1
|
Sobue K. Calmodulin: a highly conserved and ubiquitous Ca 2+ sensor. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:368-386. [PMID: 39085063 DOI: 10.2183/pjab.100.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Calcium ions (Ca2+) play critical roles in various biological phenomena. The free Ca2+ concentration in the cytoplasm of a resting cell is at the 10-7 M level, whereas that outside the cell is 10-3 M, creating a 10,000-fold gradient of Ca2+ concentrations across the cell membrane, separating the intracellular and extracellular solutions.1),2) When a cell is activated by external stimuli, the intracellular Ca2+ concentration increases to levels of 10-6-10-5 M through Ca2+ entry from the extracellular solution via plasma membrane Ca2+ channels and/or Ca2+ release from intracellular stores. This transient increase in Ca2+ functions as an important signal mediated by Ca2+ sensors. Thus, Ca2+ signals are transmitted to intracellular loci such as distinct, localized targets of Ca2+ sensors. Among numerous Ca2+ sensors present in cells, calmodulin is a highly conserved and ubiquitous Ca2+ sensor.3).
Collapse
Affiliation(s)
- Kenji Sobue
- Iwate Medical University, Yahaba, Shiwa-gun, Iwate, Japan
| |
Collapse
|
2
|
Doi S, Fujioka N, Ohtsuka S, Kondo R, Yamamoto M, Denda M, Magari M, Kanayama N, Hatano N, Morishita R, Hasegawa T, Tokumitsu H. Regulation of the tubulin polymerization-promoting protein by Ca 2+/S100 proteins. Cell Calcium 2021; 96:102404. [PMID: 33831707 DOI: 10.1016/j.ceca.2021.102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
To elucidate S100 protein-mediated signaling pathways, we attempted to identify novel binding partners for S100A2 by screening protein arrays carrying 19,676 recombinant glutathione S-transferase (GST)-fused human proteins with biotinylated S100A2. Among newly discovered putative S100A2 interactants, including TMLHE, TRH, RPL36, MRPS34, CDR2L, OIP5, and MED29, we identified and characterized the tubulin polymerization-promoting protein (TPPP) as a novel S100A2-binding protein. We confirmed the interaction of TPPP with Ca2+/S100A2 by multiple independent methods, including the protein array method, S100A2 overlay, and pulldown assay in vitro and in transfected COS-7 cells. Based on the results from the S100A2 overlay assay using various GST-TPPP mutants, the S100A2-binding region was identified in the C-terminal (residues 111-160) of the central core domain of a monomeric form of TPPP that is involved in TPPP dimerization. Chemical cross-linking experiments indicated that S100A2 suppresses dimer formation of His-tagged TPPP in a dose-dependent and a Ca2+-dependent manner. In addition to S100A2, TPPP dimerization is disrupted by other multiple S100 proteins, including S100A6 and S100B, in a Ca2+-dependent manner but not by S100A4. This is consistent with the fact that S100A6 and S100B, but not S100A4, are capable of interacting with GST-TPPP in the presence of Ca2+. Considering these results together, TPPP was identified as a novel target for S100A2, and it is a potential binding target for other multiple S100 proteins, including S100A6 and S100B. Direct binding of the S100 proteins with TPPP may cause disassembly of TPPP dimer formation in response to the increasing concentration of intracellular Ca2+, thus resulting in the regulation of the physiological function of TPPP, such as microtubule organization.
Collapse
Affiliation(s)
- Seita Doi
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoki Fujioka
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama 700-8530, Japan
| | - Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Rina Kondo
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Maho Yamamoto
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Miwako Denda
- CellFree Sciences Co., Ltd., Matsuyama, 790-8577, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama, 790-8577, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
3
|
Jasuja OP, Singh K. The next level aqueous electrolyte reagent (AER) for development of latent fingermarks. CANADIAN SOCIETY OF FORENSIC SCIENCE JOURNAL 2019. [DOI: 10.1080/00085030.2019.1581691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- O. P. Jasuja
- Department of Forensic Science, Punjabi University, Patiala, Punjab, India
| | - Kulvir Singh
- Department of Forensic Science, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
4
|
Carbone A, Manconi R, Poletti A, Volpe R. Significance of S-100 Protein Immunostaining in the Immunohistological Analysis of Normal and Neoplastic Lymphoid Tissues - An Appraisal. Int J Biol Markers 2018; 1:57-66. [PMID: 3323337 DOI: 10.1177/172460088600100201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
S-100 protein is a heterogeneous fraction of dimeric polypeptides (alpha and beta subunits) that can exist in different combination forms within the various tissues. Concerning the S-100 protein immunodetection within lymphoid tissue, the heterogeneity of the S-100 antigen, the tissue quality (frozen or paraffin-embedded after treatment with different fixatives) and the treatment of the tissue with different immunostaining methods and antibodies of different nature, all make for inconsistent results obtained in the immunohistological studies reported in the literature. Most of the S-100-positive cells of the lymphoreticular system are dendritic cells involved in the immune response (interdigitating reticulum cells, Langerhans cells, and follicular dendritic reticulum cells), other S-100-positive cells belonging to the mononuclear/phagocytic system. S-100 protein immunostaining may be used as a helpful immunohistological diagnostic clue to certain malignancies of the immune system (follicular center cell lymphomas) on the basis of their specifically related dendritic cell microenvironment. In addition to monoclonal antibodies for the immunophenotypic characterization of dendritic cells and macrophages and to enzyme reactions, the combined use of anti-S-100 antibodies specific for each of the S-100 protein subunits, tested with sensitive procedures, would be a very useful tool in the attempt to classify the proliferative disorders of dendritic cells and macrophages.
Collapse
Affiliation(s)
- A Carbone
- Division of Pathology, Comprehensive Cancer Center, Aviano, Italy
| | | | | | | |
Collapse
|
5
|
Jasuja O, Singh K. Visualizing latent fingermarks by aqueous electrolyte gel on fixed aluminum and steel surfaces. CANADIAN SOCIETY OF FORENSIC SCIENCE JOURNAL 2017. [DOI: 10.1080/00085030.2017.1371435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- O.P. Jasuja
- Department of Forensic Science, Punjabi University, Patiala-147002, Punjab, India
| | - Kulvir Singh
- Department of Forensic Science, Punjabi University, Patiala-147002, Punjab, India
| |
Collapse
|
6
|
Gillingwater TH, Wishart TM. Mechanisms underlying synaptic vulnerability and degeneration in neurodegenerative disease. Neuropathol Appl Neurobiol 2013; 39:320-34. [PMID: 23289367 DOI: 10.1111/nan.12014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/21/2012] [Indexed: 02/06/2023]
Abstract
Recent developments in our understanding of events underlying neurodegeneration across the central and peripheral nervous systems have highlighted the critical role that synapses play in the initiation and progression of neuronal loss. With the development of increasingly accurate and versatile animal models of neurodegenerative disease it has become apparent that disruption of synaptic form and function occurs comparatively early, preceding the onset of degenerative changes in the neuronal cell body. Yet, despite our increasing awareness of the importance of synapses in neurodegeneration, the mechanisms governing the particular susceptibility of distal neuronal processes are only now becoming clear. In this review we bring together recent developments in our understanding of cellular and molecular mechanisms regulating synaptic vulnerability. We have placed a particular focus on three major areas of research that have gained significant interest over the last few years: (i) the contribution of synaptic mitochondria to neurodegeneration; (ii) the contribution of pathways that modulate synaptic function; and (iii) regulation of synaptic degeneration by local posttranslational modifications such as ubiquitination. We suggest that targeting these organelles and pathways may be a productive way to develop synaptoprotective strategies applicable to a range of neurodegenerative conditions.
Collapse
Affiliation(s)
- T H Gillingwater
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
7
|
PECK ROBERTK, DUBORGEL FRANÇOISE. Effects of Cations on Phagocytosis in the CiliatePseudomicrothorax dubius1. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1985.tb04050.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Wu EHT, Wu KKH, Wong YH. Tuberin: a stimulus-regulated tumor suppressor protein controlled by a diverse array of receptor tyrosine kinases and G protein-coupled receptors. Neurosignals 2007; 15:217-27. [PMID: 17389815 DOI: 10.1159/000101333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/09/2007] [Indexed: 02/02/2023] Open
Abstract
Tuberin, a tumor suppressor protein, is involved in various cellular functions including survival, proliferation, and growth. It has emerged as an important effector regulated by receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). Regulation of tuberin by RTKs and GPCRs is highly complex and dependent on the type of receptors and their associated signaling molecules. Apart from Akt, the first kinase recognized to phosphorylate and inactivate tuberin upon growth factor stimulation, an increasing number of kinases upstream of tuberin have been identified. Furthermore, recruitment of different scaffolding adaptor components to the activated receptors appears to play an important role in the regulation of tuberin activity. More recently, the differential regulation of tuberin by various G protein family members have also been intensively studied, it appears that G proteins can both facilitate (e.g., G(i/o)) as well as inhibit (e.g., G(q)) tuberin phosphorylation. In the present review, we attempt to summarize our emerging understandings of the roles of RTKs, GPCRs, and their cross-talk on the regulation of tuberin.
