1
|
Ferraguti G, Francati S, Codazzo C, Blaconà G, Testino G, Angeloni A, Fiore M, Ceccanti M, Lucarelli M. DNA Sequence Variations Affecting Serotonin Transporter Transcriptional Regulation and Activity: Do They Impact Alcohol Addiction? Int J Mol Sci 2024; 25:8089. [PMID: 39125658 PMCID: PMC11311659 DOI: 10.3390/ijms25158089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Genetic features of alcohol dependence have been extensively investigated in recent years. A large body of studies has underlined the important role of genetic variants not only in metabolic pathways but also in the neurobiology of alcohol dependence, mediated by the neuronal circuits regulating reward and craving. Serotonin transporter (5-HTT), encoded by the SLC6A4 gene (Solute carrier family 6-neurotransmitter transporter-member 4), is targeted by antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs) and plays a pivotal role in serotoninergic transmission; it has been associated with psychiatric diseases and alcohol dependence. Transcriptional regulation and expression of 5-HTT depend not only on epigenetic modifications, among which DNA methylation (CpG and non-CpG) is primarily involved, but also on sequence variations occurring in intron/exon regions and in untranslated regions in 5' and 3', being the first sequences important for the splicing machinery and the last for the binding of transcription factors and micro RNAs. This work intends to shed light on the role of sequence variations known to affect the expression or function of 5-HTT in alcohol-dependent individuals. We found a statistically significant difference in the allelic (p = 0.0083) and genotypic (p = 0.0151) frequencies of the tri-allelic polymorphism, with higher function alleles and genotypes more represented in the control population. Furthermore, we identified three haplotypes more frequent in subjects with AUD (p < 0.0001) and one more frequent in the control population (p < 0.0001). The results obtained for the tri-allelic polymorphism in alcohol dependence confirm what is already present in part of the literature. The role of haplotypes requires further studies to be clarified.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.F.); (G.B.); (G.T.); (A.A.); (M.L.)
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.F.); (G.B.); (G.T.); (A.A.); (M.L.)
| | | | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.F.); (G.B.); (G.T.); (A.A.); (M.L.)
| | - Giancarlo Testino
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.F.); (G.B.); (G.T.); (A.A.); (M.L.)
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.F.); (G.B.); (G.T.); (A.A.); (M.L.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00161 Rome, Italy;
| | - Mauro Ceccanti
- SITAC, Società Italiana Per il Trattamento Dell’alcolismo e le Sue Complicanze, 00185 Rome, Italy;
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.F.); (G.B.); (G.T.); (A.A.); (M.L.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
2
|
Hitzemann R, Lockwood DR, Ozburn AR, Phillips TJ. On the Use of Heterogeneous Stock Mice to Map Transcriptomes Associated With Excessive Ethanol Consumption. Front Psychiatry 2021; 12:725819. [PMID: 34712155 PMCID: PMC8545898 DOI: 10.3389/fpsyt.2021.725819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
We and many others have noted the advantages of using heterogeneous (HS) animals to map genes and gene networks associated with both behavioral and non-behavioral phenotypes. Importantly, genetically complex Mus musculus crosses provide substantially increased resolution to examine old and new relationships between gene expression and behavior. Here we report on data obtained from two HS populations: the HS/NPT derived from eight inbred laboratory mouse strains and the HS-CC derived from the eight collaborative cross inbred mouse strains that includes three wild-derived strains. Our work has focused on the genes and gene networks associated with risk for excessive ethanol consumption, individual variation in ethanol consumption and the consequences, including escalation, of long-term ethanol consumption. Background data on the development of HS mice is provided, including advantages for the detection of expression quantitative trait loci. Examples are also provided of using HS animals to probe the genes associated with ethanol preference and binge ethanol consumption.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Denesa R. Lockwood
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Angela R. Ozburn
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| |
Collapse
|
3
|
