1
|
Konar ESM, Brachs S, Mai K, Waghmare SG, Policar T, Samarin AM, Samarin AM. Aging oocytes: exploring apoptosis and its impact on embryonic development in common carp (Cyprinus carpio). J Anim Sci 2025; 103:skaf002. [PMID: 39761344 PMCID: PMC11757700 DOI: 10.1093/jas/skaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Ovulation, fertilization, and embryo development are orchestrated and synchronized processes essential for the optimal health of offspring. Postovulatory aging disrupts this synchronization and impairs oocyte quality. In addition, oocyte aging causes fertilization loss and poor embryo development. This investigation aimed to unravel the endpoint of in vitro oocyte aging in common carp (Cyprinus carpio) to understand the involvement of apoptosis in postovulatory oocyte death. It was observed that the fertilization ability significantly declined (P < 0.001) at 8-h poststripping (HPS), subsequently triggering apoptosis in the advanced stage of oocyte aging, i.e., 48 HPS. This process included an increase in proapoptotic transcripts (fas, bax, cathepsin D, caspase 8, caspase 9, and caspase 3a) (P < 0.05), elevated levels of caspase 3 protein (P < 0.05), and activation of caspase 3 enzyme (P < 0.001), a key player in apoptosis, in aging oocytes. Furthermore, the effects of oocyte aging on the embryonic apoptosis machinery were examined in embryos at 5-h postfertilization (HPF) and 24 HPF derived from fresh and aged oocytes. Expression of apoptotic genes and caspase enzyme activity remained at the basal level in 5 HPF (early blastula embryos) from both fresh and aged oocytes. In contrast, the zymogenic and active forms of caspase 3 increased in 24 HPF embryos from 8-h-aged oocytes (P < 0.01) compared with those from fresh oocytes. Thus, apoptosis intensified in 24 HPF embryos from aged oocytes without affecting the apoptotic machinery of early blastula embryos. Our findings demonstrate that apoptosis initiated by the Fas/FasL system is an important physiological process accompanying oocyte aging in common carp.
Collapse
Affiliation(s)
- Essaikiammal Sodalai Muthu Konar
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 01 Vodňany, Czech Republic
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Swapnil Gorakh Waghmare
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 01 Vodňany, Czech Republic
| | - Tomas Policar
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 01 Vodňany, Czech Republic
| | - Azadeh Mohagheghi Samarin
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 01 Vodňany, Czech Republic
| | - Azin Mohagheghi Samarin
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 01 Vodňany, Czech Republic
| |
Collapse
|
2
|
Merinas-Amo T, Merinas-Amo R, Alonso-Moraga Á, Font R, Del Río Celestino M. In Vivo and In Vitro Studies Assessing the Safety of Monosodium Glutamate. Foods 2024; 13:3981. [PMID: 39683053 DOI: 10.3390/foods13233981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
The controversial results of research on monosodium glutamate demand a new data corpus for the overall safety evaluation. Both animal and cellular model systems have been used to add a multilevel scope on its biological effects. The Drosophila melanogaster animal model has been used to test a wide range of concentrations for safety purposes: toxicity, genotoxicity, longevity and health span. Medium concentrations corresponding to the human acceptable daily intake (ADI) (0.06 mg/mL) were not toxic nor genotoxic for Drosophila and safe for the lifespan parameters. Once safety was determined, the possible nutraceutical effects of monosodium glutamate was monitored in terms of antitoxicity, antigenotoxicity assays and health span. The results for protective activity against hydrogen peroxide were positive in terms of the medium concentration, antitoxic and antigenotoxic in terms of inhibiting the genotoxicity induced by the oxidative toxin up to 43.7% and increasing the health span expectancy by 32% in terms of days. Monosodium glutamate has been demonstrated to be cytotoxic against the model tumour cell line HL-60, not only in a necrotic way but through internucleosomal DNA fragmentation antitumour activity. The significant LINE1 DNA sequence methylation of HL-60 tumour cells induced by monosodium glutamate is a molecular marker for chemoprevention. Conclusions: the slight or non-significant positive nutraceutical and chemo preventive potential showed by monosodium glutamate at its ADI concentration can be considered as a safe dose for a moderate consumption.
Collapse
Affiliation(s)
| | | | | | - Rafael Font
- Agri-Food Laboratory, CAGPDS, Av. Menéndez Pidal, s/n, 14080 Córdoba, Spain
| | | |
Collapse
|
3
|
Muñoz-Callejas A, Sánchez-Abad I, Ramos-Manzano A, San Antonio E, González-Sánchez E, Silván J, González-Tajuelo R, González-Álvaro I, García-Pérez J, Tomero EG, García-Vicuña R, Vicente-Rabaneda EF, Castañeda S, Urzainqui A. Regulation of monocyte apoptosis and DNA extrusion in monocyte extracellular traps by PSGL-1: Relevance in systemic lupus erythematosus. Transl Res 2024; 274:10-20. [PMID: 39182668 DOI: 10.1016/j.trsl.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by severe organ damage and lacking curative treatment. While various immune cell types, especially dysfunctional B and T cells and neutrophils, have been related with disease pathogenesis, limited research has focused on the role of monocytes in SLE. Increased DNA extracellular traps, apoptosis and necrosis have been related to lupus pathogenesis. Our goal is to analyze the contribution of P-selectin glycoprotein ligand 1 (PSGL-1) in SLE monocytes to disease pathogenesis by investigating the control exerted by PSGL-1 on monocyte apoptosis and DNA extrusion in extracellular traps (METs). Monocytes from active disease patients (aSLE) exhibited reduced levels of PSGL-1. Importantly, lower PSGL-1 levels in SLE monocytes associated with several clinical characteristics, including anti-dsDNA autoantibodies, lupus anticoagulant, clinical lung involvement, and anemia. Monocytes from SLE patients showed higher susceptibility to apoptosis than healthy donors (HD) monocytes and PSGL-1/P-selectin interaction decreased secondary necrosis in HD but not in aSLE monocytes. Regarding METs, aSLE monocytes exhibited higher susceptibility to generate METs than HD monocytes. The interaction of HD monocytes with P-selectin induced Syk activation and reduced the levels of DNA extruded in METs. However, in aSLE monocytes, PSGL-1/P-selectin interaction did not activate Syk or reduce the amount of extruded DNA. Our data suggest a dysfunctional PSGL-1/P-selectin axis in aSLE monocytes, unable to reduce secondary necrosis or the amount of DNA released into the extracellular medium in METs, potentially contributing to lupus pathogenesis.
Collapse
Affiliation(s)
- Antonio Muñoz-Callejas
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain; Facultad de Medicina y Biomedicina, Universidad Alfonso X El Sabio, 28691, Madrid, Spain
| | - Inés Sánchez-Abad
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Alejandra Ramos-Manzano
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain; Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Esther San Antonio
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Elena González-Sánchez
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Javier Silván
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Rafael González-Tajuelo
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Isidoro González-Álvaro
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Javier García-Pérez
- Pulmonology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Eva G Tomero
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Rosario García-Vicuña
- Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Esther F Vicente-Rabaneda
- Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain
| | - Santos Castañeda
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain; Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain.
| | - Ana Urzainqui
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain.
| |
Collapse
|
4
|
Shi B, Phan TK, Poon IKH. Extracellular vesicles from the dead: the final message. Trends Cell Biol 2024:S0962-8924(24)00205-8. [PMID: 39438206 DOI: 10.1016/j.tcb.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Communication between dying and neighbouring cells is vital to ensure appropriate processes such as tissue repair or inflammation are initiated in response to cell death. As a mechanism to aid intercellular communication, cells undergoing apoptosis can release membrane-bound extracellular vesicles (EVs) called apoptotic-cell-derived EVs (ApoEVs) that can influence downstream processes through biomolecules within or on ApoEVs. ApoEVs are broadly categorised based on size as either large ApoEVs known as apoptotic bodies (ApoBDs) or small ApoEVs (s-ApoEVs). Notably, the mechanisms of ApoBD and s-ApoEV formation are different, and the functions of these two ApoEV subsets are distinct. This Review focuses on the biogenesis and functional properties of both ApoBDs and s-ApoEVs, particularly in the context of cell clearance, cell signalling and disease progression.
Collapse
Affiliation(s)
- Bo Shi
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia.
| |
Collapse
|
5
|
Tran T, Galdina V, Urquidi O, Reis Galvão D, Rieben R, Adachi TBM, Puga Yung GL, Seebach JD. Assessment of NK cytotoxicity and interactions with porcine endothelial cells by live-cell imaging in 2D static and 3D microfluidic systems. Sci Rep 2024; 14:24199. [PMID: 39406778 PMCID: PMC11480498 DOI: 10.1038/s41598-024-75217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Natural Killer (NK) cells are pivotal in immune responses to viral infections, malignancies, autoimmune diseases, and transplantation. Assessment of NK cell adhesion, migration, and cytotoxicity is fundamental for in vitro studies. We propose a novel live-cell tracking method that addresses these three major aspects of NK cell function using human NK cells and primary porcine aortic endothelial cells (PAECs) in two-dimensional (2D) static assays and an in-house cylindrical 3D microfluidic system. The results showed a significant increase of NK cytotoxicity against pTNF-activated PAECs, with apoptotic cell death observed in the majority of dead cells, while no difference was observed in the conventional Delfia assay. Computed analysis of NK cell trajectories revealed distinct migratory behaviors, including trajectory length, diameter, average speed, and arrest coefficient. In 3D microfluidic experiments, NK cell attachment to pTNF-activated PAECs substantially increased, accompanied by more dead PAECs compared to control conditions. NK cell trajectories showed versatile migration in various directions and interactions with PAECs. This study uniquely demonstrates NK attachment and killing in a 3D system that mimics blood vessel conditions. Our microscope method offers sensitive single-cell level results, addressing diverse aspects of NK functions. It is adaptable for studying other immune and target cells, providing insights into various biological questions.
