1
|
Zhao W, Hou Y, Song X, Wang L, Zhang F, Zhang H, Yu H, Zhou Y. Estrogen Deficiency Induces Mitochondrial Damage Prior to Emergence of Cognitive Deficits in a Postmenopausal Mouse Model. Front Aging Neurosci 2021; 13:713819. [PMID: 34335235 PMCID: PMC8319728 DOI: 10.3389/fnagi.2021.713819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Estrogen deficiency contributes to the development of Alzheimer's disease (AD) in menopausal women. In the current study, we examined the impact of estrogen deficiency on mitochondrial function and cognition using a postmenopausal mouse model. Methods: Bilateral ovariectomy was conducted in adult females C57BL/6J. Cognitive function was examined using the Morris water maze (MWM) test at 2 weeks, 1, 2, and 3 months after ovariectomy. Neurodegeneration was assessed using an immunofluorescence assay of microtubule-associated protein 2 (MAP2) in the hippocampus and immunoblotting against postsynaptic density-95 (PSD95). Mitochondrial function in the hippocampus was assessed using immunoblotting for NDUFB8, SDHB, UQCRC2, MTCO1, and ATP5A1. Mitochondrial biogenesis was examined using immunoblotting for PGC-1α, NRF1, and mtTFA. Mitochondrion fission was assessed with immunoblotting for Drp1, whereas mitochondrion fusion was analyzed with immunoblotting for OPA1 and Mfn2. Mitophagy was examined with immunoblotting for PINK1 and LC3B. Mice receiving sham surgery were used as controls. Results: Ovariectomy resulted in significant learning and memory deficits in the MWM test at 3 months, but not at any earlier time points. At 2 weeks after ovariectomy, levels of Drp1 phosphorylated at Ser637 decreased in the hippocampus. At 1 month after ovariectomy, hippocampal levels of NDUFB8, SDHB, PGC-1α, mtTFA, OPA1, and Mfn2 were significantly reduced. At 2 months after ovariectomy, hippocampal levels of MAP2, PSD95, MTCO1, NRF1, and Pink1 were also reduced. At 3 months, levels of LC3B-II were reduced. Conclusions: The cognitive decline associated with estrogen deficiency is preceded by mitochondrial dysfunction, abnormal mitochondrial biogenesis, irregular mitochondrial dynamics, and decreased mitophagy. Thus, mitochondrial damage may contribute to cognitive impairment associated with estrogen deficiency.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinxin Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Lei Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Fangfang Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Hanting Zhang
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
2
|
Molecular Mechanisms Involved in Neural Substructure Development during Phosphodiesterase Inhibitor Treatment of Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21144867. [PMID: 32660142 PMCID: PMC7402296 DOI: 10.3390/ijms21144867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Stem cells are highly important in biology due to their unique innate ability to self-renew and differentiate into other specialised cells. In a neurological context, treating major injuries such as traumatic brain injury, spinal cord injury and stroke is a strong basis for research in this area. Mesenchymal stem cells (MSC) are a strong candidate because of their accessibility, compatibility if autologous, high yield and multipotency with a potential to generate neural cells. With the use of small-molecule chemicals, the neural induction of stem cells may occur within minutes or hours. Isobutylmethyl xanthine (IBMX) has been widely used in cocktails to induce neural differentiation. However, the key molecular mechanisms it instigates in the process are largely unknown. In this study we showed that IBMX-treated mesenchymal stem cells induced differentiation within 24 h with the unique expression of several key proteins such as Adapter protein crk, hypoxanthine-guanine phosphoribosyltransferase, DNA topoisomerase 2-beta and Cell division protein kinase 5 (CDK5), vital in linking signalling pathways. Furthermore, the increased expression of basic fibroblast growth factor in treated cells promotes phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK) cascades and GTPase–Hras interactions. Bioinformatic and pathway analyses revealed upregulation in expression and an increase in the number of proteins with biological ontologies related to neural development and substructure formation. These findings enhance the understanding of the utility of IBMX in MSC neural differentiation and its involvement in neurite substructure development.
Collapse
|
3
|
Pu X, Zhou X, Huang Z, Yin G, Chen X. Fabrication of extracellular matrix-coated conductive polypyrrole-poly(l-lactide) fiber-films and their synergistic effect with (nerve growth factor)/(epidermal growth factor) on neurites growth. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Lin C, Chen P, Chan H, Huang Y, Chang NW. Peroxisome proliferator‐activated receptor alpha accelerates neuronal differentiation and this might involve the mitogen‐activated protein kinase pathway. Int J Dev Neurosci 2018; 71:46-51. [DOI: 10.1016/j.ijdevneu.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chingju Lin
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Pei‐Yi Chen
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Hsu‐Chin Chan
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Yi‐Ping Huang
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Nai Wen Chang
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
5
|
Mironov VI, Semyanov AV, Kazantsev VB. Dendrite and Axon Specific Geometrical Transformation in Neurite Development. Front Comput Neurosci 2016; 9:156. [PMID: 26858635 PMCID: PMC4729915 DOI: 10.3389/fncom.2015.00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/24/2015] [Indexed: 01/02/2023] Open
Abstract
We propose a model of neurite growth to explain the differences in dendrite and axon specific neurite development. The model implements basic molecular kinetics, e.g., building protein synthesis and transport to the growth cone, and includes explicit dependence of the building kinetics on the geometry of the neurite. The basic assumption was that the radius of the neurite decreases with length. We found that the neurite dynamics crucially depended on the relationship between the rate of active transport and the rate of morphological changes. If these rates were in the balance, then the neurite displayed axon specific development with a constant elongation speed. For dendrite specific growth, the maximal length was rapidly saturated by degradation of building protein structures or limited by proximal part expansion reaching the characteristic cell size.
Collapse
Affiliation(s)
- Vasily I Mironov
- Department of Neurotechnologies, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Alexey V Semyanov
- Department of Neurotechnologies, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Victor B Kazantsev
- Department of Neurotechnologies, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny NovgorodNizhny Novgorod, Russia; Laboratory of Nonlinear Dynamics of Living Systems, Institute of Applied Physics of the Russian Academy of ScienceNizhny Novgorod, Russia
| |
Collapse
|
6
|
Henriques AG, Oliveira JM, Carvalho LP, da Cruz E Silva OAB. Aβ Influences Cytoskeletal Signaling Cascades with Consequences to Alzheimer's Disease. Mol Neurobiol 2014; 52:1391-1407. [PMID: 25344315 DOI: 10.1007/s12035-014-8913-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/28/2014] [Indexed: 01/16/2023]
Abstract
Abnormal signal transduction events can impact upon the cytoskeleton, affecting the actin and microtubule networks with direct relevance to Alzheimer's disease (AD). Cytoskeletal anomalies, in turn, promote atypical neuronal responses, with consequences for cellular organization and function. Neuronal cytoskeletal modifications in AD include neurofibrillary tangles, which result from aggregates of hyperphosphorylated tau protein. The latter is a microtubule (MT)-binding protein, whose abnormal phosphorylation leads to MT instability and consequently provokes irregularities in the neuronal trafficking pathways. Early stages of AD are also characterized by synaptic dysfunction and loss of dendritic spines, which correlate with cognitive deficit and impaired brain function. Actin dynamics has a prominent role in maintaining spine plasticity and integrity, thus providing the basis for memory and learning processes. Hence, factors that disrupt both actin and MT network dynamics will compromise neuronal function and survival. The peptide Aβ is the major component of senile plaques and has been described as a pivotal mediator of neuronal dystrophy and synaptic loss in AD. Here, we review Aβ-mediated effects on both MT and actin networks and focus on the relevance of the elicited cytoskeletal signaling events targeted in AD pathology.
