas two epitopes were found in BALB/c animals. A unique T-cell epitope was recognized by all three mouse strains. All identified epitopes clustered in a 30-amino-acid fragment. These results suggest that this polypeptide may be suitable for incorporation into a polyepitope-based vaccine formulation against S. pyogenes.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Microbial Pathogenesis and Vaccine Research, Division of Microbiology, GBF-German Research Centre for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
17
|
Tallima H, Montash M, Veprek P, Velek J, Jezek J, El Ridi R. Differences in immunogenicity and vaccine potential of peptides from Schistosoma mansoni glyceraldehyde 3-phosphate dehydrogenase. Vaccine 2003; 21:3290-300. [PMID: 12804860 DOI: 10.1016/s0264-410x(03)00180-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Six peptides, A, B1, B, C, D and E derived from the primary sequence of Schistosoma mansoni glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) were selected based on lowest homology to human G3PDH and used for immunization of BALB/c mice. Peptides B1 and D induced immunoglobulin (Ig) G1, IgG2a and IgG2b antibodies that reacted with native and denatured SG3PDH, and were associated with significant (P<0.05) increase in fecundity and burden of challenge worms, respectively. Peptides A, B, C and E elicited a modest cellular immune response, IgG2a and/or IgG2b antibodies, and no effect on challenge worm burden. In contrast, tetrameric multiple antigen peptide (MAP) constructs A, B, C or E elicited strong cellular immune responses and production of IgG1 and/or IgG2a and IgG2b antibodies against the homologous MAP and peptide and SG3PDH. The immune responses were associated with significant (P<0.05) decrease in challenge worm burden for MAP B, and significant (P<0.05) reduction in egg count per worm couple for MAP C or E. The data together indicated the nature and effect of immune responses vary for each SG3PDH-derived peptide.
Collapse
Affiliation(s)
- Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | | | | | | | | | | |
Collapse
|
18
|
Haro I, Pérez S, García M, Chan WC, Ercilla G. Liposome entrapment and immunogenic studies of a synthetic lipophilic multiple antigenic peptide bearing VP1 and VP3 domains of the hepatitis A virus: a robust method for vaccine design. FEBS Lett 2003; 540:133-40. [PMID: 12681496 DOI: 10.1016/s0014-5793(03)00249-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multiple antigen peptides (MAP) have been demonstrated to be efficient immunological reagents for the induction of immune responses to a variety of infectious agents. Several peptide domains of the hepatitis A virus (HAV) capsid proteins, mainly VP1 and VP3, are the immunodominant targets for a protective antibody response. In the present study we analyse the immunogenic properties of a tetrameric heterogeneous palmitoyl-derivatised MAP containing two defined HAV peptide sequences, VP1(11-25) and VP3(102-121), in rabbits immunised with either Freund's adjuvant or multilamellar liposomes. The immune response was evaluated with a specific enzyme immunoassay using MAP[VP1+VP3], VP1 and VP3 as targets. The avidity of the immune response was measured by a non-competitive enzyme-linked immunosorbent assay and by the surface plasmon resonance technology. Antisera raised against the lipo-MAP peptide entrapped in liposomes demonstrated high avidity of binding with affinity rate constants approximately one order of magnitude greater than those obtained with the Freund's protocol.
Collapse
Affiliation(s)
- Isabel Haro
- Departament de Química de Pèptids i Proteïnes, IIQAB-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
19
|
Moore SA, Surgey EGE, Cadwgan AM. Malaria vaccines: where are we and where are we going? THE LANCET. INFECTIOUS DISEASES 2002; 2:737-43. [PMID: 12467689 DOI: 10.1016/s1473-3099(02)00451-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Malaria is still killing over one million people each year and its incidence is increasing. The need for an effective vaccine is greater than ever. A major difficulty with vaccine research is that the malaria parasite presents thousands of antigens to the human immune system that vary throughout its life cycle. Identifying those that may prove to be vaccine targets is complicated and time consuming. Most vaccines are targeted at individual stages of the malaria life cycle, although it is likely that only the development of a multistage vaccine will offer complete protection to both visitors to, and residents of, a malaria-endemic area. With the development of a successful vaccine other issues such as cost, distribution, education, and compliance will have to be addressed. This review describes some of the current vaccine candidates for immunising against malaria.