Collapse
Affiliation(s)
- Thao Tran
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Viktoriia Galdina
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Oscar Urquidi
- Department of Physical Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Daniela Reis Galvão
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Takuji B M Adachi
- Department of Physical Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Gisella L Puga Yung
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | - Jörg D Seebach
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
6
|
Sarkar R, Choudhury SM, Kanneganti TD. Classical apoptotic stimulus, staurosporine, induces lytic inflammatory cell death, PANoptosis. J Biol Chem 2024; 300:107676. [PMID: 39151726 PMCID: PMC11418131 DOI: 10.1016/j.jbc.2024.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
Innate immunity is the body's first line of defense against disease, and regulated cell death is a central component of this response that balances pathogen clearance and inflammation. Cell death pathways are generally categorized as non-lytic and lytic. While non-lytic apoptosis has been extensively studied in health and disease, lytic cell death pathways are also increasingly implicated in infectious and inflammatory diseases and cancers. Staurosporine (STS) is a well-known inducer of non-lytic apoptosis. However, in this study, we observed that STS also induces lytic cell death at later timepoints. Using biochemical assessments with genetic knockouts, pharmacological inhibitors, and gene silencing, we identified that STS triggered PANoptosis via the caspase-8/RIPK3 axis, which was mediated by RIPK1. PANoptosis is a lytic, innate immune cell death pathway initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes. Deletion of caspase-8 and RIPK3, core components of the PANoptosome complex, protected against STS-induced lytic cell death. Overall, our study identifies STS as a time-dependent inducer of lytic cell death, PANoptosis. These findings emphasize the importance of understanding trigger- and time-specific activation of distinct cell death pathways to advance our understanding of the molecular mechanisms of innate immunity and cell death for clinical translation.
Collapse
Affiliation(s)
- Roman Sarkar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sk Mohiuddin Choudhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
7
|
Wang LY, Liu XJ, Li QQ, Zhu Y, Ren HL, Song JN, Zeng J, Mei J, Tian HX, Rong DC, Zhang SH. The romantic history of signaling pathway discovery in cell death: an updated review. Mol Cell Biochem 2024; 479:2255-2272. [PMID: 37851176 DOI: 10.1007/s11010-023-04873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Cell death is a fundamental physiological process in all living organisms. Processes such as embryonic development, organ formation, tissue growth, organismal immunity, and drug response are accompanied by cell death. In recent years with the development of electron microscopy as well as biological techniques, especially the discovery of novel death modes such as ferroptosis, cuprotosis, alkaliptosis, oxeiptosis, and disulfidptosis, researchers have been promoted to have a deeper understanding of cell death modes. In this systematic review, we examined the current understanding of modes of cell death, including the recently discovered novel death modes. Our analysis highlights the common and unique pathways of these death modes, as well as their impact on surrounding cells and the organism as a whole. Our aim was to provide a comprehensive overview of the current state of research on cell death, with a focus on identifying gaps in our knowledge and opportunities for future investigation. We also presented a new insight for macroscopic intracellular survival patterns, namely that intracellular molecular homeostasis is central to the balance of different cell death modes, and this viewpoint can be well justified by the signaling crosstalk of different death modes. These concepts can facilitate the future research about cell death in clinical diagnosis, drug development, and therapeutic modalities.
Collapse
Affiliation(s)
- Lei-Yun Wang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Xing-Jian Liu
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Qiu-Qi Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Ying Zhu
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Hui-Li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Jia-Nan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Hui-Xiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Ding-Chao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, Guangdong, People's Republic of China.
| | - Shao-Hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China.
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Guo J, Yang WT, Mai FY, Liang JR, Luo J, Zhou MC, Yu DD, Wang YL, Li CG. Unravelling oncosis: morphological and molecular insights into a unique cell death pathway. Front Immunol 2024; 15:1450998. [PMID: 39281670 PMCID: PMC11393741 DOI: 10.3389/fimmu.2024.1450998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Programmed cell death (PCD) is a fundamental biological process for maintaining cellular equilibrium and regulating development, health, and disease across all living organisms. Among the various types of PCD, apoptosis plays a pivotal role in numerous diseases, notably cancer. Cancer cells frequently develop mechanisms to evade apoptosis, increasing resistance to standard chemotherapy treatments. This resistance has prompted extensive research into alternative mechanisms of programmed cell death. One such pathway is oncosis, characterized by significant energy consumption, cell swelling, dilation of the endoplasmic reticulum, mitochondrial swelling, and nuclear chromatin aggregation. Recent research suggests that oncosis can impact conditions such as chemotherapeutic cardiotoxicity, myocardial ischemic injury, stroke, and cancer, mediated by specific oncosis-related proteins. In this review, we provide a detailed examination of the morphological and molecular features of oncosis and discuss various natural or small molecule compounds that can induce this type of cell death. Additionally, we summarize the current understanding of the molecular mechanisms underlying oncosis and its role in both normal physiology and pathological conditions. These insights aim to illuminate future research directions and propose innovative strategies for leveraging oncosis as a therapeutic tool against human diseases and cancer resistance.
Collapse
Affiliation(s)
- Jie Guo
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Wen-Tao Yang
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Feng-Yi Mai
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Jing-Rong Liang
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Jiao Luo
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ming-Chao Zhou
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dong-Dong Yu
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu-Long Wang
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Chen-Guang Li
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| |
Collapse
|
9
|
Zhong S, Wang N, Zhang C. Podocyte Death in Diabetic Kidney Disease: Potential Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2024; 25:9035. [PMID: 39201721 PMCID: PMC11354906 DOI: 10.3390/ijms25169035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Cell deaths maintain the normal function of tissues and organs. In pathological conditions, the abnormal activation or disruption of cell death often leads to pathophysiological effects. Diabetic kidney disease (DKD), a significant microvascular complication of diabetes, is linked to high mortality and morbidity rates, imposing a substantial burden on global healthcare systems and economies. Loss and detachment of podocytes are key pathological changes in the progression of DKD. This review explores the potential mechanisms of apoptosis, necrosis, autophagy, pyroptosis, ferroptosis, cuproptosis, and podoptosis in podocytes, focusing on how different cell death modes contribute to the progression of DKD. It recognizes the limitations of current research and presents the latest basic and clinical research studies targeting podocyte death pathways in DKD. Lastly, it focuses on the future of targeting podocyte cell death to treat DKD, with the intention of inspiring further research and the development of therapeutic strategies.
Collapse
Grants
- 82370728, 81974097, 82170773, 82100729, 82100794, 82200808, 82200841, 81800610, 82300843, 82300851, 82300786 National Natural Science Foundation of China
- 2023BCB034 Key Research and Development Program of Hubei Province
- 2021YFC2500200 National Key Research and Development Program of China
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.Z.); (N.W.)
| |
Collapse
|
10
|
Cummings MC, Vaux DL, Strasser A, Kluck R. John F. R. Kerr (1934-2024) : Apoptosis: a basic biological phenomenon. Cell Death Differ 2024; 31:955-956. [PMID: 39075248 PMCID: PMC11303774 DOI: 10.1038/s41418-024-01338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Margaret C Cummings
- Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - David L Vaux
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Lecomte K, Toniolo A, Hoste E. Cell death as an architect of adult skin stem cell niches. Cell Death Differ 2024; 31:957-969. [PMID: 38649745 PMCID: PMC11303411 DOI: 10.1038/s41418-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Our skin provides a physical and immunological barrier against dehydration and environmental insults ranging from microbial attacks, toxins and UV irradiation to wounding. Proper functioning of the skin barrier largely depends on the interplay between keratinocytes- the epithelial cells of the skin- and immune cells. Two spatially distinct populations of keratinocyte stem cells (SCs) maintain the epidermal barrier function and the hair follicle. These SCs are inherently long-lived, but cell death can occur within their niches and impacts their functionality. The default cell death programme in skin is apoptosis, an orderly and non-inflammatory suicide programme. However, recent findings are shedding light on the significance of various modes of regulated necrotic cell death, which are lytic and can provoke inflammation within the local skin environment. While the presence of dying cells was generally regarded as a mere consequence of inflammation, findings in various human dermatological conditions and experimental mouse models of aberrant cell death control demonstrated that cell death programmes in keratinocytes (KCs) can drive skin inflammation and even tumour initiation. When cells die, they need to be removed by phagocytosis and KCs can function as non-professional phagocytes of apoptotic cells with important implications for their SC capacities. It is becoming apparent that in conditions of heightened SC activity, distinct cell death modalities differentially impact the different skin SC populations in their local niches. Here, we describe how regulated cell death modalities functionally affect epidermal SC niches along with their relevance to injury repair, inflammatory skin disorders and cancer.
