1
|
Sinha P, Cree SL, Miller AL, Pearson JF, Kennedy MA. Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms. THE PHARMACOGENOMICS JOURNAL 2021; 21:359-375. [PMID: 33649518 DOI: 10.1038/s41397-021-00215-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Sodium valproate (VPA) is a histone deacetylase (HDAC) inhibitor, widely prescribed in the treatment of bipolar disorder, and yet the precise modes of therapeutic action for this drug are not fully understood. After exposure of the rat serotonergic cell line RN46A to VPA, RNA-sequencing (RNA-Seq) analysis showed widespread changes in gene expression. Analysis by four bioinformatic pipelines revealed as many as 230 genes were significantly upregulated and 72 genes were significantly downregulated. A subset of 23 differentially expressed genes was selected for validation using the nCounter® platform, and of these we obtained robust validation for ADAM23, LSP1, MAOB, MMP13, PAK3, SERPINB2, SNAP91, WNT6, and ZCCHC12. We investigated the effect of lithium on this subset and found four genes, CDKN1C, LSP1, SERPINB2, and WNT6 co-regulated by lithium and VPA. We also explored the effects of other HDAC inhibitors and the VPA analogue valpromide on the subset of 23 selected genes. Expression of eight of these genes, CDKN1C, MAOB, MMP13, NGFR, SHANK3, VGF, WNT6 and ZCCHC12, was modified by HDAC inhibition, whereas others did not appear to respond to several HDAC inhibitors tested. These results suggest VPA may regulate genes through both HDAC-dependent and independent mechanisms. Understanding the broader gene regulatory effects of VPA in this serotonergic cell model should provide insights into how this drug works and whether other HDAC inhibitor compounds may have similar gene regulatory effects, as well as highlighting molecular processes that may underlie regulation of mood.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Simone L Cree
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Allison L Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.,Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand. .,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
2
|
Medial prefrontal cortex ERK and conditioning: Evidence for the association of increased medial prefrontal cortex ERK with the presence/absence of apomorphine conditioned behavior using a unique post-trial conditioning/extinction protocol. Behav Brain Res 2019; 365:56-65. [DOI: 10.1016/j.bbr.2019.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 11/17/2022]
|
3
|
Kucharska-Mazur J, Jabłoński M, Misiak B, Frydecka D, Rybakowski J, Ratajczak MZ, Samochowiec J. Adult stem cells in psychiatric disorders - New discoveries in peripheral blood. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:23-27. [PMID: 28392482 DOI: 10.1016/j.pnpbp.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
The new area of research in psychiatric disorders is concerned with abnormal regeneration processes. The role of brain neurogenesis has been studied for decades. New discoveries, concerned with the pluripotency of VSEL cells and the role of factors involved in stem cell trafficking in peripheral blood create hope that it will be possible to develop a better understanding of the processes of neuroregeneration/neurodegeneration. There is an ongoing research investigating concentrations of: sphingosine -1-phosphate, SDF-1, elements of complement cascade, and stem cells in peripheral blood, including their possible connection to psychiatric disorders. Collected data, suggesting an abnormal course of regeneration processes in psychiatric disorders, raises hope of finding new potential markers of psychosis and anxiety disorders.
Collapse
Affiliation(s)
- Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian University of Medicine, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian University of Medicine, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteur 10, 50-367 Wroclaw, Poland
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian University of Medicine, Broniewskiego 26, 71-460 Szczecin, Poland.
| |
Collapse
|
4
|
ERK activation in the prefrontal cortex by acute apomorphine and apomorphine conditioned contextual stimuli. Pharmacol Biochem Behav 2017; 159:76-83. [DOI: 10.1016/j.pbb.2017.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/23/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022]
|
5
|
Phillips C. Physical Activity Modulates Common Neuroplasticity Substrates in Major Depressive and Bipolar Disorder. Neural Plast 2017; 2017:7014146. [PMID: 28529805 PMCID: PMC5424494 DOI: 10.1155/2017/7014146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Mood disorders (MDs) are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although the biogenic amine model has provided some clinical utility, a need remains to better understand the interrelated mechanisms that contribute to neuroplasticity deficits in MDs and the means by which various therapeutics mitigate them. Of those therapeutics being investigated, physical activity (PA) has shown clear and consistent promise. Accordingly, the aims of this review are to (1) explicate key modulators, processes, and interactions that impinge upon multiple susceptibility points to effectuate neuroplasticity deficits in MDs; (2) explore the putative mechanisms by which PA mitigates these features; (3) review protocols used to induce the positive effects of PA in MDs; and (4) highlight implications for clinicians and researchers.
