1
|
Kim B, Yang M, Lee J, Kim JS, Hyun SH, Moon C. Upregulation of γ-synuclein in the prefrontal cortex and hippocampus following dopamine depletion: A study using the striatal 6-hydroxydopamine hemiparkinsonian rat model. Neurosci Lett 2024; 839:137936. [PMID: 39151573 DOI: 10.1016/j.neulet.2024.137936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Synucleins, including α-synuclein (α-syn), β-syn, and γ-syn, have been implicated in various synucleinopathies, notably Parkinson's disease (PD), which has generated increased interest in understanding their roles. Although α-syn and β-syn have contrasting neuropathological consequences, the precise role of γ-syn remains unclear. This study validated non-motor symptoms, specifically anxiety-like behavior, along with the degradation of dopaminergic (DAergic) neurons in the nigrostriatal system and DAergic neurites in the prefrontal cortex and hippocampus of rats infused with striatal 6-hydroxydopamine (6-OHDA). Our study further investigated the alterations in γ-syn expression levels in the prefrontal cortices and hippocampi of these 6-OHDA-treated rats, aiming to establish foundational insights into the neuropathophysiology of DA depletion, a central feature of PD. Our findings revealed a significant increase in the expression of γ-syn mRNA and protein in these brain regions, in contrast to unaltered α- and β-syn expression levels. This suggests a distinct role of γ-syn within the neurobiological milieu under conditions of DA deficiency. Overall, our data shed light on the neurobiological changes observed in the hemiparkinsonian rat model induced with 6-OHDA, underscoring the potential significance of γ-syn in PD pathology.
Collapse
Affiliation(s)
- Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Miyoung Yang
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Coskuner-Weber O. Structures prediction and replica exchange molecular dynamics simulations of α-synuclein: A case study for intrinsically disordered proteins. Int J Biol Macromol 2024; 276:133813. [PMID: 38996889 DOI: 10.1016/j.ijbiomac.2024.133813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
In recent years, a variety of three-dimensional structure prediction tools, including AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold, have been employed in the investigation of intrinsically disordered proteins. However, a comprehensive validation of these tools specifically for intrinsically disordered proteins has yet to be conducted. In this study, we utilize AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold to predict the structure of a model intrinsically disordered α-synuclein protein. Additionally, extensive replica exchange molecular dynamics simulations of the intrinsically disordered protein are conducted. The resulting structures from both structure prediction tools and replica exchange molecular dynamics simulations are analyzed for radius of gyration, secondary and tertiary structure properties, as well as Cα and Hα chemical shift values. A comparison of the obtained results with experimental data reveals that replica exchange molecular dynamics simulations provide results in excellent agreement with experimental observations. However, none of the structure prediction tools utilized in this study can fully capture the structural characteristics of the model intrinsically disordered protein. This study shows that a cluster of ensembles are required for intrinsically disordered proteins. Artificial-intelligence based structure prediction tools such as AlphaFold3 and C-I-TASSER could benefit from stochastic sampling or Monte Carlo simulations for generating an ensemble of structures for intrinsically disordered proteins.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey.
| |
Collapse
|
3
|
Riegelman E, Xue KS, Wang JS, Tang L. Gut-Brain Axis in Focus: Polyphenols, Microbiota, and Their Influence on α-Synuclein in Parkinson's Disease. Nutrients 2024; 16:2041. [PMID: 38999791 PMCID: PMC11243524 DOI: 10.3390/nu16132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
With the recognition of the importance of the gut-brain axis in Parkinson's disease (PD) etiology, there is increased interest in developing therapeutic strategies that target α-synuclein, the hallmark abhorrent protein of PD pathogenesis, which may originate in the gut. Research has demonstrated that inhibiting the aggregation, oligomerization, and fibrillation of α-synuclein are key strategies for disease modification. Polyphenols, which are rich in fruits and vegetables, are drawing attention for their potential role in this context. In this paper, we reviewed how polyphenols influence the composition and functional capabilities of the gut microbiota and how the resulting microbial metabolites of polyphenols may potentially enhance the modulation of α-synuclein aggregation. Understanding the interaction between polyphenols and gut microbiota and identifying which specific microbes may enhance the efficacy of polyphenols is crucial for developing therapeutic strategies and precision nutrition based on the microbiome.
Collapse
Affiliation(s)
| | | | | | - Lili Tang
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (E.R.); (K.S.X.); (J.-S.W.)
| |
Collapse
|
4
|
Rai S, Bharti PS, Singh R, Rastogi S, Rani K, Sharma V, Gorai PK, Rani N, Verma BK, Reddy TJ, Modi GP, Inampudi KK, Pandey HC, Yadav S, Rajan R, Nikolajeff F, Kumar S. Circulating plasma miR-23b-3p as a biomarker target for idiopathic Parkinson's disease: comparison with small extracellular vesicle miRNA. Front Neurosci 2023; 17:1174951. [PMID: 38033547 PMCID: PMC10684698 DOI: 10.3389/fnins.2023.1174951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.
Collapse
Affiliation(s)
- Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Rani
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences Bibinagar, Hyderabad, India
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Kumar Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | | | - Hem Chandra Pandey
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences Raebareli, Uttar Pradesh, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
5
|
Hivare P, Mujmer K, Swarup G, Gupta S, Bhatia D. Endocytic pathways of pathogenic protein aggregates in neurodegenerative diseases. Traffic 2023; 24:434-452. [PMID: 37392160 DOI: 10.1111/tra.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/14/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
Endocytosis is the fundamental uptake process through which cells internalize extracellular materials and species. Neurodegenerative diseases (NDs) are characterized by a progressive accumulation of intrinsically disordered protein species, leading to neuronal death. Misfolding in many proteins leads to various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other disorders. Despite the significance of disordered protein species in neurodegeneration, their spread between cells and the cellular uptake of extracellular species is not entirely understood. This review discusses the major internalization mechanisms of the different conformer species of these proteins and their endocytic mechanisms. We briefly introduce the broad types of endocytic mechanisms found in cells and then summarize what is known about the endocytosis of monomeric, oligomeric and aggregated conformations of tau, Aβ, α-Syn, Huntingtin, Prions, SOD1, TDP-43 and other proteins associated with neurodegeneration. We also highlight the key players involved in internalizing these disordered proteins and the several techniques and approaches to identify their endocytic mechanisms. Finally, we discuss the obstacles involved in studying the endocytosis of these protein species and the need to develop better techniques to elucidate the uptake mechanisms of a particular disordered protein species.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Kratika Mujmer
- Center for Brain and Cognitive Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Gitanjali Swarup
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| |
Collapse
|
6
|
Roterman I, Stapor K, Konieczny L. Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Biomedicines 2023; 11:biomedicines11051324. [PMID: 37238996 DOI: 10.3390/biomedicines11051324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The structural transformation producing amyloids is a phenomenon that sheds new light on the protein folding problem. The analysis of the polymorphic structures of the α-synuclein amyloid available in the PDB database allows analysis of the amyloid-oriented structural transformation itself, but also the protein folding process as such. The polymorphic amyloid structures of α-synuclein analyzed employing the hydrophobicity distribution (fuzzy oil drop model) reveal a differentiation with a dominant distribution consistent with the micelle-like system (hydrophobic core with polar shell). This type of ordering of the hydrophobicity distribution covers the entire spectrum from the example with all three structural units (single chain, proto-fibril, super-fibril) exhibiting micelle-like form, through gradually emerging examples of local disorder, to structures with an extremely different structuring pattern. The water environment directing protein structures towards the generation of ribbon micelle-like structures (concentration of hydrophobic residues in the center of the molecule forming a hydrophobic core with the exposure of polar residues on the surface) also plays a role in the amyloid forms of α-synuclein. The polymorphic forms of α-synuclein reveal local structural differentiation with a common tendency to accept the micelle-like structuralization in certain common fragments of the polypeptide chain of this protein.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Medyczna 7, 30-688 Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Leszek Konieczny
- Medical Biochemistry, Jagiellonian University-Medical College, Kopernika 7, 31-034 Krakow, Poland
| |
Collapse
|
7
|
Mahakud AK, Shaikh J, Rifa Iqbal VV, Gupta A, Tiwari A, Saleem M. Amyloids on Membrane Interfaces: Implications for Neurodegeneration. J Membr Biol 2022; 255:705-722. [PMID: 35670831 DOI: 10.1007/s00232-022-00245-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
Membrane interfaces are vital for various cellular processes, and their involvement in neurodegenerative disorders such as Alzheimer's and Parkinson's disease has taken precedence in recent years. The amyloidogenic proteins associated with neurodegenerative diseases interact with the neuronal membrane through various means, which has implications for both the onset and progression of the disease. The parameters that regulate the interaction between the membrane and the amyloids remain poorly understood. The review focuses on the various aspects of membrane interactions of amyloids, particularly amyloid-β (Aβ) peptides and Tau involved in Alzheimer's and α-synuclein involved in Parkinson's disease. The genetic, cell biological, biochemical, and biophysical studies that form the basis for our current understanding of the membrane interactions of Aβ peptides, Tau, and α-synuclein are discussed.