Collapse
Affiliation(s)
- Kim Lecomte
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Annagiada Toniolo
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, 9052, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
12
|
Jung YY, Baek SH, Um JY, Ahn KS. Fangchinoline targets human renal cell carcinoma cells through modulation of apoptotic and non‑apoptotic cell deaths. Pathol Res Pract 2024; 260:155445. [PMID: 38996614 DOI: 10.1016/j.prp.2024.155445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
The process of apoptosis is one of the essential processes involved in maintenance of homeostasis in the human body. It can aid to remove misfolded proteins or cellular organelles. This sequence is especially necessary in cancer cells. However, specifically targeting already apoptotic pathways can induce drug resistance in cancer cells and hence drugs can induce cell death by alternative mechanism. We investigated whether fangchinoline (FCN) can target renal carcinoma cells by inducing multiple cell death mechanisms. Both paraptosis, autophagy, and apoptosis were induced by FCN through stimulation of diverse molecular signaling pathways. FCN induced ROS production with GSH/GSSG imbalance, and ER stress. In addition, formation of autophagosome and autophagy related markers were stimulated by FCN. Moreover, FCN induced cell cycle arrest and PARP cleavage. Except for blocking protein synthesis, these three cell death pathways were found to be complementarily working together with each other. FCN also exhibited synergistic effects with paclitaxel in inducing programmed cell death in RCC cells. Our data indicates that FCN could induce apoptotic cell death and non-apoptotic cell death pathways and can be con-tribute to development of novel cancer prevention or therapy.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, the Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| |
Collapse
|
13
|
Papadakos SP, Chatzikalil E, Vakadaris G, Reppas L, Arvanitakis K, Koufakis T, Siakavellas SI, Manolakopoulos S, Germanidis G, Theocharis S. Exploring the Role of GITR/GITRL Signaling: From Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2609. [PMID: 39061246 PMCID: PMC11275207 DOI: 10.3390/cancers16142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and presents a continuously growing incidence and high mortality rates worldwide. Besides advances in diagnosis and promising results of pre-clinical studies, established curative therapeutic options for HCC are not currently available. Recent progress in understanding the tumor microenvironment (TME) interactions has turned the scientific interest to immunotherapy, revolutionizing the treatment of patients with advanced HCC. However, the limited number of HCC patients who benefit from current immunotherapeutic options creates the need to explore novel targets associated with improved patient response rates and potentially establish them as a part of novel combinatorial treatment options. Glucocorticoid-induced TNFR-related protein (GITR) belongs to the TNFR superfamily (TNFRSF) and promotes CD8+ and CD4+ effector T-cell function with simultaneous inhibition of Tregs function, when activated by its ligand, GITRL. GITR is currently considered a potential immunotherapy target in various kinds of neoplasms, especially with the concomitant use of programmed cell-death protein-1 (PD-1) blockade. Regarding liver disease, a high GITR expression in liver progenitor cells has been observed, associated with impaired hepatocyte differentiation, and decreased progenitor cell-mediated liver regeneration. Considering real-world data proving its anti-tumor effect and recently published evidence in pre-clinical models proving its involvement in pre-cancerous liver disease, the idea of its inclusion in HCC therapeutic options theoretically arises. In this review, we aim to summarize the current evidence supporting targeting GITR/GITRL signaling as a potential treatment strategy for advanced HCC.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Georgios Vakadaris
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lampros Reppas
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Spyros I. Siakavellas
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
14
|
Luo S, Luo R, Deng G, Huang F, Lei Z. Programmed cell death, from liver Ischemia-Reperfusion injury perspective: An overview. Heliyon 2024; 10:e32480. [PMID: 39040334 PMCID: PMC11260932 DOI: 10.1016/j.heliyon.2024.e32480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Liver ischemia-reperfusion injury (LIRI) commonly occurs in liver resection, liver transplantation, shock, and other hemorrhagic conditions, resulting in profound local and systemic effects via associated inflammatory responses and hepatic cell death. Hepatocyte death is a significant component of LIRI and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of programmed cell death (PCD), necroptosis, ferroptosis, pyroptosis, autophagy, NETosis, and parthanatos have been shown to be involved in LIRI. Understanding the mechanisms underlying cell death following LIRI is indispensable to mitigating the widespread effects of LIRI. Here, we review the roles of different PCD and discuss potential therapy in LIRI.
Collapse
Affiliation(s)
- Shaobin Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Rongkun Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Gang Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Zhao Lei
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| |
Collapse
|
15
|
Esrefoğlu M, Kalkan TK, Karatas E, Elibol B, Hekimoglu ER, Karakaya Cimen FB, Yay AH. Hepatoprotective actions of melatonin by mainly modulating oxidative status and apoptosis rate in lipopolysaccharide-induced liver damage. Immunopharmacol Immunotoxicol 2024; 46:161-171. [PMID: 38051589 DOI: 10.1080/08923973.2023.2291751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
AIM One of the serious complications of sepsis is liver damage and liver failure. This study aimed to evaluate the protective and therapeutic potential of melatonin in rats with lipopolysaccharide-induced sepsis. MAIN METHODS Female Spraque-Dawley rats received single a dose of 7.5 mg/kg lipopolysaccharide in saline to create a 24-h sepsis model. One of the other groups received melatonin at a dose of 10 mg/kg/day beginning 1 week before sepsis induction to the end of the experiment. The melatonin group received the same doses of melatonin for the same duration but not lipopolysaccharide. The vehicle group received the same doses of saline, the vehicle of melatonin, for the same duration. Twenty-four hours after the last injection, the rats were decapitated. By appropriate histochemical, immunohistochemical, biochemical, and molecular techniques, anti-necrotic, anti-apoptotic, anti-necroptotic, anti-inflammatory, and antioxidant effects of melatonin were assessed. KEY FINDINGS Lipopolysaccharide has disrupted liver functions by inducing oxidative stress, inflammation, necrotic, apoptotic, and necroptotic cell death, thus disrupting liver functions. Melatonin was found to be beneficial in terms of inhibiting the intrinsic pathway of apoptosis and tissue oxidant levels, stimulating tissue antioxidant enzyme levels, and restoring hepatocyte functions. SIGNIFICANCE Melatonin, at those doses and duration, was found to be hepatoprotective by mainly modulating oxidative status and apoptosis rate, however, failed to significantly reduce histopathological damage. We suggest that longer-term melatonin administration may produce anti-inflammatory and anti-necrotic effects as well.
Collapse
Affiliation(s)
- Mukaddes Esrefoğlu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Tugce Kubra Kalkan
- Department of Histology and Embryology, Faculty of Medicine, Kirşehir Ahi Evran University, Kırşehir, Turkey
| | - Ersin Karatas
- Department of Medical Services and Techniques, Patnos Vocation School, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Emine Rumeysa Hekimoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Fatma Bedia Karakaya Cimen
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Arzu Hanim Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
16
|
Arends MJ, Stanley M. Andrew David Hamilton Wyllie. 24 January 1944—26 May 2022. BIOGRAPHICAL MEMOIRS OF FELLOWS OF THE ROYAL SOCIETY 2024; 76:501-518. [DOI: 10.1098/rsbm.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
Andrew Wyllie graduated from the University of Aberdeen, becoming an academic pathologist in Aberdeen, Edinburgh and Cambridge. He was the co-discoverer of apoptotic cell death, having observed single cells dying following carcinogen exposure. Together with Alastair Currie and John Kerr, he realized the profound importance of this novel mode of cell death that showed a distinctive series of morphological changes, which he first described as a new cell death process. Wyllie and Currie introduced the term ‘apoptosis’ for this cell death process in a seminal paper in 1972. Another landmark discovery was of chromatin fragmentation in apoptosis, due to activation of an endogenous endonuclease that caused internucleosomal DNA cleavage (‘chromatin laddering’), which was the first biochemical mechanism of apoptosis described. He further characterized chromatin fragmentation in the 1980s, followed by investigations of cell surface changes to produce ‘eat-me’ signals to trigger rapid phagocytosis of the apoptotic cells and bodies, intracellular calcium ion signalling, caspase activation and other mechanisms of apoptosis. His cancer research helped identify the location of
APC
and generated his demonstration that apoptosis was regulated by oncogenes
MYC
and
RAS
and by tumour suppressor genes, such as
TP53
. He showed how apoptosis occurred in response to DNA damage and was a key process influencing both carcinogenesis and tumour growth. Andrew made a major scientific observation that changed the understanding of how cells die in health and disease, although it took time for the scientific establishment to understand its fundamental importance. Andrew Wyllie is widely known as the ‘Father of Apoptosis’.
Collapse
Affiliation(s)
- Mark J. Arends
- Division of Pathology, University of Edinburgh, Institute of Genetics & Cancer, Crewe Road, Edinburgh EH4 2XR, UK
| | - Margaret Stanley
- Department of Pathology, University of Cambridge, Tennis Road, Cambridge CB2 1QP, UK
| |
Collapse
|
17
|
Liu CJ, Smith JT, Wang Y, Ouellette JN, Rogers JD, Oliner JD, Szulczewski M, Wait E, Brown W, Wax A, Eliceiri KW, Rafter J. Assessing cell viability with dynamic optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:1408-1417. [PMID: 38495713 PMCID: PMC10942685 DOI: 10.1364/boe.509835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Assessing cell viability is important in many fields of research. Current optical methods to assess cell viability typically involve fluorescent dyes, which are often less reliable and have poor permeability in primary tissues. Dynamic optical coherence microscopy (dOCM) is an emerging tool that provides label-free contrast reflecting changes in cellular metabolism. In this work, we compare the live contrast obtained from dOCM to viability dyes, and for the first time to our knowledge, demonstrate that dOCM can distinguish live cells from dead cells in murine syngeneic tumors. We further demonstrate a strong correlation between dOCM live contrast and optical redox ratio by metabolic imaging in primary mouse liver tissue. The dOCM technique opens a new avenue to apply label-free imaging to assess the effects of immuno-oncology agents, targeted therapies, chemotherapy, and cell therapies using live tumor tissues.
Collapse
Affiliation(s)
- Chao J. Liu
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| | - Jason T. Smith
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| | - Yuanbo Wang
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| | | | - Jeremy D. Rogers
- Department of Ophthalmology and Visual
Sciences, University of Wisconsin Madison,
2828 Marshall Ct, Madison, WI 53705, USA
| | | | | | - Eric Wait
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| | - William Brown
- Lumedica Inc.,
404 Hunt Street, Suite 510, Durham, NC 27701, USA
| | - Adam Wax
- Lumedica Inc.,
404 Hunt Street, Suite 510, Durham, NC 27701, USA
| | - Kevin W. Eliceiri
- Center for Quantitative Cell
Imaging, 1675 Observatory Drive, Madison, WI 53706,
USA
| | - John Rafter
- Elephas Biosciences
Corporation, 1 Erdman Place, Madison, WI 53717, USA
| |
Collapse
|
18
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
19
|
Luo KF, Zhou LX, Wu ZW, Tian Y, Jiang J, Wang MH. Molecular mechanisms and therapeutic applications of huaier in breast cancer treatment. Front Pharmacol 2024; 14:1269096. [PMID: 38313074 PMCID: PMC10836597 DOI: 10.3389/fphar.2023.1269096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Breast cancer is one of the most common female malignant tumors today and represents a serious health risk for women. Although the survival rate and quality of life of patients with breast cancer are improving with the continuous development of medical technology, metastasis, recurrence, and drug resistance of breast cancer remain a significant problem. Huaier, a traditional Chinese medicine (TCM) fungus, is a type of Sophora embolism fungus growing on old Sophora stems. The polysaccharides of Trametes robiniophila Murr (PS-T) are the main active ingredient of Huaier. There is increasing evidence that Huaier has great potential in breast cancer treatment, and its anti-cancer mechanism may be related to a variety of biological activities, such as the inhibition of cell proliferation, metastasis, tumor angiogenesis, the promotion of cancer cell death, and regulation of tumor-specific immunity. There is growing evidence that Huaier may be effective in the clinical treatment of breast cancer. This review systematically summarizes the basic and clinical studies on the use of Huaier in the treatment of breast cancer, providing useful information to guide the clinical application of Huaier and future clinical studies.
