1
|
Soares R, Lourenço DM, Mota IF, Sebastião AM, Xapelli S, Morais VA. Lineage-specific changes in mitochondrial properties during neural stem cell differentiation. Life Sci Alliance 2024; 7:e202302473. [PMID: 38664022 PMCID: PMC11045976 DOI: 10.26508/lsa.202302473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.
Collapse
Affiliation(s)
- Rita Soares
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo M Lourenço
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isa F Mota
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa A Morais
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Plaza N, Pérez-Reytor D, Corsini G, García K, Urrutia ÍM. Contribution of the Type III Secretion System (T3SS2) of Vibrio parahaemolyticus in Mitochondrial Stress in Human Intestinal Cells. Microorganisms 2024; 12:813. [PMID: 38674757 PMCID: PMC11051933 DOI: 10.3390/microorganisms12040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Vibrio parahaemolyticus is an important human pathogen that is currently the leading cause of shellfish-borne gastroenteritis in the world. Particularly, the pandemic strain has the capacity to induce cytotoxicity and enterotoxicity through its Type 3 Secretion System (T3SS2) that leads to massive cell death. However, the specific mechanism by which the T3SS2 induces cell death remains unclear and its contribution to mitochondrial stress is not fully understood. In this work, we evaluated the contribution of the T3SS2 of V. parahaemolyticus in generating mitochondrial stress during infection in human intestinal HT-29 cells. To evaluate the contribution of the T3SS2 of V. parahaemolyticus in mitochondrial stress, infection assays were carried out to evaluate mitochondrial transition pore opening, mitochondrial fragmentation, ATP quantification, and cell viability during infection. Our results showed that the Δvscn1 (T3SS2+) mutant strain contributes to generating the sustained opening of the mitochondrial transition pore. Furthermore, it generates perturbations in the ATP production in infected cells, leading to a significant decrease in cell viability and loss of membrane integrity. Our results suggest that the T3SS2 from V. parahaemolyticus plays a role in generating mitochondrial stress that leads to cell death in human intestinal HT-29 cells. It is important to highlight that this study represents the first report indicating the possible role of the V. parahaemolyticus T3SS2 and its effector proteins involvement in generating mitochondrial stress, its impact on the mitochondrial pore, and its effect on ATP production in human cells.
Collapse
Affiliation(s)
| | | | | | | | - Ítalo M. Urrutia
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile; (N.P.); (D.P.-R.); (G.C.); (K.G.)
| |
Collapse
|
3
|
Abstract
The diagnostic and referral workflow for children with neuromuscular disorders is evolving, particularly as newborn screening programs are expanding in tandem with novel therapeutic developments. However, for the children who present with symptoms and signs of potential neuromuscular disorders, anatomic localization, guided initially by careful history and physical examination, continues to be the cardinal initial step in the diagnostic evaluation. It is important to consider whether the localization is more likely to be in the lower motor neuron, peripheral nerve, neuromuscular junction, or muscle. After that, disease etiologies can be divided broadly into inherited versus acquired categories. Considerations of localization and etiologies will help generate a differential diagnosis, which in turn will guide diagnostic testing. Once a diagnosis is made, it is important to be aware of current treatment options, as a number of new therapies for some of these disorders have been approved in recent years. Families are also increasingly interested in clinical research, which may include natural history studies and interventional clinical trials. Such research has proliferated for rare neuromuscular diseases, leading to exciting advances in diagnostic and therapeutic technologies, promising dramatic changes in the landscape of these disorders in the years to come.
Collapse
Affiliation(s)
- Geetanjali Rathore
- Division of Neurology, Department of Pediatrics, University of Nebraska College of Medicine, Omaha, Nebraska
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
4
|
Clemons MR, Dimico RH, Black C, Schlussler MK, Camerino MJ, Aldinger-Gibson K, Bartle A, Reynolds N, Eisenbrandt D, Rogers A, Andrianu J, Bruce B, Elliot A, Breazeal T, Griffin H, Murphy MK, Fuerst PG. The rod synapse in aging wildtype and Dscaml1 mutant mice. PLoS One 2023; 18:e0290257. [PMID: 37910517 PMCID: PMC10619811 DOI: 10.1371/journal.pone.0290257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 11/03/2023] Open
Abstract
The retina is an intricately organized neural tissue built on cone and rod pathways for color and night vision. Genetic mutations that disrupt the proper function of the rod circuit contribute to blinding diseases including retinitis pigmentosa and congenital stationary night blindness (CSNB). Down Syndrome cell adhesion molecule like 1 (Dscaml1) is expressed by rods, rod bipolar cells (RBCs), and sub-populations of amacrine cells, and has been linked to a middle age onset of CSNB in humans. However, how Dscaml1 contributes to this visual deficit remains unexplored. Here, we probed Dscaml1's role in the maintenance of the rod-to-RBC synapse using a loss of function mouse model. We used immunohistochemistry to investigate the anatomical formation and maintenance of the rod-to-RBC synapse in the young, adult, and aging retina. We generated 3D reconstructions, using serial electron micrographs, of rod spherules and RBCs to measure the number of invaginating neurites, RBC dendritic tip number, and RBC mitochondrial morphology. We find that while rod-to-RBC synapses form and are maintained, similar to wildtype, that there is an increase in the number of invaginating neurites in rod spherules, a reduction in RBC dendritic tips, and reduced mitochondrial volume and complexity in the Dscaml1 mutant retina compared to controls. We also observed precocious sprouting of RBC dendrites into the outer nuclear layer (ONL) of the Dscaml1 mutant retina compared to controls. These results contribute to our knowledge of Dscaml1's role in rod circuit development and maintenance and give additional insight into possible genetic therapy targets for blinding diseases and disorders like CSNB.
Collapse
Affiliation(s)
- Mellisa R. Clemons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Ren H. Dimico
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cailyn Black
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Megan K. Schlussler
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Michael J. Camerino
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Kirah Aldinger-Gibson
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Amaris Bartle
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Nathan Reynolds
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Dylan Eisenbrandt
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Aspen Rogers
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - John Andrianu
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Bradley Bruce
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, United States of America
| | - Arthur Elliot
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Tom Breazeal
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Hannah Griffin
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Molly K. Murphy
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Peter G. Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, United States of America
- Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| |
Collapse
|
5
|
Tokuyama T, Yanagi S. Role of Mitochondrial Dynamics in Heart Diseases. Genes (Basel) 2023; 14:1876. [PMID: 37895224 PMCID: PMC10606177 DOI: 10.3390/genes14101876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Mitochondrial dynamics, including fission and fusion processes, are essential for heart health. Mitochondria, the powerhouses of cells, maintain their integrity through continuous cycles of biogenesis, fission, fusion, and degradation. Mitochondria are relatively immobile in the adult heart, but their morphological changes due to mitochondrial morphology factors are critical for cellular functions such as energy production, organelle integrity, and stress response. Mitochondrial fusion proteins, particularly Mfn1/2 and Opa1, play multiple roles beyond their pro-fusion effects, such as endoplasmic reticulum tethering, mitophagy, cristae remodeling, and apoptosis regulation. On the other hand, the fission process, regulated by proteins such as Drp1, Fis1, Mff and MiD49/51, is essential to eliminate damaged mitochondria via mitophagy and to ensure proper cell division. In the cardiac system, dysregulation of mitochondrial dynamics has been shown to cause cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and various cardiac diseases, including metabolic and inherited cardiomyopathies. In addition, mitochondrial dysfunction associated with oxidative stress has been implicated in atherosclerosis, hypertension and pulmonary hypertension. Therefore, understanding and regulating mitochondrial dynamics is a promising therapeutic tool in cardiac diseases. This review summarizes the role of mitochondrial morphology in heart diseases for each mitochondrial morphology regulatory gene, and their potential as therapeutic targets to heart diseases.