Collapse
Affiliation(s)
- Amaresh Kumar Mahakud
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Jafarulla Shaikh
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - V V Rifa Iqbal
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Abhinav Gupta
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anuj Tiwari
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Mohammed Saleem
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India. .,Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
8
|
Jellinger KA. The pathobiological basis of depression in Parkinson disease: challenges and outlooks. J Neural Transm (Vienna) 2022; 129:1397-1418. [PMID: 36322206 PMCID: PMC9628588 DOI: 10.1007/s00702-022-02559-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Depression, with an estimated prevalence of about 40% is a most common neuropsychiatric disorder in Parkinson disease (PD), with a negative impact on quality of life, cognitive impairment and functional disability, yet the underlying neurobiology is poorly understood. Depression in PD (DPD), one of its most common non-motor symptoms, can precede the onset of motor symptoms but can occur at any stage of the disease. Although its diagnosis is based on standard criteria, due to overlap with other symptoms related to PD or to side effects of treatment, depression is frequently underdiagnosed and undertreated. DPD has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenerative process, in particular dysfunction of neurotransmitter systems (dopaminergic, serotonergic and noradrenergic), as well as to disturbances of cortico-limbic, striato-thalamic-prefrontal, mediotemporal-limbic networks, with disruption in the topological organization of functional mood-related, motor and other essential brain network connections due to alterations in the blood-oxygen-level-dependent (BOLD) fluctuations in multiple brain areas. Other hypothetic mechanisms involve neuroinflammation, neuroimmune dysregulation, stress hormones, neurotrophic, toxic or metabolic factors. The pathophysiology and pathogenesis of DPD are multifactorial and complex, and its interactions with genetic factors, age-related changes, cognitive disposition and other co-morbidities awaits further elucidation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
9
|
Goloborshcheva VV, Kucheryanu VG, Voronina NA, Teterina EV, Ustyugov AA, Morozov SG. Synuclein Proteins in MPTP-Induced Death of Substantia Nigra Pars Compacta Dopaminergic Neurons. Biomedicines 2022; 10:biomedicines10092278. [PMID: 36140378 PMCID: PMC9496024 DOI: 10.3390/biomedicines10092278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease (PD) is one of the key neurodegenerative disorders caused by a dopamine deficiency in the striatum due to the death of dopaminergic (DA) neurons of the substantia nigra pars compacta. The initially discovered A53T mutation in the alpha-synuclein gene was linked to the formation of cytotoxic aggregates: Lewy bodies in the DA neurons of PD patients. Further research has contributed to the discovery of beta- and gamma-synucleins, which presumably compensate for the functional loss of either member of the synuclein family. Here, we review research from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity models and various synuclein-knockout animals. We conclude that the differences in the sensitivity of the synuclein-knockout animals compared with the MPTP neurotoxin are due to the ontogenetic selection of early neurons followed by a compensatory effect of beta-synuclein, which optimizes dopamine capture in the synapses. Triple-knockout synuclein studies have confirmed the higher sensitivity of DA neurons to the toxic effects of MPTP. Nonetheless, beta-synuclein could modulate the alpha-synuclein function, preventing its aggregation and loss of function. Overall, the use of knockout animals has helped to solve the riddle of synuclein functions, and these proteins could be promising molecular targets for the development of therapies that are aimed at optimizing the synaptic function of dopaminergic neurons.
Collapse
Affiliation(s)
- Valeria V. Goloborshcheva
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Correspondence: ; Tel.: +7-(909)-644-92-31
| | | | | | - Ekaterina V. Teterina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Aleksey A. Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Sergei G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
10
|
Jin Y, Li F, Sonoustoun B, Kondru NC, Martens YA, Qiao W, Heckman MG, Ikezu TC, Li Z, Burgess JD, Amerna D, O’Leary J, DeTure MA, Zhao J, McLean PJ, Dickson DW, Ross OA, Bu G, Zhao N. APOE4 exacerbates α-synuclein seeding activity and contributes to neurotoxicity in Alzheimer's disease with Lewy body pathology. Acta Neuropathol 2022; 143:641-662. [PMID: 35471463 PMCID: PMC9107450 DOI: 10.1007/s00401-022-02421-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023]
Abstract
Approximately half of Alzheimer's disease (AD) brains have concomitant Lewy pathology at autopsy, suggesting that α-synuclein (α-SYN) aggregation is a regulated event in the pathogenesis of AD. Genome-wide association studies revealed that the ε4 allele of the apolipoprotein E (APOE4) gene, the strongest genetic risk factor for AD, is also the most replicated genetic risk factor for Lewy body dementia (LBD), signifying an important role of APOE4 in both amyloid-β (Aβ) and α-SYN pathogenesis. How APOE4 modulates α-SYN aggregation in AD is unclear. In this study, we aimed to determine how α-SYN is associated with AD-related pathology and how APOE4 impacts α-SYN seeding and toxicity. We measured α-SYN levels and their association with other established AD-related markers in brain samples from autopsy-confirmed AD patients (N = 469), where 54% had concomitant LB pathology (AD + LB). We found significant correlations between the levels of α-SYN and those of Aβ40, Aβ42, tau and APOE, particularly in insoluble fractions of AD + LB. Using a real-time quaking-induced conversion (RT-QuIC) assay, we measured the seeding activity of soluble α-SYN and found that α-SYN seeding was exacerbated by APOE4 in the AD cohort, as well as a small cohort of autopsy-confirmed LBD brains with minimal Alzheimer type pathology. We further fractionated the soluble AD brain lysates by size exclusion chromatography (SEC) ran on fast protein liquid chromatography (FPLC) and identified the α-SYN species (~ 96 kDa) that showed the strongest seeding activity. Finally, using human induced pluripotent stem cell (iPSC)-derived neurons, we showed that amplified α-SYN aggregates from AD + LB brain of patients with APOE4 were highly toxic to neurons, whereas the same amount of α-SYN monomer was not toxic. Our findings suggest that the presence of LB pathology correlates with AD-related pathologies and that APOE4 exacerbates α-SYN seeding activity and neurotoxicity, providing mechanistic insight into how APOE4 affects α-SYN pathogenesis in AD.
Collapse
|
11
|
Bonaccorsi di Patti MC, Angiulli E, Casini A, Vaccaro R, Cioni C, Toni M. Synuclein Analysis in Adult Xenopus laevis. Int J Mol Sci 2022; 23:ijms23116058. [PMID: 35682736 PMCID: PMC9181771 DOI: 10.3390/ijms23116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The α-, β- and γ-synucleins are small soluble proteins expressed in the nervous system of mammals and evolutionary conserved in vertebrates. After being discovered in the cartilaginous fish Torpedo californica, synucleins have been sequenced in all vertebrates, showing differences in the number of genes and splicing isoforms in different taxa. Although α-, β- and γ-synucleins share high homology in the N-terminal sequence, suggesting their evolution from a common ancestor, the three isoforms also differ in molecular characteristics, expression levels and tissue distribution. Moreover, their functions have yet to be fully understood. Great scientific interest on synucleins mainly derives from the involvement of α-synuclein in human neurodegenerative diseases, collectively named synucleinopathies, which involve the accumulation of amyloidogenic α-synuclein inclusions in neurons and glia cells. Studies on synucleinopathies can take advantage of the development of new vertebrate models other than mammals. Moreover, synuclein expression in non-mammalian vertebrates contribute to clarify the physiological role of these proteins in the evolutionary perspective. In this paper, gene expression levels of α-, β- and γ-synucleins have been analysed in the main organs of adult Xenopus laevis by qRT-PCR. Moreover, recombinant α-, β- and γ-synucleins were produced to test the specificity of commercial antibodies against α-synuclein used in Western blot and immunohistochemistry. Finally, the secondary structure of Xenopus synucleins was evaluated by circular dichroism analysis. Results indicate Xenopus as a good model for studying synucleinopathies, and provide a useful background for future studies on synuclein functions and their evolution in vertebrates.
Collapse
Affiliation(s)
| | - Elisa Angiulli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy; (A.C.); (R.V.)
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy; (A.C.); (R.V.)
| | - Carla Cioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Mattia Toni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00161 Rome, Italy; (E.A.); (C.C.)
- Correspondence: (M.C.B.d.P.); (M.T.)
| |
Collapse
|
12
|
Autophagy in α-Synucleinopathies-An Overstrained System. Cells 2021; 10:cells10113143. [PMID: 34831366 PMCID: PMC8618716 DOI: 10.3390/cells10113143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Alpha-synucleinopathies comprise progressive neurodegenerative diseases, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). They all exhibit the same pathological hallmark, which is the formation of α-synuclein positive deposits in neuronal or glial cells. The aggregation of α-synuclein in the cell body of neurons, giving rise to the so-called Lewy bodies (LBs), is the major characteristic for PD and DLB, whereas the accumulation of α-synuclein in oligodendroglial cells, so-called glial cytoplasmic inclusions (GCIs), is the hallmark for MSA. The mechanisms involved in the intracytoplasmic inclusion formation in neuronal and oligodendroglial cells are not fully understood to date. A possible mechanism could be an impaired autophagic machinery that cannot cope with the high intracellular amount of α-synuclein. In fact, different studies showed that reduced autophagy is involved in α-synuclein aggregation. Furthermore, altered levels of different autophagy markers were reported in PD, DLB, and MSA brains. To date, the trigger point in disease initiation is not entirely clear; that is, whether autophagy dysfunction alone suffices to increase α-synuclein or whether α-synuclein is the pathogenic driver. In the current review, we discuss the involvement of defective autophagy machinery in the formation of α-synuclein aggregates, propagation of α-synuclein, and the resulting neurodegenerative processes in α-synucleinopathies.