Drake J, McMichael GO, Vornholt ES, Cresswell K, Williamson V, Chatzinakos C, Mamdani M, Hariharan S, Kendler KS, Kalsi G, Riley BP, Dozmorov M, Miles MF, Bacanu S, Vladimirov VI. Assessing the Role of Long Noncoding RNA in Nucleus Accumbens in Subjects With Alcohol Dependence. Alcohol Clin Exp Res 2020; 44:2468-2480. [PMID: 33067813 PMCID: PMC7756309 DOI: 10.1111/acer.14479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) have been implicated in the etiology of alcohol use. Since lncRNA provide another layer of complexity to the transcriptome, assessing their expression in the brain is the first critical step toward understanding lncRNA functions in alcohol use and addiction. Thus, we sought to profile lncRNA expression in the nucleus accumbens (NAc) in a large postmortem alcohol brain sample. METHODS LncRNA and protein-coding gene (PCG) expressions in the NAc from 41 subjects with alcohol dependence (AD) and 41 controls were assessed via a regression model. Weighted gene coexpression network analysis was used to identify lncRNA and PCG networks (i.e., modules) significantly correlated with AD. Within the significant modules, key network genes (i.e., hubs) were also identified. The lncRNA and PCG hubs were correlated via Pearson correlations to elucidate the potential biological functions of lncRNA. The lncRNA and PCG hubs were further integrated with GWAS data to identify expression quantitative trait loci (eQTL). RESULTS At Bonferroni adj. p-value ≤ 0.05, we identified 19 lncRNA and 5 PCG significant modules, which were enriched for neuronal and immune-related processes. In these modules, we further identified 86 and 315 PCG and lncRNA hubs, respectively. At false discovery rate (FDR) of 10%, the correlation analyses between the lncRNA and PCG hubs revealed 3,125 positive and 1,860 negative correlations. Integration of hubs with genotype data identified 243 eQTLs affecting the expression of 39 and 204 PCG and lncRNA hubs, respectively. CONCLUSIONS Our study identified lncRNA and gene networks significantly associated with AD in the NAc, coordinated lncRNA and mRNA coexpression changes, highlighting potentially regulatory functions for the lncRNA, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD.
Collapse
Affiliation(s)
- John Drake
- From the Center for Integrative Life Sciences Education (JD)Virginia Commonwealth UniversityRichmondVirginia
| | - Gowon O. McMichael
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Eric Sean Vornholt
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Kellen Cresswell
- Department of Biostatistics(KC, MD)Virginia Commonwealth UniversityRichmondVirginia
| | - Vernell Williamson
- Department of Pathology(VW)Virginia Commonwealth UniversityRichmondVirginia
| | - Chris Chatzinakos
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Siddharth Hariharan
- Summer Research Fellowship(SH)School of MedicineVirginia Commonwealth UniversityRichmondVirginia
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Psychiatry(KSK, BPR, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Human and Molecular Genetics(KSK, BPR)Virginia Commonwealth UniversityRichmondVirginia
| | - Gursharan Kalsi
- Department of Social, Genetic and Developmental Psychiatry(GK)Institute of PsychiatryLondonUK
| | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Psychiatry(KSK, BPR, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Human and Molecular Genetics(KSK, BPR)Virginia Commonwealth UniversityRichmondVirginia
| | - Mikhail Dozmorov
- Department of Biostatistics(KC, MD)Virginia Commonwealth UniversityRichmondVirginia
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Pharmacology and Toxicology(MFM)Virginia Commonwealth UniversityRichmondVirginia
| | - Silviu‐Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Psychiatry(KSK, BPR, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics(GOM, ESV, CC, MM, KSK, BPR, MFM, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Department of Psychiatry(KSK, BPR, S‐AB, VIV)Virginia Commonwealth UniversityRichmondVirginia
- Center for Biomarker Research and Personalized Medicine(VIV)Virginia Commonwealth UniversityRichmondVirginia
- Lieber Institute for Brain Development(VIV)Johns Hopkins UniversityBaltimoreMaryland
| |
Collapse
|
4
|
Bogenpohl JW, Smith ML, Farris SP, Dumur CI, Lopez MF, Becker HC, Grant KA, Miles MF. Cross-Species Co-analysis of Prefrontal Cortex Chronic Ethanol Transcriptome Responses in Mice and Monkeys. Front Mol Neurosci 2019; 12:197. [PMID: 31456662 PMCID: PMC6701453 DOI: 10.3389/fnmol.2019.