Collapse
Affiliation(s)
- Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-0031, Japan;
| |
Collapse
|
6
|
Kumar M, Sharma S, Mazumder S. Role of UPR mt and mitochondrial dynamics in host immunity: it takes two to tango. Front Cell Infect Microbiol 2023; 13:1135203. [PMID: 37260703 PMCID: PMC10227438 DOI: 10.3389/fcimb.2023.1135203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The immune system of a host contains a group of heterogeneous cells with the prime aim of restraining pathogenic infection and maintaining homeostasis. Recent reports have proved that the various subtypes of immune cells exploit distinct metabolic programs for their functioning. Mitochondria are central signaling organelles regulating a range of cellular activities including metabolic reprogramming and immune homeostasis which eventually decree the immunological fate of the host under pathogenic stress. Emerging evidence suggests that following bacterial infection, innate immune cells undergo profound metabolic switching to restrain and countervail the bacterial pathogens, promote inflammation and restore tissue homeostasis. On the other hand, bacterial pathogens affect mitochondrial structure and functions to evade host immunity and influence their intracellular survival. Mitochondria employ several mechanisms to overcome bacterial stress of which mitochondrial UPR (UPRmt) and mitochondrial dynamics are critical. This review discusses the latest advances in our understanding of the immune functions of mitochondria against bacterial infection, particularly the mechanisms of mitochondrial UPRmt and mitochondrial dynamics and their involvement in host immunity.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
7
|
Begum HM, Shen K. Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. WIREs Mech Dis 2023; 15:e1595. [PMID: 36597256 PMCID: PMC10176868 DOI: 10.1002/wsbm.1595] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Cancer cells have an abnormally high mitochondrial membrane potential (ΔΨm ), which is associated with enhanced invasive properties in vitro and increased metastases in vivo. The mechanisms underlying the abnormal ΔΨm in cancer cells remain unclear. Research on different cell types has shown that ΔΨm is regulated by various intracellular mechanisms such as by mitochondrial inner and outer membrane ion transporters, cytoskeletal elements, and biochemical signaling pathways. On the other hand, the role of extrinsic, tumor microenvironment (TME) derived cues in regulating ΔΨm is not well defined. In this review, we first summarize the existing literature on intercellular mechanisms of ΔΨm regulation, with a focus on cancer cells. We then offer our perspective on the different ways through which the microenvironmental cues such as hypoxia and mechanical stresses may regulate cancer cell ΔΨm . This article is categorized under: Cancer > Environmental Factors Cancer > Biomedical Engineering Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Hydari Masuma Begum
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
8
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Low Expression of Mitofusin 1 Gene Leads to Mitochondrial Dysfunction and Embryonic Genome Activation Failure in Ovine-Bovine Inter-Species Cloned Embryos. Int J Mol Sci 2022; 23:ijms231710145. [PMID: 36077543 PMCID: PMC9456037 DOI: 10.3390/ijms231710145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial dysfunction. First, we found the ovine-bovine iSCNT embryos were developmentally blocked at the 8-cell stage. The reactive oxygen species level, mitochondrial membrane potential, and ATP level in ovine-bovine cloned embryos were significantly different from both bovine-bovine and IVF 8-cell stage embryos. RNA sequencing and q-PCR analysis revealed that mitochondrial transport, mitochondrial translational initiation, mitochondrial large ribosomal subunit, and mitochondrial outer membrane genes were abnormally expressed in the ovine-bovine embryos, and the mitochondrial outer membrane and mitochondrial ribosome large subunit genes, mitochondrial fusion gene 1, and ATPase Na+/K+ transporting subunit beta 3 gene were expressed at lower levels in the ovine-bovine cloned embryos. Furthermore, we found that overexpression and knockdown of Mfn1 significantly affected mitochondrial fusion and subsequent biological functions such as production of ATP, mitochondrial membrane potential, reactive oxygen species and gene expressions in cloned embryos. These findings enhance our understanding of the mechanism by which the Mfn1 gene regulates embryonic development and embryonic genome activation events.
Collapse
|
10
|
Guo SM, Liu XP, Tian Q, Fei CF, Zhang YR, Li ZM, Yin Y, He X, Zhou LQ. Regulatory roles of alternative splicing at Ezh2 gene in mouse oocytes. Reprod Biol Endocrinol 2022; 20:99. [PMID: 35791029 PMCID: PMC9254527 DOI: 10.1186/s12958-022-00962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enhancer of zeste homologue 2 (EZH2), the core member of polycomb repressive complex 2 (PRC2), has multiple splicing modes and performs various physiological functions. However, function and mechanism of alternative splicing at Ezh2 exon 3 in reproduction are unknown. METHODS We generated Ezh2Long and Ezh2Short mouse models with different point mutations at the Ezh2 exon 3 alternative splicing site, and each mutant mouse model expressed either the long or the short isoform of Ezh2. We examined mutant mouse fertility and oocyte development to assess the function of Ezh2 alternative splicing at exon 3 in the reproductive system. RESULTS We found that Ezh2Long female mice had normal fertility. However, Ezh2Short female mice had significantly decreased fertility and obstructed oogenesis, with compromised mitochondrial function in Ezh2Short oocytes. Interestingly, increased EZH2 protein abundance and accumulated H3K27me3 were observed in Ezh2Short oocytes. CONCLUSIONS Our results demonstrate that correct Ezh2 alternative splicing at exon 3 is important for mouse oogenesis.
Collapse
Affiliation(s)
- Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing-Ping Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Tian
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Ming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Yin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
12
|
Ruan Y, Hu J, Che Y, Liu Y, Luo Z, Cheng J, Han Q, He H, Zhou Q. CHCHD2 and CHCHD10 regulate mitochondrial dynamics and integrated stress response. Cell Death Dis 2022; 13:156. [PMID: 35173147 PMCID: PMC8850591 DOI: 10.1038/s41419-022-04602-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction is becoming one of the main pathology factors involved in the etiology of neurological disorders. Recently, mutations of the coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) which encode two homologous proteins that belong to the mitochondrial CHCH domain protein family, are linked to Parkinson's disease and amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), respectively. However, the physiological and pathological roles of these twin proteins have not been well elaborated. Here, we show that, in physiological conditions, CHCHD2 and CHCHD10 interact with OMA1 and suppress its enzyme activity, which not only restrains the initiation of the mitochondrial integrated response stress (mtISR), but also suppresses the processing of OPA1 for mitochondrial fusion. Further, during mitochondria stress-induced by carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, CHCHD2 and CHCHD10 translocate to the cytosol and interacte with eIF2a, which attenuates mtISR overactivation by suppressing eIF2a phosphorylation and its downstream response. As such, knockdown of CHCHD2 and CHCHD10 triggers mitochondrial ISR, and such cellular response is enhanced by CCCP treatment. Therefore, our findings demonstrate the first "mtISR suppressor" localized in mitochondria for regulating stress responses in mammalian cells, which has a profound pathological impact on the CHCH2/CHCH10-linked neurodegenerative disorder.
Collapse
Affiliation(s)
- Yu Ruan
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiaqiao Hu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yaping Che
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yanyan Liu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhenhuan Luo
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jin Cheng
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - He He
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China.
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
13
|
Yao Z, Li J, Zhang Z, Chai Y, Liu X, Li J, Huang Y, Li L, Huang W, Yang G, Chen F, Shi Q, Ru B, Lei C, Wang E, Huang Y. The relationship between MFN1 copy number variation and growth traits of beef cattle. Gene 2022; 811:146071. [PMID: 34864096 DOI: 10.1016/j.gene.2021.146071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023]
Abstract
Copy number variation, as a kind of genetic submicroscopic structural variation, refers to the deletion or repetition of a large segment of genomic DNA, involving a segment size ranging from 50 bp to several MB. Mitochondrial fusion protein (MFN1) gene regulates the fusion of mitochondrial outer membrane in cells and maintains the dynamic needs of reticular mitochondria in cells. In this study, we conducted to tested the dstribution characteristics of MFN1-CNV in 522 cattles across Xianan cattle (XN), Pinan cattle (PN), Qinchuan cattle (QC), Jiaxian cattle (JX), Yunling cattle (YL), and correlated it with phenotypic traits. Then we observed the expression of MFN1 in various tissues of QC cattle (n = 3), and the expression levels were higher in lung and muscle. The results showed that there was significant correlation between MFN1 gene CNV and hucklebone width of QC cattle, hip width and height at sacrum of JX red cattle, chest width and rump length of YL cattle (P < 0.05). Individuals with duplication type were better than the type of normal or deletion in phenotypic traits. In conclusion, our data showed the correlation between MFN1 gene and growth traits of Chinese cattle. MFN1 gene can be used as a molecular marker for cattle selection and breeding, and accelerate the improvement of Chinese cattle.
Collapse
Affiliation(s)
- Zhi Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Jiaxiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Yanan Chai
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Jungang Li
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Yajun Huang
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Lijuan Li
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Weihong Huang
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Guojie Yang
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Fuying Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Qiaoting Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China.
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China.
| |
Collapse
|
14
|
Xiang J, Zhang H, Zhou X, Wang D, Chen R, Tan W, Liang L, Shi M, Zhang F, Xiao Y, Zhou Y, Wang Y, Guo B. Atorvastatin Restores PPARα Inhibition of Lipid Metabolism Disorders by Downregulating miR-21 Expression to Improve Mitochondrial Function and Alleviate Diabetic Nephropathy Progression. Front Pharmacol 2022; 13:819787. [PMID: 35222033 PMCID: PMC8874267 DOI: 10.3389/fphar.2022.819787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
Atorvastatin is a classical lipid-lowering drug. It has been reported to have renoprotective effects, such as reducing urinary protein excretion and extracellular matrix aggregation. The present study aimed to investigate the specific mechanism of action of Atorvastatin in type 1 diabetic mice (T1DM) in inhibiting renal tubular epithelial cell injury following treatment with high glucose and high fat. The anti-injury mechanism of Atorvastatin involved the inhibition of miR-21 expression and the upregulation of the transcription and expression of its downstream gene Peroxisome proliferator-activated receptors-α(PPARα). An increase in blood glucose and lipid levels was noted in the T1DM model, which was associated with renal fibrosis and inflammation. These changes were accompanied by increased miR-21 levels, downregulation of PPARα and Mfn1 expressions, and upregulation of Drp1 and IL6 expressions in renal tissues. These phenomena were reversed following the administration of Atorvastatin. miR-21 targeted PPARα by inhibiting its mRNA translation. Inhibition of miR-21 expression or Fenofibrate (PPARα agonist) administration prevented the decrease of PPARα in renal tubular epithelial cells under high glucose (HG) and high fat (Palmitic acid, PA) conditions, alleviating lipid metabolism disorders and reducing mitochondrial dynamics and inflammation. Consistent with the in vivo results, the in vitro findings also demonstrated that mRTECs administered with Atorvastatin in HG + PA increased PPARα expression and restored the normal expression of Mfn1 and Drp1, and effectively increasing the number of biologically active mitochondria and ATP content, reducing ROS production, and restoring mitochondrial membrane potential following Atorvastatin intervention. In addition, these effects were noted to the inhibition of FN expression and tubular cell inflammatory response; however, in the presence of miR-21mimics, the aforementioned effects of Atorvastatin were significantly diminished. Based on these observations, we conclude that Atorvastatin inhibits tubular epithelial cell injury in T1DM with concomitant induction of lipid metabolism disorders by a mechanism involving inhibition of miR-21 expression and consequent upregulation of PPARα expression. Moreover, Atorvastatin regulated lipid metabolism homeostasis and PPARα to restore mitochondrial function. The results emphasize the potential of Atorvastatin to exhibit lipid-regulating functions and non-lipid effects that balance mitochondrial dynamics.