Collapse
|
20
|
Abstract
Essentially all of the currently available vaccines are based on the use of inactivated or live-attenuated pathogens. However, these vaccines have several shortcomings, such as difficulties of in vitro culturing, biohazard risks, as well as loss of efficacy due to the genetic variations seen in many viruses. These problems may potentially be solved by immunising with epitope-based vaccines consisting of rationally designed protective epitopes, appropriately presented and easy to deliver, which are capable of stimulating effective B-cell, T-cell and cytotoxic immune responses whilst avoiding potentially hazardous and undesirable effects. Furthermore, the use of a mixture of defined epitopes could lead to an effective broad range immune response which has the potential to overcome both strain specificity of the pathogen and the MHC restriction of the host. Epitope-based vaccines can be designed to involve the use of synthetic materials that can be available in unlimited quantities and posing no biohazard. Other approaches include the use of naked DNA or recombinant viruses or bacteria expressing the epitopes. An important objective in the development of such vaccines is that they should be effective when delivered via the mucosal route and effective in the presence of maternal antibodies. In this review, we present examples of the use of various epitope-based vaccine constructs, focussing particularly upon their intranasal delivery to the immune system.
Collapse
Affiliation(s)
- W Olszewska
- The Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | | |
Collapse
|
21
|
Joshi MB, Gam AA, Boykins RA, Kumar S, Sacci J, Hoffman SL, Nakhasi HL, Kenney RT. Immunogenicity of well-characterized synthetic Plasmodium falciparum multiple antigen peptide conjugates. Infect Immun 2001; 69:4884-90. [PMID: 11447164 PMCID: PMC98578 DOI: 10.1128/iai.69.8.4884-4890.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Given the emerging difficulties with malaria drug resistance and vector control, as well as the persistent lack of an effective vaccine, new malaria vaccine development strategies are needed. We used a novel methodology to synthesize and fully characterize multiple antigen peptide (MAP) conjugates containing protective epitopes from Plasmodium falciparum and evaluated their immunogenicity in four different strains of mice. A di-epitope MAP (T3-T1) containing two T-cell epitopes of liver stage antigen-1 (LSA-1), a di-epitope MAP containing T-cell epitopes from LSA-1 and from merozoite surface protein-1, and a tri-epitope MAP (T3-CS-T1) containing T3-T1 and a potent B-cell epitope from the circumsporozoite protein central repeat region were tested in this study. Mice of all four strains produced peptide-specific antibodies; however, the magnitude of the humoral response indicated strong genetic restriction between the different strains of mice. Anti-MAP antibodies recognized stage-specific proteins on the malaria parasites in an immunofluorescence assay. In addition, serum from hybrid BALB/cJ x A/J CAF1 mice that had been immunized with the tri-epitope MAP T3-CS-T1 successfully inhibited the malaria sporozoite invasion of hepatoma cells in vitro. Spleen cells from immunized mice also showed a genetically restricted cellular immune response when stimulated with the immunogen in vitro. This study indicates that well-characterized MAPs combining solid-phase synthesis and conjugation chemistries are potent immunogens and that this approach can be utilized for the development of subunit vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/classification
- Antibody Specificity
- Antigens, Protozoan/immunology
- Cell Division
- Cells, Cultured
- Female
- Interferon-gamma/analysis
- Malaria Vaccines/immunology
- Malaria, Falciparum/genetics
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Merozoite Surface Protein 1/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Peptides/immunology
- Plasmodium falciparum/immunology
- Protozoan Proteins/immunology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Vaccines, Conjugate/immunology
Collapse
Affiliation(s)
- M B Joshi
- Laboratory of Parasitic Biology and Biochemistry, Office of Vaccine Research and Review, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsuji M, Rodrigues EG, Nussenzweig S. Progress toward a malaria vaccine: efficient induction of protective anti-malaria immunity. Biol Chem 2001; 382:553-70. [PMID: 11405220 DOI: 10.1515/bc.2001.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malaria can be a very severe disease, particularly in young children, pregnant women (mostly in primipara), and malaria naïve adults, and currently ranks among the most prevalent infections in tropical and subtropical areas throughout the world. The widespread occurrence and the increased incidence of malaria in many countries, caused by drug-resistant parasites (Plasmodium falciparum and P. vivax) and insecticide-resistant vectors (Anopheles mosquitoes), indicate the need to develop new methods of controlling this disease. Experimental vaccination with irradiated sporozoites can protect animals and humans against the disease, demonstrating the feasibility of developing an effective malaria vaccine. However, developing a universally effective, long lasting vaccine against this parasitic disease has been a difficult task, due to several problems. One difficulty stems from the complexity of the parasite's life cycle. During their life cycle, malaria parasites change their residence within the host, thus avoiding being re-exposed to the same immunological environment. These parasites also possess some distinct antigens, present at different life stages of the parasite, the so-called stage-specific antigens. While some of the stage-specific antigens can induce protective immune responses in the host, these responses are usually genetically restricted, this being another reason for delaying the development of a universally effective vaccine. The stage-specific antigens must be used as immunogens and introduced into the host by using a delivery system that should efficiently induce protective responses against the respective stages. Here we review several research approaches aimed at inducing protective anti-malaria immunity, overcoming the difficulties described above.