Collapse
Affiliation(s)
- Ke-fei Luo
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| | - Lin-xi Zhou
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| | - Zi-wei Wu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| | - Yuan Tian
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
- Department of Emergency Surgery, Linyi People’s Hospital, Linyi, China
| | - Jun Jiang
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| | - Ming-hao Wang
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Egorova M, Egorov V, Zabrodskaya Y. Maternal Influenza and Offspring Neurodevelopment. Curr Issues Mol Biol 2024; 46:355-366. [PMID: 38248325 PMCID: PMC10814929 DOI: 10.3390/cimb46010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review examines the complex interactions between maternal influenza infection, the immune system, and the neurodevelopment of the offspring. It highlights the importance of high-quality studies to clarify the association between maternal exposure to the virus and neuropsychiatric disorders in the offspring. Additionally, it emphasizes that the development of accurate animal models is vital for studying the impact of infectious diseases during pregnancy and identifying potential therapeutic targets. By drawing attention to the complex nature of these interactions, this review underscores the need for ongoing research to improve the understanding and outcomes for pregnant women and their offspring.
Collapse
Affiliation(s)
- Marya Egorova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
| | - Vladimir Egorov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
- Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia
| | - Yana Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia
| |
Collapse
|
21
|
Martins de Oliveira L, Alves de Lima LV, Silva MFD, Felicidade I, Lepri SR, Mantovani MS. Disruption of caspase-independent cell proliferation pathway on spheroids (HeLa cells) treated with curcumin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:859-870. [PMID: 37671809 DOI: 10.1080/15287394.2023.2255886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Curcumin is an antiproliferative phytochemical extracted from Curcuma longa L and which has been studied in preclinical drug screening using cell monolayers and animal models. However, several limitations of these culture systems may be overcome by performing screening with three-dimensional (3-D) cell culture. The aim of this study was to investigate the effects of curcumin on cytotoxicity and genotoxicity as well as spheroid growth using cervical adenocarcinoma HeLa cell spheroids by performing RT-PCR mRNA expression of genes involved in cell death (CASP3, CASP8, CASP9, PARP1, BBC3, BIRC5, BCL2, TNF), autophagy (BECN1, SQSTM1), cell cycle regulation (TP53, C-MYC, NF-kB, CDKN1A, m-TOR, TRAF-2), DNA damage repair (H2AFX, GADD45A, GADD45G), oxidative stress (GPX1), reticulum stress (EIF2AK3, ERN1), and invasion (MMP1, MMP9) was investigated. Curcumin was cytotoxic in a concentration-dependent manner. Curcumin-treated spheroids exhibited lower proliferative recovery and cell proliferation attenuation, as observed in the clonogenic assay. Further, no marked genotoxicity was detected. Curcumin-treated spheroids displayed reduced expression of BECN1 (2.9×), CASP9 (2.1×), and PARP1 (2.1×) mRNA. PARP1 inhibition suggested disruption of essential pathways of proliferation maintenance. Downregulated expression of CASP9 mRNA and unchanged expression of CASP3/8 mRNA suggested caspase-independent cell death, whereas downregulated expression of BECN1 mRNA indicated autophagic disruption. Therefore, curcumin exhibits the potential for drug development with antiproliferative activity to be considered for use in cancers.
Collapse
Affiliation(s)
- Liana Martins de Oliveira
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Luan Vitor Alves de Lima
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Matheus Felipe da Silva
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Ingrid Felicidade
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| |
Collapse
|
22
|
Yulak F, Filiz AK, Joha Z, Ergul M. Mechanism of anticancer effect of ETP-45658, a PI3K/AKT/mTOR pathway inhibitor on HT-29 Cells. Med Oncol 2023; 40:341. [PMID: 37891359 DOI: 10.1007/s12032-023-02221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
The PI3K pathway plays a crucial role in tumor cell proliferation across various cancers, including colon cancer, making it a promising treatment target. This study aims to investigate the antiproliferative activity of ETP-45658, a PI3K/AKT/mTOR pathway inhibitor, on colon cancer and elucidate the underlying mechanisms. HT-29 colon cancer cells were treated with varying doses of ETP 45658 and its cytotoxic effect assessed using the XTT cell viability assay.ELISA was also used to measure TAS, TOS, Bax, BCL-2, cleaved caspase 3, cleaved PARP, and 8-oxo-dG levels. Flow cytometry was performed to investigate apoptosis, cell cycle, caspase 3/7 activity, and mitochondrial membrane potential. Additionally, following the administration of DAPI (4,6-diamidino-2-phenylindole) dye, the cells were visualized using an immunofluorescence microscope. It was observed that ETP-45658 exerted a dose-dependent and statistically significant antiproliferative effect on HT-29 colon cancer cells. Further investigations using the IC50 dose showed that ETP-45658 decreased TAS levels and increased TOS levels and revealed that it upregulated apoptotic proteins while downregulating anti-apoptotic proteins. Our findings also showed that it increased Annexin V binding, arrested the cell cycle at G0/G1 phase, induced caspase 3/7 activity, impaired mitochondrial membrane potential, and ultimately triggered apoptosis in HT-29 cells. ETP-45658 shows promise against colon cancer by inducing cell death, and oxidative stress, and arresting the cell cycle. Targeting the PI3K/AKT/mTOR pathway with ETP-45658 offers exciting potential for colon cancer treatment.
Collapse
Affiliation(s)
- Fatih Yulak
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Zıad Joha
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
23
|
Viñolas-Vergés E, Yeste M, Garriga F, Bonet S, Mateo-Otero Y, Ribas-Maynou J. An intracellular, non-oxidative factor activates in vitro chromatin fragmentation in pig sperm. Biol Res 2023; 56:53. [PMID: 37876007 PMCID: PMC10594720 DOI: 10.1186/s40659-023-00467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND In vitro incubation of epididymal and vas deferens sperm with Mn2+ induces Sperm Chromatin Fragmentation (SCF), a mechanism that causes double-stranded breaks in toroid-linker regions (TLRs). Whether this mechanism, thought to require the participation of topoisomerases and/or DNAses and thus far only described in epididymal mouse sperm, can be triggered in ejaculated sperm is yet to be elucidated. The current study aimed to determine if exposure of pig ejaculated sperm to divalent ions (Mn2+ and Mg2+) activates SCF, and whether this has any impact on sperm function and survival. For this purpose, sperm DNA integrity was evaluated through the Comet assay and Pulsed Field Gel Electrophoresis (PFGE); sperm motility and agglutination were assessed with computer assisted sperm analysis (CASA); and sperm viability and levels of total reactive oxygen species (ROS) and superoxides were determined through flow cytometry. RESULTS Incubation with Mn2+/Ca2+ activated SCF in a dose-dependent (P < 0.05) albeit not time-dependent manner (P > 0.05); in contrast, Mg2+/Ca2+ only triggered SCF at high concentrations (50 mM). The PFGE revealed that, when activated by Mn2+/Ca2+ or Mg2+/Ca2+, SCF generated DNA fragments of 33-194 Kb, compatible with the size of one or multiple toroids. Besides, Mn2+/Ca2+ affected sperm motility in a dose-dependent manner (P < 0.05), whereas Mg2+/Ca2+ only impaired this variable at high concentrations (P < 0.05). While this effect on motility was concomitant with an increase of agglutination, neither viability nor ROS levels were affected by Mn2+/Ca2+ or Mg2+/Ca2+ treatments. CONCLUSION Mn2+/Ca2+ and Mn2+/Ca2+ were observed to induce SCF in ejaculated sperm, resulting in DNA cleavage at TLRs. The activation of this mechanism by an intracellular, non-oxidative factor sheds light on the events taking place during sperm cell death.
Collapse
Affiliation(s)
- Estel Viñolas-Vergés
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), S08010, Barcelona, Spain.
| | - Ferran Garriga
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| |
Collapse
|
24
|
Gregory CD. Hijacking homeostasis: Regulation of the tumor microenvironment by apoptosis. Immunol Rev 2023; 319:100-127. [PMID: 37553811 PMCID: PMC10952466 DOI: 10.1111/imr.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Cancers are genetically driven, rogue tissues which generate dysfunctional, obdurate organs by hijacking normal, homeostatic programs. Apoptosis is an evolutionarily conserved regulated cell death program and a profoundly important homeostatic mechanism that is common (alongside tumor cell proliferation) in actively growing cancers, as well as in tumors responding to cytotoxic anti-cancer therapies. Although well known for its cell-autonomous tumor-suppressive qualities, apoptosis harbors pro-oncogenic properties which are deployed through non-cell-autonomous mechanisms and which generally remain poorly defined. Here, the roles of apoptosis in tumor biology are reviewed, with particular focus on the secreted and fragmentation products of apoptotic tumor cells and their effects on tumor-associated macrophages, key supportive cells in the aberrant homeostasis of the tumor microenvironment. Historical aspects of cell loss in tumor growth kinetics are considered and the impact (and potential impact) on tumor growth of apoptotic-cell clearance (efferocytosis) as well as released soluble and extracellular vesicle-associated factors are discussed from the perspectives of inflammation, tissue repair, and regeneration programs. An "apoptosis-centric" view is proposed in which dying tumor cells provide an important platform for intricate intercellular communication networks in growing cancers. The perspective has implications for future research and for improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Christopher D. Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| |
Collapse
|
25
|
Ranjan A, Biswas S, Mallick BN. Rapid eye movement sleep loss associated cytomorphometric changes and neurodegeneration. Sleep Med 2023; 110:25-34. [PMID: 37524037 DOI: 10.1016/j.sleep.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Rapid eye movement sleep (REMS) is essential for leading normal healthy living at least in higher-order mammals, including humans. In this review, we briefly survey the available literature for evidence linking cytomorphometric changes in the brain due to loss of REMS. As a mechanism of action, we add evidence that REMS loss elevates noradrenaline (NA) levels in the brain, which affects neuronal cytomorphology. These changes may be a compensatory mechanism as the changes return to normal after the subjects recover from the loss of REMS or if during REMS deprivation, the subjects are treated with NA-adrenoceptor antagonist prazosin (PRZ). We had proposed earlier that one of the fundamental functions of REMS is to maintain the level of NA in the brain. We elaborate on this idea to propose that if REMS loss continues without recovery, the sustained level of NA breaks down neurophysiologically active compensatory mechanism/s starting with changes in the neuronal cytomorphology, followed by their degeneration, leading to acute and chronic pathological conditions. Identification of neuronal cytomorphological changes could prove to be of significance for predicting future neuronal (brain) damage as well as an indicator for REMS health. Although current brain imaging techniques may not enable us to visualize changes in neuronal cytomorphology, given the rapid technological progress including use of artificial intelligence, we are optimistic that it may be a reality soon. Finally, we propose that maintenance of optimum REMS must be considered a criterion for leading a healthy life.