Collapse
|
13
|
Ham S, Yun SP, Kim H, Kim D, Seo BA, Kim H, Shin JY, Dar MA, Lee GH, Lee YI, Kim D, Kim S, Kweon HS, Shin JH, Ko HS, Lee Y. Amyloid-like oligomerization of AIMP2 contributes to α-synuclein interaction and Lewy-like inclusion. Sci Transl Med 2021; 12:12/569/eaax0091. [PMID: 33177178 DOI: 10.1126/scitranslmed.aax0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Lewy bodies are pathological protein inclusions present in the brain of patients with Parkinson's disease (PD). These inclusions consist mainly of α-synuclein with associated proteins, such as parkin and its substrate aminoacyl transfer RNA synthetase complex-interacting multifunctional protein-2 (AIMP2). Although AIMP2 has been suggested to be toxic to dopamine neurons, its roles in α-synuclein aggregation and PD pathogenesis are largely unknown. Here, we found that AIMP2 exhibits a self-aggregating property. The AIMP2 aggregate serves as a seed to increase α-synuclein aggregation via specific and direct binding to the α-synuclein monomer. The coexpression of AIMP2 and α-synuclein in cell cultures and in vivo resulted in the rapid formation of α-synuclein aggregates with a corresponding increase in toxicity. Moreover, accumulated AIMP2 in mouse brain was largely redistributed to insoluble fractions, correlating with the α-synuclein pathology. Last, we found that α-synuclein preformed fibril (PFF) seeding, adult Parkin deletion, or oxidative stress triggered a redistribution of both AIMP2 and α-synuclein into insoluble fraction in cells and in vivo. Supporting the pathogenic role of AIMP2, AIMP2 knockdown ameliorated the α-synuclein aggregation and dopaminergic cell death in response to PFF or 6-hydroxydopamine treatment. Together, our results suggest that AIMP2 plays a pathological role in the aggregation of α-synuclein in mice. Because AIMP2 insolubility and coaggregation with α-synuclein have been seen in the PD Lewy body, targeting pathologic AIMP2 aggregation might be useful as a therapeutic strategy for neurodegenerative α-synucleinopathies.
Collapse
Affiliation(s)
- Sangwoo Ham
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea.,ToolGen Inc., Seoul 08501, Republic of Korea
| | - Seung Pil Yun
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyojung Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Donghoon Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Am Seo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heejeong Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Jeong-Yong Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Mohamad Aasif Dar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Yun Il Lee
- Well Aging Research Center, DGIST, Daegu 42988, Republic of Korea.,Companion Diagnostics and Medical Technology Research Group, DGIST, Daegu 42988, Republic of Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Yonsei University, Incheon 21983, Republic of Korea.,College of Pharmacy and School of Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Yonsei University, Incheon 21983, Republic of Korea.,College of Pharmacy and School of Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Han Seok Ko
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea.
| |
Collapse
|
14
|
Alpha-Synuclein as a Prominent Actor in the Inflammatory Synaptopathy of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126517. [PMID: 34204581 PMCID: PMC8234932 DOI: 10.3390/ijms22126517] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is considered the most common disorder of synucleinopathy, which is characterised by intracellular inclusions of aggregated and misfolded α-synuclein (α-syn) protein in various brain regions, and the loss of dopaminergic neurons. During the early prodromal phase of PD, synaptic alterations happen before cell death, which is linked to the synaptic accumulation of toxic α-syn specifically in the presynaptic terminals, affecting neurotransmitter release. The oligomers and protofibrils of α-syn are the most toxic species, and their overexpression impairs the distribution and activation of synaptic proteins, such as the SNARE complex, preventing neurotransmitter exocytosis and neuronal synaptic communication. In the last few years, the role of the immune system in PD has been increasingly considered. Microglial and astrocyte activation, the gene expression of proinflammatory factors, and the infiltration of immune cells from the periphery to the central nervous system (CNS) represent the main features of the inflammatory response. One of the actors of these processes is α-syn accumulation. In light of this, here, we provide a systematic review of PD-related α-syn and inflammation inter-players.
Collapse
|
15
|
Microglia in Neurodegenerative Events-An Initiator or a Significant Other? Int J Mol Sci 2021; 22:ijms22115818. [PMID: 34072307 PMCID: PMC8199265 DOI: 10.3390/ijms22115818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
A change in microglia structure, signaling, or function is commonly associated with neurodegeneration. This is evident in the patient population, animal models, and targeted in vitro assays. While there is a clear association, it is not evident that microglia serve as an initiator of neurodegeneration. Rather, the dynamics imply a close interaction between the various cell types and structures in the brain that orchestrate the injury and repair responses. Communication between microglia and neurons contributes to the physiological phenotype of microglia maintaining cells in a surveillance state and allows the cells to respond to events occurring in their environment. Interactions between microglia and astrocytes is not as well characterized, nor are interactions with other members of the neurovascular unit; however, given the influence of systemic factors on neuroinflammation and disease progression, such interactions likely represent significant contributes to any neurodegenerative process. In addition, they offer multiple target sites/processes by which environmental exposures could contribute to neurodegenerative disease. Thus, microglia at least play a role as a significant other with an equal partnership; however, claiming a role as an initiator of neurodegeneration remains somewhat controversial.
Collapse
|
16
|
Paul A, Huber A, Rand D, Gosselet F, Cooper I, Gazit E, Segal D. Naphthoquinone–Dopamine Hybrids Inhibit α‐Synuclein Aggregation, Disrupt Preformed Fibrils, and Attenuate Aggregate‐Induced Toxicity. Chemistry 2020; 26:16486-16496. [DOI: 10.1002/chem.202003374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Adi Huber
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Fabien Gosselet
- UR 2465 Blood-brain barrier Laboratory (LBHE) Artois University 62300 Lens France
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Sagol Interdisciplinary School of Neuroscience Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| |
Collapse
|
17
|
Jenkins PO, Roussakis AA, De Simoni S, Bourke N, Fleminger J, Cole J, Piccini P, Sharp D. Distinct dopaminergic abnormalities in traumatic brain injury and Parkinson's disease. J Neurol Neurosurg Psychiatry 2020; 91:631-637. [PMID: 32381639 DOI: 10.1136/jnnp-2019-321759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/05/2019] [Accepted: 01/09/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) and rapid eye movement sleep behavioural disorder (RBD) are risk factors for Parkinson's disease (PD). Dopaminergic abnormalities are often seen after TBI, but patients usually lack parkinsonian features. We test whether TBI, PD and RBD have distinct striatal dopamine abnormalities using dopamine transporter (DaT) imaging. METHODS 123I-ioflupane single-photon emission CT scans were used in a cross-sectional study to measure DaT levels in moderate/severe TBI, healthy controls, patients with early PD and RBD. Caudate and putamen DaT, putamen to caudate ratios and left-right symmetry of DaT were compared. RESULTS 108 participants (43 TBI, 26 PD, 8 RBD, 31 controls) were assessed. Patients with early PD scored significantly higher on the Unified Parkinson's Disease Rating Scale motor subscale than other groups. Patients with TBI and PD had reduced DaT levels in the caudate (12.2% and 18.7%, respectively) and putamen (9.0% and 42.6%, respectively) compared with controls. Patients with RBD had reduced DaT levels in the putamen (12.8%) but not in the caudate compared with controls. Patients with PD and TBI showed distinct patterns of DaT reduction, with patients with PD showing a lower putamen to caudate ratio. DaT asymmetry was greater in the PD group than other groups. CONCLUSIONS The results show that patients with early PD and TBI have distinct patterns of striatal dopamine abnormalities. Patients with early PD and moderate/severe TBI showed similar reductions in caudate DaT binding, but patients with PD showed a greater reduction in putamen DaT and a lower putamen to caudate ratio. The results suggest that parkinsonian motor signs are absent in these patients with TBI because of relatively intact putaminal dopamine levels.
Collapse
Affiliation(s)
- Peter Owen Jenkins
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Andreas-Antonios Roussakis
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - Sara De Simoni
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Niall Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Jessica Fleminger
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - James Cole
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Paola Piccini
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - David Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom .,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College, London, United Kingdom
| |
Collapse
|
18
|
Advances in the development of imaging probes and aggregation inhibitors for alpha-synuclein. Acta Pharmacol Sin 2020; 41:483-498. [PMID: 31586134 PMCID: PMC7470848 DOI: 10.1038/s41401-019-0304-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Abnormal protein aggregation has been linked to many neurodegenerative diseases, including Parkinson’s disease (PD). The main pathological hallmark of PD is the formation of Lewy bodies (LBs) and Lewy neurites, both of which contain the presynaptic protein alpha-synuclein (α-syn). Under normal conditions, native α-syn exists in a soluble unfolded state but undergoes misfolding and aggregation into toxic aggregates under pathological conditions. Toxic α-syn species, especially oligomers, can cause oxidative stress, membrane penetration, synaptic and mitochondrial dysfunction, as well as other damage, leading to neuronal death and eventually neurodegeneration. Early diagnosis and treatments targeting PD pathogenesis are urgently needed. Given its critical role in PD, α-syn is an attractive target for the development of both diagnostic tools and effective therapeutics. This review summarizes the progress toward discovering imaging probes and aggregation inhibitors for α-syn. Relevant strategies and techniques in the discovery of α-syn-targeted drugs are also discussed.
Collapse
|
19
|
Seleem AA. Immunohistochemical localization of alpha-synuclein in the retina of some nocturnal and diurnal animals. Biotech Histochem 2020; 95:360-372. [PMID: 31951746 DOI: 10.1080/10520295.2019.1703218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Although alpha-synuclein has been reported to participate in neurodegenerative diseases, the actual normal biological function of alpha-synuclein remains unclear. I investigated the correlation of alpha-synuclein expression with nocturnal and diurnal activity for various species. Hematoxylin and eosin staining, periodic acid-Schiff's reaction (PAS) and immunohistochemistry of alpha-synuclein expression were performed for the retinas of diurnal, nocturnal, nocturnal with diurnal activity species. I found different intensity of alpha-synuclein expression in the retinal layers. I found alpha-synuclein expression in the outer segment of the photoreceptor layer in the diurnal studied species and absence of alpha-synuclein expression in the compartments of photoreceptor layer in the retina of nocturnal species. I found localization of alpha-synuclein in the inner and outer segments of photoreceptors of the retina of nocturnal with diurnal activity species. The retinas of diurnal animals exhibited glycogen in the paraboloid structure in the inner segment of the photoreceptor layer. The retinas of nocturnal and nocturnal with diurnal activity species were devoid of glycogen in the photoreceptor layer. I conclude that the function of alpha-synuclein is more related to diurnal than to nocturnal species.
