1
|
Dong Y, Zhang Q, Mao Y, Wu M, Wang Z, Chang L, Zhang J. Control of two insect pests by expression of a mismatch corrected double-stranded RNA in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2010-2019. [PMID: 38426894 PMCID: PMC11182576 DOI: 10.1111/pbi.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
RNA interference (RNAi) has emerged as an efficient technology for pest control by silencing the essential genes of targeted insects. Owing to its nucleotide sequence-guided working mechanism, RNAi has a high degree of species-specificity without impacts on non-target organisms. However, as plants are inevitably under threat by two or more insect pests in nature, the species-specific mode of RNAi-based technology restricts its wide application for pest control. In this study, we artificially designed an intermediate dsRNA (iACT) targeting two β-Actin (ACT) genes of sap-sucking pests Bemisia tabaci and Myzus persicae by mutual correction of their mismatches. When expressing hairpin iACT (hpiACT) from tobacco nuclear genome, transgenic plants are well protected from both B. tabaci and M. persicae, either individually or simultaneously, as evidenced by reduced fecundity and suppressed ACT gene expression, whereas expression of hpRNA targeting BtACT or MpACT in transgenic tobacco plants could only confer specific resistance to either B. tabaci or M. persicae, respectively. In sum, our data provide a novel proof-of-concept that two different insect species could be simultaneously controlled by artificial synthesis of dsRNA with sequence optimization, which expands the range of transgenic RNAi methods for crop protection.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Yarou Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Mengting Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Zican Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
2
|
Ijaz R, Ali NM, Ramzan U, Qureshi F, Baloch SR, Khan MA, Mazhar B, chaudhry M. Phylo-geographic analysis of whitefly on the basis of mitochondrial cytochrome oxidase 1 gene. BRAZ J BIOL 2024. [DOI: 10.1590/1519-6984.252910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Bemisia tabaci is a species complex that causes damage to its broad range of plant hosts through serious feeding. It transmits plant viruses of different groups to important agricultural crops. Some important cash crops of Pakistan are sugar cane, rice, tobacco and seed oil. It shows high genetic variability and is differentiated as races or biotypes. Biotypes are, biotype Q, biotype B, biotype B2, biotype M, biotype L, biotype A, biotype H, biotype C, biotype K, biotype N, biotype R, biotype E, biotype P, biotype J, biotype S, biotype AN. Although the current report based on the Bayesian study of mitochondrial cytohrome oxidase gene1 (CO1) DNA sequences has classified the different populations of whiteflies into twelve genetic groups which are Mediterranean, Sub-Saharan Africa silverleafing, Indian Ocean, Asia II, Asia I, Australia, New World, Italy, China, Sub-Saharan Africa non-silverleafing, Mediterranean/Asia Minor/Africa and Uganda sweet potato. Begomoviruses is largest group of viruses transmitted by B. tabaci and cause major diseases of crops such as tomato and chili leaf curl disease, cassava mosaic disease; yellow mosaic disease of legumes and cotton leaf curl disease. The main objective of current study is to inculpate knowledge regarding genetic diversity of whitefly in cotton fields across Pakistan via analysis of partial DNA sequence of mitochondrial gene Cytochrom Oxidase I (mtCO1).
Collapse
Affiliation(s)
- R. Ijaz
- GC University Lahore, Pakistan
| | | | | | - F. Qureshi
- University of Veterinary and Animal Sciences, Pakistan
| | | | | | | | | |
Collapse
|
3
|
Naveed H, Islam W, Jafir M, Andoh V, Chen L, Chen K. A Review of Interactions between Plants and Whitefly-Transmitted Begomoviruses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3677. [PMID: 37960034 PMCID: PMC10648457 DOI: 10.3390/plants12213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The transmission of plant viruses from infected to healthy host plants is a process in which insects play a major role, using various transmission strategies. Environmental factors have an impact on the transmission of viruses and the subsequent development of infections or diseases. When viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses, which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores the factors influencing these interactions. Understanding the impacts of these changes is crucial for managing the spread of pests and mitigating damage to crops. It underscores the need for continued research to elucidate the mechanisms driving plant-insect-virus interactions and to identify new approaches for sustainable pest management.
Collapse
Affiliation(s)
- Hassan Naveed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Muhammad Jafir
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China;
| | - Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
4
|
Safari Murhububa I, Tougeron K, Bragard C, Fauconnier ML, Mugisho Bugeme D, Bisimwa Basengere E, Walangululu Masamba J, Hance T. The aphid Pentalonia nigronervosa (Hemiptera: Aphididae) takes advantage from the quality change in banana plant associated with Banana bunchy top virus infection. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1481-1489. [PMID: 37467484 DOI: 10.1093/jee/toad130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Viral diseases can change plant metabolism, with potential impacts on the quality of the plant's food supply for insect pests, including virus vectors. The banana aphid, Pentalonia nigronervosa Coquerel, is the vector of the Banana bunchy top virus (BBTV), the causal agent of Banana bunchy top disease (BBTD), the most devastating viral disease of bananas in the world. The effect of BBTV on the life-history traits and population dynamics of P. nigronervosa remains poorly understood. We therefore studied the survival rate, longevity, daily fecundity per aphid, tibia length, population growth, and winged morph production of a P. nigronervosa clone grown on healthy or infected, dessert, or plantain banana plants. We found that daily fecundity was higher on infected banana than on healthy banana plants (plantain and dessert), and on plantain than on dessert banana plants (healthy and infected). Survival and longevity were lower on infected dessert bananas than on other types of bananas. In addition, virus infection resulted in a decrease in aphid hind tibia length on both plant genotypes. The survival and fecundity table revealed that the aphid net reproduction rate (Ro) was highest on plantains (especially infected plantain), and the intrinsic growth rate (r) was highest on infected plants. Finally, the increase of aphids and alate production was faster first on infected plantain, then on healthy plantain, and lower on dessert banana (infected and uninfected). Our results reinforce the idea of indirect and plant genotype-dependent manipulation of P. nigronervosa by the BBTV.
Collapse
Affiliation(s)
- Ignace Safari Murhububa
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Louvain-la-Neuve, Belgium
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
- Institut Supérieur d'Etudes Agronomiques et Vétérinaires (ISEAV/Walungu), Walungu, Democratic Republic of the Congo
| | - Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Louvain-la-Neuve, Belgium
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, France
- EIGC laboratory, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - David Mugisho Bugeme
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Espoir Bisimwa Basengere
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Jean Walangululu Masamba
- Institut Supérieur d'Etudes Agronomiques et Vétérinaires (ISEAV/Walungu), Walungu, Democratic Republic of the Congo
| | - Thierry Hance
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Shi PQ, Liu J, Ye JX, Zhang TZ, Lin YC, Lao QB, Qiu BL, Zhou HK, Xu J. Population changes of Bemisia tabaci (Hemiptera: Aleyrodidae) on different colored poinsettia leaves with different trichome densities and chemical compositions. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1276-1285. [PMID: 37279557 DOI: 10.1093/jee/toad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
The whitefly, Bemisia tabaci, is a destructive and invasive pest of many horticultural plants including poinsettia (Euphorbia pulcherrima). Outbreaks of B. tabaci cause serious damage by direct feeding on phloem sap, and spreading 100+ plant viruses to crops. Bemisia tabaci were observed more frequently on green than red poinsettia leaves, and the factors responsible for this are unknown. Here, we investigated the development rate, survivorship, fecundity of B. tabaci feeding on green versus red leaves, as well as the leaves' volatiles, trichome density, anthocyanin content, soluble sugars, and free amino acids. Compared to red leaves, B. tabaci on green leaves showed increased fecundity, a higher female sex ratio, and survival rate. The green color alone was more attractive to B. tabaci than red. Red leaves of poinsettia contained more phenol, and panaginsene in their volatiles. Alpha-copaene and caryophyllene were more abundant in the volatiles of poinsettia green leaves. Leaf trichome density, soluble sugars and free amino acids were higher in green than red leaves of poinsettia, anthocyanin was lower in green than red leaves. Overall, green leaves of poinsettia were more susceptible and attractive to B. tabaci. The morphological and chemical variation between red and green leaves also differed; further investigation may reveal how these traits affect B. tabaci's responses.
Collapse
Affiliation(s)
- Pei-Qiong Shi
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Jing Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Jun-Xi Ye
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Ting-Zhen Zhang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, Guizhou Province 563000, China
| | - Yu-Chun Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Qiao-Bin Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Bao-Li Qiu
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Hong-Kai Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Jin Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| |
Collapse
|
6
|
Donnelly R, Gilligan CA. A new method for the analysis of access period experiments, illustrated with whitefly-borne cassava mosaic begomovirus. PLoS Comput Biol 2023; 19:e1011291. [PMID: 37561801 PMCID: PMC10461850 DOI: 10.1371/journal.pcbi.1011291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/28/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
Reports of low transmission efficiency, of a cassava mosaic begomovirus (CMB) in Bemisia tabaci whitefly, diminished the perceived importance of whitefly in CMB epidemics. Studies indicating synergies between B. tabaci and CMB prompt a reconsideration of this assessment. In this paper, we analysed the retention period and infectiousness of CMB-carrying B. tabaci as well as B. tabaci susceptibility to CMB. We assessed the role of low laboratory insect survival in historic reports of a 9d virus retention period. To do this, we introduced Bayesian analyses to an important class of experiment in plant pathology. We were unable to reject a null hypothesis of life-long CMB retention when we accounted for low insect survival. Our analysis confirmed low insect survival, with insects surviving on average for around three days of transfers from the original infected plant to subsequent test plants. Use of the new analysis to account for insect death may lead to re-calibration of retention periods for other important insect-borne plant pathogens. In addition, we showed that B. tabaci susceptibility to CMB is substantially higher than previously thought. We also introduced a technique for high resolution analysis of retention period, showing that B. tabaci infectiousness with CMB was increasing over the first five days of infection.
Collapse
Affiliation(s)
- Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
7
|
Campbell LI, Nwezeobi J, van Brunschot SL, Kaweesi T, Seal SE, Swamy RAR, Namuddu A, Maslen GL, Mugerwa H, Armean IM, Haggerty L, Martin FJ, Malka O, Santos-Garcia D, Juravel K, Morin S, Stephens ME, Muhindira PV, Kersey PJ, Maruthi MN, Omongo CA, Navas-Castillo J, Fiallo-Olivé E, Mohammed IU, Wang HL, Onyeka J, Alicai T, Colvin J. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genomics 2023; 24:408. [PMID: 37468834 DOI: 10.1186/s12864-023-09474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.