Collapse
Affiliation(s)
- Eddy H T Wu
- Department of Biochemistry, Molecular Neuroscience Center, and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | | | | |
Collapse
|
9
|
Hilton GD, Ndubuizu A, Nunez JL, McCarthy MM. Simultaneous glutamate and GABA(A) receptor agonist administration increases calbindin levels and prevents hippocampal damage induced by either agent alone in a model of perinatal brain injury. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 159:99-111. [PMID: 16125793 DOI: 10.1016/j.devbrainres.2005.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 07/20/2005] [Accepted: 07/23/2005] [Indexed: 12/11/2022]
Abstract
Perinatal brain injury is associated with the release of amino acids, principally glutamate and GABA, resulting in massive increases in intracellular calcium and eventual cell death. We have previously demonstrated that independent administration of kainic acid (KA), an AMPA/kainate receptor agonist, or muscimol, a GABA(A) receptor agonist, to newborn rats results in hippocampal damage [Hilton, G.D., Ndubuizu, A., and McCarthy, M.M., 2004. Neuroprotective effects of estradiol in newborn female rat hippocampus. Dev. Brain Res. 150, 191-198; Hilton, G. D., Nunez, J.L. and McCarthy, M.M., 2003. Sex differences in response to kainic acid and estradiol in the hippocampus of newborn rats. Neuroscience. 116, 383-391; Nunez, J.L. and McCarthy, M.M., 2003. Estradiol exacerbates hippocampal damage in a model of preterm infant brain injury. Endocrinology. 144, 2350-2359; Nunez, J.L., Alt, J.J. and McCarthy, M.M., 2003. A new model for prenatal brain damage. I. GABA(A) receptor activation induces cell death in developing rat hippocampus. Exp. Neurol. 181, 258-269]. We now report that KA or muscimol alone administered to immature hippocampal neurons in culture induces significant cell death as evidenced by TUNEL assay. Surprisingly, simultaneous administration of equimolar quantities of these two agonists blocks the effect of either one alone. Moreover, treatment of newborn pups results in less damage compared to either muscimol or KA alone. We further observed that immunoreactivity for the calcium-binding protein, calbindin D(28K), is increased in the brains of pups simultaneously administered KA and muscimol as compared to either alone.
Collapse
Affiliation(s)
- Genell D Hilton
- Departments of Physiology and Psychiatry, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
AMPA receptor (AMPAR)-mediated ionic currents that govern gene expression, synaptic strength, and plasticity also can trigger excitotoxicity. However, native AMPARs exhibit heterogeneous pharmacological, biochemical, and ionic permeability characteristics, which are governed partly by receptor subunit composition. Consequently, the mechanisms governing AMPAR-mediated excitotoxicity have been difficult to elucidate. The GluR2 subunit is of particular interest because it influences AMPAR pharmacology, Ca(2+) permeability, and AMPAR interactions with intracellular proteins. In this paper we used mutant mice lacking the AMPAR subunit GluR2 to study AMPAR-mediated excitotoxicity in cultured cortical neurons and in hippocampal neurons in vivo. We examined the hypothesis that in these mice the level of GluR2 expression governs the vulnerability of neurons to excitotoxicity and further examined the ionic mechanisms that are involved. In cortical neuronal cultures AMPAR-mediated neurotoxicity paralleled the magnitude of kainate-evoked AMPAR-mediated currents, which were increased in neurons lacking GluR2. Ca(2+) permeability, although elevated in GluR2-deficient neurons, did not correlate with excitotoxicity. However, toxicity was reduced by removal of extracellular Na(+), the main charge carrier of AMPAR-mediated currents. In vivo, the vulnerability of CA1 hippocampal neurons to stereotactic kainate injections and of CA3 neurons to intraperitoneal kainate administration was independent of GluR2 level. Neurons lacking the GluR2 subunit did not demonstrate compensatory changes in the distribution, expression, or function of AMPARs or of Ca(2+)-buffering proteins. Thus GluR2 level may influence excitotoxicity by effects additional to those on Ca(2+) permeability, such as effects on agonist potency, ionic currents, and synaptic reorganization.
Collapse
|
11
|
Foster CS, Bostwick DG, Bonkhoff H, Damber JE, van der Kwast T, Montironi R, Sakr WA. Cellular and molecular pathology of prostate cancer precursors. SCANDINAVIAN JOURNAL OF UROLOGY AND NEPHROLOGY. SUPPLEMENTUM 2001:19-43. [PMID: 11144897 DOI: 10.1080/003655900750169284] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Prostate cancer is usually heterogeneous and multifocal, with diverse clinical and morphologic manifestations. Current understanding of the molecular basis for this heterogeneity is limited, particularly for prostatic intraepithelial neoplasia (PIN), the only putative precursor which can be identified according to morphologic criteria. However, it is likely that prostatic adenocarcinoma might arise from precursor lesions other than PIN, although these cannot be recognized with certainty at the present time. In this review, we summarize the current state of knowledge regarding the cell-biological and genetic bases for linking PIN and prostatic adenocarcinoma. It is conceivable that a stem cell of basal phenotype, or an amplifying cell, is the target of prostatic carcinogenesis. Prominent genetic heterogeneity is characteristic of both PIN and carcinoma; and multiple foci of PIN arise independently within the same prostate. This observation suggests that a field effect probably underlies prostatic neoplasia. Multiple foci of cancer also often arise independently, lending additional support to this hypothesis. The strong genetic similarities between PIN and cancer strongly suggest that evolution and clonal expansion of PIN, or other precursor lesions, may account for the multifocal etiology of carcinoma. Uncertainties with respect to identification of those precursor lesions which are most likely to progress to invasive and metastatic prostate cancer reinforce the requirement for objective immunohistochemical or molecular biological markers of the aggressive phenotype.
Collapse
Affiliation(s)
- C S Foster
- Department of Pathology, Liverpool University, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Beßer K, Jarosch B, Langen G, Kogel KH. Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways. MOLECULAR PLANT PATHOLOGY 2000; 1:277-286. [PMID: 20572974 DOI: 10.1046/j.1364-3703.2000.00031.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abstract Salicylic acid (SA) and its synthetic mimics 2,6-dichloroisonicotinic acid (DCINA) and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), protect barley systemically against powdery mildew (Blumeria graminis f.sp. hordei, Bgh) infection by strengthening plant defence mechanisms that result in effective papillae and host cell death. Here, we describe the differential expression of a number of newly identified barley chemically induced (BCI) genes encoding a lipoxygenase (BCI-1), a thionin (BCI-2), an acid phosphatase (BCI-3), a Ca(2+)-binding EF-hand protein (BCI-4), a serine proteinase inhibitor (BCI-7), a fatty acid desaturase (BCI-8) and several further proteins with as yet unknown function. Compared with SA, the chemicals DCINA and BTH were more potent inducers of both gene expression and resistance. Homologues of four BCI genes were detected in wheat and were also differentially regulated upon chemical activation of disease resistance. Except for BCI-4 and BCI-5 (unknown function), the genes were also induced by exogenous application of jasmonates, whereas treatments that raise endogenous jasmonates as well as wounding were less effective. The fact that BCI genes were not expressed during incompatible barley-Bgh interactions governed by gene-for-gene relationships suggests the presence of separate pathways leading to powdery mildew resistance.
Collapse
Affiliation(s)
- K Beßer
- Institute for Phytopathology und Applied Zoology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- C S Foster
- Departments of Pathology, University of Liverpool, UK
| | | | | | | | | |
Collapse
|
14
|
Herbaud ML, Guiseppi A, Denizot F, Haiech J, Kilhoffer MC. Calcium signalling in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:212-26. [PMID: 9920412 DOI: 10.1016/s0167-4889(98)00145-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Few systematic studies have been devoted to investigating the role of Ca2+ as an intracellular messenger in prokaryotes. Here we report an investigation on the potential involvement of Ca2+ in signalling in Bacillus subtilis, a Gram-positive bacterium. Using aequorin, it is shown that B. subtilis cells tightly regulate intracellular Ca2+ levels. This homeostasis can be changed by an external stimulus such as hydrogen peroxide, pointing to a relationship between oxidative stress and Ca2+ signalling. Also, B. subtilis growth appears to be intimately linked to the presence of Ca2+, as normal growth can be immediately restored by adding Ca2+ to an almost non-growing culture in EGTA containing Luria broth medium. Addition of Fe2+ or Mn2+ also restores growth, but with 5-6 h delay, whereas Mg2+ did not have any effect. In addition, the expression of alkyl hydroperoxide reductase C (AhpC), which is strongly enhanced in bacteria grown in the presence of EGTA, also appears to be regulated by Ca2+. Finally, using 45Ca2+ overlay on membrane electrotransferred two-dimensional gels of B. subtilis, four putative Ca2+ binding proteins were found, including AhpC. Our results provide strong evidence for a regulatory role for Ca2+ in bacterial cells.