Collapse
Affiliation(s)
- Amin A Seleem
- Amin A. Seleem, Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt and Biology Department, Faculty of Science and Arts, Alula, Taibah University, Kingdom Saudi Arabia
| |
Collapse
|
20
|
Wang X, Chi J, Huang D, Ding L, Zhao X, Jiang L, Yu Y, Gao F. α-synuclein promotes progression of Parkinson's disease by upregulating autophagy signaling pathway to activate NLRP3 inflammasome. Exp Ther Med 2019; 19:931-938. [PMID: 32010254 PMCID: PMC6966172 DOI: 10.3892/etm.2019.8297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
Mechanism by which α-synuclein affects the progression of Parkinson's disease through Pyrin Domain Containing Protein 3 (NLRP3) was explored. Peripheral blood plasma of 40 Parkinson's disease patients and 40 normal healthy people attending the department of neurology of the Third Affiliated Hospital of Qiqihar Medical University were collected from March 2018 to January 2019. The expression levels of oligomers, phosphorylated α-synuclein, interleukin-1β (IL-1β), interleukin-6 (IL-6) and transforming growth factor-α (TGF-α) in plasma were detected by ELISA. Astrocytes in mouse brain tissues were extracted by primary culture method, the cells were divided into drug group and the drug + inhibitor group. After adding 0, 5, 10 and 20 µg oligomerized α-synuclein or 5 mM autophagy inhibitor 3-Methyladenine (3-MA), the expression level of NLRP3, caspase-1, IL-1β and Atg5 proteins in the cells was detected. The expression level of IL-1β in peripheral blood of PD patients was significantly increased (0.604±0.136 µmol/l vs. 1.876±0.327 µmol/l, P=0.002), while there was no significant difference between IL-6 and TGF-α. Both oligomers (0.171±0.045 µmol/l vs. 0.676±0.084 µmol/l, P<0.0001) and phosphorylated α-synuclein (0.128±0.041 µmol/l vs. 0.849±0.108 µmol/l, P<0.0001) in peripheral blood of PD patients were significantly elevated. The expression levels of NLRP3, caspase-1 and IL-1β in mouse astrocytes all increased with the increase of the concentration of oligomerized α-synuclein, and Atg5 protein expression also increased gradually with the concentration, and reached the highest level when the concentration was 10 µg/ml. The expression levels of NLRP3, caspase-1 and IL-1β were inhibited after the addition of autophagy inhibitor 3-MA. α-synuclein mediates the activation of NLRP3 inflammasome in PD patients by upregulating Atg5 protein expression.
Collapse
Affiliation(s)
- Xiaohong Wang
- The 5th Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Jinghong Chi
- The 5th Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Di Huang
- The 8th Department of Neurology, the First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161000, P.R. China
| | - Li Ding
- The 5th Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Xiaojing Zhao
- The 5th Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Lai Jiang
- The 5th Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Yang Yu
- The 5th Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Feng Gao
- The 5th Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
21
|
Wang J, Chen Z, Walston JD, Gao P, Gao M, Leng SX. Interferon-γ Potentiates α-Synuclein-induced Neurotoxicity Linked to Toll-like Receptors 2 and 3 and Tumor Necrosis Factor-α in Murine Astrocytes. Mol Neurobiol 2019; 56:7664-7679. [PMID: 31098954 PMCID: PMC7404632 DOI: 10.1007/s12035-019-1567-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/15/2019] [Indexed: 10/26/2022]
Abstract
α-Synuclein (α-syn), a metabolite of neurons, induces glial activation and neuroinflammation and participates in pathogenesis of neurodegenerative diseases. This inflammatory response involves activation of toll-like receptors (TLRs) and its neurotoxic outcomes such as cytokine expression and release. However, regulatory role of cytokines on α-syn-induced neurotoxicity is still unclear. In this study, we used interferon (IFN)-γ to costimulate primary astrocytes with wild-type or A53T mutant α-syn, and evaluated inflammatory pathway activation. Four α-syn concentrations (0.5, 2, 8 and 20 μg/mL, 24 h) and four α-syn time-points (3, 12, 24 and 48 h, 2 μg/mL) were chosen to coincubate with one IFN-γ concentration (2 ng/mL). IFN-γ alone upregulated expressions of TLR3 and tumor necrosis factor (TNF)-α (mRNA level), and A53T mutant or wild-type α-syn alone activated the pathway components including TLR2, TLR3, nuclear factor-κB, TNF-α and interleukin (IL)-1β. Additive application of IFN-γ amplified this activation effect except for IL-1β at mRNA and protein levels or TNF-α release, displaying a synergistic effect of α-syn and IFN-γ. Blocking TLR2 other than TLR4 suppressed TLR3, TLR2 and TNF-α expressions induced by α-syn or plus IFN-γ, reflecting an interaction of TLR2 and TLR3 in TNF-α expression. These data collectively showed that IFN-γ potentiated α-syn stimulation and inflammatory outcomes via TLR2, TLR3 and TNF-α other than IL-1β in astrocytes, suggesting that involvement of IFN-γ in α-syn-induced innate immunity may be required for initiation and maintenance of glial activation, a novel neurotoxic mechanism underlying pathogenesis of neurodegenerative diseases. Graphical Abstract IFN-γ potentiates α-synuclein (A53T or wild-type)-induced innate immunity, involving expressions of TLR2, TLR3, NF-κB, and TNF-α, other than IL-1β. This effect is suppressed by blockage of TLR2 other than TLR4, reflecting an interaction of TLR2 and TLR3 in TNF-α expression. Thus, involvement of IFN-γ in α-syn-induced neurotoxicity may be required for initiation and maintenance of glial activation, a novel neurotoxic mechanism underlying pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jintang Wang
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing, 100095, People's Republic of China
| | - Zheng Chen
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing, 100095, People's Republic of China
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Maolong Gao
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing, 100095, People's Republic of China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| |
Collapse
|
22
|
Ham S, Kim H, Hwang S, Kang H, Yun SP, Kim S, Kim D, Kwon HS, Lee YS, Cho M, Shin HM, Choi H, Chung KY, Ko HS, Lee GH, Lee Y. Cell-Based Screen Using Amyloid Mimic β23 Expression Identifies Peucedanocoumarin III as a Novel Inhibitor of α-Synuclein and Huntingtin Aggregates. Mol Cells 2019; 42:480-494. [PMID: 31250621 PMCID: PMC6602149 DOI: 10.14348/molcells.2019.0091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023] Open
Abstract
Aggregates of disease-causing proteins dysregulate cellular functions, thereby causing neuronal cell loss in diverse neurodegenerative diseases. Although many in vitro or in vivo studies of protein aggregate inhibitors have been performed, a therapeutic strategy to control aggregate toxicity has not been earnestly pursued, partly due to the limitations of available aggregate models. In this study, we established a tetracycline (Tet)-inducible nuclear aggregate (β23) expression model to screen potential lead compounds inhibiting β23-induced toxicity. Highthroughput screening identified several natural compounds as nuclear β23 inhibitors, including peucedanocoumarin III (PCIII). Interestingly, PCIII accelerates disaggregation and proteasomal clearance of both nuclear and cytosolic β23 aggregates and protects SH-SY5Y cells from toxicity induced by β23 expression. Of translational relevance, PCIII disassembled fibrils and enhanced clearance of cytosolic and nuclear protein aggregates in cellular models of huntingtin and α-synuclein aggregation. Moreover, cellular toxicity was diminished with PCIII treatment for polyglutamine (PolyQ)-huntingtin expression and α-synuclein expression in conjunction with 6-hydroxydopamine (6-OHDA) treatment. Importantly, PCIII not only inhibited α-synuclein aggregation but also disaggregated preformed α-synuclein fibrils in vitro . Taken together, our results suggest that a Tet-Off β23 cell model could serve as a robust platform for screening effective lead compounds inhibiting nuclear or cytosolic protein aggregates. Brain-permeable PCIII or its derivatives could be beneficial for eliminating established protein aggregates.