Collapse
Affiliation(s)
- Lahcen I Campbell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, UK.
| | - Sharon L van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- CSIRO Health and Biosecurity, Dutton Park, QLD, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tadeo Kaweesi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rwebitaba Zonal Agricultural Research and Development Institute, Fort Portal, Uganda
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Rekha A R Swamy
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Annet Namuddu
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- National Crops Resources Research Institute, Kampala, Uganda
| | - Gareth L Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Imperial College London, South Kensington, London, UK
| | - Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- CNRS, Laboratory of Biometry and Evolutionary Biology UMR 5558, University of Lyon, Villeurbanne, France
- Center for Biology and Management of Populations, INRAe UMR1062, Montferrier-sur-Lez, France
| | - Ksenia Juravel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Paul Visendi Muhindira
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Royal Botanic Gardens, Kew, London, UK
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | | | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | | | - Hua-Ling Wang
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Joseph Onyeka
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
8
|
Patra GK, Gupta D, Rout GR, Panda SK. Role of long non coding RNA in plants under abiotic and biotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:96-110. [PMID: 36399914 DOI: 10.1016/j.plaphy.2022.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Evolutionary processes have evolved plants to cope with several different natural stresses. Basic physiological activities of crop plants are significantly harmed by these stresses, reducing productivity and eventually leading to death. The recent advancements in high-throughput sequencing of transcriptome and expression profiling with NGS techniques lead to the innovation of various RNAs which do not code for proteins, more specifically long non-coding RNAs (lncRNAs), undergirding regulate growth, development, and the plant defence mechanism transcriptionally under stress situations. LncRNAs are a diverse set of RNAs that play key roles in various biological processes at the level of transcription, post-transcription, and epigenetics. These are thought to serve crucial functions in plant immunity and response to changes in the environment. In plants, however, just a few lncRNAs have been functionally identified. In this review, we will address recent advancements in comprehending lncRNA regulatory functions, focusing on the expanding involvement of lncRNAs in modulating environmental stress responsiveness in plants.
Collapse
Affiliation(s)
- Gyanendra K Patra
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Divya Gupta
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India
| | - Gyana Ranjan Rout
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Sanjib Kumar Panda
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
9
|
McLaughlin AA, Hanley-Bowdoin L, Kennedy GG, Jacobson AL. Vector acquisition and co-inoculation of two plant viruses influences transmission, infection, and replication in new hosts. Sci Rep 2022; 12:20355. [PMID: 36437281 PMCID: PMC9701672 DOI: 10.1038/s41598-022-24880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
This study investigated the role of vector acquisition and transmission on the propagation of single and co-infections of tomato yellow leaf curl virus (TYLCV,) and tomato mottle virus (ToMoV) (Family: Geminiviridae, Genus: Begomovirus) by the whitefly vector Bemisia tabaci MEAM1 (Gennadius) in tomato. The aim of this research was to determine if the manner in which viruses are co-acquired and co-transmitted changes the probability of acquisition, transmission and new host infections. Whiteflies acquired virus by feeding on singly infected plants, co-infected plants, or by sequential feeding on singly infected plants. Viral titers were also quantified by qPCR in vector cohorts, in artificial diet, and plants after exposure to viruliferous vectors. Differences in transmission, infection status of plants, and titers of TYLCV and ToMoV were observed among treatments. All vector cohorts acquired both viruses, but co-acquisition/co-inoculation generally reduced transmission of both viruses as single and mixed infections. Co-inoculation of viruses by the vector also altered virus accumulation in plants regardless of whether one or both viruses were propagated in new hosts. These findings highlight the complex nature of vector-virus-plant interactions that influence the spread and replication of viruses as single and co-infections.
Collapse
Affiliation(s)
- Autumn A McLaughlin
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
10
|
Farooq T, Lin Q, She X, Chen T, Tang Y, He Z. Comparative transcriptome profiling reveals a network of differentially expressed genes in Asia II 7 and MEAM1 whitefly cryptic species in response to early infection of Cotton leaf curl Multan virus. Front Microbiol 2022; 13:1004513. [PMID: 36267190 PMCID: PMC9577181 DOI: 10.3389/fmicb.2022.1004513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cotton leaf curl Multan virus (CLCuMuV) is a whitefly-vectored begomovirus that poses ramping threat to several economically important crops worldwide. The differential transmission of CLCuMuV by its vector Bemisia tabaci mainly relies on the type of whitefly cryptic species. However, the molecular responses among different whitefly cryptic species in response to early CLCuMuV infection remain elusive. Here, we compared early-stage transcriptomic profiles of Asia II 7 and MEAM1 cryptic species infected by CLCuMuV. Results of Illumina sequencing revealed that after 6 and 12 h of CLCuMuV acquisition, 153 and 141 genes among viruliferous (VF) Asia II 7, while 445 and 347 genes among VF MEAM 1 whiteflies were differentially expressed compared with aviruliferous (AVF) whiteflies. The most abundant groups of differentially expressed genes (DEGs) among Asia II 7 and MEAM1 were associated with HTH-1 and zf-C2H2 classes of transcription factors (TFs), respectively. Notably, in contrast to Asia II 7, MEAM1 cryptic species displayed higher transcriptional variations with elevated immune-related responses following CLCuMuV infection. Among both cryptic species, we identified several highly responsive candidate DEGs associated with antiviral innate immunity (alpha glucosidase, LSM14-like protein B and phosphoenolpyruvate carboxykinase), lysosome (GPI-anchored protein 58) and autophagy/phagosome pathways (sequestosome-1, cathepsin F-like protease), spliceosome (heat shock protein 70), detoxification (cytochrome P450 4C1), cGMP-PKG signaling pathway (myosin heavy chain), carbohydrate metabolism (alpha-glucosidase), biological transport (mitochondrial phosphate carrier) and protein absorption and digestion (cuticle protein 8). Further validation of RNA-seq results showed that 23 of 28 selected genes exhibited concordant expression both in RT-qPCR and RNA-seq. Our findings provide vital mechanistic insights into begomovirus-whitefly interactions to understand the dynamics of differential begomovirus transmission by different whitefly cryptic species and reveal novel molecular targets for sustainable management of insect-transmitted plant viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
11
|
Donnelly R, Gilligan CA. The role of pathogen-mediated insect superabundance in the East African emergence of a plant virus. THE JOURNAL OF ECOLOGY 2022; 110:1113-1124. [PMID: 35910423 PMCID: PMC9310957 DOI: 10.1111/1365-2745.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/22/2022] [Indexed: 06/15/2023]
Abstract
One of the major crops for food security is cassava. Superabundant Bemisia tabaci whitefly, comprising unusually high landscape populations of the insect, have been implicated in cassava virus emergence. Studies have been unable to select from several hypotheses, however, as to the dynamic drivers of superabundant whitefly associated with the emergence in East Africa of severe cassava mosaic disease. One possibility is that pathogenic modification of infected plants can itself increase the growth of insect vector colonies on infected plants.Through the modelling of population processes at the landscape scale we introduce a framework for analysing patterns in the association of disease and insect waves.Our analyses demonstrate the role of pathogen-mediated insect superabundance in a plant disease invasion. Synthesis. An elevated abundance of insects at the landscape scale is frequently implicated in invasions of the plant pathogens that they carry. We advance ecological understanding of plant disease invasions by showing how landscape data can be used to investigate the causes of insect vector superabundance.
Collapse
Affiliation(s)
- Ruairí Donnelly
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
12
|
Zhang LH, Ren SL, Su ZQ, Xu PP, Ou D, Wang LJ, Sang W, Qiu BL. Impact of Huanglongbing Pathogen Infection on the Amino Acid Composition in Both Citrus Plants and the Asian Citrus Psyllid. Front Physiol 2021; 12:777908. [PMID: 34955890 PMCID: PMC8703012 DOI: 10.3389/fphys.2021.777908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri is the main vector of the pathogen Candidatus Liberibacter asiaticus (CLas), which is the causal agent of citrus Huanglongbing disease. Feeding by both ACP nymphs and adults on host plants allows them to obtain nutrition. Therefore, the nutritional content within the plant phloem is of much importance for the development and reproduction of ACP. The infection by pathogenic microbiomes may affect the amino acid contents of their host plants and then indirectly affect the biology of sap-feeding insects. In this study, we investigated the amino acid contents and their proportions in both CLas-infected and CLas-free citrus plants, ACP adults, and also in honeydew produced by ACP nymphs. Results showed that infection by CLas had a large impact on the amino acid species and proportion in all the tested target plants, ACP adults, and in the honeydew of ACP nymphs. The content of total amino acids in CLas-infected citrus was much higher than that of CLas-free citrus. However, CLas infection significantly reduced the proportion of essential amino acids (EAAs) in these plants. When feeding on CLas-infected citrus plants, ACP adults absorbed less total amino acids than those adults feeding on healthy plants, but the proportion of EAAs was significantly higher when they fed on CLas-infected citrus plants. The proportion of EAAs also significantly increased in the honeydew secreted by ACP nymphs that fed on CLas-infected citrus plants. However, EAA detection in the honeydew of ACP nymphs indicated that the utilization rate of EAAs by CLas positive ACP nymphs was reduced. Our study has revealed that CLas infection significantly affects the contents, proportion, and utilization efficiency of different amino acids in citrus plants, ACP adults, and nymphs, leading to a developmental pattern of ACP that is more conducive to CLas transmission.