Collapse
Affiliation(s)
- M L Herbaud
- Laboratoire de Chimie Bactérienne, UPR CNRS 9043, Marseille, France
| | | | | | | | | |
Collapse
|
15
|
McAlhany RE, West JR, Miranda RC. Glial-derived neurotrophic factor rescues calbindin-D28k-immunoreactive neurons in alcohol-treated cerebellar explant cultures. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4695(19971120)33:6<835::aid-neu10>3.0.co;2-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Ke Y, Jing C, Barraclough R, Smith P, Davies MP, Foster CS. Elevated expression of calcium-binding protein p9Ka is associated with increasing malignant characteristics of rat prostate carcinoma cells. Int J Cancer 1997; 71:832-7. [PMID: 9180153 DOI: 10.1002/(sici)1097-0215(19970529)71:5<832::aid-ijc22>3.0.co;2-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Northern and Western blotting techniques were used to study expression of the mRNA and corresponding protein product of the S100-related calcium-binding molecule p9Ka in 6 different metastatic cell lines of the Dunning R3327 rat prostate cancer model. In cells with the lowest metastatic capability (G cells), p9Ka mRNA was barely detectable. In 2 weakly metastatic cell lines (AT-1 and AT-2), p9Ka transcript amounts were, respectively, 6.29 +/- 0.74 and 5.55 +/- 1.11 times that detected in the G cells. In 3 highly metastatic cell lines (AT-3, MAT-LyLu and MAT-Lu), the amounts of p9Ka mRNA were, respectively, 12.85 +/- 2.82, 13.06 +/- 1.69 and 11.62 +/- 1.81 times that expressed in the G cells. Western blot analyses detected no p9Ka protein in the G cells. The amounts of p9Ka protein expressed by tumour cells of intermediate metastatic capability (AT-1 and AT-2) were 3.4 +/- 1.3 microg and 3.3 +/- 1.4 microg, respectively, per 1 x 10(6) cells. The amounts of p9Ka protein expressed by the tumour cells of highest metastatic capability (AT-3, MAT-LyLu and MAT-Lu) were 8.3 +/- 1.1 microg, 8.7 +/- 1.6 microg and 9.6 +/- 1.7 microg, respectively, per 1 x 10(6) cells. Our data reveal a direct association between the elevated expression of mRNA and the p9Ka protein amounts and the increased metastatic capability of individual prostatic cancer cell lines. We suggest that calcium-binding protein p9Ka may play an important role in the metastatic behaviour of rat prostate cancer.
Collapse
Affiliation(s)
- Y Ke
- Department of Pathology, University of Liverpool, UK
| | | | | | | | | | | |
Collapse
|
17
|
Combinations of AMPA receptor subunit expression in individual cortical neurons correlate with expression of specific calcium-binding proteins. J Neurosci 1997. [PMID: 9030617 DOI: 10.1523/jneurosci.17-05-01570.1997] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The functional properties of AMPA-type glutamate receptors are determined by their subunit composition. We detected the expression of the AMPA receptor subunits (GluR1-GluR4) in neurons in the somatosensory cortex of adult rats by combining nonradioactive in situ hybridization using digoxigenin-labeled RNA probes of GluR1 and GluR2 with immunocytochemistry using specific antibodies against GluR1, GluR2/3, and GluR4. On the basis of differential expression of the GluR1 and GluR2 subunits, we classified the cortical neurons into four categories. To correlate the differential expression of AMPA receptor subunits in each neuron with that of two calcium-binding proteins, parvalbumin and calbindin-D28k, we used a triple-labeling method. The majority of cortical neurons ( approximately 2/3) showed expression of GluR2 and undetectable expression of GluR1. GluR1-/GluR2-expressing neurons and GluR1-expressing/GluR2-undetectable neurons comprised approximately 1/10 each. Regarding the morphology, most GluR1-undetectable/GluR2-expressing neurons were pyramidal cells in layers II/III, V, and VI, whereas most GluR1-expressing/GluR2-undetectable neurons were nonpyramidal cells in layers II-VI. The GluR1-/GluR2-expressing neurons were either pyramidal or nonpyramidal. The majority of GluR1-/GluR2-expressing nonpyramidal cells was intensely stained with monoclonal antibody against calbindin-D28k, and one-half of the GluR1-undetectable/GluR2-expressing pyramidal neurons in layer II/III were lightly stained with this antibody. Most of GluR1-expressing/GluR2-undetectable neurons possessed parvalbumin immunoreactivity. These results indicate that neurons in the rat somatosensory cortex express differential combinations of GluR subunits, which correlate with the specific expression of the calcium-binding proteins.
Collapse
|
18
|
Mammary stem cells in normal development and cancer. Stem Cells 1997. [DOI: 10.1016/b978-012563455-7/50008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
19
|
Stuenkel EL. Regulation of intracellular calcium and calcium buffering properties of rat isolated neurohypophysial nerve endings. J Physiol 1994; 481 ( Pt 2):251-71. [PMID: 7738824 PMCID: PMC1155926 DOI: 10.1113/jphysiol.1994.sp020436] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Electrophysiological measurements of Ca2+ influx using patch clamp methodology were combined with fluorescent monitoring of the free intracellular calcium concentration ([Ca2+]i) to determine mechanisms of Ca2+ regulation in isolated nerve endings from the rat neurohypophysis. 2. Application of step depolarizations under voltage clamp resulted in voltage-dependent calcium influx (ICa) and increase in the [Ca2+]i. The increase in [Ca2+]i was proportional to the time-integrated ICa for low calcium loads but approached an asymptote of [Ca2+]i at large Ca2+ loads. These data indicate the presence of two distinct rapid Ca2+ buffering mechanisms. 3. Dialysis of fura-2, which competes for Ca2+ binding with the endogenous Ca2+ buffers, reduced the amplitude and increased the duration of the step depolarization-evoked Ca2+ transients. More than 99% of Ca2+ influx at low Ca2+ loads is immediately buffered by this endogenous buffer component, which probably consists of intracellular Ca2+ binding proteins. 4. The capacity of the endogenous buffer for binding Ca2+ remained stable during 300 s of dialysis of the nerve endings. These properties indicated that this Ca2+ buffer component was either immobile or of high molecular weight and slowly diffusible. 5. In the presence of large Ca2+ loads a second distinct Ca2+ buffer mechanism was resolved which limited increases in [Ca2+]i to approximately 600 nM. This Ca2+ buffer exhibited high capacity but low affinity for Ca2+ and its presence resulted in a loss of proportionality between the integrated ICa and the increase in [Ca2+]i. This buffering mechanism was sensitive to the mitochondrial Ca2+ uptake inhibitor Ruthenium Red. 6. Basal [Ca2+]i, depolarization-induced changes in [Ca2+]i and recovery of [Ca2+]i to resting levels following an induced increase in [Ca2+]i were unaffected by thapsigargin and cyclopiazonic acid, specific inhibitors of intracellular Ca(2+)-ATPases. Caffeine and ryanodine were also without effect on Ca2+ regulation. 7. Evoked increases in [Ca2+]i, as well as rates of recovery from a Ca2+ load, were unaffected by the extracellular [Na+], suggesting a minimal role for Na(+)-Ca2+ exchange in Ca2+ regulation in these nerve endings. 8. Application of repetitive step depolarizations for a constant period of stimulation resulted in a proportional frequency (up to 40 Hz)-dependent increase in [Ca2+]i. On the other hand, for a constant number of stimuli a reduction in the [Ca2+]i. On the other hand, for a constant number of stimuli a reduction in the [Ca2+]i increase per impulse was observed at higher frequencies.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E L Stuenkel
- Department of Physiology, University of Michigan, Ann Arbor 48109, USA
| |
Collapse
|
20
|
Lukas W, Jones KA. Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro. Neuroscience 1994; 61:307-16. [PMID: 7969911 DOI: 10.1016/0306-4522(94)90233-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Calbindin and the more recently identified protein calretinin are structurally related calcium-binding proteins having a broad distribution in the brain. Recent evidence supports a neuroprotective role for calbindin in regulating calcium homeostasis during periods of heightened Ca2+ influx. It is not known if calretinin might have a similar function. We investigated if calretinin-containing neurons have a survival advantage in rat neocortical cultures treated with a calcium ionophore or excitatory amino acids. Neuronal cultures were challenged with the calcium ionophore A23187 at different concentrations to produce a broad range of cell death. Cell loss was quantified for both the calretinin immunopositive and the calretinin immunonegative populations of neurons. We found that 3 h after exposure to 2 microM A23187 there was a 48% loss of the calretinin immunonegative population of neurons whereas the calretinin immunopositive set of neurons was reduced by only 18%. Calretinin positive neurons were still relatively spared after treatment with 3 microM A23187. The ionophore had no cytotoxic effect when calcium ions were removed from the extracellular medium. We also studied glutamate excitotoxicity by treating the neuronal cultures with the excitatory amino acids glutamate, N-methyl-D-aspartate or kainate for 5 min and examining survival three hours later. We found again that calretinin-containing neurons were relatively spared after exposure to the excitatory amino acids; at doses of N-methyl-D-aspartate and kainate that produced a 32-40% loss of calretinin immunonegative neurons, only 2-10% of calretinin immunopositive neurons died. Similar results were obtained for glutamate. These results demonstrate that neurons containing calretinin are better able to survive disturbances in calcium homeostasis than cells not containing this calcium-binding protein. The fact that this effect was observed with ionophore treatment, as well as excitatory amino acids, suggests that neither the density nor distribution of glutamate receptors on the different cell types was a factor in determining selective vulnerability. We hypothesize that the neuroprotective effect of calretinin is due to the buffering capacities of the protein in a manner analogous to that suggested for calbindin.