Collapse
Affiliation(s)
- M Tsuji
- Department of Medical and Molecular Parasitology, New York University School of Medicine, NY 10010, USA
| | | | | |
Collapse
|
23
|
Avila SL, Goldberg AC, Arruk VG, Marin ML, Guilherme L, Kalil J, Ferreira AW. Immune responses to multiple antigen peptides containing T and B epitopes from Plasmodium falciparum circumsporozoite protein of Brazilian individuals naturally exposed to malaria. Parasite Immunol 2001; 23:103-8. [PMID: 11240901 DOI: 10.1046/j.1365-3024.2001.00363.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have evaluated the immune responses of individuals living in a malaria endemic area of Brazil to the (T1B)4, a multiple antigen peptide (MAP) from Plasmodium falciparum circumsporozoite (CS) protein and the related monoepitope MAPs, B4 and (T1)4, and the linear peptides, T1B and B. The highest antibody frequencies were against MAPs containing the B cell epitope sequence (T1B)4 (42.2%) and B4 (28.8%), while the highest lymphoproliferative response frequencies were against the MAPs containing the T cell epitope sequence (T1)4 (47%) and (T1B)4 (36.4%). We analysed individual responses considering lymphoproliferative response to (T1)4 MAP and IgG antibody titre to (T1B)4 as patterns of ideal cellular and humoral responses, respectively. The frequency of responders, cellular and/or humoral was 66.6%, significantly higher than non responders (P = 0.003). We also determined the HLA class II haplotype of each individual but no association between these and immune response patterns to the MAPs was observed. The results showed that individuals primed against P. falciparum in their natural habitat, present a very diverse array of responses against the same peptide antigens, varying from no response in one-third of the individuals to cognate B and T cell responses. Our study underlines the importance of previous studies of vaccine candidates to guarantee that the immunization will be capable of reverting inefficient or absent responses to malaria epitopes.
Collapse
Affiliation(s)
- S L Avila
- Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
24
|
Dat MH, Behr C, Jouin H, Baleux F, Mercereau-Puijalon O, Dubois P. Mimicking a conformational B cell epitope of the heat shock protein PfHsp70-1 antigen of Plasmodium falciparum using a multiple antigenic peptide. Parasite Immunol 2000; 22:535-43. [PMID: 11116433 DOI: 10.1046/j.1365-3024.2000.00333.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Pf72/Hsp70-1 antigen is a major target in the naturally acquired immunity against Plasmodium falciparum malaria. We carried out an extensive analysis of the responses to several epitopes on the least conserved C-terminal domain, according to the mode of sensitization: malaria infection or immunization with different immunogens. We found significant differences in the panel of B-cell epitopes recognized by animal models including primates, and by humans sensitized by natural infection. We focused the analysis on one epitope that is unique to Plasmodium species. It is specifically recognized by a monoclonal antibody that mediates the killing of infected hepatocytes in vitro. We produced a polymeric multiple antigenic peptide (MAP) form of this sequence, which enabled us to identify a new B-cell epitope not detected by ELISA with linear peptides. The polymer was strongly recognized by sera from monkeys or humans sensitized by natural infection, whereas the monomer was not. We modelled the three-dimensional structure of the Pf72/Hsp70-1 sequence, using known Escherischia coli DnaK structures as a template. This predicted that the corresponding region would form a loop in the native antigen. The results presented here suggest that the MAP strategy is also particularly useful as a means of obtaining suitable synthetic models for conformation-dependent epitopes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Heat-Shock Proteins/chemistry
- Heat-Shock Proteins/immunology
- Humans
- Immunization
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Mice
- Mice, Inbred BALB C
- Molecular Mimicry
- Molecular Sequence Data
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Plasmodium falciparum/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Saimiri
Collapse
Affiliation(s)
- M H Dat