Collapse
Affiliation(s)
- Sangwoo Ham
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
| | - Hyojung Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
| | - Seojin Hwang
- College of Pharmacy, Chosun University, Gwangju 61452,
Korea
| | - Hyunook Kang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
| | - Seung Pil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130,
USA
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130,
USA
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130,
USA
| | - Hyun Sook Kwon
- National Development Institute of Korean Medicine, Gyeongsan 38540,
Korea
| | - Yun-Song Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
| | - MyoungLae Cho
- National Development Institute of Korean Medicine, Gyeongsan 38540,
Korea
| | - Heung-Mook Shin
- National Development Institute of Korean Medicine, Gyeongsan 38540,
Korea
| | - Heejung Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419,
Korea
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130,
USA
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju 61452,
Korea
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Seoul 06351,
Korea
| |
Collapse
|
23
|
In-vitro and in-silico investigation of protective mechanisms of crocin against E46K α-synuclein amyloid formation. Mol Biol Rep 2019; 46:4279-4292. [DOI: 10.1007/s11033-019-04882-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/15/2019] [Indexed: 01/16/2023]
|
24
|
Shen N, Song G, Yang H, Lin X, Brown B, Hong Y, Cai J, Cao C. Identifying the Pathological Domain of Alpha- Synuclein as a Therapeutic for Parkinson's Disease. Int J Mol Sci 2019; 20:E2338. [PMID: 31083520 PMCID: PMC6539124 DOI: 10.3390/ijms20092338] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Alpha-synuclein is considered the major pathological protein associated with Parkinson's disease, but there is still no effective immunotherapy which targets alpha-synuclein. In order to create a safer and more effective therapy against PD, we are targeting an epitope of alpha-synuclein rather than full-length alpha-synuclein. We have selected several antigenic domains (B-cell epitope) through antigenicity prediction, and also made several recombinant protein fragments from alpha-synuclein upon antigenicity prediction in an E. coli system. We then tested the function of each of the peptides and recombinant fragments in aggregation, their toxicity and antigenicity. We have discovered that the full-length recombinant (aa1-140) can aggregate into oligomers or even fibrils, and fragment aa15-65 can promote the aggregation of aa1-140. It is worth noting that it not only promotes whole protein aggregation, but also self-aggregates as seen by western blotting and silver staining assays. We have tested all candidates on primary neurons for their toxicity and discovered that aa15-65 is the most toxic domain compared to all other fragments. The antibody targeting this domain also showed both anti-aggregation activity and some therapeutic effect. Therefore, we believe that we have identified the most potent therapeutic domain of alpha synuclein as a therapeutic target.
Collapse
Affiliation(s)
- Ning Shen
- Department of Chemistry, University of South Florida, Tampa, FL 33612, USA.
| | - Ge Song
- Department of Surgery of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Haiqiang Yang
- Department of Chemistry, University of South Florida, Tampa, FL 33612, USA.
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Breanna Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Yuzhu Hong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33612, USA.
| | - Chuanhai Cao
- Department of Chemistry, University of South Florida, Tampa, FL 33612, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
25
|
Patterson L, Rushton SP, Attems J, Thomas AJ, Morris CM. Degeneration of dopaminergic circuitry influences depressive symptoms in Lewy body disorders. Brain Pathol 2019; 29:544-557. [PMID: 30582885 PMCID: PMC6767514 DOI: 10.1111/bpa.12697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Aims Depression is commonly observed even in prodromal stages of Lewy body disorders (LBD), and is associated with cognitive impairment and a faster rate of cognitive decline. Given the role of dopamine in the development of movement disorders, but also in motivation and reward, we investigated neurodegenerative pathology in dopaminergic circuitry in Parkinson's disease (PD), PD with dementia (PDD) and dementia with Lewy bodies (DLB) patients in relation to depressive symptoms. Methods α‐synuclein, hyperphosphorylated tau and amyloid‐beta pathology was assessed in 17 DLB, 14 PDD and 8 PD cases within striatal and midbrain subregions, with neuronal cell density assessed in substantia nigra and ventral tegmental area. Additionally, we used a structural equation modeling (SEM) approach to investigate the extent to which brain connectivity might influence the deposition of pathological proteins within dopaminergic pathways. Results A significantly higher α‐synuclein burden was observed in the substantia nigra (P = 0.006), ventral tegmental area (P = 0.011) and nucleus accumbens (P = 0.031) in LBD patients with depression. Significant negative correlations were observed between cell density in substantia nigra with Lewy body (LB) Braak stage (P = 0.013), whereas cell density in ventral tegmental area showed negative correlations with LB Braak stage (P = 0.026) and neurofibrillary tangle Braak stage (P = 0.007). Conclusions Dopaminergic α‐synuclein pathology appears to drive depression. Selective targeting of dopaminergic pathways may therefore provide symptomatic relief for depressive symptoms in LBD patients.
Collapse
Affiliation(s)
- Lina Patterson
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Steven P Rushton
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, UK
| | - Johannes Attems
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Alan J Thomas
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Gateshead Health NHS Foundation Trust, Queen Elizabeth Hospital, Gateshead, UK
| | - Christopher M Morris
- NIHR Biomedical Research Centre Newcastle, Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
α-Synuclein interacts directly but reversibly with psychosine: implications for α-synucleinopathies. Sci Rep 2018; 8:12462. [PMID: 30127535 PMCID: PMC6102231 DOI: 10.1038/s41598-018-30808-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
Aggregation of α-synuclein, the hallmark of α-synucleinopathies such as Parkinson’s disease, occurs in various glycosphingolipidoses. Although α-synuclein aggregation correlates with deficiencies in the lysosomal degradation of glycosphingolipids (GSL), the mechanism(s) involved in this aggregation remains unclear. We previously described the aggregation of α-synuclein in Krabbe’s disease (KD), a neurodegenerative glycosphingolipidosis caused by lysosomal deficiency of galactosyl-ceramidase (GALC) and the accumulation of the GSL psychosine. Here, we used a multi-pronged approach including genetic, biophysical and biochemical techniques to determine the pathogenic contribution, reversibility, and molecular mechanism of aggregation of α-synuclein in KD. While genetic knock-out of α-synuclein reduces, but does not completely prevent, neurological signs in a mouse model of KD, genetic correction of GALC deficiency completely prevents α-synuclein aggregation. We show that psychosine forms hydrophilic clusters and binds the C-terminus of α-synuclein through its amino group and sugar moiety, suggesting that psychosine promotes an open/aggregation-prone conformation of α-synuclein. Dopamine and carbidopa reverse the structural changes of psychosine by mediating a closed/aggregation-resistant conformation of α-synuclein. Our results underscore the therapeutic potential of lysosomal correction and small molecules to reduce neuronal burden in α-synucleinopathies, and provide a mechanistic understanding of α-synuclein aggregation in glycosphingolipidoses.
Collapse
|
27
|
Khodadadian A, Hemmati-Dinarvand M, Kalantary-Charvadeh A, Ghobadi A, Mazaheri M. Candidate biomarkers for Parkinson's disease. Biomed Pharmacother 2018; 104:699-704. [PMID: 29803930 DOI: 10.1016/j.biopha.2018.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common diseases associated with neurodegenerative disorders. It affects 3% to 4% of the population over the age of 65 years. The neuropathological dominant symptoms of PD include the destruction of neurons in the substantia nigra, thus causing striatal dopamine deficiency and the presence of intracellular inclusions that contain aggregates of α‑synuclein. The premature form of PD is familial and is known as early onset PD (EOPD). It involves a small portion of patients with PD, displaying symptoms before the age of 60 years. Although individuals who are suffering from the EOPD may have genetic changes, the molecular mechanisms that differentiate between EOPD and late onset PD (LOPD) remain unclear. Owing to the complexity of discriminating between the different forms, treatment, and management of PD, the identification of biomarkers for early diagnosis seems necessary. For this purpose, many studies have been undertaken for the introduction of several biological molecules through various techniques as potential biomarkers. The main focus of these studies was on α-synuclein. However, there are other molecules that are potential biomarkers, such as microRNAs and peptoids. In this article, we tried to review some of these studies.
Collapse
Affiliation(s)
- Ali Khodadadian
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Ghobadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
28
|
Wang J, Chen Z, Walston J, Gao P, Gao M, Leng SX. α-Synuclein activates innate immunity but suppresses interferon-γ expression in murine astrocytes. Eur J Neurosci 2018; 48:10.1111/ejn.13956. [PMID: 29779267 PMCID: PMC6949420 DOI: 10.1111/ejn.13956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/22/2023]
Abstract
Glial activation and neuroinflammation contribute to pathogenesis of neurodegenerative diseases, linked to neuron loss and dysfunction. α-Synuclein (α-syn), as a metabolite of neuron, can induce microglia activation to trigger innate immune response. However, whether α-syn, as well as its mutants (A53T, A30P, and E46K), induces astrocyte activation and inflammatory response is not fully elucidated. In this study, we used A53T mutant and wild-type α-syns to stimulate primary astrocytes in dose- and time-dependent manners (0.5, 2, 8, and 20 μg/ml for 24 hr or 3, 12, 24, and 48 hr at 2 μg/ml), and evaluated activation of several canonical inflammatory pathway components. The results showed that A53T mutant or wild-type α-syn significantly upregulated mRNA expression of toll-like receptor (TLR)2, TLR3, nuclear factor-κB and interleukin (IL)-1β, displaying a pattern of positive dose-effect correlation or negative time-effect correlation. Such upregulation was confirmed at protein levels of TLR2 (at 20 μg/ml), TLR3 (at most doses), and IL-1β (at 3 hr) by western blotting. Blockage of TLR2 other than TLR4 inhibited TLR3 and IL-1β mRNA expressions. By contrast, interferon (IFN)-γ was significantly downregulated at mRNA, protein, and protein release levels, especially at high concentrations of α-syns or early time-points. These findings indicate that α-syn was a TLRs-mediated immunogenic agent (A53T mutant stronger than wild-type α-syn). The stimulation patterns suggest that persistent release and accumulation of α-syn is required for the maintenance of innate immunity activation, and IFN-γ expression inhibition by α-syn suggests a novel immune molecule interaction mechanism underlying pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jintang Wang
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, China
| | - Zheng Chen
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, China
| | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maolong Gao
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Mariucci G, Pagiotti R, Galli F, Romani L, Conte C. The Potential Role of Toll-Like Receptor 4 in Mediating Dopaminergic Cell Loss and Alpha-Synuclein Expression in the Acute MPTP Mouse Model of Parkinson's Disease. J Mol Neurosci 2018; 64:611-618. [PMID: 29589201 DOI: 10.1007/s12031-018-1057-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/06/2018] [Indexed: 01/05/2023]
Abstract
Toll-like receptors (TLRs) may have a role in Parkinson's disease (PD). In this study, we aimed at investigating the dopaminergic cell loss and alpha-synuclein (α-SYN) expression in TLR4-deficient mice (TLR4-/-) acutely exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a pharmacological PD model. TLR4 ablation restrained the number of dopaminergic neurons in the substantia nigra (SN), as assessed by tyrosine hydroxylase (TH) protein expression. Intriguingly, TLR4-/- mice showed massive α-SYN protein accumulation in the midbrain along with high α-SYN mRNA levels in cerebral cortex, striatum, hippocampus, and cerebellum. Contrary to expectations, the high levels of α-SYN do not correlate with greater dopaminergic neuronal loss. The levels of nigral α-SYN protein in TLR4-/- mice further, but not significantly, increased during MPTP treatment. Contrariwise, MPTP treatment significantly induced the mRNA expression of α-SYN in examined brain regions of WT and TLR4-/- mice. Protein levels of GATA2, a transcription factor proposed to control α-SYN gene expression, did not change in TLR4-/- mice at baseline and after MPTP treatment. These findings suggest a role for TLR4 in mediating dopaminergic cell loss and in the constitutive expression of brain α-SYN. However, further exploration is needed in order to establish the actual role of α-SYN in the relative absence of TLR4.