Collapse
Affiliation(s)
- Li-He Zhang
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Su-Li Ren
- Airport Management College, Guangzhou Civil Aviation College, Guangzhou, China
| | - Zheng-Qin Su
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pei-Ping Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Da Ou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li-Jun Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wen Sang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Bao-Li Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
13
|
Mugerwa H, Wang H, Sseruwagi P, Seal S, Colvin J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. INSECT SCIENCE 2021; 28:1553-1566. [PMID: 33146464 PMCID: PMC9292209 DOI: 10.1111/1744-7917.12881] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 05/21/2023]
Abstract
In sub-Saharan Africa cassava growing areas, two members of the Bemisia tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been reported as the prevalent whiteflies associated with the spread of viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics. At the peak of CMD pandemic in the late 1990s, SSA2 was the prevalent whitefly, although its numbers have diminished over the last two decades with the resurgence of SSA1 whiteflies. Three SSA1 subgroups (SG1 to SG3) are the predominant whiteflies in East Africa and vary in distribution and biological properties. Mating compatibility between SSA1 subgroups and SSA2 whiteflies was reported as the possible driver for the resurgence of SSA1 whiteflies. In this study, a combination of both phylogenomic methods and reciprocal crossing experiments were applied to determine species status of SSA1 subgroups and SSA2 whitefly populations. Phylogenomic analyses conducted with 26 548 205 bp whole genome single nucleotide polymorphisms (SNPs) and the full mitogenomes clustered SSA1 subgroups together and separate from SSA2 species. Mating incompatibility between SSA1 subgroups and SSA2 further demonstrated their distinctiveness from each other. Phylogenomic analyses conducted with SNPs and mitogenomes also revealed different genetic relationships among SSA1 subgroups. The former clustered SSA1-SG1 and SSA1-SG2 together but separate from SSA1-SG3, while the latter clustered SSA1-SG2 and SSA1-SG3 together but separate from SSA1-SG1. Mating compatibility was observed between SSA1-SG1 and SSA1-SG2, while incompatibility occurred between SSA1-SG1 and SSA1-SG3, and SSA1-SG2 and SSA1-SG3. Mating results among SSA1 subgroups were coherent with phylogenomics results based on SNPs but not the full mitogenomes. Furthermore, this study revealed that the secondary endosymbiont-Wolbachia-did not mediate reproductive success in the crossing assays carried out. Overall, using genome wide SNPs together with reciprocal crossings assays, this study established accurate genetic relationships among cassava-colonizing populations, illustrating that SSA1 and SSA2 are distinct species while at least two species occur within SSA1 species.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
- Department of EntomologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Hua‐Ling Wang
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Peter Sseruwagi
- Biotechnology DepartmentMikocheni Agricultural Research InstituteDar es SalaamTanzania
| | - Susan Seal
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
| | - John Colvin
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
| |
Collapse
|
14
|
Abstract
Nutritional symbionts are restricted to specialized host cells called bacteriocytes in various insect orders. These symbionts can provide essential nutrients to the host. However, the cellular mechanisms underlying the regulation of these insect-symbiont metabolic associations remain largely unclear. The whitefly, Bemisia tabaci MEAM1, hosts Portiera and Hamiltonella bacteria in the same bacteriocyte. In this study, the induction of autophagy by chemical treatment and gene silencing decreased symbiont titers, and essential amino acid (EAA) and B vitamin contents. In contrast, the repression of autophagy in bacteriocytes via Atg8 silencing increased symbiont titers, and amino acid and B vitamin contents. Furthermore, dietary supplementation with non-EAAs or B vitamins alleviated autophagy in whitefly bacteriocytes, elevated TOR (target of rapamycin) expression and increased symbiont titers. TOR silencing restored symbiont titers in whiteflies after dietary supplementation with B vitamins. These data suggest that Portiera and Hamiltonella evade autophagy of the whitefly bacteriocytes by activating the TOR pathway via providing essential nutrients. Taken together, we demonstrated that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. Therefore, this study reveals that autophagy is an important cellular basis for bacteriocyte evolution and symbiosis persistence in whiteflies. The whitefly symbiosis unravels the interactions between cellular and metabolic functions of bacteriocytes. Importance Nutritional symbionts, which are restricted to specialized host cells called bacteriocytes, can provide essential nutrients for many hosts. However, the cellular mechanisms of regulation of animal-symbiont metabolic associations have been largely unexplored. Here, using the whitefly-Portiera/Hamiltonella endosymbiosis, we demonstrate autophagy regulates the symbiont titers, and thereby alters the essential amino acid and B vitamin contents. For persistence in the whitefly bacteriocytes, Portiera and Hamiltonella alleviate autophagy by activating the TOR (target of rapamycin) pathway through providing essential nutrients. Therefore, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. This study also provides insight into the cellular basis of bacteriocyte evolution and symbiosis persistence in the whitefly. The mechanisms underlying the role of autophagy in whitefly symbiosis could be widespread in many insect nutritional symbioses. These findings provide new avenue for whitefly control via regulating autophagy in the future.
Collapse
|
15
|
Nigam D. Genomic Variation and Diversification in Begomovirus Genome in Implication to Host and Vector Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1706. [PMID: 34451752 PMCID: PMC8398267 DOI: 10.3390/plants10081706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) are DNA viruses transmitted in a circulative, persistent manner by the whitefly Bemisia tabaci (Gennadius). As revealed by their wide host range (more than 420 plant species), worldwide distribution, and effective vector transmission, begomoviruses are highly adaptive. Still, the genetic factors that facilitate their adaptation to a diverse array of hosts and vectors remain poorly understood. Mutations in the virus genome may confer a selective advantage for essential functions, such as transmission, replication, evading host responses, and movement within the host. Therefore, genetic variation is vital to virus evolution and, in response to selection pressure, is demonstrated as the emergence of new strains and species adapted to diverse hosts or with unique pathogenicity. The combination of variation and selection forms a genetic imprint on the genome. This review focuses on factors that contribute to the evolution of Begomovirus and their global spread, for which an unforeseen diversity and dispersal has been recognized and continues to expand.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Selvaraj G, Santos-Garcia D, Mozes-Daube N, Medina S, Zchori-Fein E, Freilich S. An eco-systems biology approach for modeling tritrophic networks reveals the influence of dietary amino acids on symbiont dynamics of Bemisia tabaci. FEMS Microbiol Ecol 2021; 97:6348090. [PMID: 34379764 DOI: 10.1093/femsec/fiab117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 01/12/2023] Open
Abstract
Metabolic conversions allow organisms to produce essential metabolites from the available nutrients in an environment, frequently requiring metabolic exchanges among co-inhabiting organisms. Here, we applied genomic-based simulations for exploring tri-trophic interactions among the sap-feeding insect whitefly (Bemisia tabaci), its host-plants, and symbiotic bacteria. The simplicity of this ecosystem allows capturing the interacting organisms (based on genomic data) and the environmental content (based on metabolomics data). Simulations explored the metabolic capacities of insect-symbiont combinations under environments representing natural phloem. Predictions were correlated with experimental data on the dynamics of symbionts under different diets. Simulation outcomes depict a puzzle of three-layer origins (plant-insect-symbionts) for the source of essential metabolites across habitats and stratify interactions enabling the whitefly to feed on diverse hosts. In parallel to simulations, natural and artificial feeding experiments provide supporting evidence for an environment-based effect on symbiont dynamics. Based on simulations, a decrease in the relative abundance of a symbiont can be associated with a loss of fitness advantage due to an environmental excess in amino-acids whose production in a deprived environment used to depend on the symbiont. The study demonstrates that genomic-based predictions can bridge environment and community dynamics and guide the design of symbiont manipulation strategies.
Collapse
Affiliation(s)
- Gopinath Selvaraj
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel.,Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Netta Mozes-Daube
- Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Shlomit Medina
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Einat Zchori-Fein
- Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Shiri Freilich
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| |
Collapse
|
17
|
Saurabh S, Mishra M, Rai P, Pandey R, Singh J, Khare A, Jain M, Singh PK. Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity-A Case for Next-Generation Control Strategies of Whiteflies. INSECTS 2021; 12:insects12070585. [PMID: 34203297 PMCID: PMC8307429 DOI: 10.3390/insects12070585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Simple Summary Despite being a pest of global importance, effective management of whiteflies by the implication of environmentally friendly approaches is still a far-reaching task. In this review, we have tried to bring the readers’ attention to next-generation control strategies such as RNA interference and genetic modifications of plants for the expression of anti-whitefly proteins. These strategies offer huge promise to provide an effective and sustainable solution to the problem of whiteflies, either in isolation or in combination with other widely used practices under the regimes of integrated pest management. Focus has also been given to advanced technologies such as nanotechnology and genome editing, with promising prospects for field applications. The importance, applicability, and demand of these technologies for the control of whiteflies have been highlighted. We have also attempted to present the holistic picture of challenges in the path of commercial application of these promising technologies. To underline the pest status of whiteflies concisely, we have enlisted all economically important species of the pest along with their host plants/crops across the world. A comprehensive list of various insecticides of chemical, microbial, and botanical origin, applied in the field for the control of sweetpotato whitefly along with their resistance status, ecotoxicities, and effects on biological control agents, has been provided for readers. Abstract Whiteflies are a group of universally occurring insects that are considered to be a serious pest in their own way for causing both direct and indirect damages to crops. A few of them serve as vectors of plant viruses that are detrimental to the crop in question and cause an actual loss in productivity. A lot of attention is focused on pest control measures under the umbrella of IPM. In this review, we attempt to summarize the existing literature on how and why whiteflies are a serious concern for agriculture and society. We reviewed why there could be a need for fresh insight into the ways and means with which the pest can be combated. Here, we have emphasized next-generation strategies based on macromolecules, i.e., RNA interference and genetic engineering (for the expression of anti-whitefly proteins), as these strategies possess the greatest scope for research and improvement in the future. Recent scientific efforts based on nanotechnology and genome editing, which seem to offer great potential for whitefly/crop pest control, have been discussed. Comprehensive apprehensions related to obstacles in the path of taking lab-ready technologies into the farmers’ field have also been highlighted. Although the use of RNAi, GM crops, nanotechnologies, for the control of whiteflies needs to be evaluated in the field, there is an emerging range of possible applications with promising prospects for the control of these tiny flies that are mighty pests.
Collapse
Affiliation(s)
- Sharad Saurabh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Manisha Mishra
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (M.M.); (R.P.)
| | - Preeti Rai
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Rashmi Pandey
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (M.M.); (R.P.)
| | - Jyoti Singh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Akansha Khare
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Meeta Jain
- School of Biochemistry, Khandwa Rd., D.A.V.V., Bhawarkuwa, DAVV Takshila Parisar, Indore 452001, Madhya Pradesh, India;
| | - Pradhyumna Kumar Singh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: ; Tel.: +91-7080844111
| |
Collapse
|
18
|
Eni AO, Efekemo OP, Onile‐ere OA, Pita JS. South West and North Central Nigeria: Assessment of cassava mosaic disease and field status of African cassava mosaic virus and East African cassava mosaic virus. THE ANNALS OF APPLIED BIOLOGY 2021; 178:466-479. [PMID: 34219746 PMCID: PMC8246719 DOI: 10.1111/aab.12647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/12/2020] [Accepted: 09/14/2020] [Indexed: 05/14/2023]
Abstract
Cassava mosaic disease (CMD), caused by cassava mosaic begomoviruses (CMBs), is a major threat to cassava production in Nigeria. The predominant CMBs in Nigeria are African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV) and East African cassava mosaic Cameroon virus (EACMCV), which are transmitted through infected stem cuttings and whitefly vectors. This study was conducted in 2015 and 2017 to assess the epidemiology of CMD and the current distribution of CMBs in cassava farms in South West (SW) and North Central (NC) Nigeria. A survey of cassava farms was undertaken, and samples representative of disease symptoms were collected and assessed using molecular techniques. A total of 184 and 328 cassava farms were sampled in 2015 and 2017, respectively. CMD incidence for both regions surveyed was 43.80 and 12.25% in 2015 and 2017, respectively. Fields in SW recorded a higher incidence rate in 2015 (SW: 45.11%, NC: 42.47%), while the reverse occurred in 2017 (SW: 10.90%, NC: 14.01%). Overall, the CMD incidence in Benue State (NC) was significantly higher than other locations surveyed in both years. CMD symptom severity and mean whitefly population were higher in SW Nigeria in the two survey years. ACMV was widespread across both zones, occurring in 79.1% (453/613) and 54.8% (386/704) of cassava leaf samples analysed in 2015 and 2017, respectively. EACMV was detected in only 6.0% (37/613) and 4.7% (33/704) of all cassava leaf samples analysed in 2015 and 2017, respectively. Overall, a higher proportion of infected samples were found in NC in both 2015 (NC: 85.2%, SW: 75.4%) and 2017 (NC: 73.6%, SW: 45.2%). Detection using strain-specific primers revealed that 97% of EACMV positive samples were indeed infected by the EACMCV strain of the virus. As previously reported, samples with mixed infections showed a higher symptom severity than samples with single ACMV or EACMV infections. This study provides an update to the distribution of CMBs in SW and NC Nigeria and will be useful in development of monitoring and management strategies for the disease in both regions.