Collapse
Affiliation(s)
- W Lukas
- Glaxo Institute for Molecular Biology, Geneva, Switzerland
| | | |
Collapse
|
21
|
Barraclough R, Rudland PS. The S-100-related calcium-binding protein, p9Ka, and metastasis in rodent and human mammary cells. Eur J Cancer 1994; 30A:1570-6. [PMID: 7833121 DOI: 10.1016/0959-8049(94)00320-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R Barraclough
- Department of Biochemistry, University of Liverpool, U.K
| | | |
Collapse
|
22
|
Abstract
Calbindin-D28K, a cytoplasmic calcium-binding protein located in restricted regions of mature metanephric kidneys, is expressed in a complex manner by kidneys developing in culture. In developing collecting duct, it is present in all regions and is independent of 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3]. In developing nephrons, its expression is restricted to the most distal end of the growing tubule, commences during differentiation of specialized tubule segments, and depends completely on the presence of 1,25(OH)2D3. The Wolffian ducts of mesonephric kidneys also express calbindin independently of 1,25(OH)2D3, as do the Wolffian duct-derived connecting tubules, but mesonephric nephrons show no expression of the molecule. By displaying separate tissue-specific controls for calbindin expression, cultured kidney rudiments offer a very accessible system for investigation of the control mechanisms involved.
Collapse
Affiliation(s)
- J Davies
- CRC Epithelial Morphogenesis Group, School of Biological Sciences, Victoria University of Manchester, United Kingdom
| |
Collapse
|
23
|
Weiss S, Hochman D, MacVicar BA. Repeated NMDA receptor activation induces distinct intracellular calcium changes in subpopulations of striatal neurons in vitro. Brain Res 1993; 627:63-71. [PMID: 8293305 DOI: 10.1016/0006-8993(93)90749-d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanisms underlying long-term calcium changes evoked by excitatory amino acids have not been previously examined in striatal neurons. Fura-2 fluorescence measurements were used to examine intracellular calcium concentration ([Ca2+]i) changes due to repeated N-methyl-D-aspartate (NMDA) receptor activation, in primary cultures of murine striatal neurons. Three applications of 200 microM NMDA (for 2 min, each application separated by 7 min), in 0 magnesium-containing artificial cerebral spinal fluid, elicited three distinct responses. In 50 +/- 8% of the NMDA-responsive neurons, no persistent increases in [Ca2+]i (final [Ca2+]i < or = 150% baseline) were observed, while in 33 +/- 7% and 17 +/- 3% of the cells, sustained (peak response > final [Ca2+]i > 150% baseline) and uncontrolled increases (final [Ca2+]i > or = peak response) were observed, respectively. NMDA-responsive neurons that were intensely immunoreactive for the calcium binding protein calbindin-D28k never exhibited uncontrolled increases in [Ca2+]i. Removal of extracellular Ca2+ significantly attenuated sustained, but not uncontrolled, increases in [Ca2+]i; sustained increases in some neurons were also attenuated by application of verapamil (100 microM) or MK-801 (1 microM). Pre-treatment of striatal neurons with the protein kinase C blocker sphingosine (20 microM), virtually eliminated the development of sustained or uncontrolled increases in [Ca2+]i. These findings suggest that specific intracellular mechanisms regulate the distinct [Ca2+]i responses of subpopulations of striatal neurons to repeated NMDA receptor activation.
Collapse
Affiliation(s)
- S Weiss
- Neuroscience Research Group, University of Calgary Faculty of Medicine, Alta., Canada
| | | | | |
Collapse
|
24
|
Hendry SH, Carder RK. Neurochemical compartmentation of monkey and human visual cortex: similarities and variations in calbindin immunoreactivity across species. Vis Neurosci 1993; 10:1109-20. [PMID: 8257667 DOI: 10.1017/s095252380001021x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The compartmental organization of visual cortical neurons was examined across species of primates by directly comparing the pattern of immunoreactivity for the 28-kD vitamin D-dependent calcium-binding protein (calbindin) in area 17 of squirrel monkeys, macaques, and neurologically normal adult humans. Area 17 of macaques and squirrel monkeys was similar in that somata and processes intensely immunoreactive for calbindin were present in the same layers (II-III, IVB, and V) and in both species formed a well-stained matrix that surrounded the CO-rich puffs in layer III. These intensely calbindin-immunoreactive neurons were identified as subpopulations of GABA-immunoreactive neurons. Among the most obvious differences in the two monkey species was the distribution of calbindin-positive elements outside of layer III: a dense immunostained matrix surrounded the puffs in layers II, IVB, V, and VI of squirrel monkeys but the immunostained neurons adopted no regular pattern outside layer III in macaques. In addition, although somata lightly immunoreactive for calbindin were present in both species, they were much more abundant in squirrel monkeys than macaques. The pattern of calbindin immunostaining in human area 17 resembled that of macaques in forming an intense matrix that surrounded puffs only in layer III, yet also resembled that of squirrel monkeys by including large numbers of light immunoreactive somata. These lightly immunostained somata included a very dense population forming a prominent band in layer IVA of human visual cortex. We conclude that for layer III of primary visual cortex, a similar pattern of neuronal chemistry exists across species of primates which is related to this layer's compartmental organization. Yet for other layers, the expression of calbindin immunoreactivity varies from one species to the next, perhaps reflecting variations in other neuronal properties.
Collapse
Affiliation(s)
- S H Hendry
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
25
|
Haddad GG, Jiang C. O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol 1993; 40:277-318. [PMID: 7680137 DOI: 10.1016/0301-0082(93)90014-j] [Citation(s) in RCA: 252] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- G G Haddad
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
26
|
Ni B, Brown IR. Modulation of a neuronal calmodulin mRNA species in the rat brain stem by reserpine. Neurochem Res 1993; 18:185-92. [PMID: 8474560 DOI: 10.1007/bf01474683] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Reserpine evokes transsynaptic impulse activity by depleting catecholaminergic neurotransmitters in the rat brain. Previous studies suggest a relationship between catecholaminergic activity and calmodulin concentration. In this report we employ Northern blot analysis to examine the effect of a single subcutaneous injection of reserpine on levels of calmodulin mRNA species which are preferentially expressed in neurons of the rat brain. Regional differences in mRNA levels were also investigated by in situ hybridization and drug-induced changes were noted particularly in specific regions of the rat brain stem. The riboprobe used in the in situ hybridization study recognized a 4.0 kilobase neuronal calmodulin mRNA species (NGB1), which was derived from the rat CaM1 gene. A calmodulin radio-immunoassay was utilized to demonstrate a drug-induced increased in calmodulin protein levels in a region which included the brain stem.