- Unité d'Immunologie Moléculaire des parasites, Pasteur Institute, 25-28 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Ortiz A, Cajal Y, Haro I, Reig F, Alsina MA. Fluorescence study on the interaction of a multiple antigenic peptide from hepatitis A virus with lipid vesicles. Biopolymers 2000; 53:455-66. [PMID: 10775061 DOI: 10.1002/(sici)1097-0282(200005)53:6<455::aid-bip2>3.0.co;2-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The interaction of the multiple antigenic peptide MAP4VP3 with lipid membranes has been studied by spectroscopic techniques. MAP4VP3 is a multimeric peptide that corresponds to four units of the sequence 110-121 of the capsid protein VP3 of hepatitis A virus. In order to evaluate the electrostatic and hydrophobic components on the lipid-peptide interaction, small unilamelar vesicles of different compositions, including zwitterionic dipalmitoylphosphatidylcholine (DPPC), anionic dipalmitoylphosphatidylcholine/phatidylinositol (DPPC:PI 9:1), and cationic dipalmitoylphosphatidylcholine/stearylamine (DPPC:SA 9.5:0.5), were used as membrane models. Intrinsic tryptophan fluorescence changes and energy transfer experiments show that MAP4VP3 binds to all three types of vesicles with the same stoichiometry, indicating that the electrostatic component of the interaction is not important for binding of this anionic peptide. Steady-state polarization experiments with vesicles labeled with 1,6-diphenyl-1,3,5-hexatriene or with 1-anilino-8-naphtalene sulphonic acid indicate that MAP4VP3 induces a change in the packing of the bilayers, with a decrease in the fluidity of the lipids and an increase in the temperature of phase transition in all the vesicles. The percentage of lipid exposed to the bulk aqueous phase is around 60% in intact vesicles, and it does not change upon binding of MAP4VP3 to DPPC vesicles, indicating that the peptide does not alter the permeability of the membrane. An increase in the amount of lipid exposed to the aqueous phase in cationic vesicles indicates either lipid flip-flop or disruption of the vesicles. Binding to DPPC vesicles occurs without leakage of entrapped carboxyfluorescein, even at high mol fractions of peptide. However, a time-dependent leakage is seen with cationic DPPC/SA and anionic DPPC/PI vesicles, indicating that the peptide induces membrane destabilization and not lipid flip-flop. Resonance energy transfer experiments show that MAP4VP3 leakage from cationic vesicles is due to membrane fusion, whereas leakage from anionic vesicles is not accompanied by lipid mixing. Results show that MAP4VP3 interacts strongly with the lipid components of the membrane, and although binding is not of electrostatic nature, the bound form of the peptide has different activity depending on the membrane net charge; thus, it is membrane disruptive in cationic and anionic vesicles, whereas no destabilizing effect is seen in DPPC vesicles.
Collapse
Affiliation(s)
- A Ortiz
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
26
|
Gómara MJ, Riedemann S, Vega I, Ibarra H, Ercilla G, Haro I. Use of linear and multiple antigenic peptides in the immunodiagnosis of acute hepatitis A virus infection. J Immunol Methods 2000; 234:23-34. [PMID: 10669766 DOI: 10.1016/s0022-1759(99)00196-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The reactivities of two panels of anti-HAV human sera from geographically distinct areas (Chile and Spain) to synthetic peptides from the VP1, VP2 and VP3 hepatitis A virus capsid proteins were examined by an enzyme-linked immunosorbent assay (ELISA) procedure. Two and four branched multiple antigenic peptides (MAPs) and palmitoylated peptides were compared with free synthetic sequences for the detection of IgM anti-HAV antibodies in the two panels of human sera. Our results showed that acute hepatitis A patient sera recognized preferentially homogeneous two branched MAPs and palmitic acid conjugated peptides. The palmitoyl-derived VP3(110-121) peptide and the corresponding dimeric MAP were the most sensitive and appropriate for serological studies of HAV-infected patients by ELISA, sensitivity and specificity being higher than 90% and 95%, respectively. These peptide-based tests open up new avenues in the development of peptide-based immunosorbent assays for the detection of acute HAV disease.