Collapse
Affiliation(s)
- Giuseppina Mariucci
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy
| | - Rita Pagiotti
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| |
Collapse
|
30
|
Abstract
Synapse is the basic structural and functional component for neural communication in the brain. The presynaptic terminal is the structural and functionally essential area that initiates communication and maintains the continuous functional neural information flow. It contains synaptic vesicles (SV) filled with neurotransmitters, an active zone for release, and numerous proteins for SV fusion and retrieval. The structural and functional synaptic plasticity is a representative characteristic; however, it is highly vulnerable to various pathological conditions. In fact, synaptic alteration is thought to be central to neural disease processes. In particular, the alteration of the structural and functional phenotype of the presynaptic terminal is a highly significant evidence for neural diseases. In this review, we specifically describe structural and functional alteration of nerve terminals in several neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD).
Collapse
Affiliation(s)
- Jae Ryul Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sung Hyun Kim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
31
|
Gao HL, Li C, Nabeka H, Shimokawa T, Wang ZY, Cao YM, Matsuda S. An 18-mer Peptide Derived from Prosaposin Ameliorates the Effects of Aβ1-42 Neurotoxicity on Hippocampal Neurogenesis and Memory Deficit in Mice. J Alzheimers Dis 2018; 53:1173-92. [PMID: 27372641 DOI: 10.3233/jad-160093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathological hallmarks of Alzheimer's disease (AD) include amyloid-β (Aβ) accumulation, neurofibrillary tangle formation, synaptic dysfunction, and neuronal loss. The present study was performed to investigate the protective effects and mechanism of action of a prosaposin-derived 18-mer peptide (PS18: LSELIINNATEELLIKGL) on mice hippocampal progenitor cell proliferation, neurogenesis, and memory tasks after intracerebroventricular injection of Aβ1-42 peptide. Seven days after Aβ1-42 injection, significant proliferation of hippocampal progenitor cells and memory impairment were evident. Two weeks after Aβ1-42 peptide injection, elevated numbers of surviving 5-bromo-2-deoxyuridine cells and newly formed neurons were detected. Treatment with PS18 attenuated these effects evoked by Aβ1-42. Our data indicate that treatment with PS18 partially attenuated the increase in hippocampal neurogenesis caused by Aβ1-42-induced neuroinflammation and prevented memory deficits associated with increased numbers of activated glial cells. We observed an increase in ADAM10 and decreases in BACE1, PS1/2, and AβPP protein levels, suggesting that PS18 enhances the nonamyloidogenic AβPP cleavage pathway. Importantly, our results further showed that PS18 activated the PI3K/Akt pathway, phosphorylated GSK-3α/β, and, as a consequence, exerted a neuroprotective effect. In addition, PS18 showed a protective effect against Aβ1-42-induced neurotoxicity via suppression of the caspase pathway; upregulation of Bcl-2; downregulation of BAX, attenuating mitochondrial damage; and inhibition of caspase-3. These findings suggest that PS18 may provide a valuable therapeutic strategy for the treatment of progressive neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Hui-Ling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Cheng Li
- Department of Immunology, China Medical University, Shenyang, China
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ya-Ming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
32
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
33
|
Jamal S, Kumari A, Singh A, Goyal S, Grover A. Conformational Ensembles of α-Synuclein Derived Peptide with Different Osmolytes from Temperature Replica Exchange Sampling. Front Neurosci 2017; 11:684. [PMID: 29270108 PMCID: PMC5725442 DOI: 10.3389/fnins.2017.00684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
Intrinsically disordered proteins (IDP) are a class of proteins that do not have a stable three-dimensional structure and can adopt a range of conformations playing various vital functional role. Alpha-synuclein is one such IDP which can aggregate into toxic protofibrils and has been associated largely with Parkinson's disease (PD) along with other neurodegenerative diseases. Osmolytes are small organic compounds that can alter the environment around the proteins by acting as denaturants or protectants for the proteins. In the present study, we have conducted a series of replica exchange molecular dynamics simulations to explore the role of osmolytes, urea which is a denaturant and TMAO (trimethylamine N-oxide), a protecting osmolyte, in aggregation and conformations of the synuclein peptide. We observed that both the osmolytes have significantly distinct impacts on the peptide and led to transitions of the conformations of the peptide from one state to other. Our findings highlighted that urea attenuated peptide aggregation and resulted in the formation of extended peptide structures whereas TMAO led to compact and folded forms of the peptide.
Collapse
Affiliation(s)
- Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Anchala Kumari
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
| | - Aditi Singh
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
34
|
Phosphorylated α-Synuclein-Copper Complex Formation in the Pathogenesis of Parkinson's Disease. PARKINSONS DISEASE 2017; 2017:9164754. [PMID: 29333317 PMCID: PMC5733240 DOI: 10.1155/2017/9164754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022]
Abstract
Parkinson's disease is the second most important neurodegenerative disorder worldwide. It is characterized by the presence of Lewy bodies, which are mainly composed of α-synuclein and ubiquitin-bound proteins. Both the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway (ALS) are altered in Parkinson's disease, leading to aggregation of proteins, particularly α-synuclein. Interestingly, it has been observed that copper promotes the protein aggregation process. Additionally, phosphorylation of α-synuclein along with copper also affects the protein aggregation process. The interrelation among α-synuclein phosphorylation and its capability to interact with copper, with the subsequent disruption of the protein degradation systems in the neurodegenerative process of Parkinson's disease, will be analyzed in detail in this review.
Collapse
|
35
|
Wang J, Han X, Leu NA, Sterling S, Kurosaka S, Fina M, Lee VM, Dong DW, Yates JR, Kashina A. Protein arginylation targets alpha synuclein, facilitates normal brain health, and prevents neurodegeneration. Sci Rep 2017; 7:11323. [PMID: 28900170 PMCID: PMC5595787 DOI: 10.1038/s41598-017-11713-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Alpha synuclein (α-syn) is a central player in neurodegeneration, but the mechanisms triggering its pathology are not fully understood. Here we found that α-syn is a highly efficient substrate for arginyltransferase ATE1 and is arginylated in vivo by a novel mid-chain mechanism that targets the acidic side chains of E46 and E83. Lack of arginylation leads to increased α-syn aggregation and causes the formation of larger pathological aggregates in neurons, accompanied by impairments in its ability to be cleared via normal degradation pathways. In the mouse brain, lack of arginylation leads to an increase in α-syn’s insoluble fraction, accompanied by behavioral changes characteristic for neurodegenerative pathology. Our data show that lack of arginylation in the brain leads to neurodegeneration, and suggests that α-syn arginylation can be a previously unknown factor that facilitates normal α-syn folding and function in vivo.
Collapse
Affiliation(s)
- Junling Wang
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Xuemei Han
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nicolae Adrian Leu
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Stephanie Sterling
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Satoshi Kurosaka
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Marie Fina
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Virginia M Lee
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Dawei W Dong
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - John R Yates
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anna Kashina
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Marques-Carneiro JE, Persike DS, Litzahn JJ, Cassel JC, Nehlig A, Fernandes MJDS. Hippocampal Proteome of Rats Subjected to the Li-Pilocarpine Epilepsy Model and the Effect of Carisbamate Treatment. Pharmaceuticals (Basel) 2017; 10:ph10030067. [PMID: 28758946 PMCID: PMC5620611 DOI: 10.3390/ph10030067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
In adult rats, the administration of lithium–pilocarpine (LiPilo) reproduces most clinical and neuropathological features of human temporal lobe epilepsy (TLE). Carisbamate (CRS) possesses the property of modifying epileptogenesis in this model. Indeed, about 50% of rats subjected to LiPilo status epilepticus (SE) develop non-convulsive seizures (NCS) instead of motor seizures when treated with CRS. However, the mechanisms underlying these effects remain unknown. The aim of this study was to perform a proteomic analysis in the hippocampus of rats receiving LiPilo and developing motor seizures or NCS following CRS treatment. Fifteen adult male Sprague–Dawley rats were used. SE was induced by LiPilo injection. CRS treatment was initiated at 1 h and 9 h after SE onset and maintained for 7 days, twice daily. Four groups were studied after video-EEG control of the occurrence of motor seizures: a control group receiving saline (CT n = 3) and three groups that underwent SE: rats treated with diazepam (DZP n = 4), rats treated with CRS displaying NCS (CRS-NCS n = 4) or motor seizures (CRS-TLE n = 4). Proteomic analysis was conducted by 2D-SDS-PAGE. Twenty-four proteins were found altered. In the CRS-NCS group, proteins related to glycolysis and ATP synthesis were down-regulated while proteins associated with pyruvate catabolism were up-regulated. Moreover, among the other proteins differentially expressed, we found proteins related to inflammatory processes, protein folding, tissue regeneration, response to oxidative stress, gene expression, biogenesis of synaptic vesicles, signal transduction, axonal transport, microtubule formation, cell survival, and neuronal plasticity. Our results suggest a global reduction of glycolysis and cellular energy production that might affect brain excitability. In addition, CRS seems to modulate proteins related to many other pathways that could significantly participate in the epileptogenesis-modifying effect observed.