Collapse
Affiliation(s)
- Angela O. Eni
- Department of Biological Sciences, College of Science and TechnologyCovenant UniversityOtaNigeria
- West African Virus Epidemiology (WAVE) for Root and Tuber CropsOtaNigeria
| | - Oghenevwairhe P. Efekemo
- Department of Biological Sciences, College of Science and TechnologyCovenant UniversityOtaNigeria
- West African Virus Epidemiology (WAVE) for Root and Tuber CropsOtaNigeria
| | - Olabode A. Onile‐ere
- Department of Biological Sciences, College of Science and TechnologyCovenant UniversityOtaNigeria
- West African Virus Epidemiology (WAVE) for Root and Tuber CropsOtaNigeria
| | - Justin S. Pita
- Laboratory of Plant PhysiologyUniversité Felix Houphouët‐Boigny (UFHB)AbidjanCôte d'Ivoire
| |
Collapse
|
19
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Mugerwa H, Sseruwagi P, Colvin J, Seal S. Is High Whitefly Abundance on Cassava in Sub-Saharan Africa Driven by Biological Traits of a Specific, Cryptic Bemisia tabaci Species? INSECTS 2021; 12:260. [PMID: 33804645 PMCID: PMC8003695 DOI: 10.3390/insects12030260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022]
Abstract
In East Africa, the prevalent Bemisia tabaci whiteflies on the food security crop cassava are classified as sub-Saharan Africa (SSA) species. Economically damaging cassava whitefly populations were associated with the SSA2 species in the 1990s, but more recently, it has been to SSA1 species. To investigate whether biological traits (number of first instar nymphs, emerged adults, proportion of females in progeny and development time) of the cassava whitefly species are significant drivers of the observed field abundance, our study determined the development of SSA1 sub-group (SG) 1 (5 populations), SG2 (5 populations), SG3 (1 population) and SSA2 (1 population) on cassava and eggplant under laboratory conditions. SSA1-(SG1-SG2) and SSA2 populations' development traits were similar. Regardless of the host plant, SSA1-SG2 populations had the highest number of first instar nymphs (60.6 ± 3.4) and emerged adults (50.9 ± 3.6), followed by SSA1-SG1 (55.5 ± 3.2 and 44.6 ± 3.3), SSA2 (45.8 ± 5.7 and 32.6 ± 5.1) and the lowest were SSA1-SG3 (34.2 ± 6.1 and 32.0 ± 7.1) populations. SSA1-SG3 population had the shortest egg-adult emergence development time (26.7 days), followed by SSA1-SG1 (29.1 days), SSA1-SG2 (29.6 days) and SSA2 (32.2 days). Regardless of the whitefly population, development time was significantly shorter on eggplant (25.1 ± 0.9 days) than cassava (34.6 ± 1.0 days). These results support that SSA1-(SG1-SG2) and SSA2 B. tabaci can become highly abundant on cassava, with their species classification alone not correlating with observed abundance and prevalence.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Peter Sseruwagi
- Biotechnology Department, Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania;
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| |
Collapse
|
21
|
Abstract
Of the approximately 1,200 plant virus species that have been described to date, nearly one-third are single-stranded DNA (ssDNA) viruses, and all are transmitted by insect vectors. However, most studies of vector transmission of plant viruses have focused on RNA viruses. All known plant ssDNA viruses belong to two economically important families, Geminiviridae and Nanoviridae, and in recent years, there have been increased efforts to understand whether they have evolved similar relationships with their respective insect vectors. This review describes the current understanding of ssDNA virus-vector interactions, including how these viruses cross insect vector cellular barriers, the responses of vectors to virus circulation, the possible existence of viral replication within insect vectors, and the three-way virus-vector-plant interactions. Despite recent breakthroughs in our understanding of these viruses, many aspects of plant ssDNA virus transmission remain elusive. More effort is needed to identify insect proteins that mediate the transmission of plant ssDNA viruses and to understand the complex virus-insect-plant three-way interactions in the field during natural infection.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Stéphane Blanc
- Plant Health Institute of Montpellier, Univ Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, Montpellier, France;
| |
Collapse
|
22
|
Li D, Zhang C, Tong Z, Su D, Zhang G, Zhang S, Zhao H, Hu Z. Transcriptome response comparison between vector and non-vector aphids after feeding on virus-infected wheat plants. BMC Genomics 2020; 21:638. [PMID: 32933469 PMCID: PMC7493910 DOI: 10.1186/s12864-020-07057-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Plant viruses maintain intricate interactions with their vector and non-vector insects and can impact the fitness of insects. However, the details of their molecular and cellular mechanisms have not been studied well. We compared the transcriptome-level responses in vector and non-vector aphids (Schizaphis graminum and Rhopalosiphum padi, respectively) after feeding on wheat plants with viral infections (Barley Yellow Dwarf Virus (BYDV) and Wheat dwarf virus (WDV), respectively). We conducted differentially expressed gene (DEG) annotation analyses and observed DEGs related to immune pathway, growth, development, and reproduction. And we conducted cloning and bioinformatic analyses of the key DEG involved in immune. RESULTS For all differentially expressed gene analyses, the numbers of DEGs related to immune, growth, development, reproduction and cuticle were higher in vector aphids than in non-vector aphids. STAT5B (signal transducer and activator of transcription 5B), which is involved in the JAK-STAT pathway, was upregulated in R. padi exposed to WDV. The cloning and bioinformatic results indicated that the RpSTAT5B sequence contains a 2082 bp ORF encoding 693 amino acids. The protein molecular weight is 79.1 kD and pI is 8.13. Analysis indicated that RpSTAT5B is a non-transmembrane protein and a non-secreted protein. Homology and evolutionary analysis indicated that RpSTAT5B was closely related to R. maidis. CONCLUSIONS Unigene expression analysis showed that the total number of differentially expressed genes (DEGs) in the vector aphids was higher than that in the non-vector aphids. Functional enrichment analysis showed that the DEGs related to immunity, growth and reproduction in vector aphids were higher than those in non-vector aphids, and the differentially expressed genes related to immune were up-regulated. This study provides a basis for the evaluation of the response mechanisms of vector/non-vector insects to plant viruses.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zeqian Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dan Su
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Gaisheng Zhang
- Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre/Wheat Breeding Engineering Research Center, Northwest A&F University, Yangling, China
| | - Shize Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Huiyan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zuqing Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| |
Collapse
|
23
|
Abstract
When increasing abundance of insect vectors is manifest across multiple fields of a crop at the landscape scale, the phenomenon is sometimes referred to as insect superabundance. The phenomenon may reflect environmental factors (i.e. environmentally mediated insect superabundance, EMiS), including climatic change. A number of pathogens, however, are also known to modify the quality of infected plants as a resource for their insect vectors. In this paper, we term increasing vector abundance when associated with pathogen modification of plants as pathogen-mediated insect superabundance (henceforth PMiS). We investigate PMiS using a new epidemiological framework. We formalize a definition of PMiS and indicate the epidemiological mechanism by which it is most likely to arise. This study is motivated by the occurrence of a particularly destructive cassava virus epidemic that has been associated with superabundant whitefly populations in sub-Saharan Africa. Our results have implications for how PMiS can be distinguished from EMiS in field data. Above all, they represent a timely foundation for further investigations into the association between insect superabundance and plant pathogens.
Collapse
Affiliation(s)
- Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
24
|
Rehman SU, Zhou X, Ali S, Asim Rasheed M, Islam Y, Hafeez M, Aamir Sohail M, Khurram H. Predatory functional response and fitness parameters of Orius strigicollis Poppius when fed Bemisia tabaci and Trialeurodes vaporariorum as determined by age-stage, two-sex life table. PeerJ 2020; 8:e9540. [PMID: 33194327 PMCID: PMC7394059 DOI: 10.7717/peerj.9540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
Background The polyphagous predatory bug O. strigicollis is an active predator used to control thrips and aphids. The whitefly species Bemisia tabaci and Trialeurodes vaporariorum are voracious pests of different economic agricultural crops and vegetables. Method In this study, the Holling disc equation and the age-stage, two-sex life table technique were used to investigate the functional response and biological traits of third instar nymphs and adult female O. strigicollis when presented third instar nymphs of both whitefly species as prey. Results The results showed a type II functional response for each life stage of O. strigicollis when fed each whitefly species. The calculated prey handling time for different O. strigicollis life stages were shorter when fed T. vaporariorum than when fed B. tabaci nymphs. In contrast, the nymphal development of O. strigicollis was significantly shorter when fed B. tabaci than T. vaporariorum nymphs. Additionally, the total pre-oviposition period of adult females was statistically shorter when fed B. tabaci nymphs than T. vaporariorum nymphs. Furthermore, the survival rates and total fecundity of O. strigicollis were higher when fed B. tabaci than T. vaporariorum. There were no significant differences in any population parameters of O. strigicollis when fed either whitefly species. These results show that O. strigicollis could survive and maintain its populations on both species of whitefly and could therefore serve as a biological control agent in integrated pest management (IPM).
Collapse
Affiliation(s)
- Shakeel Ur Rehman
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingmiao Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shahzaib Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Asim Rasheed
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yasir Islam
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Hafeez
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Aamir Sohail
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haris Khurram
- Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus, Chiniot, Pakistan
| |
Collapse
|
25
|
Lu S, Chen M, Li J, Shi Y, Gu Q, Yan F. Changes in Bemisia tabaci feeding behaviors caused directly and indirectly by cucurbit chlorotic yellows virus. Virol J 2019; 16:106. [PMID: 31438971 PMCID: PMC6704720 DOI: 10.1186/s12985-019-1215-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/14/2019] [Indexed: 01/19/2023] Open
Abstract
Background Plant viruses can affect vector’s behaviors in order to enhance viral transmission. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus) is an emergent RNA plant virus and is transmitted specifically by biotypes B and Q of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. Methods We used the electrical penetration graph (EPG) to investigate the effect of CCYV on the feeding behaviors of B. tabaci biotypes B and Q. Results CCYV could affect, both directly and indirectly, the feeding behaviors of B. tabaci to various degrees, depending on biotypes and sexes of the insect. CCYV showed stronger direct effects on biotype Q than on biotype B in terms of increased non-phloem probing and phloem salivation. CCYV increased non-phloem probing and phloem salivation more on females than on males of biotype Q, and increased phloem salivation more on females than on males of biotype B. CCYV had stronger indirect effects, via virus-infested plants, on biotype B than on biotype Q by enhancing phloem sap ingestion and feeding bouts. CCYV increased non-phloem probing and feeding bouts more on males than on females of biotype B, and decreased phloem sap ingestion more on males than on females on biotype Q indirectly. Conclusions The results clearly indicated that CCYV affects the feeding behaviors of B. tabaci, which may lead to increased ability of the B. tabaci for CCYV transmission.