Collapse
Affiliation(s)
- Amit Ranjan
- Department of Zoology, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India.
| | - Sudipta Biswas
- Math, Science, Engineering Department, South Mountain Community College, 7050 S 24th St, Phoenix, AZ, 85042, USA
| | - Birendra Nath Mallick
- Amity Institute of Neuropsychology & Neurosciences, Amity University Campus, Sector 125, Gautam Budh Nagar, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
26
|
Mondal R, Pal P, Biswas S, Chattopadhyay A, Bandyopadhyay A, Mukhopadhyay A, Mukhopadhyay PK. Attenuation of sodium arsenite mediated ovarian DNA damage, follicular atresia, and oxidative injury by combined application of vitamin E and C in post pubertal Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2701-2720. [PMID: 37129605 DOI: 10.1007/s00210-023-02491-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Arsenic being a toxic metalloid ubiquitously persists in environment and causes several health complications including female reproductive anomalies. Epidemiological studies documented birth anomalies due to arsenic exposure. Augmented reactive oxygen species (ROS) generation and quenched antioxidant pool are foremost consequences of arsenic threat. On the contrary, Vitamin E (VE) and C (VC) are persuasive antioxidants and conventionally used in toxicity management. Present study was designed to explore the extent of efficacy of combined VE and VC (VEC) against Sodium arsenite (NaAsO2) mediated ovarian damage. Thirty-six female Wistar rats were randomly divided into three groups (Grs) and treated for consecutive 30 days; Gr I (control) was vehicle fed, Gr II (treated) was gavaged with NaAsO2 (3 mg/kg/day), Gr III (supplement) was provided with VE (400 mg/kg/day) & VC (200 mg/kg/day) along with NaAsO2. Marked histological alterations were evidenced by disorganization in oocyte, granulosa cells and zona pellucida layers in treated group. Considerable reduction of different growing follicles along with increased atretic follicles was noted in treated group. Altered activities ofΔ5 3β-Hydroxysteroid dehydrogenase and 17β-Hydroxysteroid dehydrogenase accompanied by reduced luteinizing hormone, follicle-stimulating hormone and estradiol levels were observed in treated animals. Irregular estrous cyclicity pattern was also observed due to NaAsO2 threat. Surplus ROS production affected ovarian antioxidant strata as evidenced by altered oxidative stress markers. Provoked oxidative strain further affects DNA status of ovary. However, supplementation with VEC caused notable restoration from such disparaging effects of NaAsO2 toxicities. Antioxidant and antiapoptotic attributes of those vitamins might be liable for such restoration.
Collapse
Affiliation(s)
- Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Sagnik Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Alok Chattopadhyay
- Department of Physiology, Harimohan Ghose College, Affiliated to University of Calcutta, Kolkata, India
| | - Amit Bandyopadhyay
- Sports and Exercise Physiology Laboratory, Department of Physiology, University Colleges of Science & Technology, University of Calcutta, Kolkata, India
| | | | | |
Collapse
|
27
|
Yamashima T, Seike T, Mochly-Rosen D, Chen CH, Kikuchi M, Mizukoshi E. Implication of the cooking oil-peroxidation product "hydroxynonenal" for Alzheimer's disease. Front Aging Neurosci 2023; 15:1211141. [PMID: 37693644 PMCID: PMC10486274 DOI: 10.3389/fnagi.2023.1211141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that reduces cell injuries via detoxification of lipid-peroxidation product, 4-hydroxy-2-nonenal (hydroxynonenal). It is generated exogenously via deep-frying of linoleic acid-rich cooking oils and/or endogenously via oxidation of fatty acids involved in biomembranes. Although its toxicity for human health is widely accepted, the underlying mechanism long remained unknown. In 1998, Yamashima et al. have formulated the "calpain-cathepsin hypothesis" as a molecular mechanism of ischemic neuronal death. Subsequently, they found that calpain cleaves Hsp70.1 which became vulnerable after the hydroxynonenal-induced carbonylation at the key site Arg469. Since it is the pivotal aberration that induces lysosomal membrane rupture, they suggested that neuronal death in Alzheimer's disease similarly occurs by chronic ischemia via the calpain-cathepsin cascade triggered by hydroxynonenal. For nearly three decades, amyloid β (Aβ) peptide was thought to be a root substance of Alzheimer's disease. However, because of both the insignificant correlations between Aβ depositions and occurrence of neuronal death or dementia, and the negative results of anti-Aβ medicines tested so far in the patients with Alzheimer's disease, the strength of the "amyloid cascade hypothesis" has been weakened. Recent works have suggested that hydroxynonenal is a mediator of programmed cell death not only in the brain, but also in the liver, pancreas, heart, etc. Increment of hydroxynonenal was considered an early event in the development of Alzheimer's disease. This review aims at suggesting ways out of the tunnel, focusing on the implication of hydroxynonenal in this disease. Herein, the mechanism of Alzheimer neuronal death is discussed by focusing on Hsp70.1 with a dual function as chaperone protein and lysosomal stabilizer. We suggest that Aβ is not a culprit of Alzheimer's disease, but merely a byproduct of autophagy/lysosomal failure resulting from hydroxynonenal-induced Hsp70.1 disorder. Enhancing ALDH2 activity to detoxify hydroxynonenal emerges as a promising strategy for preventing and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
28
|
Gregory CD, Rimmer MP. Extracellular vesicles arising from apoptosis: forms, functions, and applications. J Pathol 2023; 260:592-608. [PMID: 37294158 PMCID: PMC10952477 DOI: 10.1002/path.6138] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 μm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christopher D Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| | - Michael P Rimmer
- Centre for Reproductive HealthInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| |
Collapse
|
29
|
Biswas S, Pal P, Mondal R, Mukhopadhyay PK. Casein and pea enriched high-protein diet attenuates arsenic provoked apoptosis in testicles of adult rats. Toxicol Res (Camb) 2023; 12:551-563. [PMID: 37663799 PMCID: PMC10470344 DOI: 10.1093/toxres/tfad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 09/05/2023] Open
Abstract
Arsenic toxicity is a major health issue that also threats male reproductive system leading to impairment of fertility. The antioxidant capacity of casein and pea enriched formulated high-protein diet (FHPD) is found to be effective in different toxicity management. The present study was endeavored to investigate the mitigatory aspect of FHPD on arsenic stimulated testicular apoptosis. Adult male rats were maintained on either normal diet as control (Gr I, n = 8) and arsenic (As2O3) treated at a dose of 3 mg/kg/rat/day (Gr II, n = 8) or on isocaloric FHPD as supplemented (Gr III, n = 8) with same dose of arsenic for 30 consecutive days. Testicular histomorphometry, spermatokinetics, testicular functional marker enzymes, serum gonadotrophins, oxidative stress markers, testicular deoxyribonucleic acid (DNA) damage, and apoptosis markers were evaluated to assess the reprotoxicity of arsenic and subsequent protection by FHPD. FHPD protected the histopathological alterations and also restored normal spermatogenesis. Altered enzymatic activities of testicular functional markers like lactate dehydrogenase, γ-glutamyl transferase, acid phosphatase, and alkaline phosphatase were also regularized. FHPD also reinstated the normal level of follicle stimulating hormone (FSH), luteinising hormone (LH), and also normalized the enzymatic activities of testicular glutathione peroxidase and glutathione reductase. Testicular DNA damage was also prevented by FHPD supplementation. Testicular apoptosis marked by the altered messenger ribonucleic acid and protein expression of apoptotic markers like Bax, Bcl-2, caspase 9, and caspase 3 were also attenuated upon FHPD supplementation along with diminution of arsenic accumulation in testicular tissues. FHPD not only mitigated the adverse effects of arsenic induced gonadotoxicity but also helped in sustaining the normal reproductive functions.
Collapse
Affiliation(s)
- Sagnik Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | |
Collapse
|
30
|
Chen H, Li H, Yin X, Liu Y, Zhang T, Wu H, Kang G, Yu Y, Bai M, Bao L, Yang J, Dong W. The therapeutic effect of Zhenbao pills on behavioral changes in zebrafish caused by aluminum chloride. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
31
|
Ehrmann JF, Grabarczyk DB, Heinke M, Deszcz L, Kurzbauer R, Hudecz O, Shulkina A, Gogova R, Meinhart A, Versteeg GA, Clausen T. Structural basis for regulation of apoptosis and autophagy by the BIRC6/SMAC complex. Science 2023; 379:1117-1123. [PMID: 36758105 DOI: 10.1126/science.ade8873] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Inhibitor of apoptosis proteins (IAPs) bind to pro-apoptotic proteases, keeping them inactive and preventing cell death. The atypical ubiquitin ligase BIRC6 is the only essential IAP, additionally functioning as a suppressor of autophagy. We performed a structure-function analysis of BIRC6 in complex with caspase-9, HTRA2, SMAC, and LC3B, which are critical apoptosis and autophagy proteins. Cryo-electron microscopy structures showed that BIRC6 forms a megadalton crescent shape that arcs around a spacious cavity containing receptor sites for client proteins. Multivalent binding of SMAC obstructs client binding, impeding ubiquitination of both autophagy and apoptotic substrates. On the basis of these data, we discuss how the BIRC6/SMAC complex can act as a stress-induced hub to regulate apoptosis and autophagy drivers.