Collapse
Affiliation(s)
- Jiayi Xiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Huifang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Xingcheng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Dan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Rongyu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Wanlin Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
| | - Luqun Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Mingjun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Fan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Ying Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Yuxia Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
| | - Yuanyuan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
- *Correspondence: Yuanyuan Wang, Yuan.yuan.wang.@outlook.com; Bing Guo,
| | - Bing Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guizhou, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guizhou, China
- *Correspondence: Yuanyuan Wang, Yuan.yuan.wang.@outlook.com; Bing Guo,
| |
Collapse
|
15
|
Miao J, Chen W, Wang P, Zhang X, Wang L, Wang S, Wang Y. MFN1 and MFN2 Are Dispensable for Sperm Development and Functions in Mice. Int J Mol Sci 2021; 22:ijms222413507. [PMID: 34948301 PMCID: PMC8707932 DOI: 10.3390/ijms222413507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
MFN1 (Mitofusin 1) and MFN2 (Mitofusin 2) are GTPases essential for mitochondrial fusion. Published studies revealed crucial roles of both Mitofusins during embryonic development. Despite the unique mitochondrial organization in sperm flagella, the biological requirement in sperm development and functions remain undefined. Here, using sperm-specific Cre drivers, we show that either Mfn1 or Mfn2 knockout in haploid germ cells does not affect male fertility. The Mfn1 and Mfn2 double knockout mice were further analyzed. We found no differences in testis morphology and weight between Mfn-deficient mice and their wild-type littermate controls. Spermatogenesis was normal in Mfn double knockout mice, in which properly developed TRA98+ germ cells, SYCP3+ spermatocytes, and TNP1+ spermatids/spermatozoa were detected in seminiferous tubules, indicating that sperm formation was not disrupted upon MFN deficiency. Collectively, our findings reveal that both MFN1 and MFN2 are dispensable for sperm development and functions in mice.
Collapse
Affiliation(s)
- Junru Miao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
| | - Wei Chen
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
| | - Xin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
| | - Lei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
| | - Shuai Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.M.); (P.W.); (X.Z.); (L.W.)
- Correspondence: (S.W.); (Y.W.)
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
- Correspondence: (S.W.); (Y.W.)
| |
Collapse
|
16
|
Zhao J, Dong L, Huo T, Cheng J, Li X, Huangfu X, Sun S, Wang H, Li L. O-GlcNAc Transferase (OGT) Protects Cerebral Neurons from Death During Ischemia/Reperfusion (I/R) Injury by Modulating Drp1 in Mice. Neuromolecular Med 2021; 24:299-310. [PMID: 34705256 DOI: 10.1007/s12017-021-08688-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 09/13/2021] [Indexed: 01/01/2023]
Abstract
Previous studies have demonstrated that increased O-linked N-acetylglucosamine (O-GlcNAc) level could promote cell survival following environmental stresses. This study aimed to explore the role of O-GlcNAc transferase (OGT) during cerebral ischemia/reperfusion (I/R) injury. The mouse model with cerebral I/R injury was induced by middle cerebral artery occlusion/reperfusion (MCAO/R). The expression of ogt in brain tissues was detected by qRT-PCR, Western blot, and immunohistochemistry (IHC) staining assay. Neurological deficit was evaluated using a modified scoring system. The infarct volume was assessed by TTC staining assay. Neuronal apoptosis in brain tissues was evaluated by TUNEL staining assay. The level of cleaved caspase-3 in brain tissues was detected by Western blot and IHC staining assay. The expression of critical proteins involved in mitochondrial fission, including OPA1, Mfn1, and Mfn2, as well as Mff and Drp1 was detected by Western blot and IHC, respectively. The expression of ogt during cerebral I/R injury was significantly upregulated. Ogt knockdown significantly increased neurological score and infarct volume in I/R-induced mice. Meanwhile, ogt knockdown significantly enhanced neuronal apoptosis and cleaved caspase-3 level in brain tissues of I/R-induced mice. In addition, ogt knockdown markedly decreased serine 637 phosphorylation level of mitochondrial fission protein dynamin-related protein 1 (Drp1) and promoted Drp1 translocation from the cytosol to the mitochondria. Moreover, the specific Drp1 inhibitor mdivi-1 effectively attenuated ogt knockdown-induced brain injury of I/R-stimulated mice in vivo. Our study revealed that OGT protects against cerebral I/R injury by inhibiting the function of Drp1 in mice, suggesting that ogt may be a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Jingru Zhao
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Lipeng Dong
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Tiantian Huo
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Jinming Cheng
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Xiaojuan Li
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Xiaojuan Huangfu
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Sujuan Sun
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Litao Li
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China.
| |
Collapse
|
17
|
Liu Z, Xia X, Lv X, Song E, Song Y. Iron-bearing nanoparticles trigger human umbilical vein endothelial cells ferroptotic responses by promoting intracellular iron level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117345. [PMID: 34004477 DOI: 10.1016/j.envpol.2021.117345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Iron-bearing nanoparticles (IBNPs) were abundant in particulate matter (PM). Due to their high reactivity, IBNPs were considered hazardous to human health, however, their toxic mode-of-action(s) are highly unclear. Ferroptosis is a novel programmed cell death (PCD) that highly associated with intracellular iron. However, the pro-ferroptotic effect of IBNPs has not been characterized. To this end, we ought to investigate whether and how IBNPs (synthetic γ-Fe2O3 and Fe3O4 NPs were selected as the model compounds) are involved in ferroptosis. We found that human umbilical vein endothelial cells (HUVECs) phagocytized large qualities of γ-Fe2O3 and Fe3O4 NPs, resulting in increased intracellular iron level. We further observed the disrupted cystine/glutamate reverse transporter (System Xc-) and glutathione peroxidase 4 (GPX4) signaling in γ-Fe2O3 and Fe3O4 NPs-challenged HUVECs. γ-Fe2O3 and Fe3O4 NPs could also cause mitochondrial fusion and fission dysregulation, activate lipid peroxidation and iron metabolism-related genes in a P53-dependent manner. Together, the ferroptotic activity of IBNPs should be acknowledged for the risk assessment of PM associated health effects.
Collapse
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaomin Xia
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xuying Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
18
|
Erdem Guzel E, Kaya Tektemur N, Tektemur A, Acay H, Yildirim A. The antioxidant and anti-apoptotic potential of Pleurotus eryngii extract and its chitosan-loaded nanoparticles against doxorubicin-induced testicular toxicity in male rats. Andrologia 2021; 53:e14225. [PMID: 34431122 DOI: 10.1111/and.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to evaluate the protective role of Pleurotus eryngii extract (PE) and Pleurotus eryngii extract-loaded chitosan nanoparticles (PE-CSNP) against doxorubicin (DOX)-induced testicular toxicity in rats. Male rats were divided into six groups: control (DMSO/ethanol), PE (200 mg/kg PE), PE-CSNP (30 mg/kg PE-CSNP), DOX (10 mg/kg DOX, a single dose, i.p), DOX+PE (10 mg/kg DOX+200 mg/kg PE) and DOX+PE-CSNP (10 mg/kg DOX+30 mg/kg PE-CSNP). PE and PE-CSNP were administered by oral gavage every other day for 21 days. DOX-treated rats showed histopathological impairment compared with the control group. There was an increase in the apoptotic index, caspase 3 (CASP3), BCL2-associated X apoptosis regulator (BAX), dynamin-related protein 1 (DRP1) expression and total oxidative status (TOS) in the DOX group, while mitofusin-2 (MFN2), total antioxidative status (TAS) and serum testosterone levels of the DOX group reduced when compared with the other groups. PE and PE-CSNP treatments provided significant protection against DOX-induced oxidative stress by reducing TOS levels and increasing TAS levels. CASP3, BAX, apoptotic index and DRP1-MFN2 expressions were restored by PE and PE-CSNP. However, the PE-CSNP showed higher antioxidant and anti-apoptotic efficacy compared with PE. Thus, our results provide evidence that CSNP and PE could synergistically have a potent antioxidant and anti-apoptotic therapy against DOX-induced testicular damage in male rats.