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Despite recent extensive genomic and genetic studies on behavioral responses to ethanol, relatively few new therapeutic targets for the treatment of alcohol use disorder have been validated. Here, we describe a cross-species genomic approach focused on identifying gene networks associated with chronic ethanol consumption. To identify brain mechanisms underlying a chronic ethanol consumption phenotype highly relevant to human alcohol use disorder, and to elucidate potential future therapeutic targets, we conducted a genomic study in a non-human primate model of chronic open-access ethanol consumption. Microarray analysis of RNA expression in anterior cingulate and subgenual cortices from rhesus macaques was performed across multiple cohorts of animals. Gene networks correlating with ethanol consumption or showing enrichment for ethanol-regulated genes were identified, as were major ethanol-related hub genes within these networks. A subsequent consensus module analysis was used to co-analyze monkey data with expression data from a chronic intermittent ethanol vapor-exposure and consumption model in C57BL/6J mice. Ethanol-related gene networks conserved between primates and rodents were enriched for genes involved in discrete biological functions, including; myelination, synaptic transmission, chromatin modification, Golgi apparatus function, translation, cellular respiration, and RNA processing. The myelin-related network, in particular, showed strong correlations with ethanol consumption behavior and displayed marked network reorganization between control and ethanol-drinking animals. Further bioinformatics analysis revealed that these networks also showed highly significant overlap with other ethanol-regulated gene sets. Altogether, these studies provide robust primate and rodent cross-species validation of gene networks associated with chronic ethanol consumption. Our results also suggest potential novel focal points for future therapeutic interventions in alcohol use disorder.
Collapse
Affiliation(s)
- James W Bogenpohl
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, United States
| | - Maren L Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| | - Catherine I Dumur
- Aurora Diagnostics-Sonic Healthcare, Bernhardt Laboratories, Jacksonville, FL, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
5
|
Tiffon C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int J Mol Sci 2018; 19:E3425. [PMID: 30388784 PMCID: PMC6275017 DOI: 10.3390/ijms19113425] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Environmental epigenetics describes how environmental factors affect cellular epigenetics and, hence, human health. Epigenetic marks alter the spatial conformation of chromatin to regulate gene expression. Environmental factors with epigenetic effects include behaviors, nutrition, and chemicals and industrial pollutants. Epigenetic mechanisms are also implicated during development in utero and at the cellular level, so environmental exposures may harm the fetus by impairing the epigenome of the developing organism to modify disease risk later in life. By contrast, bioactive food components may trigger protective epigenetic modifications throughout life, with early life nutrition being particularly important. Beyond their genetics, the overall health status of an individual may be regarded as an integration of many environmental signals starting at gestation and acting through epigenetic modifications. This review explores how the environment affects the epigenome in health and disease, with a particular focus on cancer. Understanding the molecular effects of behavior, nutrients, and pollutants might be relevant for developing preventative strategies and personalized heath programs. Furthermore, by restoring cellular differentiation, epigenetic drugs could represent a potential strategy for the treatment of many diseases including cancer.
Collapse
Affiliation(s)
- Céline Tiffon
- French National Cancer Institute, 92100 Boulogne-Billancourt, France.
| |
Collapse
|
6
|
Morud J, Ashouri A, Larsson E, Ericson M, Söderpalm B. Transcriptional profiling of the rat nucleus accumbens after modest or high alcohol exposure. PLoS One 2017; 12:e0181084. [PMID: 28715440 PMCID: PMC5513432 DOI: 10.1371/journal.pone.0181084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Alcohol use disorder is a chronic relapsing brain disorder and a global health issue. Prolonged high alcohol consumption increases the risk for dependence development, a complex state that includes progressive alterations in brain function. The molecular mechanisms behind these changes remain to be fully disclosed, but several genes show altered expression in various regions of the rat brain even after modest alcohol exposure. The present study utilizes whole-transcriptome sequencing (RNA-seq) to investigate expression changes in the brain nucleus accumbens (NAc), an area of particular interest in addictive disorders, of alcohol consuming rats. The impact on gene expression after eight weeks of moderate voluntary alcohol consumption or voluntary consumption combined with forced excessive exposure was explored in two separate experiments. The results point to a lack of strong and consistent expression alterations in the NAc after alcohol exposure, suggesting that transcriptional effects of alcohol are weak or transient, or occur primarily in brain regions other than NAc.