Collapse
Affiliation(s)
- Julian F Ehrmann
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Daniel B Grabarczyk
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Maria Heinke
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Otto Hudecz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Alexandra Shulkina
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Rebeca Gogova
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Gijs A Versteeg
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Novel cataract-causing variant c.177dupC in c-MAF regulates the expression of crystallin genes for cell apoptosis via a mitochondria-dependent pathway. Mol Genet Genomics 2023; 298:495-506. [PMID: 36719481 DOI: 10.1007/s00438-022-01982-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/15/2022] [Indexed: 02/01/2023]
Abstract
Congenital cataract (CC) is regarded as the most common hereditary ophthalmic disease in children. Mutations in CC-associated genes play important roles in CC formation, which provides the basis for molecular diagnosis and therapy. Among these CC-associated genes, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (c-MAF) is considered an important transcription factor for eye and lens development. In this study, we recruited a three-generation Chinese Han family with CC. Gene sequencing revealed a novel duplication mutation in c-MAF (NM_005360.5: c.177dup) that caused frameshifting at residue 60 (p. M60fs) of c-MAF. Additionally, in the patient blood samples, the expression levels of related crystallin and noncrystallin genes confirmed that this novel duplication variant impaired the transactivation of c-MAF. Further functional analyses suggested that the c-MAF mutant induces the transcriptional inhibition of CRYAA and CRYGA and subsequently influences ME and G6PD expression levels, ultimately resulting in ROS generation and further leading to cell apoptosis via mitochondria-dependent pathways. In conclusion, we report a novel c-MAF heterozygous mutation that plays a vital role in CC formation in a Chinese family, broadening the genetic spectrum of CC.
Collapse
|
33
|
Chan C, Liu L, Dharmadhikari S, Shontz KM, Tan ZH, Bergman M, Shaffer T, Tram NK, Breuer CK, Stacy MR, Chiang T. A Multimodal Approach to Quantify Chondrocyte Viability for Airway Tissue Engineering. Laryngoscope 2023; 133:512-520. [PMID: 35612419 PMCID: PMC9691794 DOI: 10.1002/lary.30206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS Partially decellularized tracheal scaffolds have emerged as a potential solution for long-segment tracheal defects. These grafts have exhibited regenerative capacity and the preservation of native mechanical properties resulting from the elimination of all highly immunogenic cell types while sparing weakly immunogenic cartilage. With partial decellularization, new considerations must be made about the viability of preserved chondrocytes. In this study, we propose a multimodal approach for quantifying chondrocyte viability for airway tissue engineering. METHODS Tracheal segments (5 mm) were harvested from C57BL/6 mice, and immediately stored in phosphate-buffered saline at -20°C (PBS-20) or biobanked via cryopreservation. Stored and control (fresh) tracheal grafts were implanted as syngeneic tracheal grafts (STG) for 3 months. STG was scanned with micro-computed tomography (μCT) in vivo. STG subjected to different conditions (fresh, PBS-20, or biobanked) were characterized with live/dead assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and von Kossa staining. RESULTS Live/dead assay detected higher chondrocyte viability in biobanked conditions compared to PBS-20. TUNEL staining indicated that storage conditions did not alter the proportion of apoptotic cells. Biobanking exhibited a lower calcification area than PBS-20 in 3-month post-implanted grafts. Higher radiographic density (Hounsfield units) measured by μCT correlated with more calcification within the tracheal cartilage. CONCLUSIONS We propose a strategy to assess chondrocyte viability that integrates with vivo imaging and histologic techniques, leveraging their respective strengths and weaknesses. These techniques will support the rational design of partially decellularized tracheal scaffolds. LEVEL OF EVIDENCE N/A Laryngoscope, 133:512-520, 2023.
Collapse
Affiliation(s)
- Coreena Chan
- College of Medicine, The Ohio State University, Columbus, Ohio, U.S.A
| | - Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Sayali Dharmadhikari
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Zheng Hong Tan
- College of Medicine, The Ohio State University, Columbus, Ohio, U.S.A
| | - Maxwell Bergman
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, U.S.A
| | - Terri Shaffer
- Small Animal Imaging Facility, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Nguyen K Tram
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Mitchel R Stacy
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Tendy Chiang
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| |
Collapse
|
34
|
Morinda lucida stem bark reversed the pattern and extent of lead nitrate-induced liver injury in Wistar rats. Morphologie 2023; 107:55-66. [PMID: 35691788 DOI: 10.1016/j.morpho.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
Abstract
Lead toxicity remains one of the most important occupational and environmental health problems with characteristic features that are incompatible with life. Considering the foregoing, we investigated the ameliorative potentials of Morinda lucida stem bark (MLSB) extract on lead nitrate-induced hepatic injury with particular emphasis on its effects on the pattern and extent of lead nitrate toxicity. Thirty-six adult Wistar rats were randomly assigned into six groups (n=6). Normal control group received 2.2mL/kg distilled water only for 4 weeks while hepatic injury was induced by 2-week oral administration of 30mg/kg lead nitrate to experimental rats in the remaining five groups. Following induction, test groups were treated with MLSB for another 2 weeks at 100, 250, and 500mg/kg concentrations respectively while silymarin was administered orally for 2 weeks to positive control group. At the end of the study, serum activities of liver function enzymes and tissue levels of malondialdehyde were determined. Patterns and extent of injury were determined in hematoxylin and eosin-stained section. The result revealed a significant reduction in sera levels of liver function enzymes and tissue level of malondialdehyde (MDA) in extract treated groups. Lead nitrate-induced necrotic changes and other deranged features observed in histological sections were multifocal and they span through multiple zones of hepatic acini (panacinar), MLSB at 250mg/kg concentration reversed by some of these effects. The study concluded that ameliorative property of MLSB could be due to the antioxidant and membrane stabilizing properties of its phenolic compounds.
Collapse
|
35
|
Expanding therapeutic strategies for intracellular bacterial infections through conjugates of apoptotic body-antimicrobial peptides. Drug Discov Today 2023; 28:103444. [PMID: 36400344 DOI: 10.1016/j.drudis.2022.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Macrophage intracellular infections are difficult to treat because conventional antibiotics tend to have poor penetration of mammalian cells. As a consequence, the immune response is affected and bacteria remain protected inside macrophages. The use of antimicrobial peptides (AMPs) is one of the alternatives developed as new treatments because of their broad spectrum of action. To improve drug delivery into the intracellular space, extracellular vesicles (EVs) have emerged as an innovative strategy for drug delivery. In particular, apoptotic bodies (ApoBDs) are EVs that exhibit attraction to macrophages, which makes them a promising means of improving AMP delivery to treat macrophage intracellular infections. Here, we review important aspects that should be taken into account when developing ApoBD-AMP conjugates.
Collapse
|
36
|
Anwar MM, Özkan E, Shomalizadeh N, Sapancı S, Özler C, Kesibi J, Gürsoy-Özdemir Y. Assessing the role of primary healthy microglia and gap junction blocker in hindering Alzheimer's disease neuroinflammatory type: Early approaches for therapeutic intervention. Front Neurosci 2023; 16:1041461. [PMID: 36704003 PMCID: PMC9871931 DOI: 10.3389/fnins.2022.1041461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a predominantly heterogeneous disease with a highly complex pathobiology. The presence of amyloid-beta (Aβ) depositions and the accumulation of hyperphosphorylated tau protein remain the characteristic hallmarks of AD. These hallmarks can be detected throughout the brain and other regions, including cerebrospinal fluid (CSF) and the spinal cord. Microglia cells, the brain-resident macrophage type of the brain, are implicated in maintaining healthy brain homeostasis. The localized administration of primary healthy microglia (PHM) is suggested to play a role in mitigating AD hallmark depositions and associated cognitive dysfunction. Carbenoxolone (CBX) is the most common gap junction blocker. It cannot effectively cross the blood-brain barrier (BBB) under systemic administration. Therefore, localized administration of CBX may be a recommended intervention against AD by acting as an antioxidant and anti-inflammatory agent. This study aims to determine whether the localized intracerebroventricular (ICV) administration of PHM and CBX may act as an effective therapeutic intervention for AD neuroinflammatory type. In addition, this study also aims to reveal whether detecting AD hallmarks in the spinal cord and CSF can be considered functional and effective during AD early diagnosis. Male albino rats were divided into four groups: control (group 1), lipopolysaccharide (LPS)-induced AD neuroinflammatory type (group 2), ICV injection of LPS + isolated PHM (group 3), and ICV injection of LPS + CBX (group 4). Morris water maze (MWM) was conducted to evaluate spatial working memory. The brain and spinal cord were isolated from each rat with the collection of CSF. Our findings demonstrate that the localized administration of PHM and CBX can act as promising therapeutic approaches against AD. Additionally, Aβ and tau toxic aggregates were detected in the spinal cord and the CSF of the induced AD model concomitant with the brain tissues. Overall, it is suggested that the ICV administration of PHM and CBX can restore normal brain functions and alleviate AD hallmark depositions. Detecting these depositions in the spinal cord and CSF may be considered in AD early diagnosis. As such, conducting clinical research is recommended to reveal the benefits of related therapeutic approaches compared with preclinical findings.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of Biochemistry, National Organization for Drug Control and Research/Egyptian Drug Authority, Cairo, Egypt
| | - Esra Özkan
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Narges Shomalizadeh
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Selin Sapancı
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Ceyda Özler
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Judy Kesibi
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
37
|
Abstract
Herpes simplex virus (HSV)-1 and HSV-2 are ubiquitous human pathogens that infect keratinized epithelial surfaces and establish lifelong latent infection in sensory neurons of the peripheral nervous system. HSV-1 causes oral cold sores, and HSV-2 causes genital lesions characterized by recurrence at the site of the initial infection. In multicellular organisms, cell death plays a pivotal role in host defense by eliminating pathogen-infected cells. Apoptosis and necrosis are readily distinguished types of cell death. Apoptosis, the main form of programmed cell death, depends on the activity of certain caspases, a family of cysteine proteases. Necroptosis, a regulated form of necrosis that is unleashed when caspase activity is compromised, requires the activation of receptor-interacting protein (RIP) kinase 3 (RIPK3) through its interaction with other RIP homotypic interaction motif (RHIM)-containing proteins such as RIPK1. To ensure lifelong infection in the host, HSV carries out sophisticated molecular strategies to evade host cell death responses during viral infection. HSV-1 is a well-characterized pathogen that encodes potent viral inhibitors that modulate both caspase activation in the apoptosis pathway and RIPK3 activation in the necroptosis pathway in a dramatic, species-specific fashion. The viral UL39-encoded viral protein ICP6, the large subunit of the virus-encoded ribonucleotide reductase, functions as a suppressor of both caspase-8 and RHIM-dependent RIPK3 activities in the natural human host. In contrast, ICP6 RHIM-mediated recruitment of RIPK3 in the nonnatural mouse host drives the direct activation of necroptosis. This chapter provides an overview of the current state of the knowledge on molecular interactions between HSV-1 viral proteins and host cell death pathways and highlights how HSV-1 manipulates cell death signals for the benefit of viral propagation.