Collapse
Affiliation(s)
- Elif Erdem Guzel
- Department of Midwifery, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Hilal Acay
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey
| | - Ayfer Yildirim
- Vocational Higher School of Healthcare Studies, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
19
|
Cheng D, Su L, Wang X, Li X, Li L, Hu M, Lu Y. Extract of Cynomorium songaricum ameliorates mitochondrial ultrastructure impairments and dysfunction in two different in vitro models of Alzheimer's disease. BMC Complement Med Ther 2021; 21:206. [PMID: 34372842 PMCID: PMC8351341 DOI: 10.1186/s12906-021-03375-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/06/2021] [Indexed: 12/23/2022] Open
Abstract
Background Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, but there is still no effective way to stop or slow its progression. Our previous studies demonstrated that extract of Cynomorium songaricum (ECS), a Chinese herbal medicine, had neuroprotective effects in AD models in vivo. However, the pharmacological mechanism of ECS in AD is still unclear. Methods To study the mechanisms of action of the effects of ECS on AD, we used Aβ25–35- and H2O2-exposed HT22 cells to mimic specific stages of AD in vitro. The mitochondrial membrane potential (MMP), intracellular ATP, intracellular reactive oxygen species (ROS), and expression levels of mitochondrial dynamics-related proteins in each group were examined. Furthermore, we explored the mechanisms by which ECS reduces the phosphorylation of Drp1 at Ser637 and the changes in the concentrations of intracellular calcium ions in the two models after FK506 intervention. Results The results showed that ECS significantly enhanced the MMP (P < 0.05), increased intracellular ATP levels (P < 0.05) and decreased intracellular ROS levels in the Aβ- and H2O2-induced cell models (P < 0.05). Additionally, ECS regulated the expression levels of mitochondrial dynamics-related proteins by reducing the phosphorylation of Drp1 at Ser637 (P < 0.05) and decreasing the expression of Fis1 in the H2O2-induced models (P < 0.05). Further study indicated that ECS reduced the overload of intracellular calcium (P < 0.05). Conclusion Our study results suggest that ECS protects the mitochondrial ultrastructure, ameliorates mitochondrial dysfunction, and maintains mitochondrial dynamics in AD models. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03375-2.
Collapse
Affiliation(s)
- Dan Cheng
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Su
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinjie Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyuan Hu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Lu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
20
|
Murthi P, Rajaraman G. Inflammasomes in the Pathophysiology of Maternal Obesity: Potential Therapeutic Targets to Reduce Long-Term Adverse Health Outcomes in the Mother and Offspring. Curr Vasc Pharmacol 2021; 19:165-175. [PMID: 32493196 DOI: 10.2174/1570161118666200603131536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Over the past 20 years, the prevalence of obesity has risen dramatically worldwide, with an increase in occurrence among women in their reproductive age. Obesity during pregnancy is associated with significantly increased maternal and fetal morbidity and mortality. In addition to the short-term adverse health outcomes, both mother and the child are prone to develop cardiovascular, metabolic and neurological disorders. Although associations between obesity during pregnancy and adverse maternalfetal health outcomes are clear, the complex molecular mechanisms underlying maternal obesity remain largely unknown. This review describes multimeric self-assembling protein complexes, namely inflammasomes, as potential molecular targets in the pathophysiology of maternal obesity. Inflammasomes are implicated in both normal physiological and in pathophysiological processes that occur in response to an inflammatory milieu throughout gestation. This review highlights the current knowledge of inflammasome expression and its activity in pregnancies affected by maternal obesity. Key discussions in defining pharmacological inhibition of upstream as well as downstream targets of the inflammasome signaling cascade; and the inflammasome platform, as a potential therapeutic strategy in attenuating the pathophysiology underpinning inflammatory component in maternal obesity are presented herein.
Collapse
Affiliation(s)
- Padma Murthi
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Victoria, Australia
| | | |
Collapse
|
21
|
Tur J, Pereira-Lopes S, Vico T, Marín EA, Muñoz JP, Hernández-Alvarez M, Cardona PJ, Zorzano A, Lloberas J, Celada A. Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity. Cell Rep 2021; 32:108079. [PMID: 32846136 DOI: 10.1016/j.celrep.2020.108079] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Mitofusin 2 (Mfn2) plays a major role in mitochondrial fusion and in the maintenance of mitochondria-endoplasmic reticulum contact sites. Given that macrophages play a major role in inflammation, we studied the contribution of Mfn2 to the activity of these cells. Pro-inflammatory stimuli such as lipopolysaccharide (LPS) induced Mfn2 expression. The use of the Mfn2 and Mfn1 myeloid-conditional knockout (KO) mouse models reveals that Mfn2 but not Mfn1 is required for the adaptation of mitochondrial respiration to stress conditions and for the production of reactive oxygen species (ROS) upon pro-inflammatory activation. Mfn2 deficiency specifically impairs the production of pro-inflammatory cytokines and nitric oxide. In addition, the lack of Mfn2 but not Mfn1 is associated with dysfunctional autophagy, apoptosis, phagocytosis, and antigen processing. Mfn2floxed;CreLysM mice fail to be protected from Listeria, Mycobacterium tuberculosis, or LPS endotoxemia. These results reveal an unexpected contribution of Mfn2 to ROS production and inflammation in macrophages.
Collapse
Affiliation(s)
- Juan Tur
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Selma Pereira-Lopes
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Eros A Marín
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Juan P Muñoz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Maribel Hernández-Alvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Pere-Joan Cardona
- Unitat de tuberculosi experimental, Institut Germans Trias i Pujol, Badalona, Spain
| | - Antonio Zorzano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Antonio Celada
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
22
|
Hu Y, Chen H, Zhang L, Lin X, Li X, Zhuang H, Fan H, Meng T, He Z, Huang H, Gong Q, Zhu D, Xu Y, He P, Li L, Feng D. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 2021; 17:1142-1156. [PMID: 32249716 PMCID: PMC8143230 DOI: 10.1080/15548627.2020.1749490] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
Energy deprivation activates the cellular energy sensor AMP-activated protein kinase (AMPK), which in turn induces macroautophagy/autophagy. The mitochondrial-associated ER membrane (MAM) plays a key role in mitochondrial division and autophagy, and the mitochondrial fusion protein MFN2 (mitofusin 2) tethers the MAM, but the mechanism by which AMPK and MFN2 regulate autophagy in response to energy stress remains unclear. Here, we found that energy stress not only triggers mitochondrial fission and autophagy, but more importantly increases the number of MAMs, a process that requires AMPK. Interestingly, under energy stress, considerable amounts of AMPK translocate from cytosol to the MAM and the mitochondrion as mitochondrial fission occurs. Unexpectedly, AMPK interacts directly with MFN2. The autophagic ability of mouse embryonic fibroblasts (MEFs) lacking MFN2 (mfn2-/-) is significantly attenuated in response to energy stress as compared to wild-type MEFs (WT MEFs), while re-expression of MFN2 in mfn2-/- cells rescues the autophagy defects of these cells. The abundance of MAMs is also greatly reduced in MFN2-deficient cells. Functional experiments show that the oxygen consumption rate and the glycolytic function of cells lacking MFN2 but not MFN1 are obviously attenuated, and MFN2 is important for cell survival under energy stress. In conclusion, our study establishes the molecular link between the energy sensor AMPK and the MAM tether MFN2, and reveals the important role of AMPK and MFN2 in energy stress-induced autophagy and MAM dynamics.Abbreviations: ACTB, actin beta; AMPK, AMP-activated protein kinase; BECN1, beclin 1; CANX, calnexin; ER, endoplasmic reticulum; HRP, horseradish peroxidase; EM, electron microscopy; FL, full-length; KD, kinase dead, KO, knockout; MAb, monoclonal antibody; MAMs, mitochondria-associated membranes; MAP1LC3/LC3B, microtubule associated protein 1 light chain 3; MFN2, mitofusin 2; OPA1, OPA1 mitochondrial dynamin like GTPase; PAb, polyclonal antibody; PtdIns3K, class III phosphatidylinositol 3-kinase; PtdIns3P, phosphatidylinositol 3-phosphate; SD, standard deviation; TEM, transmission electron microscopy; TOMM20, translocase of outer mitochondrial membrane 20; ULK1, unc-51 like autophagy activating kinase 1; MEF, mouse embryonic fibroblast; WT, wildtype.
Collapse
Affiliation(s)
- Yongquan Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Hao Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Luying Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiaoying Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xia Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haixia Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Hualin Fan
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tian Meng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Zhengjie He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haofeng Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People’s Republic of China
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Diseases, the Second Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiming Xu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Longxuan Li
- Department of Neurology, Gongli Hospital, Pudong New Area, Shanghai 219 Miaopu Road, Pudong New Area, Shanghai 200135, P. R. China
| | - Du Feng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| |
Collapse
|
23
|
Wang X, Wen Y, Zhang J, Swanson G, Guo S, Cao C, Krawetz SA, Zhang Z, Yuan S. MFN2 interacts with nuage-associated proteins and is essential for male germ cell development by controlling mRNA fate during spermatogenesis. Development 2021; 148:dev.196295. [PMID: 33674260 DOI: 10.1242/dev.196295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Mitochondria play a crucial role in spermatogenesis and are regulated by several mitochondrial fusion proteins. However, their functional importance associated with their structure formation and mRNA fate regulation during spermatogenesis remains unclear. Here, we show that mitofusin 2 (MFN2), a mitochondrial fusion protein, interacts with nuage-associated proteins (including MIWI, DDX4, TDRKH and GASZ) in mice. Conditional mutation of Mfn2 in postnatal germ cells results in male sterility due to germ cell developmental defects. Moreover, MFN2 interacts with MFN1, another mitochondrial fusion protein with a high-sequence similarity to MFN2, in testes to facilitate spermatogenesis. Simultaneous mutation of Mfn1 and Mfn2 in testes causes very severe infertile phenotypes. Importantly, we show that MFN2 is enriched in polysome fractions of testes and interacts with MSY2, a germ cell-specific DNA/RNA-binding protein, to control gamete-specific mRNA (such as Spata19) translational activity during spermatogenesis. Collectively, our findings demonstrate that MFN2 interacts with nuage-associated proteins and MSY2 to regulate male germ cell development by controlling several gamete-specific mRNA fates.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Grace Swanson
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Shuangshuang Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Stephen A Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA.,Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
24
|
Erchova I, Sun S, Votruba M. A Perspective on Accelerated Aging Caused by the Genetic Deficiency of the Metabolic Protein, OPA1. Front Neurol 2021; 12:641259. [PMID: 33927681 PMCID: PMC8076550 DOI: 10.3389/fneur.2021.641259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Abstract
Autosomal Dominant Optic Atrophy (ADOA) is an ophthalmological condition associated primarily with mutations in the OPA1 gene. It has variable onset, sometimes juvenile, but in other patients, the disease does not manifest until adult middle age despite the presence of a pathological mutation. Thus, individuals carrying mutations are considered healthy before the onset of clinical symptoms. Our research, nonetheless, indicates that on the cellular level pathology is evident from birth and mutant cells are different from controls. We argue that the adaptation and early recruitment of cytoprotective responses allows normal development and functioning but leads to an exhaustion of cellular reserves, leading to premature cellular aging, especially in neurons and skeletal muscle cells. The appearance of clinical symptoms, thus, indicates the overwhelming of natural cellular defenses and break-down of native protective mechanisms.