Collapse
Affiliation(s)
- Julia Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Arghavan Ashouri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Farris SP, Pietrzykowski AZ, Miles MF, O'Brien MA, Sanna PP, Zakhari S, Mayfield RD, Harris RA. Applying the new genomics to alcohol dependence. Alcohol 2015; 49:825-36. [PMID: 25896098 PMCID: PMC4586299 DOI: 10.1016/j.alcohol.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022]
Abstract
This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 6-9, 2014. The overall goal of the symposium titled "Applying the New Genomics to Alcohol Dependence", chaired by Dr. Adron Harris, was to highlight recent genomic discoveries and applications for profiling alcohol use disorder (AUD). Dr. Sean Farris discussed the gene expression networks related to lifetime consumption of alcohol within human prefrontal cortex. Dr. Andrzej Pietrzykowski presented the effects of alcohol on microRNAs in humans and animal models. Alcohol-induced alterations in the synaptic transcriptome were discussed by Dr. Michael Miles. Dr. Pietro Sanna examined methods to probe the gene regulatory networks that drive excessive alcohol drinking, and Dr. Samir Zakhari served as a panel discussant and summarized the proceedings. Collectively, the presentations emphasized the power of integrating multiple levels of genetics and transcriptomics with convergent biological processes and phenotypic behaviors to determine causal factors of AUD. The combined use of diverse data types demonstrates how unique approaches and applications can help categorize genetic complexities into relevant biological networks using a systems-level model of disease.
Collapse
Affiliation(s)
- Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Andrzej Z Pietrzykowski
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA; Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Megan A O'Brien
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pietro P Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Samir Zakhari
- Office of Science, Distilled Spirits Council of the United States, Washington, DC, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Transcriptome organization for chronic alcohol abuse in human brain. Mol Psychiatry 2015; 20:1438-47. [PMID: 25450227 PMCID: PMC4452464 DOI: 10.1038/mp.2014.159] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022]
Abstract
Alcohol dependence is a heterogeneous psychiatric disorder characterized by high genetic heritability and neuroadaptations occurring from repeated drug exposure. Through an integrated systems approach we observed consistent differences in transcriptome organization within postmortem human brain tissue associated with the lifetime consumption of alcohol. Molecular networks, determined using high-throughput RNA sequencing, for drinking behavior were dominated by neurophysiological targets and signaling mechanisms of alcohol. The systematic structure of gene sets demonstrates a novel alliance of multiple ion channels, and related processes, underlying lifetime alcohol consumption. Coordinate expression of these transcripts was enriched for genome-wide association signals in alcohol dependence and a meta-analysis of alcohol self-administration in mice. Further dissection of genes within alcohol consumption networks revealed the potential interaction of alternatively spliced transcripts. For example, expression of a human-specific isoform of the voltage-gated sodium channel subunit SCN4B was significantly correlated to lifetime alcohol consumption. Overall, our work demonstrates novel convergent evidence for biological networks related to excessive alcohol consumption, which may prove fundamentally important in the development of pharmacotherapies for alcohol dependence.
Collapse
|
9
|
Mamdani M, Williamson V, McMichael GO, Blevins T, Aliev F, Adkins A, Hack L, Bigdeli T, D. van der Vaart A, Web BT, Bacanu SA, Kalsi G, Kendler KS, Miles MF, Dick D, Riley BP, Dumur C, Vladimirov VI. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence. PLoS One 2015; 10:e0137671. [PMID: 26381263 PMCID: PMC4575063 DOI: 10.1371/journal.pone.0137671] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD.