Collapse
|
6
|
O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci 2015; 73:63-83. [PMID: 26608002 DOI: 10.1016/j.mcn.2015.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BP) is a chronic neuropsychiatric condition characterized by pathological fluctuations in mood from mania to depression. Adoption, twin and family studies have consistently identified a significant hereditary component to BP, yet there is no clear genetic event or consistent neuropathology. BP has been suggested to have a developmental origin, although this hypothesis has been difficult to test since there are no viable neurons or glial cells to analyze, and research has relied largely on postmortem brain, behavioral and imaging studies, or has examined proxy tissues including saliva, olfactory epithelium and blood cells. Neurodevelopmental factors, particularly pathways related to nervous system development, cell migration, extracellular matrix, H3K4 methylation, and calcium signaling have been identified in large gene expression and GWAS studies as altered in BP. Recent advances in stem cell biology, particularly the ability to reprogram adult somatic tissues to a pluripotent state, now make it possible to interrogate these pathways in viable cell models. A number of induced pluripotent stem cell (iPSC) lines from BP patient and healthy control (C) individuals have been derived in several laboratories, and their ability to form cortical neurons examined. Early studies suggest differences in activity, calcium signaling, blocks to neuronal differentiation, and changes in neuronal, and possibly glial, lineage specification. Initial observations suggest that differentiation of BP patient-derived neurons to dorsal telencephalic derivatives may be impaired, possibly due to alterations in WNT, Hedgehog or Nodal pathway signaling. These investigations strongly support a developmental contribution to BP and identify novel pathways, mechanisms and opportunities for improved treatments.
Collapse
Affiliation(s)
- K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan, 3051 BSRB, 109 Zina Pitcher PL, Ann Arbor, MI 48109-2200, United States; Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States.
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States
| |
Collapse
|
7
|
Chen HM, DeLong CJ, Bame M, Rajapakse I, Herron TJ, McInnis MG, O'Shea KS. Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients. Transl Psychiatry 2014; 4:e375. [PMID: 25116795 PMCID: PMC3966040 DOI: 10.1038/tp.2014.12] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BP) is a chronic psychiatric condition characterized by dynamic, pathological mood fluctuations from mania to depression. To date, a major challenge in studying human neuropsychiatric conditions such as BP has been limited access to viable central nervous system tissue to examine disease progression. Patient-derived induced pluripotent stem cells (iPSCs) now offer an opportunity to analyze the full compliment of neural tissues and the prospect of identifying novel disease mechanisms. We have examined changes in gene expression as iPSC derived from well-characterized patients differentiate into neurons; there was little difference in the transcriptome of iPSC, but BP neurons were significantly different than controls in their transcriptional profile. Expression of transcripts for membrane bound receptors and ion channels was significantly increased in BP-derived neurons compared with controls, and we found that lithium pretreatment of BP neurons significantly altered their calcium transient and wave amplitude. The expression of transcription factors involved in the specification of telencephalic neuronal identity was also altered. Control neurons expressed transcripts that confer dorsal telencephalic fate, whereas BP neurons expressed genes involved in the differentiation of ventral (medial ganglionic eminence) regions. Cells were responsive to dorsal/ventral patterning cues, as addition of the Hedgehog (ventral) pathway activator purmorphamine or a dorsalizing agent (lithium) stimulated expression of NKX2-1 (ventral identity) or EMX2 (dorsal) in both groups. Cell-based models should have a significant impact on our understanding of the genesis and therefore treatment of BP; the iPSC cell lines themselves provide an important resource for comparison with other neurodevelopmental disorders.