Collapse
Affiliation(s)
- Ana Gabriela Henriques
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Machado Oliveira
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Liliana Patrícia Carvalho
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Abdanipour A, Schluesener HJ, Tiraihi T, Noori-Zadeh A. Systemic administration of valproic acid stimulates overexpression of microtubule-associated protein 2 in the spinal cord injury model to promote neurite outgrowth. Neurol Res 2014; 37:223-8. [DOI: 10.1179/1743132814y.0000000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Zeng J, Huang Z, Yin G, Qin J, Chen X, Gu J. Fabrication of conductive NGF-conjugated polypyrrole–poly(l-lactic acid) fibers and their effect on neurite outgrowth. Colloids Surf B Biointerfaces 2013; 110:450-7. [DOI: 10.1016/j.colsurfb.2013.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/15/2013] [Accepted: 05/08/2013] [Indexed: 12/28/2022]
|
9
|
Ganzer PD, Moxon KA, Knudsen EB, Shumsky JS. Serotonergic pharmacotherapy promotes cortical reorganization after spinal cord injury. Exp Neurol 2012; 241:84-94. [PMID: 23262119 DOI: 10.1016/j.expneurol.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/17/2023]
Abstract
Cortical reorganization plays a significant role in recovery of function after injury of the central nervous system. The neural mechanisms that underlie this reorganization may be the same as those normally responsible for skilled behaviors that accompany extended sensory experience and, if better understood, could provide a basis for further promoting recovery of function after injury. The work presented here extends studies of spontaneous cortical reorganization after spinal cord injury to the role of rehabilitative strategies on cortical reorganization. We use a complete spinal transection model to focus on cortical reorganization in response to serotonergic (5-HT) pharmacotherapy without any confounding effects from spared fibers left after partial lesions. 5-HT pharmacotherapy has previously been shown to improve behavioral outcome after SCI but the effect on cortical organization is unknown. After a complete spinal transection in the adult rat, 5-HT pharmacotherapy produced more reorganization in the sensorimotor cortex than would be expected by transection alone. This reorganization was dose dependent, extended into intact (forelimb) motor cortex, and, at least in the hindlimb sensorimotor cortex, followed a somatotopic arrangement. Animals with the greatest behavioral outcome showed the greatest extent of cortical reorganization suggesting that the reorganization is likely to be in response to both direct effects of 5-HT on cortical circuits and indirect effects in response to the behavioral improvement below the level of the lesion.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
10
|
Allen A, Messier C. Plastic changes in the astrocyte GLUT1 glucose transporter and beta-tubulin microtubule protein following voluntary exercise in mice. Behav Brain Res 2012. [PMID: 23201358 DOI: 10.1016/j.bbr.2012.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucose, the predominant energy substrate of the central and peripheral nervous system, is delivered to neurons via a family of facilitative glucose transporters (GLUT). The majority of glucose is transported to the brain via glucose transporter 1 (GLUT1) located on epithelial cells of capillaries and on the astrocytes that wrap around them. Changes in neuronal activity are linked to increases in glucose demand and local cerebral glucose utilization. Current research has indicated a corresponding change in GLUT1 expression in response to increased metabolic demand in operant tasks. The purpose of this study was to examine, in the mouse brain, the effects of neuronal activation induced by voluntary running on the plastic expression of vascular GLUT1 and neuronal plasticity as measured by the microtubule protein beta-tubulin III (Tuj). The results showed that access to a running wheel for 48h induced plastic changes in the expression of GLUT1, Tuj and GLUT1-associated estimate of astrocyte vascular endfeet in motor regions. The results tend to support the plastic association between mechanisms of energy supply and plastic reorganization of neurons following a new training experience.
Collapse
Affiliation(s)
- Angela Allen
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Room 2076A, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
11
|
The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation. ASN Neuro 2009; 1:AN20090036. [PMID: 19743964 PMCID: PMC2785511 DOI: 10.1042/an20090036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix) transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.
Collapse
Key Words
- COX, cytochrome c oxidase
- E, embryonic day
- ESC, embryonic stem cell
- F-actin, filamentous actin
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- MAP, microtubule-associated protein
- MMP, mitochondrial membrane potential
- MTG, MitoTracker® Green
- MTR, MitoTracker® Red
- NGF, nerve growth factor
- NRF, nuclear respiratory factor
- NeuroD family
- PDL, poly-d-lysine
- PGC-1, peroxisome-proliferator-activated receptor-γ co-activator-1
- SOD2, superoxide dismutase 2
- WGA, wheat germ agglutinin
- bHLH, basic helix–loop–helix
- basic helix–loop–helix transcription factor
- cytoskeletal remodelling
- mitochondrial biogenesis
- mtDNA, mitochondrial DNA
- neuronal differentiation
Collapse
|
12
|
Shahpasand K, Ahmadian S, Riazi GH. A possible mechanism for controlling processive transport by microtubule-associated proteins. Neurosci Res 2008; 61:347-50. [PMID: 18541318 DOI: 10.1016/j.neures.2008.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/16/2008] [Accepted: 04/25/2008] [Indexed: 01/07/2023]
Abstract
Molecular mechanisms of axonal transport have been evaluated by several investigators. It seems that microtubules (MTs) act as a track for the transport and microtubule-associated proteins (MAPs) seem to play as a regulating factor in it. In order to transport MTs must move in the radial direction to make room for a vesicle and when the cargo passes, return to the previous position for the maintenance of neuronal structure. An inhibitor factor against the radial movement is the steric constraints resulted from presence of MAPs. In fact, inter-microtubular spaces (IMS) in the neuronal processes are resulted from the space-making role of the MAPs. Since the IMS must be locally altered to make enough room for a vesicle, it seems relevant to imagine some mechanisms that control the steric constraints for an efficient vesicular transport. Here we juxtapose the older findings and the recent ones to investigate the possible effects of MAPs on the processive transport.
Collapse
Affiliation(s)
- Kourosh Shahpasand
- Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
13
|
Galli-Resta L, Leone P, Bottari D, Ensini M, Rigosi E, Novelli E. The genesis of retinal architecture: an emerging role for mechanical interactions? Prog Retin Eye Res 2008; 27:260-83. [PMID: 18374618 DOI: 10.1016/j.preteyeres.2008.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Patterns in nature have always fascinated human beings. They convey the idea of order, organization and optimization, and, to the enquiring mind, the alluring promise that understanding their building rules may uncover the forces that shaped them. In the retina, two patterns are outstanding: the stacking of cells in layers and, within the layers, the prevalent arrangement of neurons of the same type in orderly arrays, often referred to as mosaics for the crystalline-like order that some can display. Layers and mosaics have been essential keys to our present understanding of retinal circuital organization and function. Now, they may also be a precious guide in our exploration of how the retina is built. Here, we will review studies addressing the mechanisms controlling the formation of retinal mosaics and layers, illustrating common themes and unsolved problems. Among the intricacies of the building process, a world of physical forces is making its appearance. Cells are extremely complex to model as "physical entities", and many aspects of cell mechanotransduction are still obscure. Yet, recent experiments, focusing on the mechanical aspects of growth and differentiation, suggest that adopting this viewpoint will open new ways of understanding retinal formation and novel possibilities to approach retinal pathologies and repair.
Collapse
|
14
|
Sharma RK, Netland PA. Early born lineage of retinal neurons express class III beta-tubulin isotype. Brain Res 2007; 1176:11-7. [PMID: 17900541 DOI: 10.1016/j.brainres.2007.07.090] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 05/24/2007] [Accepted: 07/12/2007] [Indexed: 11/16/2022]
Abstract
AIM Class III beta-tubulin, a constituent of neuronal microtubules, has been frequently used as a marker for the neuronal lineage in developmental biology. In retina, it is often used as a marker for ganglion cells. We investigated the developmental expression of this protein in retina and identified the cell types expressing it to gain a better understanding of whether preferred expression of this isotype in certain retinal neurons plays a cell specific role, or whether it is only a part of an intrinsic developmental program. METHODS Immunohistochemistry was done using an antibody against class III beta-tubulin and other retinal cell specific markers in adult retinae of mice. Rabbit and human retinae were used to investigate if there are any species-specific differences. RESULTS Class III beta-tubulin was found in ganglion cells, certain amacrine cells, some horizontal cell processes and cone photoreceptors. Class III beta-tubulin was already expressed in the earliest developmental stage studied (Embryonic day 14) in developing nerve fiber layer but became distinct at the day of birth when immunoreactive cells were located in the ganglion cell layer (ganglion and displaced amacrine cells), proximal parts of neuroblastic/inner nuclear layer (amacrine cells) and distal part of neuroblastic/outer nuclear layer (photoreceptors). In one animal, class III beta-tubulin containing bodies were found in the retinal pigment epithelium cells. CONCLUSIONS Class III beta-tubulin is not solely expressed by ganglion cells and, therefore, cannot be used as an exclusive marker for these cells. Results show that the expression of class III beta-tubulin was not related to cell morphology or cell function, but rather to the cell lineage (early born retinal neurons) suggesting that the expression of class III beta-tubulin in certain cell types may be due to the cell specific developmental program.