Collapse
Affiliation(s)
- Irina Erchova
- Mitochondria and Vision Lab, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Shanshan Sun
- Mitochondria and Vision Lab, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Marcela Votruba
- Mitochondria and Vision Lab, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom.,Cardiff Eye Unit, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
25
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
26
|
Contino S, Suelves N, Vrancx C, Vadukul DM, Payen VL, Stanga S, Bertrand L, Kienlen-Campard P. Presenilin-Deficient Neurons and Astrocytes Display Normal Mitochondrial Phenotypes. Front Neurosci 2021; 14:586108. [PMID: 33551720 PMCID: PMC7862347 DOI: 10.3389/fnins.2020.586108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Presenilin 1 (PS1) and Presenilin 2 (PS2) are predominantly known as the catalytic subunits of the γ-secretase complex that generates the amyloid-β (Aβ) peptide, the major constituent of the senile plaques found in the brain of Alzheimer's disease (AD) patients. Apart from their role in γ-secretase activity, a growing number of cellular functions have been recently attributed to PSs. Notably, PSs were found to be enriched in mitochondria-associated membranes (MAMs) where mitochondria and endoplasmic reticulum (ER) interact. PS2 was more specifically reported to regulate calcium shuttling between these two organelles by controlling the formation of functional MAMs. We have previously demonstrated in mouse embryonic fibroblasts (MEF) an altered mitochondrial morphology along with reduced mitochondrial respiration and increased glycolysis in PS2-deficient cells (PS2KO). This phenotype was restored by the stable re-expression of human PS2. Still, all these results were obtained in immortalized cells, and one bottom-line question is to know whether these observations hold true in central nervous system (CNS) cells. To that end, we carried out primary cultures of PS1 knockdown (KD), PS2KO, and PS1KD/PS2KO (PSdKO) neurons and astrocytes. They were obtained from the same litter by crossing PS2 heterozygous; PS1 floxed (PS2+/-; PS1flox/flox) animals. Genetic downregulation of PS1 was achieved by lentiviral expression of the Cre recombinase in primary cultures. Strikingly, we did not observe any mitochondrial phenotype in PS1KD, PS2KO, or PSdKO primary cultures in basal conditions. Mitochondrial respiration and membrane potential were similar in all models, as were the glycolytic flux and NAD+/NADH ratio. Likewise, mitochondrial morphology and content was unaltered by PS expression. We further investigated the differences between results we obtained here in primary nerve cells and those previously reported in MEF cell lines by analyzing PS2KO primary fibroblasts. We found no mitochondrial dysfunction in this model, in line with observations in PS2KO primary neurons and astrocytes. Together, our results indicate that the mitochondrial phenotype observed in immortalized PS2-deficient cell lines cannot be extrapolated to primary neurons, astrocytes, and even to primary fibroblasts. The PS-dependent mitochondrial phenotype reported so far might therefore be the consequence of a cell immortalization process and should be critically reconsidered regarding its relevance to AD.
Collapse
Affiliation(s)
- Sabrina Contino
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Nuria Suelves
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Vrancx
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Devkee M. Vadukul
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Valery L. Payen
- Laboratory of Advanced Drug Delivery and Biomaterial (ADDB), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Brussels, Belgium
| | - Serena Stanga
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
27
|
Na W, Fu L, Luu N, Shi YB. Thyroid hormone directly activates mitochondrial fission process 1 (Mtfp1) gene transcription during adult intestinal stem cell development and proliferation in Xenopus tropicalis. Gen Comp Endocrinol 2020; 299:113590. [PMID: 32827515 DOI: 10.1016/j.ygcen.2020.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (T3) regulates vertebrate development via T3 receptors (TRs). T3 level peaks during postembryonic development, a period around birth in mammals or metamorphosis in anurans. Anuran metamorphosis offers many advantages for studying T3 and TR function in vivo largely because of its total dependent on T3 and the dramatic changes affecting essentially all organs/tissues that can be easily manipulated. Earlier studies have shown that TRs are both necessary and sufficient for mediating the metamorphic effects of T3. Many candidate TR target genes have been identified during Xenopus tropicalis intestinal metamorphosis, a process that involves apoptotic degeneration of most of the larval epithelial cells and de novo development of adult epithelial stem cells. Among these putative TR target genes is mitochondrial fission process 1 (Mtfp1), a nuclear-encoded mitochondrial gene. Here, we report that Mtfp1gene expression peaks in the intestine during both natural and T3-induced metamorphosis when adult epithelial stem cell development and proliferation take place. Furthermore, we show that Mtfp1 contains a T3-response element within the first intron that is bound by TR to mediate T3-induced local histone H3K79 methylation and RNA polymerase recruitment in the intestine during metamorphosis. Additionally, we demonstrate that the Mtfp1 promoter can be activated by T3 in a reconstituted frog oocyte system in vivo and that this activation is dependent on the intronic TRE. These findings suggest that T3 activates Mtfp1 gene directly via the intronic TRE and that Mtfp1 in turn facilitate adult intestinal stem cell development/proliferation by affecting mitochondrial fission process.
Collapse
Affiliation(s)
- Wonho Na
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This article provides an overview of Charcot-Marie-Tooth disease (CMT) and other inherited neuropathies. These disorders encompass a broad spectrum with variable motor, sensory, autonomic, and other organ system involvement. Considerable overlap exists, both phenotypically and genetically, among these separate categories, all eventually exhibiting axonal injury and neurologic impairment. Depending on the specific neural and non-neural localizations, patients experience varying morbidity and mortality. Neurologic evaluations, including neurophysiologic testing, can help diagnose and predict patient disabilities. Diagnosis is often complex, especially when genetic and acquired components overlap. RECENT FINDINGS Next-generation sequencing has greatly improved genetic diagnosis, with many third-party reimbursement parties now embracing phenotype-based panel evaluations. Through the advent of comprehensive gene panels, symptoms previously labeled as idiopathic or atypical now have a better chance to receive a specific diagnosis. A definitive molecular diagnosis affords patients improved care and counsel. The new classification scheme for inherited neuropathies emphasizes the causal gene names. A specific genetic diagnosis is important as considerable advances are being made in gene-specific therapeutics. Emerging therapeutic approaches include small molecule chaperones, antisense oligonucleotides, RNA interference, and viral gene delivery therapies. New therapies for hereditary transthyretin amyloidosis and Fabry disease are discussed. SUMMARY Comprehensive genetic testing through a next-generation sequencing approach is simplifying diagnostic algorithms and affords significantly improved decision-making processes in neuropathy care. Genetic diagnosis is essential for pathogenic understanding and for gene therapy development. Gene-targeted therapies have begun entering the clinic. Currently, for most inherited neuropathy categories, specific symptomatic management and family counseling remain the mainstays of therapy.
Collapse
|
29
|
Sun Q, Yang Y, Wang Z, Yang X, Gao Y, Zhao Y, Ge W, Liu J, Xu X, Guan W, Weng D, Wang S, Wang J, Zhang J. PER1 interaction with GPX1 regulates metabolic homeostasis under oxidative stress. Redox Biol 2020; 37:101694. [PMID: 32896721 PMCID: PMC7484554 DOI: 10.1016/j.redox.2020.101694] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolism serves mammalian feeding and active behavior, and is controlled by circadian clock. The molecular mechanism by which clock factors regulate metabolic homeostasis under oxidative stress is unclear. Here, we have characterized that the daily oxygen consumption rhythm was deregulated in Per1 deficient mice. Per1 deficiency impaired daily mitochondrial dynamics and deregulated cellular GPx-related ROS fluctuations in the peripheral organs. We identified that PER1 enhanced GPx activity through PER1/GPX1 interaction in cytoplasm, consequently improving the oxidative phosphorylation efficiency of mitochondria. Per1 expression was specifically elevated in the fasting peripheral organs for protecting mitochondrial from oxidation stress. These observations reveal that Per1-driven mitochondrial dynamics is a critical effector mechanism for the regulation of mitochondrial function in response to oxidation stress. PER1 regulates daily metabolic rhythm uncoupled from feeding oscillations. Per1 deficiency impairs mitochondrial dynamics and deregulates ROS fluctuations. PER1 interactions with GPX1 and increases mitochondrial ROS clearance. Fasting elevates Per1 expression to protect mitochondrial from oxidation stress.