Collapse
Affiliation(s)
- Shaohua Lu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,School of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Mingshun Chen
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qinsheng Gu
- Chinese Academy of Agricultural Science, Zhengzhou Fruit Research Institute, Zhengzhou, 410100, China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
26
|
Wu X, Xu S, Zhao P, Zhang X, Yao X, Sun Y, Fang R, Ye J. The Orthotospovirus nonstructural protein NSs suppresses plant MYC-regulated jasmonate signaling leading to enhanced vector attraction and performance. PLoS Pathog 2019; 15:e1007897. [PMID: 31206553 PMCID: PMC6598649 DOI: 10.1371/journal.ppat.1007897] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/27/2019] [Accepted: 06/05/2019] [Indexed: 11/19/2022] Open
Abstract
Pandemics of vector-borne human and plant diseases often depend on the behaviors
of their arthropod vectors. Arboviruses, including many bunyaviruses, manipulate
vector behavior to accelerate their own transmission to vertebrates, birds,
insects, and plants. However, the molecular mechanism underlying this
manipulation remains elusive. Here, we report that the non-structural protein
NSs of Tomato spotted wilt orthotospovirus, a prototype of the
Tospoviridae family and the
Orthotospovirus genus, is a key viral factor that
indirectly modifies vector preference and increases vector performance. NSs
suppresses the biosynthesis of plant volatile monoterpenes, which serve as
repellents of the vector western flower thrips (WFT, Frankliniella
occidentalis). NSs directly interacts with MYC2, the jasmonate (JA)
signaling master regulator and its two close homologs MYC3 and MYC4, to disable
JA-mediated activation of terpene synthase genes. The
dysfunction of the MYCs subsequently attenuates host defenses, increases the
attraction of thrips, and improves thrips fitness. Moreover, MYC2 associated
with NSs of Tomato zonate spot orthotospovirus, another Euro/Asian-type
orthotospovirus, suggesting that MYC2 is an evolutionarily conserved target of
Orthotospovirus species for suppression of terpene-based
resistance to promote vector performance. These findings elucidate the molecular
mechanism through which an orthotospovirus indirectly manipulates vector
behaviors and therefore facilitates pathogen transmission. Our results provide
insights into the molecular mechanisms by which Orthotospovirus
NSs counteracts plant immunity for pathogen transmission. Most bunyaviruses are transmitted by arthropod vectors, and some of them can
modify the behaviors of their arthropod vectors to increase transmission to
mammals, birds, and plants. NSs is a non-structural bunyavirus protein with
multiple functions that acts as an avirulence determinant and silencing
suppressor. In this study, we identified a new function of NSs as a conserved
manipulator of vector behavior via plant. NSs suppresses jasmonate-mediated
plant immunity against thrips by directly interacting with several homologs of
MYC transcription factors, the core regulators of the jasmonate-signaling
pathway. This hijacking by NSs enhances thrips preference and performance.
Therefore, our data support the hypothesis that MYC2 is a convergent target that
plant pathogens manipulate to promote their survival in plants.
Collapse
Affiliation(s)
- Xiujuan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing,
China
| | - Shuang Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing,
China
| | - Pingzhi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
| | - Xiangmei Yao
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing,
China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing,
China
- * E-mail:
| |
Collapse
|
27
|
Guo L, Su Q, Yin J, Yang Z, Xie W, Wang S, Wu Q, Cui H, Zhang Y. Amino Acid Utilization May Explain Why Bemisia tabaci Q and B Differ in Their Performance on Plants Infected by the Tomato yellow leaf curl virus. Front Physiol 2019; 10:489. [PMID: 31118898 PMCID: PMC6504830 DOI: 10.3389/fphys.2019.00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
To make plants more attractive to vectors of viruses, plant-infecting viruses can alter host plant physiology. The recent outbreaks of Tomato yellow leaf curl virus (TYLCV) relate to the spread of its primary vector, the whitefly Bemisia tabaci. Here, we investigated the question of whether the better performance of B. tabaci Q, relative to that of the B biotype, on TYLCV-infected tomato plants could be explained by differences in the ability of the B. tabaci Q and B to obtain free amino acids from the virus-infected plants. We found that the TYLCV infection of tomato plants significantly affected the mole percentage (mol%) of free amino acids in the phloem sap of the tomato plants and the mol% of free amino acids in B. tabaci adults and B. tabaci honeydew. The TYLCV infection caused the mol% of a larger number of free amino acids to rise in B. tabaci Q than in B, and the analysis of honeydew indicated that, when feeding on TYLCV-infected plants, B. tabaci Q was better able to use the free amino acids than B. tabaci B. The results suggest that B. tabaci Q is better adapted than B to feed on TYLCV-infected plants, and that TYLCV alters the B. tabaci B-Q competitive interaction in favor of Q.
Collapse
Affiliation(s)
- Litao Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jin Yin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Gupta AK, Scully ED, Palmer NA, Geib SM, Sarath G, Hein GL, Tatineni S. Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion. J Gen Virol 2019; 100:889-910. [PMID: 31017568 DOI: 10.1099/jgv.0.001256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus-vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate ≤0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus-vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission.
Collapse
Affiliation(s)
- Adarsh K Gupta
- 1Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Erin D Scully
- 2Center for Grain and Animal Health Research, Stored Product Insect and Entomology Research Unit, United States Department of Agriculture-Agricultural Research Services (USDA-ARS), Manhattan, KS 66502, USA
| | - Nathan A Palmer
- 3Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA
| | - Scott M Geib
- 4Daniel K. Inouye US Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI 96720, USA
| | - Gautam Sarath
- 3Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA.,5Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Gary L Hein
- 6Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Satyanarayana Tatineni
- 1Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,3Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA
| |
Collapse
|
29
|
Carr JP, Murphy AM, Tungadi T, Yoon JY. Plant defense signals: Players and pawns in plant-virus-vector interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:87-95. [PMID: 30709497 DOI: 10.1016/j.plantsci.2018.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 06/09/2023]
Abstract
Plant viruses face an array of host defenses. Well-studied responses that protect against viruses include effector-triggered immunity, induced resistance (such as systemic acquired resistance mediated by salicylic acid), and RNA silencing. Recent work shows that viruses are also affected by non-host resistance mechanisms; previously thought to affect only bacteria, oomycetes and fungi. However, an enduring puzzle is how viruses are inhibited by several inducible host resistance mechanisms. Many viruses have been shown to encode factors that inhibit antiviral silencing. A number of these, including the cucumoviral 2b protein, the poytviral P1/HC-Pro and, respectively, geminivirus or satellite DNA-encoded proteins such as the C2 or βC1, also inhibit defensive signaling mediated by salicylic acid and jasmonic acid. This helps to explain how viruses can, in some cases, overcome host resistance. Additionally, interference with defensive signaling provides a means for viruses to manipulate plant-insect interactions. This is important because insects, particularly aphids and whiteflies, transmit many viruses. Indeed, there is now substantial evidence that viruses can enhance their own transmission through their effects on hosts. Even more surprisingly, it appears that viruses may be able to manipulate plant interactions with beneficial insects by, for example, 'paying back' their hosts by attracting pollinators.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom.
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, 55365, Republic of Korea
| |
Collapse
|
30
|
Li P, Liu C, Deng WH, Yao DM, Pan LL, Li YQ, Liu YQ, Liang Y, Zhou XP, Wang XW. Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathog 2019; 15:e1007607. [PMID: 30789967 PMCID: PMC6400417 DOI: 10.1371/journal.ppat.1007607] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/05/2019] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Most plant viruses are vectored by insects and the interactions of virus-plant-vector have important ecological and evolutionary implications. Insect vectors often perform better on virus-infected plants. This indirect mutualism between plant viruses and insect vectors promotes the spread of virus and has significant agronomical effects. However, few studies have investigated how plant viruses manipulate plant defenses and promote vector performance. Begomoviruses are a prominent group of plant viruses in tropical and sub-tropical agro-ecosystems and are transmitted by whiteflies. Working with the whitefly Bemisia tabaci, begomoviruses and tobacco, we revealed that C2 protein of begomoviruses lacking DNA satellites was responsible for the suppression of plant defenses against whitefly vectors. We found that infection of plants by tomato yellow leaf curl virus (TYLCV), one of the most devastating begomoviruses worldwide, promoted the survival and reproduction of whitefly vectors. TYLCV C2 protein suppressed plant defenses by interacting with plant ubiquitin. This interaction compromised the degradation of JAZ1 protein, thus inhibiting jasmonic acid defense and the expression of MYC2-regulated terpene synthase genes. We further demonstrated that function of C2 protein among begomoviruses not associated with satellites is well conserved and ubiquitination is an evolutionarily conserved target of begomoviruses for the suppression of plant resistance to whitefly vectors. Taken together, these results demonstrate that ubiquitination inhibition by begomovirus C2 protein might be a general mechanism in begomovirus, whitefly and plant interactions.
Collapse
Affiliation(s)
- Ping Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chao Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hao Deng
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Dan-Mei Yao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yun-Qin Li
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yan Liang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xue-Ping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Wang XR, Wang C, Wang XW, Qian LX, Chi Y, Liu SS, Liu YQ, Wang XW. The functions of caspase in whitefly Bemisia tabaci apoptosis in response to ultraviolet irradiation. INSECT MOLECULAR BIOLOGY 2018; 27:739-751. [PMID: 29892978 DOI: 10.1111/imb.12515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whiteflies (Bemisia tabaci) are phloem feeders, and some invasive species are composed of cryptic species complexes that cause extensive crop damage, particularly via the direct transmission of plant viruses. Apoptosis is a type of programmed cell death essential for organismal development and tissue homeostasis. The caspases belong to a family of cysteine proteases that play a central role in the initiation of apoptosis in many organisms. Here, we employed a comprehensive genomics approach to identity caspases in B. tabaci Middle East Asia Minor 1 (MEAM1), an invasive whitefly that carries a cryptic species complex that is devastating to crops. Four caspase genes were identified, and their motif compositions were predicted. Structures were relatively conserved in both putative effector and initiator caspases. Expression patterns of caspase genes differed across insect developmental stages. Three caspase genes were induced immediately after ultraviolet (UV) treatment. Expression levels of Bt-caspase-1 and Bt-caspase-3b increased in the midgut and salivary glands during apoptosis induced by UV treatments, whereas silencing of both genes reduced UV-triggered apoptosis. Our study demonstrates that Bt-caspase-1 and Bt-caspase-3b, respectively, act as putative initiator and effector apoptotic caspases in the MEAM1 whitefly.
Collapse
Affiliation(s)
- X-R Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - C Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-W Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - L-X Qian
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - S-S Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-Q Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-W Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Macfadyen S, Paull C, Boykin L, De Barro P, Maruthi M, Otim M, Kalyebi A, Vassão D, Sseruwagi P, Tay W, Delatte H, Seguni Z, Colvin J, Omongo C. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: a review of the factors determining abundance. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:565-582. [PMID: 29433589 PMCID: PMC7672366 DOI: 10.1017/s0007485318000032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes widespread damage to cassava, a staple food crop for millions of households in East Africa. Species in the complex cause direct feeding damage to cassava and are the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-resistant cassava cultivars, there has been little research effort aimed at understanding the ecology of these insect vectors. Here we assess critically the knowledge base relating to factors that may lead to high population densities of sub-Saharan African (SSA) B. tabaci species in cassava production landscapes of East Africa. We focus first on empirical studies that have examined biotic or abiotic factors that may lead to high populations. We then identify knowledge gaps that need to be filled to deliver sustainable management solutions. We found that whilst many hypotheses have been put forward to explain the increases in abundance witnessed since the early 1990s, there are little published data and these tend to have been collected in a piecemeal manner. The most critical knowledge gaps identified were: (i) understanding how cassava cultivars and alternative host plants impact population dynamics and natural enemies; (ii) the impact of natural enemies in terms of reducing the frequency of outbreaks and (iii) the use and management of insecticides to delay the development of resistance. In addition, there are several fundamental methodologies that need to be developed and deployed in East Africa to address some of the more challenging knowledge gaps.