Collapse
Affiliation(s)
- Rajesh K Sharma
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| | | |
Collapse
|
15
|
Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci 2007; 27:7911-20. [PMID: 17652582 PMCID: PMC6672733 DOI: 10.1523/jneurosci.5313-06.2007] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral axons of dorsal root ganglion (DRG) neurons, but not their central axons in the dorsal columns, regenerate after injury. However, if the neurons are conditioned by a peripheral nerve injury into an actively growing state, the rate of peripheral axonal growth is accelerated and the injured central axons begin to regenerate. The growth-promoting effects of conditioning injuries have two components, increased axonal growth and a reduced response to inhibitory myelin cues. We have examined which transcription factors activated by peripheral axonal injury may mediate the conditioning effect by regulating expression of effectors that increase the intrinsic growth state of the neurons. Activating transcription factor 3 (ATF3) is a prime candidate because it is induced in all injured DRG neurons after peripheral, but not central, axonal damage. To investigate if ATF3 promotes regeneration, we generated transgenic mice that constitutively express this transcription factor in non-injured adult DRG neurons. The rate of peripheral nerve regeneration was enhanced in the transgenic mice to an extent comparable to that produced by a preconditioning nerve injury. The expression of some growth-associated genes, such as SPRR1A, but not others like GAP-43, was increased in the non-injured neurons. ATF3 increased DRG neurite elongation when cultured on permissive substrates but did not overcome the inhibitory effects of myelin or promote central axonal regeneration in the spinal cord in vivo. We conclude that ATF3 contributes to nerve regeneration by increasing the intrinsic growth state of injured neurons.
Collapse
Affiliation(s)
- Rhona Seijffers
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Charles D. Mills
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Clifford J. Woolf
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
16
|
Ruggiero C, Benvenuti S, Giacomini M. Mathematical Modeling of Retinal Mosaic Formation by Mechanical Interactions and Dendritic Overlap. IEEE Trans Nanobioscience 2007; 6:180-5. [PMID: 17695754 DOI: 10.1109/tnb.2007.897454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a complex assembly of neurons packed into a three-layer structure containing five classes of cells. Each class of retinal cells is regularly arranged within its layer in an orderly configuration called the retinal mosaic. We have set up a mathematical model of retinal mosaic formation focusing on the actions of local mechanical forces on the neuron's cytoskeleton. The cytoskeleton has been modeled according to two approaches, one based on the tensegrity concept (a structure made of elastic and rigid elements), and the other based on a simple model with viscoelastic features. We have assumed causing deformation of their cytoskeleton, overlap of dendritic areas and movement of the neuron. Simulations based on these two models indicate that a random distribution of neurons reaches an orderly configuration by local and mechanical neuron interaction in the case in which the cytoskeleton is modeled using the tensegrity approach, but not when the neuron is modeled as a purely viscoelastic system. Considering that the main structural difference between the Maxwell model and the tensegrity model is that the latter model contains rigid elements whereas the former does not, this suggests that the presence of rigid components in the cytoskeleton of retinal neurons plays a key role in the formation processes of the retinal mosaic.
Collapse
Affiliation(s)
- Carmelina Ruggiero
- Department of Communication, Computer and System Science, University of Genoa, 16145 Genoa, Italy.
| | | | | |
Collapse
|
17
|
Gralle M, Ferreira ST. Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 2007; 82:11-32. [PMID: 17428603 DOI: 10.1016/j.pneurobio.2007.02.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/26/2006] [Accepted: 02/01/2007] [Indexed: 12/30/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane protein that plays major roles in the regulation of several important cellular functions, especially in the nervous system, where it is involved in synaptogenesis and synaptic plasticity. The secreted extracellular domain of APP, sAPPalpha, acts as a growth factor for many types of cells and promotes neuritogenesis in post-mitotic neurons. Alternative proteolytic processing of APP releases potentially neurotoxic species, including the amyloid-beta (Abeta) peptide that is centrally implicated in the pathogenesis of Alzheimer's disease (AD). Reinforcing this biochemical link to neuronal dysfunction and neurodegeneration, APP is also genetically linked to AD. In this review, we discuss the biological functions of APP in the context of tissue morphogenesis and restructuring, where APP appears to play significant roles both as a contact receptor and as a diffusible factor. Structural investigation of APP, which is necessary for a deeper understanding of its roles at a molecular level, has also been advancing rapidly. We summarize recent progress in the determination of the structure of isolated APP fragments and of the conformations of full-length sAPPalpha, in both monomeric and dimeric states. The potential role of APP dimerization for the regulation of its biological functions is also discussed.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | | |
Collapse
|
18
|
De Vos KJ, Sheetz MP. Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol 2007; 80:627-82. [PMID: 17445716 DOI: 10.1016/s0091-679x(06)80030-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kurt J De Vos
- Department of Neuroscience, MRC Centre for Neurodegeneration Research, The Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London, United Kingdom
| | | |
Collapse
|
19
|
Seijffers R, Allchorne AJ, Woolf CJ. The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 2006; 32:143-54. [PMID: 16713293 DOI: 10.1016/j.mcn.2006.03.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/10/2006] [Accepted: 03/23/2006] [Indexed: 12/17/2022] Open
Abstract
Dorsal root ganglion (DRG) neurons regenerate after a peripheral nerve injury but not after injury to their axons in the spinal cord. A key question is which transcription factors drive the changes in gene expression that increase the intrinsic growth state of peripherally injured sensory neurons? A prime candidate is activating transcription factor-3 (ATF-3), a transcription factor that we find is induced in all DRG neurons after peripheral, but not central axonal injury. Moreover, we show in adult DRG neurons that a preconditioning peripheral, but not central axonal injury, increases their growth, correlating closely with the pattern of ATF-3 induction. Using viral vectors, we delivered ATF-3 to cultured adult DRG neurons and find that ATF-3 enhances neurite outgrowth. Furthermore, ATF-3 promotes long sparsely branched neurites. ATF-3 overexpression did not increase c-Jun expression. ATF-3 may contribute, therefore, to neurite outgrowth by orchestrating the gene expression responses in injured neurons.
Collapse
Affiliation(s)
- Rhona Seijffers
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
20
|
Abstract
Organelle transport is vital for the development and maintenance of axons, in which the distances between sites of organelle biogenesis, function, and recycling or degradation can be vast. Movement of mitochondria in axons can serve as a general model for how all organelles move: mitochondria are easy to identify, they move along both microtubule and actin tracks, they pause and change direction, and their transport is modulated in response to physiological signals. However, they can be distinguished from other axonal organelles by the complexity of their movement and their unique functions in aerobic metabolism, calcium homeostasis and cell death. Mitochondria are thus of special interest in relating defects in axonal transport to neuropathies and degenerative diseases of the nervous system. Studies of mitochondrial transport in axons are beginning to illuminate fundamental aspects of the distribution mechanism. They use motors of one or more kinesin families, along with cytoplasmic dynein, to translocate along microtubules, and bidirectional movement may be coordinated through interaction between dynein and kinesin-1. Translocation along actin filaments is probably driven by myosin V, but the protein(s) that mediate docking with actin filaments remain unknown. Signaling through the PI 3-kinase pathway has been implicated in regulation of mitochondrial movement and docking in the axon, and additional mitochondrial linker and regulatory proteins, such as Milton and Miro, have recently been described.