Collapse
Affiliation(s)
- B Ni
- Department of Zoology, University of Toronto Scarborough Campus, West Hill, Ontario, Canada
| | | |
Collapse
|
27
|
Abstract
Profilaggrin is a major highly phosphorylated protein component of the keratohyalin granules of mammalian epidermis. It contains 10 to 12 tandemly repeated filaggrin units and is processed into the intermediate filament-associated protein filaggrin by specific dephosphorylation and proteolysis during terminal differentiation of the epidermal cells. Later, filaggrin itself is degraded to free amino acids that participate in maintenance of epidermal flexibility. The present paper describes the structural organization of the 5' region of the human profilaggrin gene as well as the amino terminus of the profilaggrin protein. The primary profilaggrin transcript consists of three exons and two introns. The first exon (exon I) is only 54 bp and is untranslated. The coding sequences are distributed between exon II (159 bp) and exon III, which contains the information for 10 to 12 filaggrin repeats (972 bp each) and the 3' noncoding sequences. A very large intron separates exons I and II. The combination of a very short exon I with an unusually long intron 1 makes the structure of the profilaggrin gene unique among the epidermally expressed genes investigated so far. Comparison of the expression patterns revealed by primer extension and RNase protection analysis of foreskin epidermal and cultured keratinocyte RNAs suggests that alternately spliced messages, which are different from profilaggrin mRNA, are transcribed from the profilaggrin gene system at earlier stages of epidermal differentiation. The amino terminus of profilaggrin exhibits a significant homology to the small calcium-binding S100-like proteins. It contains two alpha-helical regions, termed EF-hands, that bind calcium in vitro. This is the first example of functional calcium-binding domains fused to a structural protein. We suggest that in addition to its role in filament aggregation and the maintenance of epidermal flexibility, profilaggrin may play an important role in the differentiation of the epidermis by autoregulating its own processing in a calcium-dependent manner or by participating in the transduction of calcium signal in epidermal cells.
Collapse
|
28
|
Timmons PM, Chan CT, Rigby PW, Poirier F. The gene encoding the calcium binding protein calcyclin is expressed at sites of exocytosis in the mouse. J Cell Sci 1993; 104 ( Pt 1):187-96. [PMID: 8449996 DOI: 10.1242/jcs.104.1.187] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Calcyclin is a member of the S100 family of calcium binding proteins. We have found by in situ hybridization that calcyclin transcripts are restricted to specific cell types within a limited number of mouse organs. High levels of expression in the epithelia lining the gastrointestinal, respiratory and urinary tracts, and specific localization of the transcripts to the goblet cells in the small intestine, lead us to suggest a role for calcyclin in the process of mucus secretion. In addition, calcyclin expression was detected in the corpus luteum, placenta and nerves within the gut wall, which are all sites of regulated exocytosis. We propose that this S100-like protein may be part of a calcium signalling pathway utilized in the secretion of various products by different cell types.
Collapse
Affiliation(s)
- P M Timmons
- Laboratory of Eukaryotic Molecular Genetics, MRC National Institute for Medical Research, Mill Hill, London, England
| | | | | | | |
Collapse
|
29
|
Abstract
Trains of spikes encoded by presynaptic neurons are decoded into rises in cytosolic Ca2+ concentration both in presynaptic terminals and in postsynaptic dendrites. Intracellular [Ca2+] rises trigger neurotransmitter release and also induce short- and long-term modifications of synaptic efficacy. These modifications can be potentiation or depression depending on the intensity of stimuli. A dynamic mechanism, "dynamic decoding", is proposed to understand the multiplicity of the functions of Ca2+, based on recent knowledge of Ca2+ binding proteins and of the dynamics of Ca2+ signaling. The dynamic model is in many ways superior to static models, and may be applied to various neuronal functions including the induction of long-term plasticity in cerebral cortex.
Collapse
Affiliation(s)
- H Kasai
- Department of Physiology, Faculty of Medicine, University of Tokyo, Japan
| |
Collapse
|
30
|
Markova NG, Marekov LN, Chipev CC, Gan SQ, Idler WW, Steinert PM. Profilaggrin is a major epidermal calcium-binding protein. Mol Cell Biol 1993; 13:613-25. [PMID: 8417356 PMCID: PMC358940 DOI: 10.1128/mcb.13.1.613-625.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Profilaggrin is a major highly phosphorylated protein component of the keratohyalin granules of mammalian epidermis. It contains 10 to 12 tandemly repeated filaggrin units and is processed into the intermediate filament-associated protein filaggrin by specific dephosphorylation and proteolysis during terminal differentiation of the epidermal cells. Later, filaggrin itself is degraded to free amino acids that participate in maintenance of epidermal flexibility. The present paper describes the structural organization of the 5' region of the human profilaggrin gene as well as the amino terminus of the profilaggrin protein. The primary profilaggrin transcript consists of three exons and two introns. The first exon (exon I) is only 54 bp and is untranslated. The coding sequences are distributed between exon II (159 bp) and exon III, which contains the information for 10 to 12 filaggrin repeats (972 bp each) and the 3' noncoding sequences. A very large intron separates exons I and II. The combination of a very short exon I with an unusually long intron 1 makes the structure of the profilaggrin gene unique among the epidermally expressed genes investigated so far. Comparison of the expression patterns revealed by primer extension and RNase protection analysis of foreskin epidermal and cultured keratinocyte RNAs suggests that alternately spliced messages, which are different from profilaggrin mRNA, are transcribed from the profilaggrin gene system at earlier stages of epidermal differentiation. The amino terminus of profilaggrin exhibits a significant homology to the small calcium-binding S100-like proteins. It contains two alpha-helical regions, termed EF-hands, that bind calcium in vitro. This is the first example of functional calcium-binding domains fused to a structural protein. We suggest that in addition to its role in filament aggregation and the maintenance of epidermal flexibility, profilaggrin may play an important role in the differentiation of the epidermis by autoregulating its own processing in a calcium-dependent manner or by participating in the transduction of calcium signal in epidermal cells.
Collapse
Affiliation(s)
- N G Markova
- Skin Biology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
31
|
Characterization of the human epidermal profilaggrin gene. Genomic organization and identification of an S-100-like calcium binding domain at the amino terminus. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35905-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT. Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 1992; 9:943-54. [PMID: 1329864 DOI: 10.1016/0896-6273(92)90246-a] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous work demonstrating the presence and differential distribution of Ca(2+)-binding proteins in the CNS has led to the proposal that cytosolic proteins, such as calbindin-D28k (CB), may play a pivotal role in neurons. We have used a retrovirus containing the full-length cDNA for CB to transfect the pituitary tumor cell line GH3, to generate CB-expressing GH3 cells and to investigate whether ionic channel activities as well as the concentration of intracellular free Ca2+ ([Ca2+]i) homeostasis could be altered by the presence of this Ca(2+)-binding protein. We show that CB-transfected GH3 cells exhibited lower Ca2+ entry through voltage-dependent Ca2+ channels and were better able to reduce [Ca2+]i transients evoked by voltage depolarizations than the wild-type parent cell line. These observations provide a mechanism by which CB may protect tissues against Ca(2+)-mediated excitotoxicity.
Collapse
Affiliation(s)
- P M Lledo
- Department of Neurobiology, Institute of Animal Physiology and Genetic Research, Babraham, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- L J Van Eldik
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | | |
Collapse
|
34
|
Gaunitz C, Witte H, Gaunitz F. Primary structure of a gene-sized DNA encoding calmodulin from the hypotrichous ciliate Stylonychia lemnae. Gene 1992; 119:191-8. [PMID: 1398099 DOI: 10.1016/0378-1119(92)90271-p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have isolated and characterized a gene-sized DNA encoding calmodulin (Clm) from macronuclear (MA) DNA of the hypotrichous ciliate, Stylonychia lemnae. The gene has 3500 copies per macronucleus. The length of the gene was deduced by agarose-gel electrophoresis of MA DNA and Southern blot analysis using a Clm cDNA probe from chicken. We then isolated the gene from a MA library. The overall length of the gene is 821 bp with a 450-bp intronless coding region. The deduced amino acid (aa) sequence of ciliate Clm has 149 aa and an M(r) of 16,819. Both ends of the cloned gene have the hypotrichous telomeric C4A4 repeat. The coding region is flanked by a 158-bp 5'-leader sequence and a 3'-trailer sequence of 213 bp. S1 analysis was used to locate the transcription start point (tsp) 49 bp upstream from the start codon. No common eukaryotic transcription signals were found upstream from the tsp. A second gene-sized DNA, detected by its cross-hybridization with the Clm DNA, predicts the existence of a second Ca(2+)-binding protein with only one Ca(2+)-binding site. It's function and biological significance is yet unknown.