Collapse
Affiliation(s)
- S. Macfadyen
- CSIRO, Clunies Ross St. Acton, ACT, 2601, Australia
- Author for correspondence Phone: +61 (02) 62464432 Fax: +61 (02) 62464094
| | - C. Paull
- CSIRO, Boggo Rd. Dutton Park, QLD, 4001, Australia
| | - L.M. Boykin
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - P. De Barro
- CSIRO, Boggo Rd. Dutton Park, QLD, 4001, Australia
| | - M.N. Maruthi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - M. Otim
- National Crops Resources Research Institute, Kampala, Uganda
| | - A. Kalyebi
- National Crops Resources Research Institute, Kampala, Uganda
- Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania
| | - D.G. Vassão
- Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8 D-07745 Jena, Germany
| | - P. Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania
| | - W.T. Tay
- CSIRO, Boggo Rd. Dutton Park, QLD, 4001, Australia
| | - H. Delatte
- CIRAD, UMR PVBMT, Saint Pierre, La Réunion 97410-F, France
| | - Z. Seguni
- Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania
| | - J. Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - C.A. Omongo
- National Crops Resources Research Institute, Kampala, Uganda
| |
Collapse
|
33
|
Fennell J, Veys C, Dingle J, Nwezeobi J, van Brunschot S, Colvin J, Grieve B. A method for real-time classification of insect vectors of mosaic and brown streak disease in cassava plants for future implementation within a low-cost, handheld, in-field multispectral imaging sensor. PLANT METHODS 2018; 14:82. [PMID: 30250493 PMCID: PMC6148801 DOI: 10.1186/s13007-018-0350-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 09/16/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND The paper introduces a multispectral imaging system and data-processing approach for the identification and discrimination of morphologically indistinguishable cryptic species of the destructive crop pest, the whitefly Bemisia tabaci. This investigation and the corresponding system design, was undertaken in two phases under controlled laboratory conditions. The first exploited a prototype benchtop variant of the proposed sensor system to analyse four cryptic species of whitefly reared under similar conditions. The second phase, of the methodology development, employed a commercial high-precision laboratory hyperspectral imager to recover reference data from five cryptic species of whitefly, immobilized through flash freezing, and taken from across four feeding environments. RESULTS The initial results, for the single feeding environment, showed that a correct species classification could be achieved in 85-95% of cases, utilising linear Partial Least Squares approaches. The robustness of the classification approach was then extended both in terms of the automated spatial extraction of the most pertinent insect body parts, to assist with the spectral classification model, as well as the incorporation of a non-linear Support Vector Classifier to maintain the overall classification accuracy at 88-98%, irrespective of the feeding and crop environment. CONCLUSION This study demonstrates that through an integration of both the spatial data, associated with the multispectral images being used to separate different regions of the insect, and subsequent spectral analysis of those sub-regions, that B. tabaci viral vectors can be differentiated from other cryptic species, that appear morphologically indistinguishable to a human observer, with an accuracy of up to 98%. The implications for the engineering design for an in-field, handheld, sensor system is discussed with respect to the learning gained from this initial stage of the methodology development.
Collapse
Affiliation(s)
- Joseph Fennell
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Charles Veys
- School of Electrical and Electronic Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Jose Dingle
- School of Electrical and Electronic Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB UK
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB UK
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB UK
| | - Bruce Grieve
- School of Electrical and Electronic Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| |
Collapse
|
34
|
Jacobson AL, Duffy S, Sseruwagi P. Whitefly-transmitted viruses threatening cassava production in Africa. Curr Opin Virol 2018; 33:167-176. [PMID: 30243102 DOI: 10.1016/j.coviro.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Emerging plant viruses are one of the greatest problems facing crop production worldwide, and have severe consequences in the developing world where subsistence farming is a major source of food production, and knowledge and resources for management are limited. In Africa, evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) (Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in severe pandemics that continue to spread and threaten cassava production. Identification of genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont profiles that influence vector phenotypes suggest that complex local and regional vector-virus-plant-environment interactions may be driving the evolution and epidemiology of these viruses.
Collapse
Affiliation(s)
- Alana Lynn Jacobson
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| |
Collapse
|
35
|
Wang Q, Li J, Dang C, Chang X, Fang Q, Stanley D, Ye G. Rice dwarf virus infection alters green rice leafhopper host preference and feeding behavior. PLoS One 2018; 13:e0203364. [PMID: 30192810 PMCID: PMC6128522 DOI: 10.1371/journal.pone.0203364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/20/2018] [Indexed: 11/18/2022] Open
Abstract
Host plants, pathogens and their herbivore vectors systems have complex relationships via direct and indirect interactions. Although there are substantial gaps in understanding these systems, the dynamics of the relationships may influence the processes of virus transmission and plant disease epidemics. Rice dwarf virus (RDV) is mainly vectored by green rice leafhoppers (GRLHs), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae) in a persistently circulative manner. In this study, host plant selection preferences of non-viruliferous and viruliferous (carrying RDV) GRLHs between RDV-free and RDV-infected plants were tested. Non-viruliferous GRLHs preferred RDV-infected rice plants over RDV-free rice plants, and viruliferous GRLHs preferred RDV-free rice plants over RDV-infected rice plants. In odor selection preference bioassay using a four-field olfactometer, non-viruliferous GRLHs preferred odors of RDV-infected rice plants over healthy rice and viruliferous GRLHs preferred odors of RDV-free rice plants over RDV-infected ones. In 6 h plant penetration behavior bioassay using electrical penetration graphs, non-viruliferous GRLHs spent shorter time in non-penetration and much longer time in xylem feeding on RDV-infected, compared to RDV-free rice plants. Viruliferous GRLHs exhibited more salivation and stylet movement on RDV-free rice plants than on RDV-infected rice plants. We infer from these findings that RDV influences these vector behaviors by altering host plant physiology to promote viral transmission.
Collapse
Affiliation(s)
- Qianjin Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingjing Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Cong Dang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xuefei Chang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia MO, United States of America
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
36
|
Carr JP, Donnelly R, Tungadi T, Murphy AM, Jiang S, Bravo-Cazar A, Yoon JY, Cunniffe NJ, Glover BJ, Gilligan CA. Viral Manipulation of Plant Stress Responses and Host Interactions With Insects. Adv Virus Res 2018; 102:177-197. [PMID: 30266173 DOI: 10.1016/bs.aivir.2018.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Do the alterations in plant defensive signaling and metabolism that occur in susceptible hosts following virus infection serve any purpose beyond directly aiding viruses to replicate and spread? Or indeed, are these modifications to host phenotype purely incidental consequences of virus infection? A growing body of data, in particular from studies of viruses vectored by whiteflies and aphids, indicates that viruses influence the efficiency of their own transmission by insect vectors and facilitate mutualistic relationships between viruses and their insect vectors. Furthermore, it appears that viruses may be able to increase the opportunity for transmission in the long term by providing reward to the host plants that they infect. This may be conditional, for example, by aiding host survival under conditions of drought or cold or, more surprisingly, by helping plants attract beneficial insects such as pollinators. In this chapter, we cover three main areas. First, we describe the molecular-level interactions governing viral manipulation of host plant biology. Second, we review evidence that virus-induced changes in plant phenotype enhance virus transmission. Finally, we discuss how direct and indirect manipulation of insects and plants might impact on the evolution of viruses and their hosts.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sanjie Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ana Bravo-Cazar
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, Republic of Korea
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
37
|
Mauck KE, Chesnais Q, Shapiro LR. Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses. Adv Virus Res 2018; 101:189-250. [PMID: 29908590 DOI: 10.1016/bs.aivir.2018.02.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Plant viruses possess adaptations for facilitating acquisition, retention, and inoculation by vectors. Until recently, it was hypothesized that these adaptations are limited to virus proteins that enable virions to bind to vector mouthparts or invade their internal tissues. However, increasing evidence suggests that viruses can also manipulate host plant phenotypes and vector behaviors in ways that enhance their own transmission. Manipulation of vector-host interactions occurs through virus effects on host cues that mediate vector orientation, feeding, and dispersal behaviors, and thereby, the probability of virus transmission. Effects on host phenotypes vary by pathosystem but show a remarkable degree of convergence among unrelated viruses whose transmission is favored by the same vector behaviors. Convergence based on transmission mechanism, rather than phylogeny, supports the hypothesis that virus effects are adaptive and not just by-products of infection. Based on this, it has been proposed that viruses manipulate hosts through multifunctional proteins that facilitate exploitation of host resources and elicitation of specific changes in host phenotypes. But this proposition is rarely discussed in the context of the numerous constraints on virus evolution imposed by molecular and environmental factors, which figure prominently in research on virus-host interactions not dealing with host manipulation. To explore the implications of this oversight, we synthesized available literature to identify patterns in virus effects among pathogens with shared transmission mechanisms and discussed the results of this synthesis in the context of molecular and environmental constraints on virus evolution, limitations of existing studies, and prospects for future research.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Lori R Shapiro
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
38
|
Eigenbrode SD, Bosque-Pérez NA, Davis TS. Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:169-191. [PMID: 28968147 DOI: 10.1146/annurev-ento-020117-043119] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The transmission of insect-borne plant pathogens, including viruses, bacteria, phytoplasmas, and fungi depends upon the abundance and behavior of their vectors. These pathogens should therefore be selected to influence their vectors to enhance their transmission, either indirectly, through the infected host plant, or directly, after acquisition of the pathogen by the vector. Accumulating evidence provides partial support for the occurrence of vector manipulation by plant pathogens, especially for plant viruses, for which a theoretical framework can explain patterns in the specific effects on vector behavior and performance depending on their modes of transmission. The variability in effects of pathogens on their vectors, however, suggests inconsistency in the occurrence of vector manipulation but also may reflect incomplete information about these systems. For example, manipulation can occur through combinations of specific effects, including direct and indirect effects on performance and behavior, and dynamics in those effects with disease progression or pathogen acquisition that together constitute syndromes that promote pathogen spread. Deciphering the prevalence and forms of vector manipulation by plant pathogens remains a compelling field of inquiry, but gaps and opportunities to advance it remain. A proposed research agenda includes examining vector manipulation syndromes comprehensively within pathosystems, expanding the taxonomic and genetic breadth of the systems studied, evaluating dynamic effects that occur during disease progression, incorporating the influence of biotic and abiotic environmental factors, evaluating the effectiveness of putative manipulation syndromes under field conditions, deciphering chemical and molecular mechanisms whereby pathogens can influence vectors, expanding the use of evolutionary and epidemiological models, and seeking opportunities to exploit these effects to improve management of insect-borne, economically important plant pathogens. We expect this field to remain vibrant and productive in its own right and as part of a wider inquiry concerning host and vector manipulation by plant and animal pathogens and parasites.