Collapse
Affiliation(s)
- Peter J Hollenbeck
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
21
|
Wasilewska-Sampaio AP, Silveira MS, Holub O, Goecking R, Gomes FCA, Neto VM, Linden R, Ferreira ST, De Felice FG. Neuritogenesis and neuronal differentiation promoted by 2,4-dinitrophenol, a novel anti-amyloidogenic compound. FASEB J 2006; 19:1627-36. [PMID: 16195371 DOI: 10.1096/fj.05-3812com] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurite outgrowth is a critical event in neuronal development, formation, and remodeling of synapses, response to injury, and regeneration. We examined the effects of 2,4-dinitrophenol (DNP), a recently described blocker of the aggregation and neurotoxicity of the beta-amyloid peptide, on neurite elongation of central neurons. Morphometric analysis of rat embryo hippocampal and cortical neuronal cultures showed that neurite outgrowth was stimulated by DNP. This effect was accompanied by increases in the neuronal levels of the microtubule-associated protein tau and of cyclic adenosine 3',5' monophosphate (cAMP). DNP also promoted cAMP accumulation, increased tau level, neurite outgrowth, and neuronal differentiation in the mouse neuroblastoma cell line N2A. We show that DNP-induced differentiation requires activation of the extracellular signal-regulated kinase (ERK). The finding that DNP promotes neuritogenesis and neuronal differentiation suggests that, in addition to its anti-amyloidogenic actions, it may be a useful lead compound in the development of novel therapeutic approaches targeting neurite dystrophy and synaptic dysfunction in neurodegenerative pathologies such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ana Paula Wasilewska-Sampaio
- Instituto de Bioquímica Médica, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Graham BP, Lauchlan K, Mclean DR. Dynamics of outgrowth in a continuum model of neurite elongation. J Comput Neurosci 2006; 20:43-60. [PMID: 16649067 DOI: 10.1007/s10827-006-5330-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Revised: 09/07/2005] [Accepted: 10/03/2005] [Indexed: 02/03/2023]
Abstract
Neurite outgrowth (dendrites and axons) should be a stable, but easily regulated process to enable a neuron to make its appropriate network connections during development. We explore the dynamics of outgrowth in a mathematical continuum model of neurite elongation. The model describes the construction of the internal microtubule cytoskeleton, which results from the production and transport of tubulin dimers and their assembly into microtubules at the growing neurite tip. Tubulin is assumed to be largely synthesised in the cell body from where it is transported by active mechanisms and by diffusion along the neurite. It is argued that this construction process is a fundamental limiting factor in neurite elongation. In the model, elongation is highly stable when tubulin transport is dominated by either active transport or diffusion, but oscillations in length may occur when both active transport and diffusion contribute. Autoregulation of tubulin production can eliminate these oscillations. In all cases a stable steady-state length is reached, provided there is intrinsic decay of tubulin. Small changes in growth parameters, such as the tubulin production rate, can lead to large changes in length. Thus cytoskeleton construction can be both stable and easily regulated, as seems necessary for neurite outgrowth during nervous system development.
Collapse
Affiliation(s)
- Bruce P Graham
- Department of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, UK.
| | | | | |
Collapse
|
23
|
Chien CL, Lu KS, Lin YS, Hsieh CJ, Hirokawa N. The functional cooperation of MAP1A heavy chain and light chain 2 in the binding of microtubules. Exp Cell Res 2005; 308:446-58. [PMID: 15936015 DOI: 10.1016/j.yexcr.2005.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 12/01/2022]
Abstract
Microtubule-associated protein 1A (MAP1A) is a high-molecular-weight protein that is comprised of a heavy chain and a light chain (LC2) and is widely distributed along the microtubules in both mature neurons and glial cells. To illustrate the interaction among the MAP1A heavy chain, light chain, and microtubule, we prepared DNA constructs with Myc-, EGFP-, or DsRed-tags for full-length MAP1A DNA expressing whole MAP1A protein, two domains of MAP1A heavy chain, and light chain. Distribution patterns of various MAP1A domains as well as their interactions with microtubules were monitored in a non-neuronal COS7 and a neuronal Neuro2A cells. Our data revealed that a complete MAP1A protein, which contains both heavy chain and LC2, could be colocalized with microtubule networks not only in Neuro2A cells but also in transfected COS7 cells. Filamentous structures failed to be visualized along microtubules in COS7 cells transfected with MAP1A heavy chain or LC2 alone. Whereas, after introducing MAP1A heavy chain with LC2 into COS7 cells, both heavy chain and LC2 could be colocalized with microtubules. From our functional analysis, both MAP1A and its LC2 could protect microtubules against the challenge of nacodazol. Data collected from yeast two-hybrid assays of various MAP1A domains confirmed that the interaction of LC2 and NH2-terminal of MAP1A heavy chain is important for microtubule binding. From our analysis of MAP1A functional domains, we suggest that interactions between MAP1A heavy chain and LC2 are critical for the binding of microtubules.
Collapse
Affiliation(s)
- Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 100, Taiwan.
| | | | | | | | | |
Collapse
|
24
|
Buschbeck EK, Hoy RR. The development of a long, coiled, optic nerve in the stalk-eyed fly Cyrtodiopsis whitei. Cell Tissue Res 2005; 321:491-504. [PMID: 16010600 DOI: 10.1007/s00441-005-1142-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 04/06/2005] [Indexed: 02/02/2023]
Abstract
In the stalk-eyed fly Cyrtodiopsis whitei (Diopsidae; Diptera), the relatively long optic nerve develops within the tight lumen of a very short eyestalk. Axonal growth is generally considered in terms of path finding, selective fasciculation, and towing. Physical forces that are necessary for axon lengthening are generated either by the growth cone or by the growth of surrounding tissues. Therefore, it is surprising to encounter a loosely coiled nerve apparently lacking any attachments that could allow for pull, or towing, of the nerve. In this study, we used histological sections and whole-mount preparations to confirm that the optic nerve of the stalk-eyed fly indeed elongates without the external application of tension to the nerve. Secondly, we examined the distribution of cytoskeletal elements and selected proteins that may be involved in axon extension. Staining against the vesicle fusion proteins SNAP-24 and SNAP-25 consistently results in stronger staining in the rapidly extending optic nerve than in a control nerve, suggesting a possible role of these proteins in the extension process. On a gross morphological level, SNAP-24/25 as well as the cytoskeletal elements actin and tubulin are uniformly distributed throughout the lengths of the growing nerve, suggesting that nerve elongation is distributed rather than localized. Finally, we identified glia as a possible source for tension within the nerve bundle. Glia proliferate rapidly in the optic nerve but not in the control nerve. Much work continues to focus on the growth of axons in culture, but this study is one of the few that considers the dynamics of nerve bundle extension as a whole.
Collapse
Affiliation(s)
- Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA.
| | | |
Collapse
|
25
|
Novelli E, Resta V, Galli-Resta L. Mechanisms controlling the formation of retinal mosaics. PROGRESS IN BRAIN RESEARCH 2005; 147:141-53. [PMID: 15581703 DOI: 10.1016/s0079-6123(04)47011-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Most regions of the nervous system derive their power of processing from a modular architecture. The retina is an outstanding example of modular circuit design. Retinal neurons are stacked in layers and within each layer neurons of the same type commonly form orderly arrays, or mosaics. Here we review current knowledge on the mechanisms of retinal mosaic formation, and discuss the hypothesis that retinal mosaics are the building blocks in the assembly of retinal circuitry.