Collapse
Affiliation(s)
- C Gaunitz
- Abteilung Zellbiologie, Eberhard-Karls-Universität, Tübingen, Germany
| | | | | |
Collapse
|
35
|
Mani RS, Kay CM. Purification and characterization of a novel 12,000-Da calcium binding protein from smooth muscle. Arch Biochem Biophys 1992; 296:442-9. [PMID: 1632636 DOI: 10.1016/0003-9861(92)90595-n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new low molecular weight calcium binding protein, designated 12-kDa CaBP, has been isolated from chicken gizzard using a phenyl-Sepharose affinity column followed by ion-exchange and gel filtration chromatographies. The isolated protein was homogeneous and has a molecular weight of 12,000 based on sodium dodecyl sulfate-gel electrophoresis. The amino acid composition of this protein is similar to but distinct from other known low molecular weight Ca2+ binding proteins. Ca2+ binding assays using Arsenazo III (Sigma) indicated that the protein binds 1 mol of Ca2+/mol of protein. The 12-kDa CaBP underwent a conformational change upon binding Ca2+, as revealed by uv difference spectroscopy and circular dichroism studies in the aromatic and far-ultraviolet range. Addition of Ca2+ to the 12-kDa CaBP labeled with 2-p-toluidinylnaphthalene-6-sulfonate (TNS) resulted in a sevenfold increase in fluorescence intensity, accompanied by a blue shift of the emission maximum from 463 to 445 nm. Hence, the probe in the presence of Ca2+ moves to a more nonpolar microenvironment. Like calmodulin and other related Ca2+ binding proteins, this protein also exposes a hydrophobic site upon binding calcium. Fluorescence titration with Ca2+ using TNS-labeled protein revealed the presence of a single high affinity calcium binding site (kd approximately 1 x 10(-6) M).
Collapse
Affiliation(s)
- R S Mani
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
36
|
Gaul G, Lübbert H. Cortical astrocytes activated by basic fibroblast growth factor secrete molecules that stimulate differentiation of mesencephalic dopaminergic neurons. Proc Biol Sci 1992; 249:57-63. [PMID: 1279704 DOI: 10.1098/rspb.1992.0083] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In reactive gliosis, astrocytes undergo morphological and biochemical changes which can be mimicked in vitro by treatment with bFGF (basic fibroblast growth factor) or cAMP. To investigate the influence of activated cortical astrocytes on central nervous system (CNSD) neurons, we studied the effect of the supernatant from bFGF-treated astrocytes on the development of dopaminergic neurons from rat mesencephalon. Conditioned medium of untreated astrocytes stimulated dopamine uptake of mesencephalic cultures. After activation of astrocytes with bFGF this effect was greatly enhanced. It was significantly more potent than stimulating effects of other neurotrophic factors. The supernatant of these astrocytes increased the biochemical differentiation but not the survival of dopaminergic neurons in our cell culture system. Trypsin digestion and gel chromatography revealed that the activity was due to one or several proteins with molecular mass above 5 kDa. We excluded the participation of several factors known to be produced by astrocytes or that are neurotrophic for substantia nigra cultures. In particular, we provide evidence that bFGF, BDNF, NT-3, Il-1, Il-6, S100 beta and alpha 2-macroglobulin were not involved in the effect of the conditioned medium. In vitro stimulation of astrocytes therefore triggers the expression of currently uncharacterized factors which influence the biochemical differentiation of mesencephalic dopaminergic neurons, the cells that degenerate in Parkinson's disease.
Collapse
Affiliation(s)
- G Gaul
- Preclinical Research, Sandoz Pharma Ltd, Basel, Switzerland
| | | |
Collapse
|
37
|
Perera IY, Zielinski RE. Structure and expression of the Arabidopsis CaM-3 calmodulin gene. PLANT MOLECULAR BIOLOGY 1992; 19:649-64. [PMID: 1627778 DOI: 10.1007/bf00026791] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genomic and cDNA sequences encoding a calmodulin (CaM) gene from Arabidopsis (ACaM-3) have been isolated and characterized. ACaM-3 represents a sequence distinct from two previously isolated Arabidopsis CaM cDNA clones. A 2.3 kb Eco RI restriction fragment was sequenced and found to encode a complete CaM-coding sequence interrupted by a single 491 bp intron, together with 750 bp and 600 bp of 5' and 3' flanking sequences, respectively. The polypeptide encoded by ACaM-3 is identical to that encoded by ACaM-2 and it differs from the one encoded by ACaM-1 by four of 148 residues. The putative promoter of ACaM-3 was atypical of CaM genes previously isolated from animals in that it contained consensus TATA and CAAT box sequences and lacked GC-rich regions. Two DNA sequence elements closely resembling cyclic AMP regulatory elements, which have been identified in animal CaM genes, were located in the 5' flanking region of ACaM-3. Northern blot and polymerase chain reaction amplification assays confirmed that each of the three ACaM mRNAs were expressed in similar but distinct patterns in different organs. ACaM-1 mRNA was the only species detectable in root RNA fractions, and ACaM-3 mRNA could not be detected in floral stalks. Accumulation of the three CaM mRNAs in leaves was induced by a touch stimulus, but the kinetics and extent of the induction varied among the three mRNA species. Run-on transcription assays indicated that a portion of the differences in accumulation of ACaM-1, 2, and 3 mRNAs in leaves and siliques was attributable to differences in their net rates of transcription.
Collapse
Affiliation(s)
- I Y Perera
- Department of Plant Biology, University of Illinois, Urbana 61801
| | | |
Collapse
|
38
|
Structure and expression of a calcium-binding protein gene contained within a calmodulin-regulated protein kinase gene. Mol Cell Biol 1992. [PMID: 1373815 DOI: 10.1128/mcb.12.5.2359] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have determined the first genomic structure and characterized the mRNA and protein products of a novel vertebrate gene that encodes a calcium-binding protein with amino acid sequence identity to a protein kinase domain. The elucidation of the complete DNA sequence of this transcription unit and adjacent genomic DNA, Southern blot and polymerase chain reaction analyses of cellular genomic DNA, and examination of mRNA and protein species revealed that the calcium-binding kinase-related protein (KRP)-encoding gene is contained within the gene for a calmodulin-regulated protein kinase, myosin light-chain kinase (MLCK). The KRP gene transcription unit is composed of three exons and a 5'-flanking sequence containing a canonical TATA box motif. The TATA box, the transcription initiation site, and the first 109 nucleotides of the 5' noncoding region of the KRP mRNA correspond to an MLCK gene intron sequence. Both KRP and MLCK are produced in the same adult chicken tissue in relatively high abundance from a single contiguous stretch of genomic DNA and utilize the same reading frame and common exons to produce distinct mRNAs (2.7 and 5.5 kb, respectively) that encode proteins with dissimilar biochemical functions. There appears to be no precedent in vertebrate molecular biology for such a relationship. This may represent a mechanism whereby functional diversity can be achieved within the same vertebrate tissue by use of common exons to produce shuffled domains with identical amino acid sequences in different molecular contexts.
Collapse
|
39
|
Song WK, Wang W, Foster RF, Bielser DA, Kaufman SJ. H36-alpha 7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. J Biophys Biochem Cytol 1992; 117:643-57. [PMID: 1315319 PMCID: PMC2289453 DOI: 10.1083/jcb.117.3.643] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
H36 is a 120,000-D membrane glycoprotein that is expressed during the differentiation of skeletal muscle. H36 cDNA clones were isolated from a lambda UniZapXR rat myotube cDNA library and sequenced. The deduced amino acid sequence demonstrates that H36 is a novel integrin alpha chain that shares extensive homology with other alpha integrins that includes: (a) the GFFKR sequence found in all alpha integrins; (b) a single membrane spanning region; (c) conservation of 18 of 22 cysteines; and (d) a protease cleavage site found in the non-I region integrin alpha chains. The cytoplasmic domain of H36 is unique and additional regions of nonhomology further indicate H36 is distinct from all other alpha chains. In keeping with current nomenclature we designate this alpha chain alpha 7. Northern blots demonstrate that expression of H36-alpha 7 mRNA is regulated both early in the development of the myogenic lineage and later, during terminal differentiation. Detection of H36-alpha 7 mRNA coincides with conversion of H36- myogenic precursor cells to H36+ cells. H36-alpha 7 mRNA is present in replicating myoblasts: expression increases upon terminal differentiation and is markedly reduced in developmentally defective myoblasts. In addition, H36-alpha 7 mRNA is not detected in C3H10T1/2 cells. It is in myotubes derived from myoblasts obtained by treatment of 10T1/2 cells with azacytidine or transfection with MRF4. Immunoblots and immunofluorescence demonstrate that the H36-alpha 7 chain is associated with integrin beta 1. Affinity chromatography demonstrates that H36-alpha 7 beta 1 selectively binds to laminin. The expression of H36-alpha 7 on secondary myoblasts during the development of the limb in vivo corresponds with the appearance of laminin in the limb, with the responsiveness of secondary myoblast proliferation to laminin, and with the onset of increased muscle mass, suggesting that H36-alpha 7 modulates this stage in limb development. We conclude that H36-alpha 7 is a novel alpha integrin laminin binding protein whose expression is developmentally regulated during skeletal myogenesis.