Collapse
Affiliation(s)
- Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho 83844-2329; ,
| | - Nilsa A Bosque-Pérez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho 83844-2329; ,
| | - Thomas S Davis
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523-1472;
| |
Collapse
|
39
|
Ghosh S, Bouvaine S, Richardson SCW, Ghanim M, Maruthi MN. Fitness costs associated with infections of secondary endosymbionts in the cassava whitefly species Bemisia tabaci. JOURNAL OF PEST SCIENCE 2018; 91:17-28. [PMID: 29367840 PMCID: PMC5750334 DOI: 10.1007/s10340-017-0910-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 05/13/2023]
Abstract
We investigated the dual effects of bacterial infections and diseased cassava plants on the fitness and biology of the Bemisia tabaci infesting cassava in Africa. Isofemale B. tabaci colonies of sub-Saharan Africa 1-subgroup 3 (SSA1-SG3), infected with two secondary endosymbiotic bacteria Arsenophonus and Rickettsia (AR+) and those free of AR infections (AR-), were compared for fitness parameters on healthy and East African cassava mosaic virus-Uganda variant (EACMV-UG)-infected cassava plants. The whitefly fecundity and nymph development was not affected by bacterial infections or the infection of cassava by the virus. However, emergence of adults from nymphs was 50 and 17% higher by AR- on healthy and virus-infected plants, respectively, than AR+ flies. Development time of adults also was 10 days longer in AR+ than AR-. The whiteflies were further compared for acquisition and retention of EACMV-UG. Higher proportion of AR- acquired (91.8%) and retained (87.6%) the virus than AR+ (71.8, 61.2%, respectively). Similarly, the AR- flies retained higher quantities of virus (~ninefold more) than AR+. These results indicated that bacteria-free whiteflies were superior and better transmitters of EACMV-UG, as they had higher adult emergence, quicker life cycle and better virus retention abilities than those infected with bacteria.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| | - Sophie Bouvaine
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| | - Simon C. W. Richardson
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| | - Murad Ghanim
- Volcani Center, ARO, HaMaccabim Road 68, PO Box 15159, 7528809 Rishon Le Tsiyon, Israel
| | - M. N. Maruthi
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| |
Collapse
|
40
|
Sims NC, De Barro P, Newnham GJ, Kalyebi A, Macfadyen S, Malthus TJ. Spectral separability and mapping potential of cassava leaf damage symptoms caused by whiteflies (Bemisia tabaci). PEST MANAGEMENT SCIENCE 2018; 74:246-255. [PMID: 28851022 PMCID: PMC5765403 DOI: 10.1002/ps.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND This study examines whether leaf spectra can be used to measure damage to cassava plants from whitefly (Bemisia tabaci), and the potential to translate measurements from leaf to landscape scale in eastern Africa. Symptoms of the cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) viruses, and sooty mould (SM) blackening of lower leaves from whiteflies feeding on the upper leaves, were measured at the leaf scale with a high-resolution spectroradiometer and a single photon avalanche diode (SPAD) meter, which retrieves relative chlorophyll concentration. Spectral measurements were compared to the five-level visual scores used to assess the severity of each of the three damaging agents in the field, and also to leaf chemistry data. RESULTS Leaves exhibiting severe CBSD and CMD were spectrally indistinguishable from leaves without any symptoms. Severe SM was spectrally distinctive but is likely to be difficult to map because of its occurrence in the lower crown. SPAD measurements were highly correlated with most foliar chemistry measurements and field scores of disease severity. Regression models between simulated Sentinel 2 bands, field scores and SPAD measurements were strongest using wavelengths with high importance weightings in random forest models. CONCLUSION SPAD measurements are highly correlated to many foliar chemistry parameters, and should be considered for use in mapping disease severity over larger areas. Remaining challenges for mapping relate to the subtle expression of symptoms, the spatial distribution of disease severity within fields, and the small size and complex structure of the cassava fields themselves. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Paul De Barro
- CSIRO Health & BiosecurityDutton ParkQueenslandAustralia
| | | | - Andrew Kalyebi
- National Crops Resources Research InstituteKampalaUganda
| | | | - Tim J Malthus
- CSIRO Oceans & AtmosphereDutton ParkQueenslandAustralia
| |
Collapse
|
41
|
Effect of elevated CO 2 and O 3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:816-825. [PMID: 28785951 DOI: 10.1007/s11427-017-9126-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Climatic variations are becoming important limiting factors for agriculture productivity, as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests. Elevated CO2 and O3 are two important climatic factors that have been widely studied before. Elevated CO2 or O3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants. Many studies have shown that elevated CO2 or O3 decreases the plant nitrogen content, which modulates the characteristics of vector insects. Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO2 or O3. In the current review, we describe how elevated CO2 or O3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways. We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO2 or O3. We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO2 or O3.
Collapse
|
42
|
Wang Q, Han N, Dang C, Lu Z, Wang F, Yao H, Peng Y, Stanley D, Ye G. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). PLoS One 2017; 12:e0181258. [PMID: 28753622 PMCID: PMC5533439 DOI: 10.1371/journal.pone.0181258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/28/2017] [Indexed: 12/30/2022] Open
Abstract
The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability of GM cropping systems. Laboratory bioassays were conducted to evaluate the potential combined impacts of rice dwarf virus (RDV) and two Bt rice lines, T1C-19 (Cry1C) and T2A-1 (Cry2A), on non-target green rice leafhopper (GRLH), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). In the first experiment, GRLHs feeding preference tests on Bt rice lines compared to a parental control rice line, MH63, were conducted. As rice plants were uninfected with RDV, GRLHs generally preferred the control MH63 line over the two Bt lines during the initial 8 h, with no significant preference during the following 64 h. As rice plants were infected with RDV, there were no clear preferences between the Bt rice lines and the control MH63 line. In the second experiment, we assessed the combined influence of RDV-infection status and Bt rice lines on GRLH biological parameters. Egg duration, adult weights, and male adult longevity were significantly affected on RDV-infected Bt rice. Other parameters, egg hatching rate, nymph survival and fecundity were not significantly influenced. We infer that interaction effect among two testing Bt rice lines and RDV will not lead to enlarged pest populations, thus demonstrating that growing these two Bt rice lines will poses negligible risk to GRLH in sustainable rice agroecosystems. Long-term field experiments to monitor the population dynamics of GRLHs at large scale need to be carried out to confirm the current results.
Collapse
Affiliation(s)
- Qianjin Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Naishun Han
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Cong Dang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zengbin Lu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia MO, United States of America
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Li P, Shu YN, Fu S, Liu YQ, Zhou XP, Liu SS, Wang XW. Vector and nonvector insect feeding reduces subsequent plant susceptibility to virus transmission. THE NEW PHYTOLOGIST 2017; 215:699-710. [PMID: 28382644 DOI: 10.1111/nph.14550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
The interactions of vector-virus-plant have important ecological and evolutionary implications. While the tripartite interactions have received some attention, little is known about whether vector infestation affects subsequent viral transmission and infection. Working with the whitefly Bemisia tabaci, begomovirus and tobacco/tomato, we demonstrate that pre-infestation of plants by the whitefly vector reduced subsequent plant susceptibility to viral transmission. Pre-infestation by the cotton bollworm, a nonvector of the virus, likewise repressed subsequent viral transmission. The two types of insects, with piercing and chewing mouthparts, respectively, activated different plant signaling pathways in the interactions. Whitefly pre-infestation activated the salicylic acid (SA) signaling pathway, leading to deposition of callose that inhibited begomovirus replication/movement. Although cotton bollworm infestation elicited the jasmonic acid (JA) defense pathway and was beneficial to virus replication, the pre-infested plants repelled whiteflies from feeding and so decreased virus transmission. Experiments using a pharmaceutical approach with plant hormones or a genetic approach using hormone transgenic or mutant plants further showed that SA played a negative but JA played a positive role in begomovirus infection. These novel findings indicate that both vector and nonvector insect feeding of a plant may have substantial negative consequences for ensuing viral transmission and infection.
Collapse
Affiliation(s)
- Ping Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Ni Shu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuai Fu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
44
|
Boni SB, Rugumamu CP, Gerling D, Sagary Nokoe K, Legg JP. Interactions Between Cassava Mosaic Geminiviruses and Their Vector, Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:884-892. [PMID: 28431093 DOI: 10.1093/jee/tox064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 06/07/2023]
Abstract
The sweetpotato whitefly, Bemisia tabaci (Gennadius) is the vector of the cassava mosaic geminiviruses (CMGs) that cause cassava mosaic disease (CMD). Synergistic interactions between B. tabaci and CMGs have been hypothesized as a cause of whitefly "super-abundance," which has been a key factor behind the spread of the severe CMD pandemic through East and Central Africa. The current study investigated this hypothesis by conducting experiments with CMD-susceptible cassava varieties infected with different CMGs in both the north-western Lake Zone region (pandemic affected) and the eastern Coast Zone where CMD is less severe. Male and female pairs of B. tabaci were placed in clip cages for 48 h on plants of three cassava varieties at each of the two locations. There were significantly more eggs laid on CMG-infected than on CMG-free plants in the Lake Zone, whereas in Coast Zone, there were no significant differences. There were no significant differences in proportions, mortality, and development duration of immature stages of B. tabaci among virus states and cassava variety in the two locations. The overall number of eggs was significantly higher with longer development duration of the immature stages in the Lake than in the Coast Zone, whereas mortality was significantly higher in the Coast than in the Lake Zone. Based on these results, it is concluded that there was no net positive synergistic interaction between CMGs and B. tabaci for either lowland coastal or mid-altitude inland populations. Consequently, other factors seem more likely to be the cause of the "super-abundance," and require further investigation.
Collapse
Affiliation(s)
- Simon B Boni
- International Institute of Tropical Agriculture (IITA), Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P. O. Box 34441, Dar es Salaam, Tanzania, ( ; )
- Current address: P. O. Box 21026, Dar es Salaam, Tanzania
| | - Costancia P Rugumamu
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, P. O. Box 35064, Dar es Salaam, Tanzania,
| | - Dan Gerling
- Department of Zoology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - K Sagary Nokoe
- University of Energy & Natural Resources, P. O. Box 214, Sunyani, B/A Ghana
| | - James P Legg
- International Institute of Tropical Agriculture (IITA), Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P. O. Box 34441, Dar es Salaam, Tanzania, ( ; )
- Corresponding author:
| |
Collapse
|
45
|
Sun YC, Pan LL, Ying FZ, Li P, Wang XW, Liu SS. Jasmonic acid-related resistance in tomato mediates interactions between whitefly and whitefly-transmitted virus. Sci Rep 2017; 7:566. [PMID: 28373670 PMCID: PMC5428805 DOI: 10.1038/s41598-017-00692-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/10/2017] [Indexed: 12/05/2022] Open
Abstract
The indirect interactions between insect vectors, such as whiteflies, and the viruses they transmit, such as begomoviruses, via host plants may produce a range of outcome depending on the species/strain of each of the three organisms involved, and the mechanisms underlying the variations are not well understood. Here, we observed the performance of whiteflies on three types of tomato, which vary in level of jasmonic acid (JA)-related resistance and were either uninfected or infected by a begomovirus, to investigate the role of JA-related resistance in mediating whitefly-begomovirus interactions. Compared to the performance of whiteflies on plants of the wild type, the performance was elevated on plants deficient in JA-related resistance but reduced on plants with a high level of JA-related resistance. Further, on plants with a high level of JA-related resistance, the whitefly performed better on virus-infected than on uninfected plants; however, on tomato plants deficient in JA-related resistance, whitefly performance was less affected by the virus-infection of plants. Additionally, the expression of the JA-regulated defense gene PI-II in tomato plants was repressed by virus infection. These findings suggest that JA-related resistance plays an important role in the tripartite interactions between whitefly, begomovirus and tomato plant.