Collapse
Affiliation(s)
- Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China; Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, 233030, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Zhongqiu Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Guan
- The Second Hospital of Nanjing, Nanjing Medical University, Nanjing, 210003, China
| | - Dan Weng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
30
|
Sun NY, Yang MH. Metabolic Reprogramming and Epithelial-Mesenchymal Plasticity: Opportunities and Challenges for Cancer Therapy. Front Oncol 2020; 10:792. [PMID: 32509584 PMCID: PMC7252305 DOI: 10.3389/fonc.2020.00792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic reprogramming and epithelial-mesenchymal plasticity are both hallmarks of the adaptation of cancer cells for tumor growth and progression. For metabolic changes, cancer cells alter metabolism by utilizing glucose, lipids, and amino acids to meet the requirement of rapid proliferation and to endure stressful environments. Dynamic changes between the epithelial and mesenchymal phenotypes through epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are critical steps for cancer invasion and metastatic colonization. Compared to the extensively studied metabolic reprogramming in tumorigenesis, the metabolic changes in metastasis are relatively unclear. Here, we review metabolic reprogramming, epithelial-mesenchymal plasticity, and their mutual influences on tumor cells. We also review the developing treatments for targeting cancer metabolism and the impact of metabolic targeting on EMT. In summary, understanding the metabolic adaption and phenotypic plasticity will be mandatory for developing new strategies to target metastatic and refractory cancers that are intractable to current treatments.
Collapse
Affiliation(s)
- Nai-Yun Sun
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2020; 157:R159-R179. [PMID: 30870807 DOI: 10.1530/rep-18-0431] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.
Collapse
Affiliation(s)
- Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Changes in the Expression of Mitochondrial Morphology-Related Genes during the Differentiation of Murine Embryonic Stem Cells. Stem Cells Int 2020; 2020:9369268. [PMID: 32399055 PMCID: PMC7204333 DOI: 10.1155/2020/9369268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
During embryonic development, cells undergo changes in gene expression, signaling pathway activation/inactivation, metabolism, and intracellular organelle structures, which are mediated by mitochondria. Mitochondria continuously switch their morphology between elongated tubular and fragmented globular via mitochondrial fusion and fission. Mitochondrial fusion is mediated by proteins encoded by Mfn1, Mfn2, and Opa1, whereas mitochondrial fission is mediated by proteins encoded by Fis1 and Dnm1L. Here, we investigated the expression patterns of mitochondria-related genes during the differentiation of mouse embryonic stem cells (ESCs). Pluripotent ESCs maintain stemness in the presence of leukemia inhibitory factor (LIF) via the JAK-STAT3 pathway but lose pluripotency and differentiate in response to the withdrawal of LIF. We analyzed the expression levels of mitochondrial fusion- and fission-related genes during the differentiation of ESCs. We hypothesized that mitochondrial fusion genes would be overexpressed while the fission genes would be downregulated during the differentiation of ESCs. Though the mitochondria exhibited an elongated morphology in ESCs differentiating in response to LIF withdrawal, only the expression of Mfn2 was increased and that of Dnm1L was decreased as expected, the other exceptions being Mfn1, Opa1, and Fis1. Next, by comparing gene expression and mitochondrial morphology, we proposed an index that could precisely represent mitochondrial changes during the differentiation of pluripotent stem cells by analyzing the expression ratios of three fusion- and two fission-related genes. Surprisingly, increased Mfn2/Dnm1L ratio was correlated with elongation of mitochondria during the differentiation of ESCs. Moreover, application of this index to other specialized cell types revealed that neural stems cells (NSCs) and mouse embryonic fibroblasts (MEFs) showed increased Mfn2/Dnm1L ratio compared to ESCs. Thus, we suggest that the Mfn2/Dnm1L ratio could reflect changes in mitochondrial morphology according to the extent of differentiation.
Collapse
|
33
|
Bhupana JN, Huang BT, Liou GG, Calkins MJ, Lin-Chao S. Gas7 knockout affects PINK1 expression and mitochondrial dynamics in mouse cortical neurons. FASEB Bioadv 2020; 2:166-181. [PMID: 32161906 PMCID: PMC7059628 DOI: 10.1096/fba.2019-00091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/21/2019] [Accepted: 12/31/2019] [Indexed: 11/11/2022] Open
Abstract
Dynamic fission and fusion events regulate mitochondrial shape, distribution, and rejuvenation, and proper control of these processes is essential for neuronal homeostasis. Here, we report that Gas7, a known cytoskeleton regulator, controls mitochondrial dynamics within neurons of the central nervous system. In this study, we generated an improved Gas7-knockout mouse and evaluated its mitochondrial phenotype. We first identified Gas7 in mitochondrial fractions from wild-type brain tissue, and observed Gas7 colocalization with mitochondria in primary cortical neurons. In Gas7-deficient brain tissue and neuronal cultures mitochondria were elongated with perinuclear clustering. These morphological abnormalities were associated with increased levels mitochondrial fusion proteins and increased PKA-dependent phosphorylation of Drp-1 in brain tissues, suggesting an imbalance of mitochondrial fusion and fission. Moreover, expression of mitochondrial quality control kinase, PINK1, and PINK1-specific phosphorylation of Mfn-2 (S442), Parkin (S65), and ubiquitin (S65) were all reduced in the knockout cells. Ectopic expression of Gas7 restored mitochondrial morphology and distribution, as well as PINK1 expression in Gas7-null cortical neurons. Collectively, our results introduce a novel role of mouse Gas7 in determining the dynamics, morphology, and intracellular distribution of neuronal mitochondria, which are expected to be required for normal neuronal function.
Collapse
Affiliation(s)
- Jagannatham Naidu Bhupana
- Molecular Cell Biology Taiwan International Graduate Program Institute of Molecular Biology Academia Sinica and Graduate Institute of Life Sciences National Defense Medical Center Taipei Taiwan.,Institute of Molecular Biology Academia Sinica Taipei Taiwan
| | - Bo-Tsang Huang
- Institute of Molecular Biology Academia Sinica Taipei Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology Academia Sinica Taipei Taiwan
| | - Marcus J Calkins
- Institute of Cellular and Organismic Biology Academia Sinica Taipei Taiwan
| | - Sue Lin-Chao
- Molecular Cell Biology Taiwan International Graduate Program Institute of Molecular Biology Academia Sinica and Graduate Institute of Life Sciences National Defense Medical Center Taipei Taiwan.,Institute of Molecular Biology Academia Sinica Taipei Taiwan
| |
Collapse
|
34
|
Muñoz-Úbeda M, Tolosa-Díaz A, Bhattacharya S, Junquera E, Aicart E, Natale P, López-Montero I. Gemini-Based Lipoplexes Complement the Mitochondrial Phenotype in MFN1-Knockout Mouse Embryonic Fibroblasts. Mol Pharm 2019; 16:4787-4796. [PMID: 31609634 DOI: 10.1021/acs.molpharmaceut.9b00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondria form a dynamic network of constantly dividing and fusing organelles. The balance between these antagonistic processes is crucial for normal cellular function and requires the action of specialized proteins. The mitochondrial membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) are responsible for the fusion of the outer membrane of adjacent mitochondria. Mutations within Mfn1 or Mfn2 impair mitochondrial fusion and lead to some severe mitochondrial dysfunctions and mitochondrial diseases (MDs). A characteristic phenotype of cells carrying defective Mfn1 or Mfn2 is the presence of a highly fragmented mitochondrial network. Here, we use a biocompatible mixture of lipids, consisting on synthetic gemini cationic lipids (GCLs) and the zwitterionic phospholipid (DOPE), to complex, transport, and deliver intact copies of MFN1 gene into MFN1-Knockout mouse embryonic fibroblasts (MFN1-KO MEFs). We demonstrate that the GCL/DOPE-DNA lipoplexes are able to introduce the intact MFN1 gene into the cells and ectopically produce functional Mfn1. A four-fold increase of the Mfn1 levels is necessary to revert the MFN1-KO phenotype and to partially restore a mitochondrial network. This phenotype complementation was correlated with the transfection of GCL/DOPE-MFN1 lipoplexes that exhibited a high proportion of highly packaged hexagonal phase. GCL/DOPE-DNA lipoplexes are formulated as efficient therapeutic agents against MDs.