Collapse
Affiliation(s)
- Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Vernell Williamson
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gowon O. McMichael
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Tana Blevins
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Fazil Aliev
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Amy Adkins
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Laura Hack
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Tim Bigdeli
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Andrew D. van der Vaart
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Bradley Todd Web
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gursharan Kalsi
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | | | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Danielle Dick
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Catherine Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
10
|
Osterndorff-Kahanek EA, Becker HC, Lopez MF, Farris SP, Tiwari GR, Nunez YO, Harris RA, Mayfield RD. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks. PLoS One 2015; 10:e0121522. [PMID: 25803291 PMCID: PMC4372440 DOI: 10.1371/journal.pone.0121522] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/02/2015] [Indexed: 01/19/2023] Open
Abstract
Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.
Collapse
Affiliation(s)
| | - Howard C. Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Marcelo F. Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sean P. Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yury O. Nunez
- Pharmacotherapy Education and Research Center, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hitzemann R, Bottomly D, Iancu O, Buck K, Wilmot B, Mooney M, Searles R, Zheng C, Belknap J, Crabbe J, McWeeney S. The genetics of gene expression in complex mouse crosses as a tool to study the molecular underpinnings of behavior traits. Mamm Genome 2013; 25:12-22. [PMID: 24374554 PMCID: PMC3916704 DOI: 10.1007/s00335-013-9495-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023]
Abstract
Complex Mus musculus crosses provide increased resolution to examine the relationships between gene expression and behavior. While the advantages are clear, there are numerous analytical and technological concerns that arise from the increased genetic complexity that must be considered. Each of these issues is discussed, providing an initial framework for complex cross study design and planning.
Collapse
Affiliation(s)
- Robert Hitzemann
- Portland Alcohol Research Center, Veterans Affairs Medical Center, Portland, 97239, OR, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Farris SP, Miles MF. Fyn-dependent gene networks in acute ethanol sensitivity. PLoS One 2013; 8:e82435. [PMID: 24312422 PMCID: PMC3843713 DOI: 10.1371/journal.pone.0082435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022] Open
Abstract
Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design of pharmacotherapies for the treatment and prevention of alcohol use disorders.
Collapse
Affiliation(s)
- Sean P Farris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | | |
Collapse
|
13
|
Osterndorff-Kahanek E, Ponomarev I, Blednov YA, Harris RA. Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: comparison with immune activation. PLoS One 2013; 8:e59870. [PMID: 23555817 PMCID: PMC3612084 DOI: 10.1371/journal.pone.0059870] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/19/2013] [Indexed: 12/17/2022] Open
Abstract
Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol (Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption.
Collapse
Affiliation(s)
- Elizabeth Osterndorff-Kahanek
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Igor Ponomarev
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Contet C. Gene Expression Under the Influence: Transcriptional Profiling of Ethanol in the Brain. CURRENT PSYCHOPHARMACOLOGY 2012; 1:301-314. [PMID: 24078902 PMCID: PMC3783024 DOI: 10.2174/2211556011201040301] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sensitivity to ethanol intoxication, propensity to drink ethanol and vulnerability to develop alcoholism are all influenced by genetic factors. Conversely, exposure to ethanol or subsequent withdrawal produce gene expression changes, which, in combination with environmental variables, may participate in the emergence of compulsive drinking and relapse. The present review offers an integrated perspective on brain gene expression profiling in rodent models of predisposition to differential ethanol sensitivity or consumption, in rats and mice subjected to acute or chronic ethanol exposure, as well as in human alcoholics. The functional categories over-represented among differentially expressed genes suggest that the transcriptional effects of chronic ethanol consumption contribute to the neuroplasticity and neurotoxicity characteristic of alcoholism. Importantly, ethanol produces distinct transcriptional changes within the different brain regions involved in intoxication, reinforcement and addiction. Special emphasis is put on recent profiling studies that have provided some insights into the molecular mechanisms potentially mediating genome-wide regulation of gene expression by ethanol. In particular, current evidence for a role of transcription factors, chromatin remodeling and microRNAs in coordinating the expression of large sets of genes in animals predisposed to excessive ethanol drinking or exposed to protracted abstinence, as well as in human alcoholics, is presented. Finally, studies that have compared ethanol with other drugs of abuse have highlighted common gene expression patterns that may play a central role in drug addiction. The availability of novel technologies and a focus on mechanistic approaches are shaping the future of ethanol transcriptomics.