Collapse
Affiliation(s)
- W K Song
- Department of Cell and Structural Biology, University of Illinois, Urbana 61801
| | | | | | | | | |
Collapse
|
40
|
Collinge M, Matrisian PE, Zimmer WE, Shattuck RL, Lukas TJ, Van Eldik LJ, Watterson DM. Structure and expression of a calcium-binding protein gene contained within a calmodulin-regulated protein kinase gene. Mol Cell Biol 1992; 12:2359-71. [PMID: 1373815 PMCID: PMC364408 DOI: 10.1128/mcb.12.5.2359-2371.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have determined the first genomic structure and characterized the mRNA and protein products of a novel vertebrate gene that encodes a calcium-binding protein with amino acid sequence identity to a protein kinase domain. The elucidation of the complete DNA sequence of this transcription unit and adjacent genomic DNA, Southern blot and polymerase chain reaction analyses of cellular genomic DNA, and examination of mRNA and protein species revealed that the calcium-binding kinase-related protein (KRP)-encoding gene is contained within the gene for a calmodulin-regulated protein kinase, myosin light-chain kinase (MLCK). The KRP gene transcription unit is composed of three exons and a 5'-flanking sequence containing a canonical TATA box motif. The TATA box, the transcription initiation site, and the first 109 nucleotides of the 5' noncoding region of the KRP mRNA correspond to an MLCK gene intron sequence. Both KRP and MLCK are produced in the same adult chicken tissue in relatively high abundance from a single contiguous stretch of genomic DNA and utilize the same reading frame and common exons to produce distinct mRNAs (2.7 and 5.5 kb, respectively) that encode proteins with dissimilar biochemical functions. There appears to be no precedent in vertebrate molecular biology for such a relationship. This may represent a mechanism whereby functional diversity can be achieved within the same vertebrate tissue by use of common exons to produce shuffled domains with identical amino acid sequences in different molecular contexts.
Collapse
Affiliation(s)
- M Collinge
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | | | | | | | | | | | | |
Collapse
|
41
|
Iacopino AM, Christakos S, Modi P, Altar CA. Nerve growth factor increases calcium binding protein (calbindin-D28K) in rat olfactory bulb. Brain Res 1992; 578:305-10. [PMID: 1511283 DOI: 10.1016/0006-8993(92)90262-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Calbindin-D28K (CaBP28K) is a soluble intracellular protein capable of sequestering micromolar concentrations of calcium. The in vivo regulation of CaBP28K by recombinant human nerve growth factor (rhNGF) was studied in adult, male rats. Via Alzet 2002 pumps, each rat received, for 14 days, a lateral ventricle infusion (i.c.v.; n = 5-6/group) of 12 microliters PBS/day containing 1.0 microgram cytochrome C (control) or an equal amount of rhNGF. Six other animals received a vehicle or rhNGF infusion into the central neostriatum. CaBP28K was elevated by 75% (P less than 0.01) in the olfactory bulb following i.c.v. rhNGF in each of two experiments and was not altered in the temporal cortex, hippocampus, olfactory tubercle, cerebellum, or neostriatum. Direct striatal injections of rhNGF did not alter CaBP28K in the neostriatum or other regions (including the olfactory bulb). The increases in olfactory bulb CaBP28K protein levels were verified via Western blot analysis. CaBP28K immunocytochemistry revealed that 33% of olfactory bulb neurons are immunoreactive for CaBP28K and that the number or proportion of immunoreactive neurons did not change with i.c.v. infusions of rhNGF, suggesting that exogenously delivered rhNGF augments the content of CaBP28K in olfactory bulb neurons that normally express the protein. Endogenous NGF may function as a neuroprotective factor by enhancing the ability of these cells to sequester cytoplasmic calcium and retard calcium-mediated neurodegeneration.
Collapse
Affiliation(s)
- A M Iacopino
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Graduate School of Biomedical Sciences, Newark
| | | | | | | |
Collapse
|
42
|
Pochet R, Pasteels B, Seto-Ohshima A, Bastianelli E, Kitajima S, Van Eldik LJ. Calmodulin and calbindin localization in retina from six vertebrate species. J Comp Neurol 1991; 314:750-62. [PMID: 1816273 DOI: 10.1002/cne.903140408] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calmodulin is abundant in the central nervous system, including the retina. However, the localization of calmodulin in the retina has not been described in detail. We therefore decided to investigate calmodulin localization in retinae from six vertebrate species, by using immunohistochemical labeling with four different rabbit polyclonal antibodies against calmodulin. The localization of calbindin-D28k, another calcium-binding protein already well described in retina, was compared. We found that calmodulin distribution is more highly conserved among species, contrasting with calbindin variability. The most striking result emerging is that calmodulin could not be detected in photoreceptors although other layers are intensely calmodulin-immunoreactive, casting doubt about a direct role of calmodulin in phototransduction. Horizontal cells are weakly calmodulin-immunoreactive, bipolar cells are calmodulin-immunoreactive except in turtle retina, numerous amacrine and ganglion cells are labeled in all species, and the fiber layer is always labeled. These data demonstrate that, while the calmodulin distribution in retina is similar among vertebrate species, selective differences in localization can be detected not only among the same cell types in different species but also among different cell types in the same species. The results showing differences in calmodulin immunoreactivity among cell types also provide further evidence that calmodulin expression in eukaryotes is not constitutive, in the sense that not every cell expresses similar levels of calmodulin.
Collapse
Affiliation(s)
- R Pochet
- Laboratoire d'Histologie, Faculté de Médecine, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Stout MA. Calcium transport by sarcoplasmic reticulum of vascular smooth muscle: I. MgATP-dependent and MgATP-independent calcium uptake. J Cell Physiol 1991; 149:383-95. [PMID: 1744170 DOI: 10.1002/jcp.1041490305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The components of 45calcium (Ca) uptake were studied in saponin skinned rat caudal artery. The steady-state Ca content increased when the free Ca concentration was varied from 10(-8) to 10(-4) M but was reduced by azide when the free Ca concentration exceeded 3.1 microM. The azide sensitivity and low affinity for Ca were consistent with functional mitochondria. The azide-insensitive component consisted of a small bound and a larger releasable Ca fraction. After skinning in Triton X-100, approximately 4 mumol Ca/kg wet tissue remained, which represented a tightly bound but slowly exchangeable Ca pool. The Ca content was independent of the free Ca concentration and MgATP, and it was not released with A-23187 or Ca. The Ca content of the larger fraction was a higher order function of the free Ca concentration and was released with A-23187, indicating it resided within a membrane-bounded structure. Ca uptake by the releasable fraction was increased by oxalate, MgATP, phosphocreatine, temperature, phosphate, and ruthenium red and represents Ca sequestered by the sarcoplasmic reticulum (SR) with little contribution from other Ca binding or storage sites. It is described by the coefficients Umax = 96.94 mumol/kg wet tissue, K1/2 = 0.75 microM, and Hill coefficient = 1.70. The SR in this preparation regulates cytosolic Ca concentrations under physiological conditions and can accumulate Ca by MgATP-dependent and MgATP-independent process. The larger, MgATP-dependent Ca uptake is described by the coefficients Umax = 72.87 mumol/kg wet tissue, K1/2 = 0.8 microM, and Hill coefficient = 2.09 and is consistent with Ca sequestered by the Ca-transport ATPase of smooth muscle SR. The smaller, MgATP-independent uptake is described by the coefficients Umax = 24.14 mumol/kg wet tissue, K1/2 = 0.56 microM, and Hill coefficient = 1.01 and represents Ca sequestered by an unidentified mechanism or by a subpopulation of SR.