Collapse
|
26
|
Megiorni F, Mora B, Indovina P, Mazzilli MC. Expression of neuronal markers during NTera2/cloneD1 differentiation by cell aggregation method. Neurosci Lett 2005; 373:105-9. [PMID: 15567562 DOI: 10.1016/j.neulet.2004.09.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/14/2004] [Accepted: 09/28/2004] [Indexed: 11/25/2022]
Abstract
Human teratocarcinoma NTera2/cloneD1 (NT2) cells are able to generate postmitotic neurons in response to retinoic acid (RA) and for this reason these cells provide an important tool to study human neurogenesis in vitro. We have obtained neurons by treating NT2 aggregated cells with RA for solely 14 days. RT-PCR assays showed that NT2 cells express mRNAs of several neural bHLH genes such as Hes1, Ngn1, Mash1, NeuroD, Math1 and Pax6, just in the early days of RA exposure. In particular, we reported for the first time that RA treatment was followed by a modulation of endogenous Ngn1 and Math1 transcripts. RT-PCR and Western blotting experiments also demonstrated expression of typical neuronal markers such as GluR, MAP2, Tau and NeuN. Knowledge of the expression pattern of the different neuronal genes during NT2 commitment could be used to investigate alterations in the molecular pathways involved in the human neuronal differentiation.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Experimental Medicine and Pathology, La Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | | | | | | |
Collapse
|
27
|
Mukhopadhyay R, Kumar S, Hoh JH. Molecular mechanisms for organizing the neuronal cytoskeleton. Bioessays 2004; 26:1017-25. [PMID: 15351972 DOI: 10.1002/bies.20088] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurofilaments and microtubules are important components of the neuronal cytoskeleton. In axons or dendrites, these filaments are aligned in parallel arrays, and separated from one another by nonrandom distances. This distinctive organization has been attributed to cross bridges formed by NF side arms or microtubule-associated proteins. We recently proposed a polymer-brush-based mechanism for regulating interactions between neurofilaments and between microtubules. In this model, the side arms of neurofilaments and the projection domains of microtubule-associated proteins are highly unstructured and exert long-range repulsive forces that are largely entropic in origin; these forces then act to organize the cytoskeleton in axons and dendrites. Here, we review the biochemical, biophysical, genetic and cell biological data for the polymer-brush and cross-bridging models. We explore how the data traditionally used to support cross bridging may be reconciled with a polymer-brush mechanism and compare the implications of recent experimental insights into axonal transport and physiology for each model.
Collapse
|
28
|
Katoh K, Yoshida F, Ishikaw R. Actin dynamics in neuronal growth cone revealed with a polarized light microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 538:347-58; discussion 358-9. [PMID: 15098681 DOI: 10.1007/978-1-4419-9029-7_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Kaoru Katoh
- Neuroscience Research Institute, National institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568 Japan
| | | | | |
Collapse
|
29
|
Allani PK, Sum T, Bhansali SG, Mukherjee SK, Sonee M. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons. Toxicol Appl Pharmacol 2004; 196:29-36. [PMID: 15050405 DOI: 10.1016/j.taap.2003.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
Cytoskeleton disruption is a process by which oxidative stress disrupts cellular function. This study compares and contrasts the effect of oxidative stress on the three major cytoskeleton filaments, microfilaments (MFs), microtubule (MT), and vimentin in human cortical neuronal cell line (HCN2). HCN2 cells were treated with 100 microM tertiary butylhydroperoxide (t-BuOOH), a free radical generating neurotoxin for 1, 3, or 6 h. Cell viability studies demonstrated significant cell death although the morphology studies showed that there was a substantial loss in neurites of neurons treated with t-BuOOH for 6 h. Because the cytoskeleton plays a role in neurite outgrowth, the effect of oxidative stress on the cytoskeletal was studied. In neurons subjected to oxidative stress for 30 min or 1 h, there were no major changes in microfilament distribution though there was altered distribution of microtubule and vimentin filaments as compared to controls. However, loss and disruption of all the three cytoskeletal filaments was observed at later times (3 and 6 h), which was confirmed by Western Blot analysis. Further studies were done to measure the gene expression levels of actin, tubulin, and vimentin. Results indicated that the overall loss of the cytoskeletal proteins in neurons treated with free radical generating toxin might not be a direct result of the downregulation of the cytoskeletal genes. This study shows that free radical generation in human neurons leads to the disruption of the cytoskeleton, though there may be a difference in the susceptibility to oxidative stress among the individual components of the cytoskeletal filaments.
Collapse
Affiliation(s)
- Pramod K Allani
- Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | |
Collapse
|
30
|
Rodríguez-Rodríguez RA, Tabernero A, Velasco A, Lavado EM, Medina JM. The neurotrophic effect of oleic acid includes dendritic differentiation and the expression of the neuronal basic helix-loop-helix transcription factor NeuroD2. J Neurochem 2004; 88:1041-51. [PMID: 15009660 DOI: 10.1046/j.1471-4159.2003.02262.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have shown recently that the presence of albumin in astrocytes triggers the synthesis and release of oleic acid, which behaves as a neurotrophic factor for neurons. Thus, oleic acid promotes axonal growth together with the expression of the axonal growth-associated protein, GAP-43. Here we attempted to elucidate whether the neurotrophic effect of oleic acid includes dendritic differentiation. Our results indicate that oleic acid induces the expression of microtubule associated protein-2 (MAP-2), a marker of dendritic differentiation. In addition, the presence of oleic acid promotes the translocation of MAP-2 from the soma to the dendrites. The time course of MAP-2 expression during brain development coincides with that of stearoyl-CoA desaturase, the limiting enzyme of oleic acid synthesis, indicating that both phenomena coincide during development. The effect of oleic acid on MAP-2 expression is most probably independent of autocrine factors synthesized by neurons because this effect was also observed at low cellular densities. As oleic acid is an activator of protein kinase C, the possible participation of this transduction pathway was studied. Our results indicate that added oleic acid or oleic acid endogenously synthesized by astrocytes exerts its neurotrophic effect through a protein kinase C-dependent mechanism as the effect was inhibited by sphingosine or two myristoylated peptide inhibitors of protein kinase C. The transduction pathway by which oleic acid induces the expression of genes responsible for neuronal differentiation appears to be mediated by the transcription factor NeuroD2, a regulator of terminal neuronal differentiation.
Collapse
|
31
|
Abstract
In the fields of axonal and dendritic guidance, there is now a significant accumulation of knowledge of how extracellular signaling molecules activate their cognate growth cone receptors. Relatively little is known about the subsequent activation of intracellular signaling pathways and actin reorganization, and very little is known about how microtubules (MTs) reorganize during growth cone turning. I hypothesize that dynamic MTs are required in order to catalyze the polarized actin assembly necessary for growth cone turning, that MTs and actin filaments promote each other's assembly through positive feedback, that MT stability is enhanced further through the formation of membrane-associated MT attachment sites, and that these MT stabilization events subsequently accelerate axonal/dendritic shaft formation.
Collapse
|
32
|
Grabham PW, Reznik B, Goldberg DJ. Microtubule and Rac 1-dependent F-actin in growth cones. J Cell Sci 2003; 116:3739-48. [PMID: 12890754 DOI: 10.1242/jcs.00686] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular cues control the rate and direction of growth of neuronal processes in large part by regulating the cytoskeleton of the growth cone. The actin filament network of the peripheral region is thought to be the primary target for these cues, with consequences for the advance and organization of microtubules. Binding of laminin to integrin receptors is a cue that accelerates the growth of processes from many types of neurons. It was applied acutely to sympathetic neurons in culture to study its effects on the cytoskeleton of the growth cone. Microtubules advance to the edge of the growth cone and bundle in response to laminin, and it was found that small veils of membrane appear near the ends of some of those microtubules. To examine more clearly the relationship between the microtubules and the appearance of actin-rich structures at the periphery, a low dose of cytochalasin D was used to deplete the peripheral region of the growth cone of pre-existing F-actin. The subsequent addition of laminin resulted in the bundling of ends of dynamic (tyrosinated) microtubules at the distal edge of the growth cone, most of which were associated with foci of F-actin. Observations of labeled actin within living growth cones confirmed that these foci formed in response to laminin. Suppression of microtubule dynamics with drugs eliminated the actin foci; washout of drug restored them. Rac 1 did not co-concentrate with F-actin in the peripheral region of the growth cone in the absence of laminin, but did co-concentrate with the foci of F-actin that formed in response to laminin. Inhibition of Rac 1 functioning prevented the formation of the foci and also inhibited laminin-induced neurite growth with or without cytochalasin. These results indicate that extracellular cues can affect actin in the growth cone via microtubules, as well as affect microtubules via actin. They also point to the mediation of microtubule-dependent accumulation of F-actin at the front of the growth cone as a role of Rac 1 in neurite growth.