Collapse
Affiliation(s)
- Yan-Chun Sun
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng-Ze Ying
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ping Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
46
|
Lu S, Li J, Wang X, Song D, Bai R, Shi Y, Gu Q, Kuo YW, Falk BW, Yan F. A Semipersistent Plant Virus Differentially Manipulates Feeding Behaviors of Different Sexes and Biotypes of Its Whitefly Vector. Viruses 2017; 9:E4. [PMID: 28098749 PMCID: PMC5294973 DOI: 10.3390/v9010004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
It is known that plant viruses can change the performance of their vectors. However, there have been no reports on whether or how a semipersistent plant virus manipulates the feeding behaviors of its whitefly vectors. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus, family Closteroviridae) is an emergent plant virus in many Asian countries and is transmitted specifically by B and Q biotypes of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. In the present study, we used electrical penetration graph (EPG) technique to investigate the effect of CCYV on the feeding behaviors of B. tabaci. The results showed that CCYV altered feeding behaviors of both biotypes and sexes of B. tabaci with different degrees. CCYV had stronger effects on feeding behaviors of Q biotype than those of B biotype, by increasing duration of phloem salivation and sap ingestion, and could differentially manipulate feeding behaviors of males and females in both biotype whiteflies, with more phloem ingestion in Q biotype males and more non-phloem probing in B biotype males than their respective females. With regard to feeding behaviors related to virus transmission, these results indicated that, when carrying CCYV, B. tabaci Q biotype plays more roles than B biotype, and males make greater contribution than females.
Collapse
Affiliation(s)
- Shaohua Lu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xueli Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Danyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Rune Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 410100, China.
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA 95616-8600, USA.
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, CA 95616-8600, USA.
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
47
|
Cui H, Sun Y, Chen F, Zhang Y, Ge F. Elevated O₃ and TYLCV Infection Reduce the Suitability of Tomato as a Host for the Whitefly Bemisia tabaci. Int J Mol Sci 2016; 17:E1964. [PMID: 27916792 PMCID: PMC5187764 DOI: 10.3390/ijms17121964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
The effects of elevated atmospheric ozone (O₃) levels on herbivorous insects have been well studied, but little is known about the combined effects of elevated O₃ and virus infection on herbivorous insect performance. Using open-top chambers in the field, we determined the effects of elevated O₃ and Tomato yellow leaf curl virus (TYLCV) infection on wild-type (Wt) tomato and 35S tomato (jasmonic acid (JA) defense-enhanced genotype) in association with whitefly, Bemisia tabaci Gennadius biotype B. Elevated O₃ and TYLCV infection, alone and in combination, significantly reduced the contents of soluble sugars and free amino acids, increased the contents of total phenolics and condensed tannins, and increased salicylic acid (SA) content and the expression of SA-related genes in leaves. The JA signaling pathway was upregulated by elevated O₃, but downregulated by TYLCV infection and O₃ + TYLCV infection. Regardless of plant genotype, elevated O₃, TYLCV infection, or O₃ + TYLCV infection significantly decreased B. tabaci fecundity and abundance. These results suggest that elevated O₃ and TYLCV infection, alone and in combination, reduce the nutrients available for B. tabaci, increase SA content and SA-related gene expression, and increase secondary metabolites, resulting in decreases in fecundity and abundance of B. tabaci in both tomato genotypes.
Collapse
Affiliation(s)
- Hongying Cui
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
48
|
Guo H, Huang L, Sun Y, Guo H, Ge F. The Contrasting Effects of Elevated CO 2 on TYLCV Infection of Tomato Genotypes with and without the Resistance Gene, Mi-1.2. FRONTIERS IN PLANT SCIENCE 2016; 7:1680. [PMID: 27881989 PMCID: PMC5101426 DOI: 10.3389/fpls.2016.01680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/25/2016] [Indexed: 05/26/2023]
Abstract
Elevated atmospheric CO2 typically enhances photosynthesis of C3 plants and alters primary and secondary metabolites in plant tissue. By modifying the defensive signaling pathways in host plants, elevated CO2 could potentially affect the interactions between plants, viruses, and insects that vector viruses. R gene-mediated resistance in plants represents an efficient and highly specific defense against pathogens and herbivorous insects. The current study determined the effect of elevated CO2 on tomato plants with and without the nematode resistance gene Mi-1.2, which also confers resistance to some sap-sucking insects including whitefly, Bemisia tabaci. Furthermore, the subsequent effects of elevated CO2 on the performance of the vector whiteflies and the severity of Tomato yellow leaf curl virus (TYLCV) were also determined. The results showed that elevated CO2 increased the biomass, plant height, and photosynthetic rate of both the Moneymaker and the Mi-1.2 genotype. Elevated CO2 decreased TYLCV disease incidence and severity for Moneymaker plants but had the opposite effect on Mi-1.2 plants whether the plants were agroinoculated or inoculated via B. tabaci feeding. Elevated CO2 increased the salicylic acid (SA)-dependent signaling pathway on Moneymaker plants but decreased the SA-signaling pathway on Mi-1.2 plants when infected by TYLCV. Elevated CO2 did not significantly affect B. tabaci fitness or the ability of viruliferous B. tabaci to transmit virus regardless of plant genotype. The results indicate that elevated CO2 increases the resistance of Moneymaker plants but decreases the resistance of Mi-1.2 plants against TYLCV, whether the plants are agroinoculated or inoculated by the vector. Our results suggest that plant genotypes containing the R gene Mi-1.2 will be more vulnerable to TYLCV and perhaps to other plant viruses under elevated CO2 conditions.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Lichao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
- Tourism and Air Service College, Guizhou Minzu UniversityGuizhou, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Honggang Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
49
|
Shrestha D, McAuslane HJ, Adkins ST, Smith HA, Dufault N, Webb SE. Transmission of Squash vein yellowing virus to and From Cucurbit Weeds and Effects on Sweetpotato Whitefly (Hemiptera: Aleyrodidae) Behavior. ENVIRONMENTAL ENTOMOLOGY 2016; 45:967-973. [PMID: 27400705 DOI: 10.1093/ee/nvw086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Since 2003, growers of Florida watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] have periodically suffered large losses from a disease caused by Squash vein yellowing virus (SqVYV), which is transmitted by the whitefly Middle East-Asia Minor 1 (MEAM1), formerly Bemisia tabaci (Gennadius) biotype B. Common cucurbit weeds like balsam apple (Momordica charantia L.) and smellmelon [Cucumis melo var. dudaim (L.) Naud.] are natural hosts of SqVYV, and creeping cucumber (Melothria pendula L.) is an experimental host. Study objectives were to compare these weeds and 'Mickylee' watermelon as sources of inoculum for SqVYV via MEAM1 transmission, to determine weed susceptibility to SqVYV, and to evaluate whitefly settling and oviposition behaviors on infected vs. mock-inoculated (inoculated with buffer only) creeping cucumber leaves. We found that the lowest percentage of watermelon recipient plants was infected when balsam apple was used as a source of inoculum. Watermelon was more susceptible to infection than balsam apple or smellmelon. However, all weed species were equally susceptible to SqVYV when inoculated by whitefly. For the first 5 h after release, whiteflies had no preference to settle on infected vs. mock-inoculated creeping cucumber leaves. After 24 h, whiteflies preferred to settle on mock-inoculated leaves, and more eggs were laid on mock-inoculated creeping cucumber leaves than on SqVYV-infected leaves. The transmission experiments (source of inoculum and susceptibility) show these weed species as potential inoculum sources of the virus. The changing settling preference of whiteflies from infected to mock-inoculated plants could lead to rapid spread of virus in the agroecosystem.
Collapse
Affiliation(s)
- D Shrestha
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611 (; ; )
| | - H J McAuslane
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611 (; ; )
| | - S T Adkins
- USDA, Agricultural Research Service, U. S. Horticultural Research Laboratory, 2001 South Rock Rd., Fort Pierce, FL 34945
| | - H A Smith
- UF/IFAS, Gulf Coast Research and Education Center, 14625 County Rd. 672, Wimauma, FL 33598
| | - N Dufault
- Plant Pathology Department, University of Florida, 2550 Hull Rd., Gainesville, FL 32611
| | - S E Webb
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611 (; ; )
| |
Collapse
|
50
|
Wang LL, Wang XR, Wei XM, Huang H, Wu JX, Chen XX, Liu SS, Wang XW. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 2016; 12:1560-74. [PMID: 27310765 DOI: 10.1080/15548627.2016.1192749] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy/autophagy plays an important role against pathogen infection in mammals and plants. However, little has been known about the role of autophagy in the interactions of insect vectors with the plant viruses, which they transmit. Begomoviruses are a group of single-stranded DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. In this study, we found that the infection of a begomovirus, tomato yellow leaf curl virus (TYLCV) could activate the autophagy pathway in the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex as evidenced by the formation of autophagosomes and ATG8-II. Interestingly, the activation of autophagy led to the subsequent degradation of TYLCV coat protein (CP) and genomic DNA. While feeding the whitefly with 2 autophagy inhibitors (3-methyladenine and bafilomycin A1) and silencing the expression of Atg3 and Atg9 increased the viral load; autophagy activation via feeding of rapamycin notably decreased the amount of viral CP and DNA in the whitefly. Furthermore, we found that activation of whitefly autophagy could inhibit the efficiency of virus transmission; whereas inhibiting autophagy facilitated virus transmission. Taken together, these results indicate that TYLCV infection can activate the whitefly autophagy pathway, which leads to the subsequent degradation of virus. Furthermore, our report proves that an insect vector uses autophagy as an intrinsic antiviral program to repress the infection of a circulative-transmitted plant virus. Our data also demonstrate that TYLCV may replicate and trigger complex interactions with the insect vector.
Collapse
Affiliation(s)
- Lan-Lan Wang
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou , China
| | - Xin-Ru Wang
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou , China
| | - Xue-Mei Wei
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou , China
| | - Huang Huang
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou , China
| | - Jian-Xiang Wu
- b Institute of Biotechnology, Zhejiang University , Hangzhou , China
| | - Xue-Xin Chen
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou , China
| | - Shu-Sheng Liu
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou , China
| | - Xiao-Wei Wang
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou , China
| |
Collapse
|