Collapse
Affiliation(s)
- Sudan He
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China.
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
38
|
Vimalanathan B, Vijaya JJ, Mary BCJ, Mary RN, Km M, Jayavel R, Abumousa RA, Bououdina M. The Cytotoxic Effectiveness of Thiourea-Reduced Graphene Oxide on Human Lung Cancer Cells and Fungi. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:149. [PMID: 36616058 PMCID: PMC9823875 DOI: 10.3390/nano13010149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This study demonstrated the effective reduction of graphene oxide (GO) by employing thiourea as a reducing and stabilizing agent. Two fungi (Aspergillus flavus and Aspergillus fumigatus) were used for anti-fungal assay. Cell viability, cell cycle analysis, DNA fragmentation, and cell morphology were assessed to determine the toxicity of thiourea-reduced graphene oxide (T-rGO) on human lung cancer cells. The results revealed that GO and T-rGO were hazardous to cells in a dose-dependent trend. The viability of both A. fumigatus and A. flavus was affected by GO and T-rGO. The reactive oxygen species produced by T-rGO caused the death of A. flavus and A. fumigatus cells. This study highlighted the effectiveness of T-rGO as an antifungal agent. In addition, T-rGO was found to be more harmful to cancer cells than GO. Thus, T-rGO manifested great potential in biological and biomedical applications.
Collapse
Affiliation(s)
- Babu Vimalanathan
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - J. Judith Vijaya
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, Tamil Nadu, India
| | - B. Carmel Jeeva Mary
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, Tamil Nadu, India
| | - Ruby Nirmala Mary
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - Mohamed Km
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, Tamil Nadu, India
| | - Ramasamy Jayavel
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - Rasha A. Abumousa
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
39
|
Jung YY, Um JY, Sethi G, Ahn KS. Fangchinoline abrogates growth and survival of hepatocellular carcinoma by negative regulation of c-met/HGF and its associated downstream signaling pathways. Phytother Res 2022; 36:4542-4557. [PMID: 35867025 DOI: 10.1002/ptr.7573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 12/13/2022]
Abstract
Among all cancers, hepatocellular carcinoma (HCC) remains a lethal disease with limited treatment options. In this study, we have analyzed the possible inhibitory effects of Fangchinoline (FCN) on c-Met, a protein known to regulate the rapid phosphorylation of downstream signals, as well as mediate aberrant growth, metastasis, survival, and motility in cancer. FCN inhibited the activation of c-Met and its downstream signals PI3K, AKT, mTOR, MEK, and ERK under in vitro settings. Moreover, c-Met gene silencing lead to suppression of PI3K/AKT/mTOR and MEK/ERK signaling pathways, and induced apoptotic cell death upon exposure to FCN. In addition, FCN markedly inhibited the expression of the various oncogenic proteins such as Bcl-2/xl, survivin, IAP-1/2, cyclin D1, and COX-2. In vivo studies in HepG2 cells xenograft mouse model showed that FCN could significantly attenuate the tumor volume and weight, without affecting significant loss in the body weight. Similar to in vitro studies, expression level of c-Met and PI3K/AKT/mTOR, MEK/ERK signals was also suppressed by FCN in the tissues obtained from mice. Therefore, the novel findings of this study suggest that FCN can potentially function as a potent anticancer agent against HCC.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
40
|
Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, Gómez M, Mas S, Gassó P, Parellada E. Systematic Review of the Therapeutic Role of Apoptotic Inhibitors in Neurodegeneration and Their Potential Use in Schizophrenia. Antioxidants (Basel) 2022; 11:2275. [PMID: 36421461 PMCID: PMC9686909 DOI: 10.3390/antiox11112275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/15/2023] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder affecting cognition, emotion and reality perception. The most widely accepted neurochemical-hypothesis is the imbalance of neurotransmitter-systems. Depleted GABAergic-inhibitory function might produce a regionally-located dopaminergic and glutamatergic-storm in the brain. The dopaminergic-release may underlie the positive psychotic-symptoms while the glutamatergic-release could prompt the primary negative symptoms/cognitive deficits. This may occur due to excessive synaptic-pruning during the neurodevelopmental stages of adolescence/early adulthood. Thus, although SZ is not a neurodegenerative disease, it has been suggested that exaggerated dendritic-apoptosis could explain the limited neuroprogression around its onset. This apoptotic nature of SZ highlights the potential therapeutic action of anti-apoptotic drugs, especially at prodromal stages. If dysregulation of apoptotic mechanisms underlies the molecular basis of SZ, then anti-apoptotic molecules could be a prodromal therapeutic option to halt or prevent SZ. In fact, risk alleles related in apoptotic genes have been recently associated to SZ and shared molecular apoptotic changes are common in the main neurodegenerative disorders and SZ. PRISMA-guidelines were considered. Anti-apoptotic drugs are commonly applied in classic neurodegenerative disorders with promising results. Despite both the apoptotic-hallmarks of SZ and the widespread use of anti-apoptotic targets in neurodegeneration, there is a strikingly scarce number of studies investigating anti-apoptotic approaches in SZ. We analyzed the anti-apoptotic approaches conducted in neurodegeneration and the potential applications of such anti-apoptotic therapies as a promising novel therapeutic strategy, especially during early stages.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- U722 Group, Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Nina Treder
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Néstor Arbelo
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Santiago Madero
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Gómez
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Psychiatry, Servizo Galego de Saúde (SERGAS), 36001 Pontevedra, Spain
| | - Sergi Mas
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Patricia Gassó
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
41
|
Zakeri Z, Lockshin RA. Andrew H. Wyllie, a pioneer in the field of apoptosis. Cell Commun Signal 2022. [PMID: 36253758 PMCID: PMC9574169 DOI: 10.1186/s12964-022-00988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
We mourn, and briefly describe the life and contributions of, Andrew H. Wyllie, who was a co-author of the first paper to describe apoptosis, and a primary proponent of the concept.
Collapse
Affiliation(s)
- Zahra Zakeri
- Department of Biology, Queens College of CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, USA
| | - Richard A Lockshin
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY, 11439, USA.
| |
Collapse
|
42
|
Kim CK, Park JS, Kim E, Oh MK, Lee YT, Yoon KJ, Joo KM, Lee K, Park YS. The effects of early exercise in traumatic brain-injured rats with changes in motor ability, brain tissue, and biomarkers. BMB Rep 2022; 55:512-517. [PMID: 36104258 PMCID: PMC9623238 DOI: 10.5483/bmbrep.2022.55.10.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury (TBI) is brain damage which is caused by the impact of external mechanical forces. TBI can lead to the temporary or permanent impairment of physical and cognitive abilities, resulting in abnormal behavior. We recently observed that a single session of early exercise in animals with TBI improved their behavioral performance in the absence of other cognitive abnormalities. In the present study, we investigated the therapeutic effects of continuous exercise during the early stages of TBI in rats. We found that continuous low-intensity exercise in early-stage improves the locomotion recovery in the TBI of animal models; however, it does not significantly enhance short-term memory capabilities. Moreover, continuous early exercise not only reduces the protein expression of cerebral damage-related markers, such as Glial Fibrillary Acid Protein (GFAP), Neuron-Specific Enolase (NSE), S100β, Protein Gene Products 9.5 (PGP9.5), and Heat Shock Protein 70 (HSP70), but it also decreases the expression of apoptosis-related protein BAX and cleaved caspase 3. Furthermore, exercise training in animals with TBI decreases the microglia activation and the expression of inflammatory cytokines in the serum, such as CCL20, IL-13, IL-1α, and IL-1β. These findings thus demonstrate that early exercise therapy for TBI may be an effective strategy in improving physiological function, and that serum protein levels are useful biomarkers for the predicition of the effectiveness of early exercise therapy.[BMB Reports 2022; 55(10): 506-511].
Collapse
Affiliation(s)
- Chung Kwon Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Jee Soo Park
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Eunji Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Min-Kyun Oh
- Department of Rehabilitation Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University Graduate School of Medicine, Jinju 52727, Korea
| | - Yong-Taek Lee
- Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Kyung Jae Yoon
- Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Kyeung Min Joo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Kyunghoon Lee
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Young Sook Park
- Department of Physical & Rehabilitation Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea
| |
Collapse
|
43
|
Expressing the Pro-Apoptotic Reaper Protein via Insertion into the Structural Open Reading Frame of Sindbis Virus Reduces the Ability to Infect Aedes aegypti Mosquitoes. Viruses 2022; 14:v14092035. [PMID: 36146841 PMCID: PMC9501589 DOI: 10.3390/v14092035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Arboviruses continue to threaten a significant portion of the human population, and a better understanding is needed of the determinants of successful arbovirus infection of arthropod vectors. Avoiding apoptosis has been shown to be one such determinant. Previous work showed that a Sindbis virus (SINV) construct called MRE/rpr that expresses the Drosophila pro-apoptotic protein Reaper via a duplicated subgenomic promoter had a reduced ability to orally infect Aedes aegypti mosquitoes at 3 days post-blood meal (PBM), but this difference diminished over time as virus variants containing deletions in the inserted reaper gene rapidly predominated. In order to further clarify the effect of midgut apoptosis on disseminated infection in Ae. aegypti, we constructed MRE/rprORF, a version of SINV containing reaper inserted into the structural open reading frame (ORF) as an in-frame fusion. MRE/rprORF successfully expressed Reaper, replicated similarly to MRE/rpr in cell lines, induced apoptosis in cultured cells, and caused increased effector caspase activity in mosquito midgut tissue. Mosquitoes that fed on blood containing MRE/rprORF developed significantly less midgut and disseminated infection when compared to MRE/rpr or a control virus up to at least 7 days PBM, when less than 50% of mosquitoes that ingested MRE/rprORF had detectable disseminated infection, compared with around 80% or more of mosquitoes fed with MRE/rpr or control virus. However, virus titer in the minority of mosquitoes that became infected with MRE/rprORF was not significantly different from control virus. Deep sequencing of virus populations from ten mosquitoes infected with MRE/rprORF indicated that the reaper insert was stable, with only a small number of point mutations and no deletions being observed at frequencies greater than 1%. Our results indicate that expression of Reaper by this method significantly reduces infection prevalence, but if infection is established then Reaper expression has limited ability to continue to suppress replication.