Collapse
Affiliation(s)
- M J Gómara
- Departament de Química de Pèptids i Proteïnes, IIQAB-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Physicochemical interaction of a lipophilic derivative of HAV antigen VP3(110–121) with lipid monolayers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 1999. [DOI: 10.1016/s0928-4931(99)00055-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Kinane DF, Mooney J, Ebersole JL. Humoral immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontal disease. Periodontol 2000 1999; 20:289-340. [PMID: 10522229 DOI: 10.1111/j.1600-0757.1999.tb00164.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D F Kinane
- Department of Periodontology and Oral Immunology, Glasgow Dental Hospital and School, Scotland, United Kingdom
| | | | | |
Collapse
|
29
|
Immunization with peptides. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0075-7535(08)70448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
30
|
Miyahira Y, García-Sastre A, Rodriguez D, Rodriguez JR, Murata K, Tsuji M, Palese P, Esteban M, Zavala F, Nussenzweig RS. Recombinant viruses expressing a human malaria antigen can elicit potentially protective immune CD8+ responses in mice. Proc Natl Acad Sci U S A 1998; 95:3954-9. [PMID: 9520474 PMCID: PMC19944 DOI: 10.1073/pnas.95.7.3954] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extensive studies on protective immunity to rodent malaria provided the basis for the current experiments in which mice were immunized with recombinant (re) influenza and vaccinia viruses expressing selected sequences of the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum. Mice of different H-2 haplotypes immunized with re influenza viruses expressing the immunodominant B cell epitope of this CS protein produced high titers of antibodies to the parasite. A cytotoxic T lymphocyte epitope of the CS protein of P. falciparum, PF3, recognized by CD8+ T cells of H-2(k) mice, was expressed in a re vaccinia virus (VacPf) and a re influenza virus (FluPf). Immunization of mice with either FluPf or VacPf elicited a modest CS-specific CD8+ T cell response detected by interferon gamma secretion of individual immune cells. Priming of mice with FluPf, followed by a booster with VacPf, resulted in a striking enhancement of this T cell response. The reverse protocol, i.e., priming with VacPf followed by a booster with FluPf, failed to enhance the primary response. VacPf also greatly enhanced the primary response of mice injected with P. falciparum sporozoites or with a lipopeptide containing PF3. A booster with FluPf also amplified the response of lipopeptide- or sporozoite-primed mice but less than a VacPf booster did. Although mice are not susceptible to infection by P. falciparum sporozoites, we demonstrated that administration of two distinct immunogens expressing PF3 elicited activated, extravasating CS-specific T cells that protected against an intracerebral VacPf challenge.
Collapse
Affiliation(s)
- Y Miyahira
- Department of Medical and Molecular Parasitology, New York University Medical Center, 341 E. 25th Street, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chargelegue D, Obeid OE, Hsu SC, Shaw MD, Denbury AN, Taylor G, Steward MW. A peptide mimic of a protective epitope of respiratory syncytial virus selected from a combinatorial library induces virus-neutralizing antibodies and reduces viral load in vivo. J Virol 1998; 72:2040-6. [PMID: 9499058 PMCID: PMC109497 DOI: 10.1128/jvi.72.3.2040-2046.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1997] [Accepted: 11/20/1997] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most important cause of bronchiolitis and pneumonia in infants and young children worldwide. As yet, there is no effective vaccine against RSV infection, and previous attempts to develop a formalin-inactivated vaccine resulted in exacerbated disease in recipients subsequently exposed to the virus. In the work described here, a combinatorial solid-phase peptide library was screened with a protective monoclonal antibody (MAb 19) to identify peptide mimics (mimotopes) of a conserved and conformationally-determined epitope of RSV fusion (F) protein. Two sequences identified (S1 [HWYISKPQ] and S2 [HWYDAEVL]) reacted specifically with MAb 19 when they were presented as solid-phase peptides. Furthermore, after amino acid substitution analyses, three sequences derived from S1 (S1S [HWSISKPQ], S1K [KWYISKPQ], and S1P [HPYISKPQ]), presented as multiple antigen peptides (MAPs), also showed strong reactivity with MAb 19. The affinity constants of the binding of MAb 19, determined by surface plasmon resonance analyses, were 1.19 x 10(9) and 4.93 x 10(9) M(-1) for S1 and S1S, respectively. Immunization of BALB/c mice with these mimotopes, presented as MAPs, resulted in the induction of anti-peptide antibodies that inhibited the binding of MAb 19 to RSV and neutralized viral infection in vitro, with titers equivalent to those in sera from RSV-infected animals. Following RSV challenge of S1S mimotope-immunized mice, a 98.7% reduction in the titer of virus in the lungs was observed. Furthermore, there was a greatly reduced cell infiltration in the lungs of immunized mice compared to that in controls. These results indicate the potential of peptide mimotopes to protect against RSV infection without exacerbating pulmonary pathology.