Collapse
Affiliation(s)
- H M Chen
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - C J DeLong
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M Bame
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - I Rajapakse
- Center for Computational Medicine & Bioinformatics, Department of Mathematics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T J Herron
- Department of Cardiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M G McInnis
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K S O'Shea
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Cell and Developmental Biology, University of Michigan Medical School, 3051 BSRB, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA. E-mail:
| |
Collapse
|
8
|
Abrial E, Etievant A, Bétry C, Scarna H, Lucas G, Haddjeri N, Lambás-Señas L. Protein kinase C regulates mood-related behaviors and adult hippocampal cell proliferation in rats. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:40-8. [PMID: 23228462 DOI: 10.1016/j.pnpbp.2012.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/08/2012] [Accepted: 11/18/2012] [Indexed: 12/16/2022]
Abstract
The neurobiological mechanisms underlying the pathophysiology and therapeutics of bipolar disorder are still unknown. In recent years, protein kinase C (PKC) has emerged as a potential key player in mania. To further investigate the role of this signaling system in mood regulation, we examined the effects of PKC modulators in behavioral tests modeling several facets of bipolar disorder and in adult hippocampal cell proliferation in rats. Our results showed that a single injection of the PKC inhibitors tamoxifen (80 mg/kg, i.p.) and chelerythrine (3 mg/kg, s.c.) attenuated amphetamine-induced hyperlocomotion and decreased risk-taking behavior, supporting the efficacy of PKC blockade in acute mania. Moreover, chronic exposure to tamoxifen (10 mg/kg/day, i.p., for 14 days) or chelerythrine (0.3 mg/kg/day, s.c., for 14 days) caused depressive-like behavior in the forced swim test, and resulted in a reduction of cell proliferation in the dentate gyrus of the hippocampus. Finally, we showed that, contrary to the PKC inhibitors, the PKC activator phorbol 12-myristate 13-acetate (PMA) enhanced risk-taking behavior and induced an antidepressant-like effect. Taken together, these findings support the involvement of PKC in regulating opposite facets of bipolar disorder, and emphasize a major role for PKC in this disease.
Collapse
|
9
|
Song N, Boku S, Nakagawa S, Kato A, Toda H, Takamura N, Omiya Y, Kitaichi Y, Inoue T, Koyama T. Mood stabilizers commonly restore staurosporine-induced increase of p53 expression and following decrease of Bcl-2 expression in SH-SY5Y cells. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:183-9. [PMID: 22484386 DOI: 10.1016/j.pnpbp.2012.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/07/2012] [Accepted: 03/19/2012] [Indexed: 11/25/2022]
Abstract
Adult neurogenesis in dentate gyrus (DG) is involved in the action mechanism of mood stabilizers. However, it is poorly understood how mood stabilizers affect adult neurogenesis in DG. Neurogenesis consists of proliferation, survival (anti-apoptosis) and differentiation of neural precursor cells in adult DG. Using in vitro culture of adult rat DG-derived neural precursor cells (ADP), we have already shown that four mood stabilizers, such as lithium (Li), valproate (VPA), carbamazepine (CBZ) and lamotrigine (LTG), commonly decrease staurosporine (STS)-induced apoptosis of ADP. These suggest that the common anti-apoptotic effect of mood stabilizers could be involved in mood-stabilizing effects. Past studies have shown that Li and VPA increase the expression of Bcl-2, an anti-apoptotic gene. In addition, it has been shown that Li decreases the expression of p53, which plays a prominent role in apoptosis and regulates the expression of Bcl-2. Therefore, p53 and Bcl-2 can be considered to mediate the common anti-apoptotic effects of Li, VPA, CBZ and LTG. To elucidate the molecular mechanism underlying the common anti-apoptotic effects of mood stabilizers, we investigated the effects of Li, VPA, CBZ and LTG on STS-induced expression changes of p53, Bcl-2 and other p53-related molecules using SH-SY5Y cells as a model of neural precursor-like cells. STS increased the expression of p53 and decreased that of Bcl-2. These effects of STS on p53 and Bcl-2 are restored by all of Li, VPA, CBZ and LTG. In addition, p53 overexpression decreased the expression of Bcl-2. Taken together, these results suggest that p53 and Bcl-2 may be involved in a part of mood-stabilizing effects.
Collapse
Affiliation(s)
- Ning Song
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Boku S, Nakagawa S, Masuda T, Nishikawa H, Kato A, Toda H, Song N, Kitaichi Y, Inoue T, Koyama T. Effects of mood stabilizers on adult dentate gyrus-derived neural precursor cells. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:111-7. [PMID: 20888882 DOI: 10.1016/j.pnpbp.2010.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/25/2010] [Accepted: 09/26/2010] [Indexed: 01/20/2023]
Abstract
Neurogenesis in the adult dentate gyrus (DG) is considered to be partly involved in the action of mood stabilizers. However, it remains unclear how mood stabilizers affect neural precursor cells in adult DG. We have established a culture system of adult rat DG-derived neural precursor cells (ADP) and have shown that lithium, a mood stabilizer, and dexamethasone, an agonist of glucocorticoid receptor, reciprocally regulate ADP proliferation. Neurogenesis constitutes not only proliferation of neural precursor cells but also apoptosis and differentiation. To develop further understanding of mood stabilizer effects on neural precursor cells in adult DG, we investigated and compared the effects of four common mood stabilizers-lithium, valproate, carbamazepine, and lamotrigine-on ADP proliferation, apoptosis, and differentiation. ADP proliferation, decreased by dexamethasone, was examined using Alamar Blue assay. Using TUNEL assay, ADP apoptosis induced by staurosporine was examined. The differentiated ADP induced by retinoic acid was characterized by immunostaining with anti-GFAP or anti-Tuj1 antibody. Lithium and valproate, but not carbamazepine and lamotrigine, recovered ADP proliferation decreased by dexamethasone. All four mood stabilizers decreased ADP apoptosis. Retinoic acid differentiated ADP into both neurons and astrocytes. Lithium and carbamazepine increased the ratio of neurons and decreased that of astrocytes. However, valproate and lamotrigine increased the ratio of astrocytes and decreased that of neurons. Therefore, these four stabilizers exhibited both common and differential effects on ADP proliferation, apoptosis, and differentiation.