Collapse
Affiliation(s)
- Peter W Grabham
- Department of Pharmacology and Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
33
|
Abstract
Nervous system development is reliant on neuronal pathfinding, the process in which axons are guided to their target cells by specific extracellular cues. The ability of neurons to extend over long distances in response to environmental guidance signals is made possible by the growth cone, a highly motile structure found at the end of neuronal processes. Growth cones detect directional cues and respond with either attractive or repulsive movements. The motility of growth cones is dependent on rapid reorganization of the actin cytoskeleton, presumably mediated by actin-associated proteins under the control of incoming guidance signals. This article reviews how one such family of proteins, the ADF/cofilins, are emerging as key regulators of growth cone actin dynamics. These proteins are essential for rapid actin turnover in a variety of different cell types. ADF/cofilins are heavily co-localized with actin in growth cones and are necessary for neurite outgrowth. ADF/cofilin activities are regulated through reversible phosphorylation by LIM kinases and slingshot phosphatases. LIM kinases are downstream effectors of the Rho GTPases Rho, Rac, and Cdc42. Growing evidence suggests that extracellular guidance cues may locally alter actin dynamics by regulating the activity of LIM kinase and ADF/cofilin phosphatases via the Rho GTPases. In this way, ADF/cofilins and their upstream effectors may be pivotal to our understanding of how guidance information is translated into physical alterations of the growth cone actin cytoskeleton.
Collapse
Affiliation(s)
- Ravine A Gungabissoon
- Department of Biochemistry and Molecular Biology and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | |
Collapse
|
34
|
Abstract
Of the several types of polarized cells, the neuron is one of the most dramatic examples. It extends two distinctive processes, axon and dendrite. Polarization in neurons enables the two processes to play their functionally different roles, sending and receiving electrical signals in a vectorial fashion. While a catalog of structural, molecular, and functional differences between axon and dendrite is accumulating, the mechanisms involved in establishment of neuronal polarity are not well understood. Neuronal polarity formation begins with the elongation of one process as an axon in a symmetric cell phase. In this review, we describe recent advances in the understanding of several cellular events in the early development of axon and dendrite. We also discuss the involvement of the Rho family small GTPases, their upstream and downstream molecules, and collapsin response mediator protein-2 (CRMP-2) in the regulation of neuronal polarity.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Cell Pharmacology and Institute for Advanced Research, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | | | | | | |
Collapse
|
35
|
Galli-Resta L, Novelli E, Viegi A. Dynamic microtubule-dependent interactions position homotypic neurones in regular monolayered arrays during retinal development. Development 2002; 129:3803-14. [PMID: 12135919 DOI: 10.1242/dev.129.16.3803] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the vertebrate retina cell layers support serial processing, while monolayered arrays of homotypic neurones tile each layer to allow parallel processing. How neurones form layers and arrays is still largely unknown. We show that monolayered retinal arrays are dynamic structures based on dendritic interactions between the array cells. The analysis of three developing retinal arrays shows that these become regular as a net of dendritic processes links neighbouring array cells. Molecular or pharmacological perturbations of microtubules within dendrites lead to a stereotyped and reversible disruption of array organization: array cells lose their regular spacing and the arrangement in a monolayer. This leads to a micro-mechanical explanation of how monolayers of regularly spaced ‘like-cells’ are formed.
Collapse
Affiliation(s)
- Lucia Galli-Resta
- Istituto di Neuroscienze CNR, Laboratorio di Neurofisiologia, Via G. Moruzzi 1, 56100 Pisa, Italy.
| | | | | |
Collapse
|
36
|
Abstract
For several decades, it has been known that mental retardation (MR) is associated with abnormalities in dendrites and dendritic spines. The recent cloning of seven genes that cause nonspecific MR when mutated provides important insights in the cellular mechanisms that result in the dendritic abnormalities associated with MR. Three of the encoded proteins, oligophrenin 1, PAK3 and alpha PIX, interact directly with Rho GTPases. Rho GTPases are key signaling proteins that integrate extracellular and intracellular signals to orchestrate coordinated changes in the actin cytoskeleton essential for directed neurite outgrowth and the regulation of synaptic connectivity. Although many details of the cell biology of Rho signaling in the CNS are still unclear, a picture is unfolding showing how mutations that alter Rho signaling result in abnormal neuronal connectivity and deficient cognitive functioning in humans. Conversely, these findings illuminate the cellular mechanisms underlying normal cognitive function.
Collapse
Affiliation(s)
- Ger J A Ramakers
- Neurons and Networks, Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands
| |
Collapse
|
37
|
Sánchez C, Arellano JI, Rodríguez-Sánchez P, Avila J, DeFelipe J, Díez-Guerra FJ. Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience 2002; 107:25-33. [PMID: 11744243 DOI: 10.1016/s0306-4522(01)00338-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microtubule-associated protein 2 (MAP2) is an abundant component of the neuronal cytoskeleton whose function is related to the outgrowth and stability of neuronal processes, to synaptic plasticity and neuronal cell death. We have sought to study whether abnormal patterns of neuronal activity which are characteristic of epileptic patients are associated to alterations of MAP2 phosphorylation. An antibody (305) that selectively recognizes a phosphorylated epitope in a proline-rich region of the MAP2 molecule has been used to analyze neocortical biopsy samples from temporal lobe epileptic patients, whose electrocorticogram activity had been previously monitored. Immunoblot analysis showed that samples with greater spiking activity displayed significantly diminished MAP2 phosphorylation. Immunocytochemical analysis revealed the occurrence of discrete areas in the neocortex with highly decreased or no immunostaining for antibody 305, which showed a clear, although non-significant, tendency to appear more frequently in areas with greater spiking activity. To further support an association between epileptiform activity and MAP2 dephosphorylation an experimental model of epileptiform activity in cultures of rat hippocampal neurons was used. Neurons were cultured during 15 days in the presence of kynurenic acid, an antagonist of glutamate receptors. At this time, kynurenic acid was removed from the culture medium and neurons developed seizure-like activity. Using antibody 305, we found a decrease of MAP2 phosphorylation that was already visible after 15 min of kynurenic acid withdrawal. We therefore propose that MAP2 phosphorylation is decreased in the neocortex of epileptic patients and that this decrease is a likely consequence of seizure activity. Also, MAP2 dephosphorylation may lead to alterations of the neuronal cytoskeleton and eventually to neuronal damage and loss, which is typical of epileptic patients.
Collapse
Affiliation(s)
- C Sánchez
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Keith CH, Wilson MT. Factors controlling axonal and dendritic arbors. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:77-147. [PMID: 11336394 DOI: 10.1016/s0074-7696(01)05003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sculpting and maintenance of axonal and dendritic arbors is largely under the control of molecules external to the cell. These factors include both substratum-associated and soluble factors that can enhance or inhibit the outgrowth of axons and dendrites. A large number of factors that modulate axonal outgrowth have been identified, and the first stages of the intracellular signaling pathways by which they modify process outgrowth have been characterized. Relatively fewer factors and pathways that affect dendritic outgrowth have been described. The factors that affect axonal arbors form an incompletely overlapping set with those that affect dendritic arbors, allowing selective control of the development and maintenance of these critical aspects of neuronal morphology.
Collapse
Affiliation(s)
- C H Keith
- Department of Cellular Biology. University of Georgia, Athens, 30605, USA
| | | |
Collapse
|
39
|
Steketee M, Balazovich K, Tosney KW. Filopodial initiation and a novel filament-organizing center, the focal ring. Mol Biol Cell 2001; 12:2378-95. [PMID: 11514623 PMCID: PMC58601 DOI: 10.1091/mbc.12.8.2378] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study examines filopodial initiation and implicates a putative actin filament organizer, the focal ring. Filopodia were optically recorded as they emerged from veils, the active lamellar extensions of growth cones. Motile histories revealed three events that consistently preceded filopodial emergence: an influx of cytoplasm into adjacent filopodia, a focal increase in phase density at veil margins, and protrusion of nubs that transform into filopodia. The cytoplasmic influx probably supplies materials needed for initiation. In correlated time lapse-immunocytochemistry, these focal phase densities corresponded to adhesions. These adhesions persisted at filopodial bases, regardless of subsequent movements. In correlated time lapse-electron microscopy, these adhesion sites contained a focal ring (an oblate, donut-shaped structure approximately 120 nm in diameter) with radiating actin filaments. Filament geometry may explain filopodial emergence at 30 degree angles relative to adjacent filopodia. A model is proposed in which focal rings play a vital role in initiating and stabilizing filopodia: 1) they anchor actin filaments at adhesions, thereby facilitating tension development and filopodial emergence; 2) "axial" filaments connect focal rings to nub tips, thereby organizing filament bundling and ensuring the bundle intersects an adhesion; and 3) "lateral" filaments interconnect focal rings and filament bundles, thereby helping stabilize lamellar margins and filopodia.