Collapse
Affiliation(s)
- M A Stout
- Department of PHysiology, UMDNJ-New Jersey Medical School, Newark 07103-2714
| |
Collapse
|
44
|
Penner CG, Murphy LC, Huzel NJ, Yamada EW. Antigenic reactivity of ribosomal protein S6 and the calcium-binding ATPase inhibitor protein of mammalian mitochondria. Mol Cell Biochem 1991; 108:57-66. [PMID: 1837589 DOI: 10.1007/bf00239542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphorylation of ribosomal protein S6 of mammals precedes activation of cell growth in numerous biological systems. We have cloned a cDNA for ribosomal protein S6 from T-47D human breast cancer cells by immunoscreening a lambda gt11 expression library with antibody raised against the mitochondrial Ca(2+)-binding ATPase inhibitor protein (CaBI) of bovine heart mitochondria (Yamada & Huzel: J Biol Chem 263: 11498-11503, 1988). Similar clones were obtained by the immunoscreening of a rat heart expression library. In agreement with others, the open reading frames of the cDNAs from the two species coded for the same amino acid sequence. No difference in S6 of the human neoplastic cells compared to that of non-neoplastic cells was found. However, common antigenic determinants in S6 and CaBI were indicated. Accordingly, S6 was purified from rat liver ribosomes and antiserum prepared. Immuno-dot blot and Western blot analyses showed high specific reactivity between S6, the cloned chimeric beta-galactosidase fusion protein from a cDNA clone, and CaBI with anti-S6 and anti-CaBI antibodies. The antibodies also showed a high degree of discrimination for S6 and CaBI. Neither interacted with the other ribosomal proteins nor with another ATPase inhibitor protein from bovine heart mitochondria. Neither interacted with the Ca(2+)-binding proteins, calmodulin, oncomodulin, Protein C, or Factor X. Prothrombin was weakly reactive with anti-CaBI but not with anti-S6. Thus, the results fulfill the specific criteria for the concept and operational definition of common protein epitopes in S6 and CaBI. However, neither prothrombin nor S6 fusion protein inhibited mitochondrial ATPase activity even at 20 times the concentrations at which CaBI gave 97% inhibition.
Collapse
Affiliation(s)
- C G Penner
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
45
|
Takada Y, Murphy E, Pil P, Chen C, Ginsberg MH, Hemler ME. Molecular cloning and expression of the cDNA for alpha 3 subunit of human alpha 3 beta 1 (VLA-3), an integrin receptor for fibronectin, laminin, and collagen. J Cell Biol 1991; 115:257-66. [PMID: 1655803 PMCID: PMC2289928 DOI: 10.1083/jcb.115.1.257] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
alpha 3 beta 1 (VLA-3), a member of the integrin family of cell adhesion receptors, may function as a receptor for fibronectin, laminin, and collagen. A partial cDNA clone (2.4 kb) for the human alpha 3 subunit was selected from an endothelial cell lambda gt11 cDNA library by specific antibody screening. Several overlapping cDNA clones were subsequently obtained, of a total length of 4.6 kb from various cDNA libraries. The reconstructed alpha 3 cDNA was expressed on the surface of chinese hamster ovary cells as detected by an alpha 3-specific mAb after transfection, suggesting that the cDNA is authentic. Within this sequence was an open reading frame, encoding for 1,051 amino acids, including a signal peptide of 32 residues, a long extracellular domain (959 residues), a transmembrane domain (28 residues), and a short cytoplasmic segment (32 residues). Overall, the alpha 3 amino acid sequence was 25-37% similar to the other integrin alpha subunits that are cleaved, with most similarity to the alpha 6 sequence (37%), and less similarity to those alpha subunits that have I domains (15-20%, excluding the I domain sequence itself). Features most like those in other alpha subunits are (a) the positions of 18/19 cysteine residues, (b) three potential metal binding domains of the general structure DX(D/N)X(D/N)GXXD, and (c) the predicted transmembrane domain. The mass of alpha 3 calculated from its amino acid sequence is 113,505. The human alpha 3 sequence was 89% identical to hamster galactoprotein b3, and 70% similar to the chicken CSAT antigen band 2 protein partial sequence, suggesting that these two polypeptides are homologues of human alpha 3.
Collapse
Affiliation(s)
- Y Takada
- Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | | | | | | | |
Collapse
|
46
|
Hall AK, Norman AW. Acute actions of 1,25-dihydroxyvitamin D3 upon chick pancreatic calbindin-D28K. Biochem Biophys Res Commun 1991; 176:1057-61. [PMID: 2039489 DOI: 10.1016/0006-291x(91)90390-s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have compared the relative responsiveness of pancreatic, intestinal and renal tissue calbindin-D28K protein content to the stimulatory actions of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in vitamin D-deficient (-D) chicks. Tissue concentrations of calbindin-D28K were undetectable in the -D chick intestine but present, albeit at low concentrations (less than 1 microgram CaBP/mg protein) in the -D kidney and pancreas. Intestinal, pancreatic and renal calbindin-D28K content was stimulated 318, 9.8 and 2.9 fold respectively, 48 hours after -D chicks received a single dose of 1,25(OH)2D3 [6.5 nmol/animal]. The pancreatic calbindin-D28K content could be significantly stimulated as early as 5 hours after 1,25(OH)2D3 administrations in vivo. These findings support the contention that the pancreas is a target for vitamin D, and is consistent with the view that calbindin-D28K plays a role in normal pancreatic functions.
Collapse
Affiliation(s)
- A K Hall
- Division of Biomedical Sciences, University of California, Riverside 92521
| | | |
Collapse
|
47
|
Schäfer T, Sachse GE, Gassen HG. The calcium-binding protein MRP-8 is produced by human pulmonary tumor cells. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1991; 372:1-4. [PMID: 2039599 DOI: 10.1515/bchm3.1991.372.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A calcium-binding protein was isolated from serum-free culture medium of human squamous carcinoma cells (HS 24). N-Terminal sequencing of the protein yielded 30 amino acids which were identical to the N-terminus of cystic fibrosis antigen. Northern blot analysis with an oligonucleotide derived from the N-terminus resulted in the detection of a transcript of approximately 600 bases. Screening of a HS 24-cDNA library with the same oligonucleotide led to the isolation of a 381-bp-cDNA encoding a protein of 93 amino acids. The corresponding protein has been identified as the calcium-binding protein MRP-8 usually found in Macrophages.
Collapse
Affiliation(s)
- T Schäfer
- Institut für Biochemie, Technischen Hochschule Darmstadt
| | | | | |
Collapse
|
48
|
An overview of signal transduction. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/b978-0-444-81382-4.50010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Mattson MP, Rychlik B, Chu C, Christakos S. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 1991; 6:41-51. [PMID: 1670921 DOI: 10.1016/0896-6273(91)90120-o] [Citation(s) in RCA: 448] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuronal systems for calcium homeostasis are crucial for neuronal development and function and may also contribute to selective neuronal vulnerability in adverse conditions such as exposure to excitatory amino acids or anoxia, and in neurodegenerative diseases. Previous work demonstrated the presence and differential distribution of calcium-binding proteins in the CNS. We now report that a subpopulation of neurons in dissociated cell cultures of embryonic rat hippocampus expresses calbindin-D28k (Mr 28,000 calcium-binding protein) immunoreactivity and that these neurons are relatively resistant to neurotoxicity induced by either glutamate or calcium ionophore. Direct comparisons of dynamic aspects of intracellular calcium levels and calbindin-D28k immunoreactivity in the same neurons revealed that calbindin-D28k-positive neurons were better able to reduce free intracellular calcium levels than calbindin-D28k-negative neurons. These findings indicate that the differential expression of calbindin-D28k in hippocampal neurons occurs early in development and may be one determinant of selective neuronal vulnerability to excitotoxic insults.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230
| | | | | | | |
Collapse
|
50
|
Hinrichsen R, Wilson E, Lukas T, Craig T, Schultz J, Watterson DM. Analysis of the molecular basis of calmodulin defects that affect ion channel-mediated cellular responses: site-specific mutagenesis and microinjection. J Cell Biol 1990; 111:2537-42. [PMID: 1703538 PMCID: PMC2116388 DOI: 10.1083/jcb.111.6.2537] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of microinjected calmodulin to temporarily restore an ion channel-mediated behavioral phenotype of a calmodulin mutant in Paramecium tetraurelia (cam1) is dependent on the amino acid side chain that is present at residue 101, even when there is extensive variation in the rest of the amino acid sequence. Analysis of conservation of serine-101 in calmodulin suggests that the ability of calmodulin to regulate this ion channel-associated cell function may be a biological role of calmodulin that is widely distributed phylogenetically. A series of mutant calmodulins that differ only at residue-101 were produced by in vitro site-specific mutagenesis and expression in Escherichia coli, purified to chemical homogeneity, and tested for their ability to temporarily restore a wild-type behavioral phenotype to cam1 (pantophobiacA1) Paramecium. Calmodulins with glycine-101 or tyrosine-101 had minimal activity; calmodulins with phenylalanine-101 or alanine-101 had no detectable activity. However, as a standard of comparison, all of the calmodulins were able to activate a calmodulin-regulated enzyme, myosin light chain kinase, that is sensitive to point mutations elsewhere in the calmodulin molecule. Overall, these results support the hypothesis that the structural features of calmodulin required for the transduction of calcium signals varies with the particular pathway that is being regulated and provide insight into why inherited mutations of calmodulin at residue 101 are nonlethal and selective in their phenotypic effects.
Collapse
Affiliation(s)
- R Hinrichsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | | | | | |
Collapse
|