Collapse
Affiliation(s)
- Candice Contet
- The Scripps Research Institute, Committee on the Neurobiology of Addictive Disorders, La Jolla, CA, USA
| |
Collapse
|
16
|
Arora T, Mehta AK, Joshi V, Mehta KD, Rathor N, Mediratta PK, Sharma KK. Substitute of Animals in Drug Research: An Approach Towards Fulfillment of 4R's. Indian J Pharm Sci 2012; 73:1-6. [PMID: 22131615 PMCID: PMC3224398 DOI: 10.4103/0250-474x.89750] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 12/16/2010] [Accepted: 01/02/2011] [Indexed: 11/04/2022] Open
Abstract
The preclinical studies for drug screening involve the use of animals which is very time consuming and expensive and at times leads to suffering of the used organism. Animal right activists around the world are increasingly opposing the use of animals. This has forced the researchers to find ways to not only decrease the time involved in drug screening procedures but also decrease the number of animals used and also increase the humane care of animals. To fulfill this goal a number of new in vitro techniques have been devised which are called 'Alternatives' or 'Substitutes' for use of animals in research involving drugs. These 'Alternatives' are defined as the adjuncts which help to decrease the use as well as the number of animals in biomedical research. Russell and Burch have defined these alternatives by three R's - Reduction, Refinement and Replacement. These alternative strategies include physico-chemical methods and techniques utilizing tissue culture, microbiological system, stem cells, DNA chips, micro fluidics, computer analysis models, epidemiological surveys and plant-tissue based materials. The advantages of these alternatives include the decrease in the number of animals used, ability to obtain the results quickly, reduction in the costs and flexibility to control the variables of the experiment. However these techniques are not glittering gold and have their own shortcomings. The disadvantages include the lack of an appropriate alternative to study the whole animal's metabolic response, inability to study transplant models and idiosyncratic responses and inability to study the body's handling of drugs and its subsequent metabolites. None-the-less these aalternative methods to certain extent help to reduce the number of animals required for research. But such alternatives cannot eliminate the need for animals in research completely. Even though no animal model is a complete set of replica for a process within a human body, the intact animal does provide a better model of the complex interaction of the physiological processes.
Collapse
Affiliation(s)
- T Arora
- Department of Pharmacology, University College of Medical Sciences, Delhi - 110 095, India
| | | | | | | | | | | | | |
Collapse
|
17
|
Starkman BG. Epigenetics-beyond the genome in alcoholism. Alcohol Res 2012; 34:293-305. [PMID: 23134045 PMCID: PMC3860414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Genetic and environmental factors play a role in the development of alcoholism. Whole-genome expression profiling has highlighted the importance of several genes that may contribute to alcohol abuse disorders. In addition, more recent findings have added yet another layer of complexity to the overall molecular mechanisms involved in a predisposition to alcoholism and addiction by demonstrating that processes related to genetic factors that do not manifest as DNA sequence changes (i.e., epigenetic processes) play a role. Both acute and chronic ethanol exposure can alter gene expression levels in specific neuronal circuits that govern the behavioral consequences related to tolerance and dependence. The unremitting cycle of alcohol consumption often includes satiation and self-medication with alcohol, followed by excruciating withdrawal symptoms and the resultant relapse, which reflects both the positive and negative affective states of alcohol addiction. Recent studies have indicated that behavioral changes induced by acute and chronic ethanol exposure may involve chromatin remodeling resulting from covalent histone modifications and DNA methylation in the neuronal circuits involving a brain region called the amygdala. These findings have helped identify enzymes involved in epigenetic mechanisms, such as the histone deacetylase, histone acetyltransferase, and DNA methyltransferase enzymes, as novel therapeutic targets for the development of future pharmacotherapies for the treatment of alcoholism.