Collapse
Affiliation(s)
- M Steketee
- Department of Biology and Neuroscience Program, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
40
|
Heidemann SR, Lamoureux P, Atchison WD. Inhibition of axonal morphogenesis by nonlethal, submicromolar concentrations of methylmercury. Toxicol Appl Pharmacol 2001; 174:49-59. [PMID: 11437648 DOI: 10.1006/taap.2001.9186] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of sublethal concentrations of the neurotoxicant methylmercury (MeHg) on the developmental progression of cultured neurons to the stage of axonal morphogenesis. Chick (E8) forebrain neurons in vitro develop axons by a stereotyped developmental sequence nearly identical to that of widely used rat hippocampal neurons, but at much less cost and difficulty. In this chick forebrain system, 40% of neurons develop long axons after 2 days in culture, and 80% have axons after 4 days. A single, 2-h exposure to 0.5 or 0.25 microM MeHg reduced the number of neurons developing axons to approximately half that of controls without causing significant cell death for at least 2 days after treatment. Although MeHg caused an immediate depolymerization of neuronal microtubules, after 1 day of recovery the microtubule array of MeHg-treated neurons was indistinguishable by immunofluorescent assay from that of untreated cells at equivalent development stages. Thus, the inhibition of axonal development by submicromolar concentrations of MeHg did not appear to be the direct effect of microtubule disassembly. Chelation of Ca(2+) during MeHg exposure appeared to exert a small immediate protective effect, as previously reported, but was itself toxic within 1 day after chelation. We suggest that this inhibition of axonal morphogenesis by acute, sublethal concentrations of MeHg may play a role in the developmental syndrome caused by environmental exposure to MeHg.
Collapse
Affiliation(s)
- S R Heidemann
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
41
|
Kaech S, Parmar H, Roelandse M, Bornmann C, Matus A. Cytoskeletal microdifferentiation: a mechanism for organizing morphological plasticity in dendrites. Proc Natl Acad Sci U S A 2001; 98:7086-92. [PMID: 11416192 PMCID: PMC34627 DOI: 10.1073/pnas.111146798] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Experimental evidence suggests that microfilaments and microtubules play contrasting roles in regulating the balance between motility and stability in neuronal structures. Actin-containing microfilaments are associated with structural plasticity, both during development when their dynamic activity drives the exploratory activity of growth cones and after circuit formation when the actin-rich dendritic spines of excitatory synapses retain a capacity for rapid changes in morphology. By contrast, microtubules predominate in axonal and dendritic processes, which appear to be morphologically relatively more stable. To compare the cytoplasmic distributions and dynamics of microfilaments and microtubules we made time-lapse recordings of actin or the microtubule-associated protein 2 tagged with green fluorescent protein in neurons growing in dispersed culture or in tissue slices from transgenic mice. The results complement existing evidence indicating that the high concentrations of actin present in dendritic spines is a specialization for morphological plasticity. By contrast, microtubule-associated protein 2 is limited to the shafts of dendrites where time-lapse recordings show little evidence for dynamic activity. A parallel exists between the partitioning of microfilaments and microtubules in motile and stable domains of growing processes during development and between dendrite shafts and spines at excitatory synapses in established neuronal circuits. These data thus suggest a mechanism, conserved through development and adulthood, in which the differential dynamics of actin and microtubules determine the plasticity of neuronal structures.
Collapse
Affiliation(s)
- S Kaech
- Friedrich Miescher Institute, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Goldman D, Hankin M, Li Z, Dai X, Ding J. Transgenic zebrafish for studying nervous system development and regeneration. Transgenic Res 2001; 10:21-33. [PMID: 11252380 DOI: 10.1023/a:1008998832552] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alpha1 tubulin gene expression is induced in the developing and regenerating CNS of vertebrates. Therefore, alpha1 tubulin gene expression may serve as a good probe for mechanisms underlying CNS development and regeneration. One approach to identify these mechanisms is to work backwards from the genome. This requires identification of alpha1 tubulin DNA sequences that mediate its developmental and regeneration-dependent expression pattern. Therefore, we generated transgenic zebrafish harboring a fragment of the alpha1 tubulin gene driving green fluorescent protein expression (GFP). In these fish, and similar to the endogenous gene, transgene expression was dramatically induced in the developing and regenerating nervous system. Although transgene expression generally declined during maturation of the nervous system, robust GFP expression was maintained in progenitor cells in the retinal periphery, lining brain ventricles and surrounding the central canal of the spinal cord. When these cells were cultured in vitro they divided and gave rise to new neurons. We also show that optic nerve crush in adult fish re-induced transgene expression in retinal ganglion cells. These studies identified a relatively small region of the alpha1 tubulin promoter that mediates its regulated expression pattern in developing and adult fish. This promoter will be extremely useful to investigators interested in targeting gene expression to the developing or regenerating nervous system. As adult transgenic fish maintain transgene expression in neural progenitors, these fish also provide a valuable resource of labeled adult neural progenitor cells that can be studied in vivo or in vitro. Finally, these fish should provide a unique in vivo system for investigating mechanisms mediating CNS development and regeneration.
Collapse
Affiliation(s)
- D Goldman
- Mental Health Research Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | | | | | | | | |
Collapse
|
43
|
Ryan E, Steer M, Dolan L. Cell biology and genetics of root hair formation in Arabidopsis thaliana. PROTOPLASMA 2001; 215:140-9. [PMID: 11732053 DOI: 10.1007/bf01280310] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review we integrate the information available on the cell biology of root hair formation with recent findings from the analysis of root hair mutants of Arabidopsis thaliana. The mature Arabidopsis root epidermis consists of root-hair-producing cells and non-root-hair-producing cells. Root hair growth begins with a swelling of the outer epidermal wall. It has been postulated that this is due to a pH-mediated localised cell wall loosening. From the bulge a single root hair emerges which grows by tip growth. The root hair tip consists of a vesicle-rich zone and an organelle-rich subapical zone. The vesicles supply new plasma membrane and cell wall material for elongation. The cytoskeleton and its associated regulatory proteins such as profilin and spectrin are proposed to be involved in the targeting of vesicles. Ca2+ influxes and gradients are present in hair tips, but their function is still unclear. Mutants have been isolated with lesions in various parts of the root hair developmental pathway from bulge identity and initiation to control of tip diameter and extent and polarity of elongation.
Collapse
Affiliation(s)
- E Ryan
- Botany Department, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
44
|
Abstract
The biological basis of mental retardation is poorly understood. Mental retardation is associated with an immature morphology of synaptic spines, structures involved in neurotransmission and memory processes, suggesting that mental retardation is due to a deficiency in neuronal network formation. Recently, several genes involved in X-linked mental retardation (MRX) have been cloned. Investigation of the roles of these genes in neuronal development and function should lead to a better understanding of the cellular mechanisms underlying mental retardation. A significant number of MRX genes is directly involved in signal transduction through Rho proteins. These Rho proteins act as molecular switches which integrate extracellular and intracellular signals to regulate rearrangement of the actin cytoskeleton. Since the actin cytoskeleton mediates neuronal motility and morphogenesis, one can envision how mutations in proteins involved in Rho-dependent signaling result in mental retardation by altering neuronal network formation.