Collapse
Affiliation(s)
- Mónica Muñoz-Úbeda
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Andrés Tolosa-Díaz
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Elena Junquera
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Emilio Aicart
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Paolo Natale
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Iván López-Montero
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
35
|
Xiao F, Lv J, Liang YB, Chen YH, Tu YB, Guan RC, Li L, Xie YB. The expression of glucose transporters and mitochondrial division and fusion proteins in rats exposed to hypoxic preconditioning to attenuate propofol neurotoxicity. Int J Neurosci 2019; 130:161-169. [PMID: 31516040 DOI: 10.1080/00207454.2019.1667784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: Evidence has shown that propofol may cause widespread apoptotic neurodegeneration. Hypoxic preconditioning has been demonstrated to provide neuroprotection and brain recovery from both acute and chronic neurodegeneration in several cellular and animal models. However, the mechanism has not been well elucidated. Therefore, the present study was designed to investigate the expression of glucose transporters (GLUT1 and GLUT3) and mitochondrial division and fusion (Drp1 and Mfn2) proteins in rats exposed to hypoxic preconditioning to attenuate propofol neurotoxicity.Methods: Propofol (100 mg/kg) was given to 7-day-old Sprague-Dawley rats; in some rats, hypoxic preconditioning was administered before intraperitoneal propofol injection by subjecting rats to five cycles of 10 min of hypoxia (8% O2) and 10 min of normoxia (21% O2). Then, the rats were allowed to breathe room air for 2 h. Neuronal mitochondrial morphology was observed by transmission electron microscopy. ATP content was detected using an ATP assay kit. The expression levels of GLUT1, GLUT3, pDrp1, Drp1 and Mfn2 were detected by Western blot, and the expression levels of GLUT1 and GLUT3 were further examined by immunohistochemistry.Results: Propofol damaged mitochondria, and decreased ATP content and GLUT3 and pDrp1 protein expression. However, our results suggested that hypoxic preconditioning could attenuate propofol neurotoxicity by reducing mitochondrial damage and increasing ATP content and pDrp1, GLUT1 and GLUT3 protein expression.Conclusion: Hypoxic preconditioning reduced propofol-induced damage in the hippocampus of neonatal rats by attenuating the increase in mitochondrial division and decrease in GLUT3 expression.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Bing Liang
- Department of Anesthesiology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yan Hua Chen
- Department of Anesthesiology, Cardiovascular Institute, Nanning, China
| | - You Bing Tu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rui Cong Guan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Bo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Epithelial-Mesenchymal Transition Directs Stem Cell Polarity via Regulation of Mitofusin. Cell Metab 2019; 29:993-1002.e6. [PMID: 30527740 DOI: 10.1016/j.cmet.2018.11.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/17/2018] [Accepted: 11/09/2018] [Indexed: 11/22/2022]
Abstract
Mitochondria are dynamic organelles that have been linked to stem cell homeostasis. However, the mechanisms involved in mitochondrial regulation of stem cell fate determination remain elusive. Here we discover that epithelial-mesenchymal transition (EMT), a key process in cancer progression, induces mitochondrial fusion through regulation of the miR200c-PGC1α-MFN1 pathway. EMT-activated MFN1 forms a complex with PKCζ and is required for PKCζ-mediated NUMB phosphorylation and dissociation from the cortical membrane to direct asymmetric division of mammary stem cells, where fused mitochondria are tethered by MFN1-PKCζ to the cortical membrane and asymmetrically segregated to the stem cell-like progeny with enhanced glutathione synthesis and reactive oxygen species scavenging capacities, allowing sustaining of a self-renewing stem cell pool. Suppression of MFN1 expression leads to equal distribution of the fragmented mitochondria in both progenies that undergo symmetric luminal cell differentiation. Together, this study elucidates an essential role of mitofusin in stem cell fate determination to mediate EMT-associated stemness.
Collapse
|
37
|
Park JE, Kim YJ, Lee SG, Kim JY, Chung JY, Jeong SY, Koh H, Yun J, Park HT, Yoo YH, Kim JM. Drp1 Phosphorylation Is Indispensable for Steroidogenesis in Leydig Cells. Endocrinology 2019; 160:729-743. [PMID: 30689811 DOI: 10.1210/en.2019-00029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/21/2019] [Indexed: 11/19/2022]
Abstract
The initial steps of steroidogenesis occur in the mitochondria. Dynamic changes in the mitochondria are associated with their fission and fusion. Therefore, understanding the cellular and molecular relationships between steroidogenesis and mitochondrial dynamics is important. The hypothesis of the current study is that mitochondrial fission and fusion are closely associated with steroid hormone synthesis in testicular Leydig cells. Steroid hormone production, induced by dibutyryl cAMP (dbcAMP) in Leydig cells, was accompanied by increased mitochondrial mass. Mitochondrial elongation increased during the dbcAMP-induced steroid production, whereas mitochondrial fragmentation was reduced. Among the mitochondrial-shaping proteins, the level of dynamin-associated protein 1 (Drp1) was altered in response to dbcAMP stimulation. The increase in Drp1 Ser 637 phosphorylation correlated with steroid hormone production in the MA-10 Leydig cells as well as in the primary adult rat Leydig cells. Drp1 was differentially expressed in the Leydig cells during testicular development. Finally, gonadotropin administration altered the status of Drp1 phosphorylation in the Leydig cells of immature rat testes. Overall, mitochondrial dynamics is directly linked to steroidogenesis, and Drp1 plays an important regulatory role during steroidogenesis. This study shows that Drp1 level is regulated by cAMP and that its phosphorylation via protein kinase A (PKA) activation plays a decisive role in mitochondrial shaping by offering an optimal environment for steroid hormone biosynthesis in Leydig cells. Therefore, it is suggested that PKA-mediated Drp1 Ser 637 phosphorylation is indispensable for steroidogenesis in the Leydig cells, and this phosphorylation results in mitochondrial elongation via the relative attenuation of mitochondrial fission during steroidogenesis.
Collapse
Affiliation(s)
- Ji-Eun Park
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Yoon-Jae Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seung Gee Lee
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Ji Young Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jin-Yong Chung
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seon-Yong Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hyongjong Koh
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Hwan Tae Park
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
38
|
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
39
|
Zorov DB, Vorobjev IA, Popkov VA, Babenko VA, Zorova LD, Pevzner IB, Silachev DN, Zorov SD, Andrianova NV, Plotnikov EY. Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells 2019; 8:E175. [PMID: 30791381 PMCID: PMC6406845 DOI: 10.3390/cells8020175] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/12/2023] Open
Abstract
Thirty-five years ago, we described fragmentation of the mitochondrial population in a living cell into small vesicles (mitochondrial fission). Subsequently, this phenomenon has become an object of general interest due to its involvement in the process of oxidative stress-related cell death and having high relevance to the incidence of a pathological phenotype. Tentatively, the key component of mitochondrial fission process is segregation and further asymmetric separation of a mitochondrial body yielding healthy (normally functioning) and impaired (incapable to function in a normal way) organelles with subsequent decomposition and removal of impaired elements through autophagy (mitophagy). We speculate that mitochondria contain cytoskeletal elements, which maintain the mitochondrial shape, and also are involved in the process of intramitochondrial segregation of waste products. We suggest that perturbation of the mitochondrial fission/fusion machinery and slowdown of the removal process of nonfunctional mitochondrial structures led to the increase of the proportion of impaired mitochondrial elements. When the concentration of malfunctioning mitochondria reaches a certain threshold, this can lead to various pathologies, including aging. Overall, we suggest a process of mitochondrial fission to be an essential component of a complex system controlling a healthy cell phenotype. The role of reactive oxygen species in mitochondrial fission is discussed.
Collapse
Affiliation(s)
- Dmitry B Zorov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ivan A Vorobjev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Vasily A Popkov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Valentina A Babenko
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ljubava D Zorova
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Irina B Pevzner
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Denis N Silachev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Savva D Zorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nadezda V Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Egor Y Plotnikov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119146, Russia.
| |
Collapse
|
40
|
Hou X, Zhu S, Zhang H, Li C, Qiu D, Ge J, Guo X, Wang Q. Mitofusin1 in oocyte is essential for female fertility. Redox Biol 2019; 21:101110. [PMID: 30690319 PMCID: PMC6351231 DOI: 10.1016/j.redox.2019.101110] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Mitofusins (Mfn) are the important regulators of mitochondrial organization in mammalian cells; however, their roles during oocyte development remain unknown. In the present study, we generated mice with oocyte-specific knockout of Mfn1 or Mfn2 (Mfn1fl/fl;Zp3-Cre or Mfn2fl/fl;Zp3-Cre). We report that deletion of Mfn1, but not Mfn2, in oocytes leads to female mice sterility, associated with the defective folliculogenesis and impaired oocyte quality. In specific, follicles are arrested at secondary stage in Mfn1fl/fl;Zp3-Cre mice, accompanying with the reduced proliferation of granulosa cells. Moreover, alterations of mitochondrial structure and distribution pattern are readily observed in Mfn1-null oocytes. Consistent with this, mitochondrial activity and function are severely disrupted in oocytes from Mfn1fl/fl;Zp3-Cre mice. In addition, the differentially expressed genes in Mfn1-deleted oocytes are also identified by whole-transcriptome sequencing. In sum, these results demonstrate that Mfn1-modulated mitochondrial function is essential for oocyte development and folliculogenesis, providing a novel mechanism determining female fertility.
Collapse
Affiliation(s)
- Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China; Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child HealthCare Hospital, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China; Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Chunling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China
| | - Danhong Qiu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China; Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
41
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
42
|
Son G, Han J. Roles of mitochondria in neuronal development. BMB Rep 2018; 51:549-556. [PMID: 30269744 PMCID: PMC6283025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 04/06/2024] Open
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141,
Korea
| |
Collapse
|
43
|
Mitochondrial dynamics regulates Drosophila intestinal stem cell differentiation. Cell Death Discov 2018; 4:17. [PMID: 30062062 PMCID: PMC6056485 DOI: 10.1038/s41420-018-0083-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 01/12/2023] Open
Abstract
Differentiation of stem/progenitor cells is associated with a substantial increase in mitochondrial mass and complexity. Mitochondrial dynamics, including the processes of fusion and fission, plays an important role for somatic cell reprogramming and pluripotency maintenance in induced pluripotent cells (iPSCs). However, the role of mitochondrial dynamics during stem/progenitor cell differentiation in vivo remains elusive. Here we found differentiation of Drosophila intestinal stem cell is accompanied with continuous mitochondrial fusion. Mitochondrial fusion defective(opa1RNAi) ISCs contain less mitochondrial membrane potential, reduced ATP, and increased ROS level. Surprisingly, suppressing fusion also resulted in the failure of progenitor cells to differentiate. Cells did not switch on the expression of differentiation markers, and instead continued to show characteristics of progenitor cells. Meanwhile, proliferation or apoptosis was unaffected. The differentiation defect could be rescued by concomitant inhibition of Drp1, a mitochondrial fission molecule. Moreover, ROS scavenger also partially rescues opa1RNAi-associated differentiation defects via down-regulating JNK activity. We propose that mitochondrial fusion plays a pivotal role in controlling the developmental switch of stem cell fate.