Collapse
|
44
|
Methyl Gallate Suppresses Tumor Development by Increasing Activation of Caspase3 and Disrupting Tumor Angiogenesis in Melanoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6295910. [PMID: 36110191 PMCID: PMC9470304 DOI: 10.1155/2022/6295910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Methyl gallate is a phenolic compound mainly found in medicinal plants. It has been reported to its anticancer activity in various tumors. In this study, we aimed to demonstrate the antitumor effect of methyl gallate in the melanoma mouse model and B16F10 cells. Our results showed that methyl gallate decreased cell viability and induced apoptosis by increasing the expression of cleaved caspase3 in B16F10 cells and prevented cell migration and tube formation in human umbilical vein endothelial cells. In B16F10 cell-inoculated mice, methyl gallate not only decreased tumor volume by 30% but also significantly reduced tumor vessel density and pericyte coverage. Moreover, methyl gallate diminished by close to 50% the expression of cytokeratin and LYVE-1 in mouse right inguinal lymph nodes, indicating that methyl gallate could suppress metastasis. In conclusion, this study suggests that methyl gallate inhibits tumor development by inducing apoptosis and blocking tumor angiogenesis and metastasis and might be considered a therapeutic agent for melanoma.
Collapse
|
45
|
Lockshin RA, Cummings MC. The power of an idea: Andrew Wyllie. Cell Death Differ 2022; 29:1671-1672. [PMID: 35871230 PMCID: PMC9433440 DOI: 10.1038/s41418-022-01043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 06/27/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA.
- St. Johns University, Jamaica, NY, USA.
| | - Margaret C Cummings
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia.
- Department of Anatomical Pathology, Pathology Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
46
|
Vimalanathan B, Vijaya JJ, Mary BCJ, Ignacimuthu S, Daniel M, Jayavel R, Bououdina M, Bellucci S. The Anticancer Efficacy of Thiourea-Mediated Reduced Graphene Oxide Nanosheets against Human Colon Cancer Cells (HT-29). J Funct Biomater 2022; 13:jfb13030130. [PMID: 36135565 PMCID: PMC9502518 DOI: 10.3390/jfb13030130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 01/03/2023] Open
Abstract
The current research focuses on the fabrication of water-soluble, reduced graphene oxide (rGO) employing thiourea (T) using a simple cost-effective method, and subsequently examining its anticancer characteristics. The cytotoxicity caused by graphene oxide (GO) and T-rGO is investigated in detail. Biological results reveal a concentration-dependent toxicity of GO and T-rGO in human colon cancer cells HT-29. A decrease in cell viability alongside DNA fragmentation is observed. Flow cytometry analysis confirms the cytotoxic effects. The novelty in this work is the use of raw graphite powder, and oxidants such as KMNO4, NaNO3, and 98 percent H2SO4 to produce graphene oxide by a modified Hummers method. This study demonstrates a simple and affordable procedure for utilising thiourea to fabricate a water-soluble reduced graphene oxide, which will be useful in a variety of biomedical applications.
Collapse
Affiliation(s)
| | - J. Judith Vijaya
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, India
- Correspondence: (J.J.V.); (R.J.)
| | - B. Carmel Jeeva Mary
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, India
| | | | - Magesh Daniel
- Department of Zoology, Loyola College, Chennai 600034, India
| | - Ramasamy Jayavel
- Crystal Growth Centre, Anna University, Chennai 600025, India
- Correspondence: (J.J.V.); (R.J.)
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 122001, Saudi Arabia
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
47
|
Hsu YT, Ng HY, Chen YH, Huang YC, Lee YY, Tsai MY. Assessing the efficacy and safety of Juan Bi Tang for dialysis-related myofascial pain in the fistula arm: Study protocol for a randomized cross-over trial. Front Public Health 2022; 10:925232. [PMID: 36062127 PMCID: PMC9437307 DOI: 10.3389/fpubh.2022.925232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/04/2022] [Indexed: 01/24/2023] Open
Abstract
Background Dialysis-related myofascial pain in hemodialysis (HD) patients is an important issue that is associated with many other psychosomatic problems. Effective interventions are required to alleviate pain in this group. Chinese herbal medicine (CHM) may be a potential therapeutic treatment for reducing pain. The aim of this study is to evaluate the effects of a classic CHM formula intervention on pain intensity, daily function, quality of life (QOL), and safety in patients receiving HD in a dialysis center within the context of southern Taiwan. Methods This will be a randomized, open label, cross-over trial with two parallel groups in a pre- and post-test study. Forty patients reporting myofascial pain related to the arteriovenous (AV) fistula in the arm during regular HD sessions will be recruited. Participants will receive 4 weeks of treatment with Juan Bi Tang (JBT) and 4 weeks of no treatment in a random order, separated by a washout period of 2 weeks. Treatment doses (3 g JBT) will be consumed thrice daily. The primary outcome measure will be the Kidney Disease Quality of Life 36-Item Short-Form Survey. Secondary outcomes will include the Fugl-Meyer Assessment-arm, Visual Analogue Scale (VAS) of pain, and grip strength. Outcomes will be collected before and after each intervention, for a total of four times per participant. The safety evaluation will focus on adverse events (AEs). Discussion This study will be the first to use CHM to treat patients receiving HD with dialysis-related myofascial pain in their fistula arm and to perform a complete assessment of the treatment, including records of QOL, arm function and muscle power, severity of pain, and safety. The results of the study will provide convincing evidence on the use of JBT as an adjuvant treatment for dialysis-related myofascial pain. Trial registration Clinicaltrials.gov registry (NCT04417101) registered 30 May 2020.
Collapse
Affiliation(s)
- Yung-Tang Hsu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, Taiwan,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yu-Chuen Huang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, Taiwan,Department of Medical Research, China Medical University Hospital and School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yan-Yuh Lee
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Yen Tsai
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan,Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, Taiwan,*Correspondence: Ming-Yen Tsai
| |
Collapse
|
48
|
Watson CJ, Melino G, Martin SJ. Remembering apoptosis pioneer Andrew Wyllie (1944–2022). FEBS J 2022. [DOI: 10.1111/febs.16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Nguyen NH, Chen M, Chak V, Balu-Iyer SV. Biophysical Characterization of Tolerogenic Lipid-Based Nanoparticles Containing Phosphatidylcholine and Lysophosphatidylserine. J Pharm Sci 2022; 111:2072-2082. [PMID: 35108564 PMCID: PMC11075660 DOI: 10.1016/j.xphs.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022]
Abstract
Autoimmune conditions, allergies, and immunogenicity against therapeutic proteins are initiated by the unwanted immune response against self and non-self proteins. The development of tolerance induction approaches can offer an effective treatment modality for these clinical conditions. We recently showed that oral administration of lipidic nanoparticles containing phosphatidylcholine (PC) and lysophosphatidylserine (Lyso-PS) converted an immunogen to a tolerogen and induced immunological tolerance towards several antigens. While the biophysical properties such as lamellar characteristics of this binary lipid system are critical for stability, therapeutic delivery, and mechanism of tolerance induction, such information has not been thoroughly investigated. In the current study, we evaluated the lamellar phase properties of PC/Lyso-PS system using orthogonal biophysical methods such as fluorescence (steady-state, anisotropy, PSvue, and Laurdan), dynamic light scattering, and differential scanning calorimetry. The results showed that Lyso-PS partitioned into the PC bilayers and led to changes in the particles' lamellar phase properties, lipid-packing, and lipid-water dynamics. Additionally, the biophysical characteristics of PC/Lyso-PS system are different from the well-studied PC/double-chain phosphatidylserine (PS) system. Notably, the incorporation of Lyso-PS significantly reduced the hydrodynamic diameter of PC particles. Results from the in vivo uptake study and intestinal loop assay utilizing flow cytometry analysis also indicated that the uptake of Lyso-PS-containing nanoparticles by immune cells in the gut and Peyer's patches is significantly higher than that of double-chain PS due to the differential transport through microfold cells. It was also found that the acyl chain mismatch between PC and Lyso-PS is critical for the miscibility and particle stability. Collectively, the results suggest that these biophysical characteristics likely influence the in vivo behaviors and contribute to the oral tolerance property of PC/Lyso-PS system.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Manlin Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Vincent Chak
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
50
|
Tang J, Zhang Z, Miao J, Tian Y, Pan L. Effects of benzo[a]pyrene exposure on oxidative stress and apoptosis of gill cells of Chlamys farreri in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103867. [PMID: 35483583 DOI: 10.1016/j.etap.2022.103867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
As a common pollutant in marine environment, benzo[a]pyrene (B[a]P) has high toxicity to economic shellfish. In order to explore the mechanism of oxidative stress and apoptosis, the effects of 0, 2, 4, 8 μg/mL B[a]P on gill cells of C. farreri at 12 and 24 h were studied. The results showed that B[a]P decreased the activity of gill cells, increased the content of reactive oxygen species (ROS) and the expression of antioxidant defense genes. Besides, B[a]P could induce oxidative damage to nucleus and mitochondria. The gene expression and enzyme activity of apoptosis pathway related factors were changed. In conclusion, these results showed that B[a]P could cause oxidative stress and oxidative damage in gill cells of C. farreri, and mediate gill cell apoptosis through mitochondrial pathway and death receptor pathway. This article provides a theoretical basis for clarifying the molecular mechanism of PAHs-included oxidative stress and apoptosis in bivalves.
Collapse
Affiliation(s)
- Jian Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zixian Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|