Collapse
Affiliation(s)
- G J Ramakers
- Neurons and Networks, Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Hunter AM, Brown DL. Effects of microtubule-associated protein (MAP) expression on methylmercury-induced microtubule disassembly. Toxicol Appl Pharmacol 2000; 166:203-13. [PMID: 10906284 DOI: 10.1006/taap.2000.8953] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sensitivity of microtubules (MTs) to methylmercury- (MeHg) induced disassembly was compared in undifferentiated, MAP1A- and MAP2C-transfected, and neuronally differentiated P19 Embyronal Carcinoma (EC) cells. The extent of MT disassembly was examined qualitatively by immunofluorescence microscopy and Western blotting and quantitatively by dot blotting of polymer and soluble proteins extracts. Immunofluorescence microscopy showed that MeHg disassembled MTs in a time- and dose-dependent manner and that MTs in both MAP2C-transfected and neuronally differentiated cells, but not those in MAP1A-transfected cells, were significantly more resistant to MeHg-induced MT depolymerization than those in undifferentiated cells. These results suggest that MAP2C has a greater ability to stabilize MTs against MeHg-induced disassembly than MAP1A. Surprisingly, however, when the extent of MT disassembly was assessed by Western blotting and by quantitative dot blotting, no change was observed in the amounts of tubulin, MAP2, or MAP1A, in the polymer and soluble fractions in MeHg-treated samples, compared to the control cells that were not treated. These data show that, although MeHg treatment resulted in the disassembly of MTs, they were not depolymerized as detergent-soluble subunits, but rather appeared to form insoluble tubulin-MAP oligomers or aggregates.
Collapse
Affiliation(s)
- A M Hunter
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | | |
Collapse
|
46
|
Sánchez C, Pérez M, Avila J. GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur J Cell Biol 2000; 79:252-60. [PMID: 10826493 DOI: 10.1078/s0171-9335(04)70028-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major determinant of neuronal morphology is the cytoskeleton. And one of the main regulatory mechanisms of cytoskeletal proteins is the modification of their phosphorylation state via changes in the relative activities of protein kinases and phosphatases in neurons. In particular, the microtubule-associated protein 2 (MAP2) family of proteins are abundant cytoskeletal components predominantly expressed in neurons and have been found to be substrates for most of protein kinases and phosphatases present in neurons, including glycogen-synthase kinase 3 (GSK3). It has been suggested that changes in GSK3-mediated MAP phosphorylation may modify MT stability and could control neuronal development. We have previously shown that MAP2 is phosphorylated in vitro and in situ by GSK3 at Thr1620 and Thr1623, located in the proline-rich region of MAP2 and recognized by antibody 305. However, the function of the phosphorylation of this site of MAP2 is still unknown. In this study, non-neuronal COS-1 cells have been co-transfected with cDNAs encoding MAP2C and either wild type or mutated GSK3beta to analyze possible effects on microtubule stability and on the association of MAP2 with microtubules. We have found that GSK3beta phosphorylates MAP2C in co-transfected cells. Moreover, this phosphorylation is inhibited by the specific GSK3 inhibitor lithium chloride. Additionally, the formation of microtubule bundles, which is observed after transfection with MAP2C, was decreased when MAP2C was co-transfected with GSK3beta wild type. Microtubule bundles were not observed in cells expressing MAP2C phosphorylated at the site recognized by antibody 305. The absence of microtubule bundles was reverted after treatment of MAP2C/GSK3beta wild type transfected cells with lithium chloride. Highly phosphorylated MAP2C species, which were phosphorylated at the site recognized by antibody 305, appeared in cells co-transfected with MAP2C and GSK3beta wild type. Interestingly, these MAP2C species were enriched in cytoskeleton-unbound protein preparations. These data suggests that GSK3-mediated phosphorylation of MAP2 may modify its binding to microtubules and regulate microtubule stability.
Collapse
Affiliation(s)
- C Sánchez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Spain.
| | | | | |
Collapse
|
47
|
Suter DM, Forscher P. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-4695(200008)44:2<97::aid-neu2>3.0.co;2-u] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Abstract
Neurons begin to polarize when one of the neurites becomes the axon. Hippocampal neurons in cell culture have a sharp transition between their unpolarized and polarized stage revealed by the rapid growth of the future axon. Recent progress shows that both a cytoplasmic membrane flow and actin dynamics govern axon formation, and thereby initial neuronal polarization. We here review these mechanisms, evaluate their physiological role, and show similarities to the transient polarization of migrating fibroblasts. Finally, we present a model how actin dynamics and vectorial membrane flow may interact to achieve axon formation.
Collapse
Affiliation(s)
- F Bradke
- Cell Biology Programme, EMBL, 69012 Heidelberg, Germany.
| | | |
Collapse
|
49
|
Tai MH, Zipser B. Sequential steps in synaptic targeting of sensory afferents are mediated by constitutive and developmentally regulated glycosylations of CAMs. Dev Biol 1999; 214:258-76. [PMID: 10525333 DOI: 10.1006/dbio.1999.9422] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sensory afferents in the leech are labeled with both constitutive and developmentally regulated glycosylations (markers) of their cell adhesion molecules (CAMs). Their constitutive mannose marker, recognized by Lan3-2 monoclonal antibody (mAb), mediates the formation of their diffuse central arbors. We show that, at the ultrastructural level, these arbors consist of large, loosely organized axons rich with filopodia and synaptic vesicles. Perturbing the mannose-specific adhesion of this first targeting step leads to a gain in cell-cell contact but a loss of filopodia and synaptic vesicles. During the second targeting step, galactose markers divide afferents into different subsets. We focus on the subset labeled by the marker recognized by Laz2-369 mAb. Initially, the galactose marker appears where afferents contact central neurons. Subsequently it spreads proximally and distally, covering the entire afferent surface. Afferents now gain cell-cell contact, with central neurons and self-similar afferents, but lose filopodia and synaptic vesicles. Extant synaptic vesicles prevail where afferents are apposed to central neurons. These neurons develop postsynaptic densities and en passant synapses are forming. Perturbing the galactose-specific adhesion of this second targeting step causes a loss of cell-cell contact but a gain in filopodia and synaptic vesicles, essentially returning afferents to the first targeting step. The transformation of afferent growth, progressing from mannose- to galactose-specific adhesion, is consistent with a change from cell-matrix to cell-cell adhesion. By performing opposing functions in a temporal sequence, constitutive and developmentally regulated glycosylations of CAMs collaborate in the synaptogenesis of afferents and the consolidation of self-similar afferents.
Collapse
Affiliation(s)
- M H Tai
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
50
|
Neely MD, Sidell KR, Graham DG, Montine TJ. The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J Neurochem 1999; 72:2323-33. [PMID: 10349841 DOI: 10.1046/j.1471-4159.1999.0722323.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxidative stress is believed to be an important factor in the development of age-related neurodegenerative diseases such as Alzheimer's disease (AD). The CNS is enriched in polyunsaturated fatty acids and is therefore particularly vulnerable to lipid peroxidation. Indeed, accumulation of lipid peroxidation products has been demonstrated in affected regions in brains of AD patients. Another feature of AD is a change in neuronal microtubule organization. A possible causal relationship between lipid peroxidation products and changes in neuronal cell motility and cytoskeleton has not been investigated. We show here that 4-hydroxy-2(E)-nonenal (HNE), a major product of lipid peroxidation, inhibits neurite outgrowth and disrupts microtubules in Neuro 2A cells. The effect of HNE on microtubules was rapid, being observed after incubation times as short as 15 min. HNE can react with target proteins by forming either Michael adducts or pyrrole adducts. 4-Oxononanal, an HNE analogue that can form only pyrrole adducts but not Michael adducts, had no effect on the microtubules. This suggests that the HNE-induced disruption of microtubules occurs via Michael addition. We also show that cellular tubulin is one of the major proteins modified by HNE and that the HNE adduction to tubulin occurs via Michael addition. Inhibition of neurite outgrowth, disruption of microtubules, and tubulin modification were observed at pathologically relevant HNE concentrations and were not accompanied by cytotoxicity. Our results show that these are proximal effects of HNE that may contribute to cytoskeletal alterations that occur in AD.
Collapse
Affiliation(s)
- M D Neely
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232-2561, USA
| | | | | | | |
Collapse
|