Collapse
|
44
|
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer 2018; 1869:189-199. [PMID: 29408395 DOI: 10.1016/j.bbcan.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic agent for a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, DOX exhibits a dose-related toxicity that results in life-threatening cardiomyopathy. In addition to the heart, there is evidence that DOX toxicity extends to other organs. This general toxicity seems to be related to mitochondrial network structural, molecular and functional impairments. Several countermeasures for these negative effects have been proposed, being physical exercise, not only one of the most effective non-pharmacologic strategy but also widely recommended as booster against cancer-related fatigue. It is widely accepted that mitochondria are critical sensors of tissue functionality, both modulated by DOX and exercise. Therefore, this review focuses on the current understanding of the mitochondrial-mediated mechanisms underlying the protective effect of exercise against DOX-induced toxicity, not only limited to the cardiac tissue, but also in other tissues such as skeletal muscle, liver and brain. We here analyze recent developments regarding the beneficial effects of exercise targeting mitochondrial responsive phenotypes against redox changes, mitochondrial bioenergetics, apoptotic, dynamics and quality control signalling affected by DOX treatment.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Psychology, Education and Sport, University Lusófona of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | - P J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
45
|
Mitochondrial network complexity emerges from fission/fusion dynamics. Sci Rep 2018; 8:363. [PMID: 29321534 PMCID: PMC5762699 DOI: 10.1038/s41598-017-18351-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/06/2017] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial networks exhibit a variety of complex behaviors, including coordinated cell-wide oscillations of energy states as well as a phase transition (depolarization) in response to oxidative stress. Since functional and structural properties are often interwinded, here we characterized the structure of mitochondrial networks in mouse embryonic fibroblasts using network tools and percolation theory. Subsequently we perturbed the system either by promoting the fusion of mitochondrial segments or by inducing mitochondrial fission. Quantitative analysis of mitochondrial clusters revealed that structural parameters of healthy mitochondria laid in between the extremes of highly fragmented and completely fusioned networks. We confirmed our results by contrasting our empirical findings with the predictions of a recently described computational model of mitochondrial network emergence based on fission-fusion kinetics. Altogether these results offer not only an objective methodology to parametrize the complexity of this organelle but also support the idea that mitochondrial networks behave as critical systems and undergo structural phase transitions.
Collapse
|
46
|
Protective effect of mitochondrial-targeted antioxidant MitoQ against iron ion 56Fe radiation induced brain injury in mice. Toxicol Appl Pharmacol 2018; 341:1-7. [PMID: 29317239 DOI: 10.1016/j.taap.2018.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/23/2022]
Abstract
Exposure to iron ion 56Fe radiation (IR) during space missions poses a significant risk to the central nervous system and radiation exposure is intimately linked to the production of reactive oxygen species (ROS). MitoQ is a mitochondria-targeted antioxidant that has been shown to decrease oxidative damage and lower mitochondrial ROS in a number of animal models. Therefore, the present study aimed to investigate role of the mitochondrial targeted antioxidant MitoQ against 56Fe particle irradiation-induced oxidative damage and mitochondria dysfunction in the mouse brains. Increased ROS levels were observed in mouse brains after IR compared with the control group. Enhanced ROS production leads to disruption of cellular antioxidant defense systems, mitochondrial respiration dysfunction, altered mitochondria dynamics and increased release of cytochrome c (cyto c) from mitochondria into cytosol resulting in apoptotic cell death. MitoQ reduced IR-induced oxidative stress (decreased ROS production and increased SOD, CAT activities) with decreased lipid peroxidation as well as reduced protein and DNA oxidation. MitoQ also protected mitochondrial respiration after IR. In addition, MitoQ increased the expression of mitofusin2 (Mfn2) and optic atrophy gene1 (OPA1), and decreased the expression of dynamic-like protein (Drp1). MitoQ also suppressed mitochondrial DNA damage, cyto c release, and caspase-3 activity in IR-treated mice compared to the control group. These results demonstrate that MitoQ may protect against IR-induced brain injury.
Collapse
|
47
|
Zein S, Francis Z, Montarou G, Chandez F, Kane MS, Chevrollier A. Microdosimetry in 3D realistic mitochondria phantoms: Geant4 Monte Carlo tracking of 250keV photons in phantoms reconstructed from microscopic images. Phys Med 2017; 42:7-12. [PMID: 29173923 DOI: 10.1016/j.ejmp.2017.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/12/2017] [Accepted: 08/09/2017] [Indexed: 11/26/2022] Open
Abstract
Mitochondria are considered to be sensitive radiation targets since they control processes vital to the cell's functioning. These organelles are starting to get attention and some studies are investigating the radiation dose inside them. In previous studies, mitochondria are represented as simple ellipsoids inside the cell not taking into consideration the complexity of their shape. In this study, realistic phantoms are built based on deconvolved widefield fluorescent microscopic images of the mitochondrial networks of fibroblast cells. The phantoms are imported into Geant4 as tessellated volumes taking into account the geometrical complexity of these organelles. Irradiation with 250keV photons is performed and the lineal energy is calculated. The lineal energy distributions inside the produced phantoms are compared with those calculated inside simple volumes, a sphere and an ellipsoid, where the effect of the shape and volume is clearly seen on lineal energies.
Collapse
Affiliation(s)
- S Zein
- Saint Joseph University, Faculty of Sciences, Department of Physics, Beirut, Lebanon; Laboratoire de Physique de Clermont (Particules, pLasmas, Univers, applicationS), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France.
| | - Z Francis
- Saint Joseph University, Faculty of Sciences, Department of Physics, Beirut, Lebanon
| | - G Montarou
- Laboratoire de Physique de Clermont (Particules, pLasmas, Univers, applicationS), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France
| | - F Chandez
- Laboratoire de Physique de Clermont (Particules, pLasmas, Univers, applicationS), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France
| | - M S Kane
- PREMMi/Mitochondrial Medicine Research Centre, Institut MITOVASC, CNRS UMR 6015, INSERM U1083, Université d'Angers, CHU d'Angers, Angers, France
| | - A Chevrollier
- PREMMi/Mitochondrial Medicine Research Centre, Institut MITOVASC, CNRS UMR 6015, INSERM U1083, Université d'Angers, CHU d'Angers, Angers, France
| |
Collapse
|
48
|
Wang C, Wang G, Li X, Wang K, Fan J, Jiang K, Guo Y, Zhang H. Highly Sensitive Fluorescence Molecular Switch for the Ratio Monitoring of Trace Change of Mitochondrial Membrane Potential. Anal Chem 2017; 89:11514-11519. [DOI: 10.1021/acs.analchem.7b02781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Caixia Wang
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453000, P.R. China
| | - Ge Wang
- Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Xiang Li
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453000, P.R. China
- Key
Laboratory for Yellow River and Huai River Water Environment and Pollution
Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, Henan 453000, P.R. China
| | - Kui Wang
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453000, P.R. China
| | - Jing Fan
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453000, P.R. China
- Key
Laboratory for Yellow River and Huai River Water Environment and Pollution
Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, Henan 453000, P.R. China
| | - Kai Jiang
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453000, P.R. China
- Key
Laboratory for Yellow River and Huai River Water Environment and Pollution
Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, Henan 453000, P.R. China
| | - Yuming Guo
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453000, P.R. China
| | - Hua Zhang
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
49
|
Zheng X, Chen M, Meng X, Chu X, Cai C, Zou F. Phosphorylation of dynamin-related protein 1 at Ser616 regulates mitochondrial fission and is involved in mitochondrial calcium uniporter-mediated neutrophil polarization and chemotaxis. Mol Immunol 2017; 87:23-32. [DOI: 10.1016/j.molimm.2017.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 11/28/2022]
|
50
|
Chao T, Wang H, Ho PC. Mitochondrial Control and Guidance of Cellular Activities of T Cells. Front Immunol 2017; 8:473. [PMID: 28484465 PMCID: PMC5401871 DOI: 10.3389/fimmu.2017.00473] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/05/2017] [Indexed: 01/01/2023] Open
Abstract
Immune cells protect us against infection and cancer cells, as well as functioning during healing processes to support tissue repairing and regeneration. These behaviors require that upon stimulation from immune activation the appropriate subsets of immune cells are generated. In addition to activation-induced signaling cascades, metabolic reprogramming (profound changes in metabolic pathways) also provides a novel form of regulation to control the formation of desirable immune responses. Immune cells encounter various nutrient compositions by circulating in bloodstream and infiltrating into peripheral tissues; therefore, proper engagement of metabolic pathways is critical to fulfill the metabolic demands of immune cells. Metabolic pathways are tightly regulated mainly via mitochondrial dynamics and the activities of the tricarboxylic acid cycle and the electron transport chain. In this review, we will discuss how metabolic reprogramming influences activation, effector functions, and lineage polarization in T cells, with a particular focus on mitochondria-regulated metabolic checkpoints. Additionally, we will further explore how in various diseases deregulation and manipulation of mitochondrial regulation can occur and be exploited. Furthermore, we will discuss how this knowledge can facilitate the design of immunotherapies.
Collapse
Affiliation(s)
- Tung Chao
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Haiping Wang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|