Collapse
Affiliation(s)
- D Chargelegue
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Malaria remains the most prevalent and devastating parasitic disease worldwide. Vaccination is considered to be an approach that will complement other strategies for prevention and control of the disease in the future. In the last 10 years, intense studies aimed at the development of a malaria vaccine have provided important knowledge of the nature of the host immunological mechanisms of protection and their respective target antigens. It became well established that protective immune responses can be generated against the distinct stages of Plasmodium. However, in general, protective immune responses are directed at stage-specific antigens. The elucidation of the primary structure of these antigens made possible the generation of synthetic and recombinant proteins that are being extensively used in experimental immunizations against the infection. Today, several epitopes of limited polymorphism have been described and protective immunity can be generated by immunization with them. These epitopes are being tested as primary candidates for a subunit vaccine against malaria. Here we critically review the major roadblocks for the development of a malaria vaccine and provide some insight on how these problems are being solved.
Collapse
Affiliation(s)
- I S Soares
- Departamento de Patologia, Universidade Federal do Pará, Belém, Brasil
| | | |
Collapse
|
33
|
Horváth A, Tóth GK, Gogolák P, Nagy Z, Kurucz I, Pecht I, Rajnavölgyi E. A hemagglutinin-based multipeptide construct elicits enhanced protective immune response in mice against influenza A virus infection. Immunol Lett 1998; 60:127-36. [PMID: 9557954 DOI: 10.1016/s0165-2478(97)00137-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multipeptide constructs, comprising adjacent sequences of the 317-341 intersubunit region of immature influenza A hemagglutinin (H1N1), were designed and the functional properties of these branched peptides were compared to that of the corresponding linear peptides. In vivo studies revealed that the immunogenicity of the peptides was dependent on the presence of the hydrophobic fusion peptide (comprised in FP3), encompassing the N-terminal 1-13 sequence of the HA2 subunit. Antibody and T cell recognition, however, was directed against the 317-329 HA1 sequence, comprised in the P4 peptide. Multiple copies of P4, covalently linked by branched lysine residues, significantly enhanced the efficiency of antibody binding and the capacity of peptides to elicit B- and T-cell responses. A fraction of peptide induced antibodies reacted with immature or with proteolitically cleaved hemagglutinin (HA) molecules pretreated at low pH. Immunization with a multipeptide construct, (P4)4-FP3, not only resulted in elevated antibody and T cell responses but conferred enhanced protection against lethal A/PR/8/34 (H1N1) infection as compared to its subunit peptides. The beneficial functional properties of this artificial peptide antigen may be acquired by multiple properties including: (i) stabilized peptide conformation which promotes strong, polyvalent binding to both antibodies and MHC class II molecules; (ii) appropriate P4 conformation for antibody recognition stabilized by the covalently coupled fusion peptide, resulting in the production of virus cross reactive antibodies which inhibit the fusion activity of the virus; (iii) activation of peptide specific B cells which potentiate antigen presentation and peptide specific T cell responses; and (iv) generation of helper T cells which secrete lymphokines active in the resolution of infection.