Collapse
Affiliation(s)
- José Eduardo Marques-Carneiro
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
- Unistra, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Faculté de Psychologie, Université de Strasbourg, 67000 Strasbourg, France.
- CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000 Strasbourg, France.
| | - Daniele Suzete Persike
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
| | - Julia Julie Litzahn
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
| | - Jean-Christophe Cassel
- Unistra, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Faculté de Psychologie, Université de Strasbourg, 67000 Strasbourg, France.
- CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000 Strasbourg, France.
| | - Astrid Nehlig
- INSERM U 1129 "Infantile Epilepsies and Brain Plasticity", 75015 Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, CEA, 91990 Gif sur Yvette, France.
| | - Maria José da Silva Fernandes
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
| |
Collapse
|
37
|
Brudek T, Winge K, Folke J, Christensen S, Fog K, Pakkenberg B, Pedersen LØ. Autoimmune antibody decline in Parkinson's disease and Multiple System Atrophy; a step towards immunotherapeutic strategies. Mol Neurodegener 2017; 12:44. [PMID: 28592329 PMCID: PMC5463400 DOI: 10.1186/s13024-017-0187-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson’s’ disease (PD) and Multiple System Atrophy (MSA) are progressive brain disorders characterized by intracellular accumulations of α-synuclein and nerve cell loss in specific brain areas. This loss causes problems with movement, balance and/or autonomic functions. Naturally occurring autoantibodies (NAbs) play potentially an important role in clearing or/and blocking circulating pathological proteins. Little is known about the functional properties of anti-α-synuclein NAbs in PD and MSA, and there have been opposing reports regarding their plasma concentrations in these disorders. Methods We have investigated the apparent affinity of anti-α-synuclein NAbs in plasma samples from 46 PD patients, 18 MSA patients and 41 controls using competitive enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) set-ups. Results We found that the occurrence of high affinity anti-α-synuclein NAbs in plasma from PD patients is reduced compared to healthy controls, and nearly absent in plasma from MSA patients. Also, levels of α-synuclein/NAbs immunocomplexes is substantially reduced in plasma from both patient groups. Further, cross binding of anti-α-synuclein NAbs with β- and γ-synuclein monomers suggest, the high affinity anti-α-synuclein plasma component, seen in healthy individuals, is directed mainly against C-terminal epitopes. Furthermore, we also observed reduced occurrence of high affinity anti-phosphorylated-α-synuclein NAbs in plasma from PD and MSA patients. Conclusions One interpretation implies that these patients may have impaired ability to clear and/or block the effects of pathological α-synuclein due to insufficient/absent concentration of NAbs and as such provides a rationale for testing immune-based therapeutic strategies directed against pathological α-synuclein. Following this interpretation, we can hypothesize that high affinity autoantibodies efficiently bind and clear potentially pathological species of α-synuclein in healthy brain, and that this mechanism is impaired or absent in PD and MSA patients.
Collapse
Affiliation(s)
- Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark. .,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.
| | - Kristian Winge
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | - Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | | | - Karina Fog
- , H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
38
|
Demirel ÖF, Cetin İ, Turan Ş, Sağlam T, Yıldız N, Duran A. Decreased Expression of α-Synuclein, Nogo-A and UCH-L1 in Patients with Schizophrenia: A Preliminary Serum Study. Psychiatry Investig 2017; 14:344-349. [PMID: 28539953 PMCID: PMC5440437 DOI: 10.4306/pi.2017.14.3.344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/15/2016] [Accepted: 07/03/2016] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE α-synuclein, Nogo-A and Ubiquitin C-terminal hydrolase L1 (UCH-L1) have neuromodulatory roles for human brain. Therefore, abnormalities of these molecules are associated with neuropsychiatric disorders. Although some serum studies in the other disorders have been made, serum study of α-synuclein, Nogo-A and UCH-L1 is not present in patients with schizophrenia and healthy controls. Therefore, our aim was to compare serum levels of α-synuclein, Nogo-A and UCH-L1 of the patients with schizophrenia and healthy controls. METHODS Forty-four patients with schizophrenia who is followed by psychotic disorders unit, and 40 healthy control were included in this study. Socio-demographic form and Positive and Negative Syndrome Scale (PANSS) was applied to patients, and sociodemographic form was applied to control group. Fasting bloods were collected and the serum levels of α-synuclein, Nogo-A and UCH-L1 were measured by ELISA method. RESULTS Serum α-synuclein [patient: 12.73 (5.18-31.84) ng/mL; control: 41.77 (15.12-66.98) ng/mL], Nogo-A [patient: 33.58 (3.09-77.26) ng/mL; control: 286.05 (136.56-346.82) ng/mL] and UCH-L1 [patient: 5.26 (1.64-10.87) ng/mL; control: 20.48 (11.01-20.81) ng/mL] levels of the patients with schizophrenia were significianly lower than healthy controls (p<0.001). CONCLUSION Our study results added new evidence for explaining the etiopathogenesis of schizophrenia on the basis of neurochemical markers.
Collapse
Affiliation(s)
- Ömer Faruk Demirel
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İhsan Cetin
- Department of Nutrition and Dietetics, Health High School, Batman University, Batman, Turkey
| | - Şenol Turan
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tarık Sağlam
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nazım Yıldız
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alaattin Duran
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
39
|
Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. J Mol Biol 2017; 429:1289-1304. [PMID: 28342736 DOI: 10.1016/j.jmb.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
The misfolding of proteins to form amyloid is a key pathological feature of several progressive, and currently incurable, diseases. A mechanistic understanding of the pathway from soluble, native protein to insoluble amyloid is crucial for therapeutic design, and recent efforts have helped to elucidate the key molecular events that trigger protein misfolding. Generally, either global or local structural perturbations occur early in amyloidogenesis to expose aggregation-prone regions of the protein that can then self-associate to form toxic oligomers. Surprisingly, these initiating structural changes are often caused or influenced by protein regions distal to the classically amyloidogenic sequences. Understanding the importance of these distal regions in the pathogenic process has highlighted many remaining knowledge gaps regarding the precise molecular events that occur in classic aggregation pathways. In this review, we discuss how these distal regions can influence aggregation in disease and the recent technical and conceptual advances that have allowed this insight.
Collapse
Affiliation(s)
- Christina M Lucato
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
40
|
Shin MS, Kim TW, Lee JM, Ji ES, Lim BV. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats. J Exerc Rehabil 2017; 13:30-35. [PMID: 28349030 PMCID: PMC5331996 DOI: 10.12965/jer.1734906.453] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.
Collapse
Affiliation(s)
- Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Baek-Vin Lim
- Division of Leisure & Sports Science, Department of Exercise Prescription, Dongseo University, Busan, Korea
| |
Collapse
|
41
|
Del Tredici K, Braak H. Review: Sporadic Parkinson's disease: development and distribution of α-synuclein pathology. Neuropathol Appl Neurobiol 2016; 42:33-50. [PMID: 26662475 DOI: 10.1111/nan.12298] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/04/2015] [Accepted: 12/13/2015] [Indexed: 12/17/2022]
Abstract
The development of α-synuclein immunoreactive aggregates in selectively vulnerable neuronal types of the human central, peripheral, and enteric nervous systems is crucial for the pathogenesis of sporadic Parkinson's disease. The presence of these lesions persists into the end phase of the disease, a process that is not subject to remission. The initial induction of α-synuclein misfolding and subsequent aggregation probably occurs in the olfactory bulb and/or the enteric nervous system. Each of these sites is exposed to potentially hostile environmental factors. Once formed, the aggregates appear to be capable of propagating trans-synaptically from nerve cell to nerve cell in a virtually self-promoting pathological process. A regional distribution pattern of aggregated α-synuclein emerges that entails the involvement of only a few types of susceptible and axonally interconnected projection neurons within the human nervous system. One major route of disease progression may originate in the enteric nervous system and retrogradely reach the dorsal motor nucleus of the vagal nerve in the lower brainstem. From there, the disease process proceeds chiefly in a caudo-rostral direction through visceromotor and somatomotor brainstem centres to the midbrain, forebrain, and cerebral cortex. Spinal cord centres may become involved by means of descending projections from involved lower brainstem nuclei as well as by sympathetic projections connecting the enteric nervous system with postganglionic peripheral ganglia and preganglionic nuclei of the spinal cord. The development of experimental cellular and animal models is helping to explain the mechanisms of how abnormal α-synuclein can undergo aggregation and how transmission along axonal connectivities can occur, thereby encouraging the initiation of potential disease-modifying therapeutic strategies for sporadic Parkinson's disease.