Collapse
Affiliation(s)
- Shuken Boku
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Eom TY, Jope RS. Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3alpha/beta impairs in vivo neural precursor cell proliferation. Biol Psychiatry 2009; 66:494-502. [PMID: 19520363 PMCID: PMC2746934 DOI: 10.1016/j.biopsych.2009.04.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/07/2009] [Accepted: 04/10/2009] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adult neurogenesis augments neuronal plasticity, and deficient neurogenesis might contribute to mood disorders and schizophrenia and impede treatment responses. Because these diseases might be associated with inadequately controlled glycogen synthase kinase-3 (GSK3), we tested whether blocked inhibitory serine-phosphorylation of GSK3 impairs neurogenesis. METHODS Neural precursor cell (NPC) proliferation was measured by dentate gyrus bromodeoxyuridine (BrdU) labeling in GSK3alpha/beta(21A/21A/9A/9A) knockin mice with serine-to-alanine mutations to block inhibitory serine-phosphorylation of GSK3 while it remains within the physiological range, because GSK3 is not overexpressed. RESULTS There was a drastic 40% impairment in neurogenesis in vivo in GSK3 knockin mice compared with wild-type mice. Impaired neurogenesis could be due to effects of GSK3 in NPCs or in surrounding cells that modulate NPCs. In vitro proliferation was equivalent for NPCs from GSK3 knockin and wild-type mice, suggesting an in vivo deficiency in GSK3 knockin mice of external support for NPC proliferation. Measurements of two neurotrophins that promote neurogenesis demonstrated less hippocampal vascular endothelial growth factor but not brain-derived growth factor in GSK3 knockin mice than wild-type mice, reinforcing the possibility that insufficient environmental support in GSK3 knockin mice might contribute to impaired neurogenesis. In vivo chronic co-administration of lithium and fluoxetine, which each increase inhibitory serine-phosphorylation of wild-type GSK3, increased NPC proliferation in wild-type but not GSK3 knockin mice. CONCLUSIONS Blocked inhibitory control of GSK3 impaired neurogenesis and the capacity of therapeutic drugs to stimulate neurogenesis, likely through deficient environmental factors that support neurogenesis, which might contribute to psychiatric diseases and responses to therapeutic drugs.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Psychiatry, Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | |
Collapse
|
12
|
Salvadore G, Drevets WC, Henter ID, Zarate CA, Manji HK. Early intervention in bipolar disorder, part II: therapeutics. Early Interv Psychiatry 2008; 2:136-46. [PMID: 19649153 PMCID: PMC2630238 DOI: 10.1111/j.1751-7893.2008.00072.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent evidence has shown that early pharmacological and psychosocial treatment dramatically ameliorates poor prognosis and outcome for individuals with psychotic disorders, reducing conversion rates to full-blown illness and decreasing symptom severity. In a companion paper, we discussed methodological issues pertaining to early intervention in bipolar disorder (BPD), reviewed clinical studies that focus on high-risk subjects as well as first-episode patients, and reviewed findings from brain imaging studies in the offspring of individuals with BPD as well as in first-episode patients. In this paper, we discuss how drugs that modulate cellular and neural plasticity cascades are likely to benefit patients in the very early stages of BPD, because they target some of the core pathophysiological mechanisms of this devastating illness. Cellular and molecular mechanisms of action of agents with neurotrophic and neuroplastic properties are discussed, with a particular emphasis on lithium and valproate. We also discuss their potential use as early intervention strategies for improving symptoms and functioning in patients in the earliest stages of BPD, as well as high-risk individuals.
Collapse
Affiliation(s)
- Giacomo Salvadore
- Mood and Anxiety Disorders Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|