Collapse
Affiliation(s)
- A Horváth
- Department of Immunology, L. Eötvös University, Göd, Hungary
| | | | | | | | | | | | | |
Collapse
|
34
|
Interactions of a tetravalent branched peptide from VP3 capsid protein of hepatitis A virus with monolayers as biomembrane models. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0968-5677(97)00054-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Carson RT, Vignali KM, Woodland DL, Vignali DA. T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage. Immunity 1997; 7:387-99. [PMID: 9324359 DOI: 10.1016/s1074-7613(00)80360-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Naturally processed MHC class II-bound peptides possess ragged NH2 and COOH termini. It is not known whether these peptide flanking residues (PFRs), which lie outside the MHC anchor residues, are recognized by the TCR or influence immunogenicity. Here we analyzed T cell responses to the COOH-terminal PFR of the H-2A(k) immunodominant epitope of hen egg lysozyme (HEL) 52-61. Surprisingly, the majority of T cells were completely dependent on, and specific for, the COOH-terminal PFR of the immunogen. In addition, there were striking correlations between TCR V beta usage and PFR dependence. We hypothesize that the V alpha CDR1 region recognizes NH2-terminal PFRs, while the V beta CDR1 region recognizes COOH-terminal PFRs. Last, peptides containing PFRs were considerably more immunogenic and mediated a greater recall response to the HEL protein. These results demonstrate that PFRs, which are a unique characteristic of peptides bound to MHC class II molecules, can have a profound effect on TCR recognition and T cell function. These data may have important implications for peptide-based immunotherapy and vaccine development.
Collapse
Affiliation(s)
- R T Carson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA
| | | | | | | |
Collapse
|
36
|
|
37
|
del Guercio MF, Alexander J, Kubo RT, Arrhenius T, Maewal A, Appella E, Hoffman SL, Jones T, Valmori D, Sakaguchi K, Grey HM, Sette A. Potent immunogenic short linear peptide constructs composed of B cell epitopes and Pan DR T helper epitopes (PADRE) for antibody responses in vivo. Vaccine 1997; 15:441-8. [PMID: 9141216 DOI: 10.1016/s0264-410x(97)00186-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Induction of humoral immune responses against protein antigen requires that two independent signals be delivered to B cells. It is currently assumed that simple monovalent synthetic peptides would not be effective immunogens for antibody responses because they would not be anticipated to effectively generate the necessary signals unless conjugated to a complex carrier system. In this study, the immunogenicity of short linear peptide constructs comprising Plasmodium vivax B cell epitopes (PVB) and non-natural Pan-DR T helper cell epitopes (PADRE) was assessed in mice and compared to other types of antigen constructs. The 33-residue PADRE-PVB linear constructs were highly immunogenic and induced responses comparable to those obtained with the multiple antigen peptides (MAP) constructs, both in terms of absolute titers and quality of antibody responses. The anti-PVB antibody responses were of long duration, composed mostly of IgG and reactive with intact sporozoites. The PADRE-PVB constructs were immunogenic when formulated in adjuvants such as Alum and Montanide ISA 51 underlining the relevance of these findings for vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Aluminum Hydroxide/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/biosynthesis
- Antigens, Protozoan/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- HLA-DR Antigens/chemistry
- HLA-DR Antigens/immunology
- Malaria Vaccines/immunology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Peptides/chemical synthesis
- Peptides/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
- Protein Conformation
- Protozoan Proteins/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccines, Synthetic/chemistry
Collapse
|
38
|
Delves PJ, Lund T, Roitt IM. Can epitope-focused vaccines select advantageous immune responses? MOLECULAR MEDICINE TODAY 1997; 3:55-60. [PMID: 9060002 DOI: 10.1016/s1357-4310(96)20036-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the great success stories of preventive medicine is the achievement of protection against many pathogens by the simple procedure of vaccination. The rationale behind vaccination is to generate a protective immune response and an expanded population of memory cells ready to encounter the infectious agent, which will then elicit a potent secondary immune response. However, the development of effective vaccines against many pathogens has, so far, been unsuccessful. Many vaccines in current use fail to direct the immune response towards the epitopes that will ensure optimal protection. In these circumstances, can vaccines be produced that focus the immune system in a calculated, epitope-specific manner?
Collapse
Affiliation(s)
- P J Delves
- Dept of Immunology, University College, London Medical School, UK.
| | | | | |
Collapse
|
39
|
|