Collapse
Affiliation(s)
- K Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - H Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
42
|
Rey NL, George S, Brundin P. Review: Spreading the word: precise animal models and validated methods are vital when evaluating prion-like behaviour of alpha-synuclein. Neuropathol Appl Neurobiol 2016; 42:51-76. [PMID: 26666838 DOI: 10.1111/nan.12299] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/02/2023]
Abstract
Synucleinopathies are characterized by abnormal proteinaceous aggregates, mainly composed of fibrillar α-synuclein (α-syn). It is now believed that α-syn can form small aggregates in a restricted number of cells, that propagate to neighbouring cells and seed aggregation of endogenous α-syn, in a 'prion-like manner'. This process could underlie the stereotypical progression of Lewy bodies described by Braak and colleagues across different stages of Parkinson's disease (PD). This prion-like behaviour of α-syn has been recently investigated in animal models of PD or multiple system atrophy (MSA). These models investigate the cell-to-cell transfer of α-syn seeds, or the induction and spreading of α-syn pathology in transgenic or wild-type rodent brain. In this review, we first outline the involvement of α-syn in Lewy body diseases and MSA, and discuss how 'prion-like' mechanisms can contribute to disease. Thereon, we debate the relevance of animal models used to study prion-like propagation. Finally, we review current main histological methods used to assess α-syn pathology both in animal models and in human samples and their relevance to the disease. Specifically, we discuss using α-syn phosphorylated at serine 129 as a marker of pathology, and the novel methods available that allow for more sensitive detection of early pathology, which has relevance for modelling synucleinopathies.
Collapse
Affiliation(s)
- N L Rey
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| | - S George
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| | - P Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| |
Collapse
|
43
|
Mercado NM, Collier TJ, Freeman T, Steece-Collier K. Repairing the Aged Parkinsonian Striatum: Lessons from the Lab and Clinic. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:476. [PMID: 28111608 PMCID: PMC5243125 DOI: 10.4172/2155-9899.1000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The primary risk factor associated with Parkinson's disease (PD) is advanced age. While there are symptomatic therapies for PD, efficacy of these eventually wane and/or side-effects develop over time. An alternative experimental therapy that has received a great deal of attention over the past several decades has been neural transplantation aimed at replacing nigral dopamine (DA) neurons that degenerate in PD. However, in PD patients and parkinsonian rats, advanced age is associated with inferior benefit following intrastriatal grafting of embryonic DA neurons. Traditionally it has been thought that decreased therapeutic benefit results from the decreased survival of grafted DA neurons and the accompanying poor reinnervation observed in the aged host. However, recent clinical and preclinical data suggest that factors inherent to the aged striatum per se limit successful brain repair. In this short communication, we focus discussion on the implications of our recent grafting study in aged parkinsonian rats, with additional emphasis on a recent clinical report of the outcome of cell therapy in an aged PD patient with long-term (24 years) survival of DA neuron grafts. To address aging as a limiting factor in successful brain repair, we use the example of cell transplantation as a means to interrogate the environment of the aged striatum and identify factors that may, or may not, respond to interventions aimed at improving the prospects for adequate repair of the aged brain. We offer discussion of how these recent reports, in the context of other historical grafting studies, might provide new insight into specific risk factors that have potential to negatively impact all DA cell or terminal replacement strategies for clinical use in PD.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Timothy J Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand Rapids, Michigan 49503, USA
| | - Thomas Freeman
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, FL 33612, USA
| | - Kathy Steece-Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand Rapids, Michigan 49503, USA
| |
Collapse
|
44
|
Functional alterations of the dopaminergic and glutamatergic systems in spontaneous α-synuclein overexpressing rats. Exp Neurol 2016; 287:21-33. [PMID: 27771352 DOI: 10.1016/j.expneurol.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
Abstract
The presence of α-synuclein (α-syn) in Lewy bodies and Lewy neurites is an important characteristic of the neurodegenerative processes of substantia nigra pars compacta (SNpc) dopaminergic (DAergic) neurons in Parkinson's disease (PD) and other synucleinopathies. Here we report that Berlin-Druckrey rats carrying a spontaneous mutation in the 3' untranslated region of α-syn mRNA (m/m rats) display a marked accumulation of α-syn in the mesencephalic area, striatum and frontal cortex, accompanied to severe dysfunctions in the dorsolateral striatum. Despite a small reduction in the number of SNpc and ventral tegmental area DAergic cells, the surviving dopaminergic neurons of the m/m rats do not show clear-cut alterations of the spontaneous and evoked firing activity, DA responses and somatic amphetamine-induced firing inhibition. Interestingly, mutant DAergic neurons display diminished whole-cell Ih conductance and a reduced frequency of spontaneous excitatory synaptic currents. By contrast, m/m rats show a severe impairment of DA and glutamate release in the dorsolateral striatum, as revealed by amperometric measure of DA currents and by electrophysiological recordings of glutamatergic synaptic events in striatal medium spiny neurons. These functional impairments are paralleled by a decreased expression of the DA transporter and VGluT1 proteins in the same area. Thus, together with α-syn overload in the mesencephalic region, striatum and frontal cortex, the main functional alterations occur in the DAergic and glutamatergic terminals in the dorsal striatum of the m/m rats.
Collapse
|
45
|
Toni M, Cioni C, De Angelis F, di Patti MCB. Synuclein expression in the lizard Anolis carolinensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:577-95. [DOI: 10.1007/s00359-016-1108-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/26/2016] [Indexed: 12/30/2022]
|
46
|
Uversky VN. Under-folded proteins: Conformational ensembles and their roles in protein folding, function, and pathogenesis. Biopolymers 2016; 99:870-87. [PMID: 23754493 PMCID: PMC7161862 DOI: 10.1002/bip.22298] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 11/16/2022]
Abstract
For decades, protein function was intimately linked to the presence of a unique, aperiodic crystal‐like structure in a functional protein. The two only places for conformational ensembles of under‐folded (or partially folded) protein forms in this picture were either the end points of the protein denaturation processes or transiently populated folding intermediates. Recent years witnessed dramatic change in this perception and conformational ensembles, which the under‐folded proteins are, have moved from the shadow. Accumulated to date data suggest that a protein can exist in at least three global forms–functional and folded, functional and intrinsically disordered (nonfolded), and nonfunctional and misfolded/aggregated. Under‐folded protein states are crucial for each of these forms, serving as important folding intermediates of ordered proteins, or as functional states of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), or as pathology triggers of misfolded proteins. Based on these observations, conformational ensembles of under‐folded proteins can be classified as transient (folding and misfolding intermediates) and permanent (IDPs and stable misfolded proteins). Permanently under‐folded proteins can further be split into intentionally designed (IDPs and IDPRs) and unintentionally designed (misfolded proteins). Although intrinsic flexibility, dynamics, and pliability are crucial for all under‐folded proteins, the different categories of under‐foldedness are differently encoded in protein amino acid sequences. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 870–887, 2013.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142292, Moscow Region, Russia
| |
Collapse
|
47
|
Petta I, Lievens S, Libert C, Tavernier J, De Bosscher K. Modulation of Protein-Protein Interactions for the Development of Novel Therapeutics. Mol Ther 2016; 24:707-18. [PMID: 26675501 PMCID: PMC4886928 DOI: 10.1038/mt.2015.214] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023] Open
Abstract
Protein-protein interactions (PPIs) underlie most biological processes. An increasing interest to investigate the unexplored potential of PPIs in drug discovery is driven by the need to find novel therapeutic targets for a whole range of diseases with a high unmet medical need. To date, PPI inhibition with small molecules is the mechanism that has most often been explored, resulting in significant progress towards drug development. However, also PPI stabilization is gradually gaining ground. In this review, we provide a focused overview of a number of PPIs that control critical regulatory pathways and constitute targets for the design of novel therapeutics. We discuss PPI-modulating small molecules that are already pursued in clinical trials. In addition, we review a number of PPIs that are still under preclinical investigation but for which preliminary data support their use as therapeutic targets.
Collapse
Affiliation(s)
- Ioanna Petta
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sam Lievens
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent, Belgium
| |
Collapse
|
48
|
Brudek T, Winge K, Rasmussen NB, Bahl JMC, Tanassi J, Agander TK, Hyde TM, Pakkenberg B. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains. J Neurochem 2015; 136:172-85. [DOI: 10.1111/jnc.13392] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
- Bispebjerg Movement Disorders Biobank; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen N Denmark
| | - Kristian Winge
- Department of Neurology; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
- Bispebjerg Movement Disorders Biobank; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen N Denmark
| | - Nadja Bredo Rasmussen
- Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
| | | | - Julia Tanassi
- Department of Autoimmunology and Biomarkers; Statens Serum Institut; Copenhagen S Denmark
| | | | - Thomas M. Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus; Baltimore Maryland USA
- Department of Psychiatry and Behavioral Sciences; Johns Hopkins University School of Medicine; Baltimore Maryland USA
- Department of Neurology; Johns Hopkins University School of Medicine; Baltimore Maryland USA
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
| |
Collapse
|
49
|
Abstract
Synucleins (syns) are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray Torpedo californica, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, β- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, β and two γ (γ1 and γ2) isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of “non verified” sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Via Alfonso Borelli 50, Rome 00161, Italy.
| | - Carla Cioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Via Alfonso Borelli 50, Rome 00161, Italy.
| |
Collapse
|
50
|
Jian CD, Huang JM, Meng LQ, Li XB, Huang RY, Shi SL, Wu Y, Qin C, Chen J, Zhang YM, Wang S, Feng YL, Zhou SN. SNCA rs3822086 C>T Polymorphism Increases the Susceptibility to Parkinson's Disease in a Chinese Han Population. Genet Test Mol Biomarkers 2015. [PMID: 26203864 DOI: 10.1089/gtmb.2015.0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chong-Dong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian-Min Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lan-Qing Meng
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xue-Bin Li
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Rui-Ya Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Sheng-Liang Shi
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan-Mei Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuang Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yin-Ling Feng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sheng-Nian Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|