Collapse
|
18
|
Assessing the genetic risk for alcohol use disorders. Alcohol Res 2012; 34:266-72. [PMID: 23134042 PMCID: PMC3860406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The past two decades have witnessed a revolution in the field of genetics which has led to a rapid evolution in the tools and techniques available for mapping genes that contribute to genetically complex disorders such as alcohol dependence. Research in humans and in animal models of human disease has provided important new information. Among the most commonly applied approaches used in human studies are family studies, case-control studies, and genome-wide association studies. Animal models have been aimed at identifying genetic regions or individual genes involved in different aspects of alcoholism, using such approaches as quantitative trait locus analysis, genome sequencing, knockout animals, and other sophisticated molecular genetic techniques. All of these approaches have led to the identification of several genes that seem to influence the risk for alcohol dependence, which are being further analyzed. Newer studies, however, also are attempting to look at the genetic basis of alcoholism at the level of the entire genome, moving beyond the study of individual genes toward analyses of gene interactions and gene networks in the development of this devastating disease.
Collapse
|
19
|
Abstract
Alcohol consumption and its association with health or illness states are of great interest from the nutritional genomics point of view. This interest is centered not only on investigating the genetic variants that can modulate the effects of alcoholic beverages on different intermediate and final disease phenotypes (mainly cardiovascular diseases and cancer), but also on finding out how the genome influences the amount of alcohol consumed and consumption habits. This chapter reviews the latest findings on alcohol consumption trends, the methodological limitations in the analysis of alcohol consumption, and the main genes and polymorphisms related to alcohol intake, including the inconsistent results from genome-wide association studies (GWASs). It also reviews the effects of alcohol consumption on cardiovascular diseases and cancer and the studies analyzing the interactions between different genetic polymorphisms and alcohol in phenotypes related to these diseases, discussing the studies' advantages and limitations as well as future research perspectives.
Collapse
|
20
|
Yakovleva T, Bazov I, Watanabe H, Hauser KF, Bakalkin G. Transcriptional control of maladaptive and protective responses in alcoholics: a role of the NF-κB system. Brain Behav Immun 2011; 25 Suppl 1:S29-38. [PMID: 21195164 PMCID: PMC3588165 DOI: 10.1016/j.bbi.2010.12.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 11/27/2022] Open
Abstract
Alcohol dependence and associated cognitive impairment appear to result from maladaptive neuroplasticity in response to chronic alcohol consumption, neuroinflammation and neurodegeneration. The inherent stability of behavioral alterations associated with the addicted state suggests that transcriptional and epigenetic mechanisms are operative. NF-κB transcription factors are regulators of synaptic plasticity and inflammation, and responsive to a variety of stimuli including alcohol. These factors are abundant in the brain where they have diverse functions that depend on the composition of the NF-κB complex and cellular context. In neuron cell bodies, NF-κB is constitutively active, and involved in neuronal injury and neuroprotection. However, at the synapse, NF-κB is present in a latent form and upon activation is transported to the cell nucleus. In glia, NF-κB is inducible and regulates inflammatory processes that exacerbate alcohol-induced neurodegeneration. Animal studies demonstrate that acute alcohol exposure transiently activates NF-κB, which induces neuroinflammatory responses and neurodegeneration. Postmortem studies of brains of human alcoholics suggest that repeated cycles of alcohol consumption and withdrawal cause adaptive changes in the NF-κB system that may permit the system to better tolerate excessive stimulation. This type of tolerance, ensuring a low degree of responsiveness to applied stimuli, apparently differs from that in the immune system, and may represent a compensatory response that protects brain cells against alcohol neurotoxicity. This view is supported by findings showing preferential downregulation of pro-apoptotic gene expression in the affected brain areas in human alcoholics. Although further verification is needed, we speculate that NF-κB-driven neuroinflammation and disruption to neuroplasticity play a significant role in regulating alcohol dependence and cognitive impairment.
Collapse
Affiliation(s)
- Tatjana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kurt F. Hauser
- Department of Pharmacology & Toxicology, and Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden,To whom correspondence may be addressed: Georgy Bakalkin, Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden, , Phone: (+46) 18 471 5050, Fax: (+046) 18-50 19 20
| |
Collapse
|