1
|
Blank HM, Reuse C, Schmidt‐Hohagen K, Hammer SE, Hiller K, Polymenis M. Branched-chain amino acid synthesis is coupled to TOR activation early in the cell cycle in yeast. EMBO Rep 2023; 24:e57372. [PMID: 37497662 PMCID: PMC10481666 DOI: 10.15252/embr.202357372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
How cells coordinate their metabolism with division determines the rate of cell proliferation. Dynamic patterns of metabolite synthesis during the cell cycle are unexplored. We report the first isotope tracing analysis in synchronous, growing budding yeast cells. Synthesis of leucine, a branched-chain amino acid (BCAA), increases through the G1 phase of the cell cycle, peaking later during DNA replication. Cells lacking Bat1, a mitochondrial aminotransferase that synthesizes BCAAs, grow slower, are smaller, and are delayed in the G1 phase, phenocopying cells in which the growth-promoting kinase complex TORC1 is moderately inhibited. Loss of Bat1 lowers the levels of BCAAs and reduces TORC1 activity. Exogenous provision of valine and, to a lesser extent, leucine to cells lacking Bat1 promotes cell division. Valine addition also increases TORC1 activity. In wild-type cells, TORC1 activity is dynamic in the cell cycle, starting low in early G1 but increasing later in the cell cycle. These results suggest a link between BCAA synthesis from glucose to TORC1 activation in the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Carsten Reuse
- Department of Bioinformatics and Biochemistry, BRICSTechnische Universität BraunschweigBraunschweigGermany
| | - Kerstin Schmidt‐Hohagen
- Department of Bioinformatics and Biochemistry, BRICSTechnische Universität BraunschweigBraunschweigGermany
| | - Staci E Hammer
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, BRICSTechnische Universität BraunschweigBraunschweigGermany
| | - Michael Polymenis
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
2
|
Qian L, Li N, Lu XC, Xu M, Liu Y, Li K, Zhang Y, Hu K, Qi YT, Yao J, Wu YL, Wen W, Huang S, Chen ZJ, Yin M, Lei QY. Enhanced BCAT1 activity and BCAA metabolism promotes RhoC activity in cancer progression. Nat Metab 2023; 5:1159-1173. [PMID: 37337119 DOI: 10.1038/s42255-023-00818-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Increased expression of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) has been associated with aggressive phenotypes of different cancers. Here we identify a gain of function of BCAT1 glutamic acid to alanine mutation at codon 61 (BCAT1E61A) enriched around 2.8% in clinical gastric cancer samples. We found that BCAT1E61A confers higher enzymatic activity to boost branched-chain amino acid (BCAA) catabolism, accelerate cell growth and motility and contribute to tumor development. BCAT1 directly interacts with RhoC, leading to elevation of RhoC activity. Notably, the BCAA-derived metabolite, branched-chain α-keto acid directly binds to the small GTPase protein RhoC and promotes its activity. BCAT1 knockout-suppressed cell motility could be rescued by expressing BCAT1E61A or adding branched-chain α-keto acid. We also identified that candesartan acts as an inhibitor of BCAT1E61A, thus repressing RhoC activity and cancer cell motility in vitro and preventing peritoneal metastasis in vivo. Our study reveals a link between BCAA metabolism and cell motility and proliferation through regulating RhoC activation, with potential therapeutic implications for cancers.
Collapse
Affiliation(s)
- Lin Qian
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Chen Lu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Midie Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center; Institute of Pathology, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaiyue Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kewen Hu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Ting Qi
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Yao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyu Wen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zheng-Jun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Shim JS, Jeong HI, Bang SW, Jung SE, Kim G, Kim YS, Redillas MCFR, Oh SJ, Seo JS, Kim JK. DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE enhances drought tolerance in rice. PLANT PHYSIOLOGY 2023; 191:1435-1447. [PMID: 36493384 PMCID: PMC9922417 DOI: 10.1093/plphys/kiac560] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Plants accumulate several metabolites in response to drought stress, including branched-chain amino acids (BCAAs). However, the roles of BCAAs in plant drought responses and the underlying molecular mechanisms for BCAA accumulation remain elusive. Here, we demonstrate that rice (Oryza sativa) DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (OsDIAT) mediates the accumulation of BCAAs in rice in response to drought stress. An in vitro enzyme activity assay indicated that OsDIAT is a branched-chain amino acid aminotransferase, and subcellular localization analysis revealed that OsDIAT localizes to the cytoplasm. The expression of OsDIAT was induced in plants upon exposure to abiotic stress. OsDIAT-overexpressing (OsDIATOX) plants were more tolerant to drought stress, whereas osdiat plants were more susceptible to drought stress compared with nontransgenic (NT) plants. Amino acid analysis revealed that BCAA levels were higher in OsDIATOX but lower in osdiat compared with in NT plants. Finally, the exogenous application of BCAAs improved plant tolerance to osmotic stress compared with that in control plants. Collectively, these findings suggest that OsDIAT mediates drought tolerance by promoting the accumulation of BCAAs.
Collapse
Affiliation(s)
| | | | - Seung Woon Bang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Se Eun Jung
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Goeun Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Mark Christian Felipe R Redillas
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- Department of Biology, De La Salle University, Manila 1004, Philippines
| | - Se-Jun Oh
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| | - Jun Sung Seo
- Author for correspondence: (J. S. S.); (J.-K. K.)
| | - Ju-Kon Kim
- Author for correspondence: (J. S. S.); (J.-K. K.)
| |
Collapse
|
4
|
Improvement of Fusel Alcohol Production by Engineering of the Yeast Branched-Chain Amino Acid Aminotransaminase. Appl Environ Microbiol 2022; 88:e0055722. [PMID: 35699439 PMCID: PMC9275217 DOI: 10.1128/aem.00557-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Branched-chain higher alcohols (BCHAs), or fusel alcohols, including isobutanol, isoamyl alcohol, and active amyl alcohol, are useful compounds in several industries. The yeast Saccharomyces cerevisiae can synthesize these compounds via the metabolic pathways of branched-chain amino acids (BCAAs). Branched-chain amino acid aminotransaminases (BCATs) are the key enzymes for BCHA production via the Ehrlich pathway of BCAAs. BCATs catalyze a bidirectional transamination reaction between branched-chain α-keto acids (BCKAs) and BCAAs. In S. cerevisiae, there are two BCAT isoforms, Bat1 and Bat2, which are encoded by the genes BAT1 and BAT2. Although many studies have shown the effects of deletion or overexpression of BAT1 and BAT2 on BCHA production, there have been no reports on the enhancement of BCHA production by functional variants of BCATs. Here, to improve BCHA productivity, we designed variants of Bat1 and Bat2 with altered enzyme activity by using in silico computational analysis: the Gly333Ser and Gly333Trp Bat1 and corresponding Gly316Ser and Gly316Trp Bat2 variants, respectively. When expressed in S. cerevisiae cells, most of these variants caused a growth defect in minimal medium. Interestingly, the Gly333Trp Bat1 and Gly316Ser Bat2 variants achieved 18.7-fold and 17.4-fold increases in isobutanol above that for the wild-type enzyme, respectively. The enzyme assay revealed that the catalytic activities of all four BCAT variants were lower than that of the wild-type enzyme. Our results indicate that the decreased BCAT activity enhanced BCHA production by reducing BCAA biosynthesis, which occurs via a pathway that directly competes with BCHA production. IMPORTANCE Recently, several studies have attempted to increase the production of branched-chain higher alcohols (BCHAs) in the yeast Saccharomyces cerevisiae. The key enzymes for BCHA biosynthesis in S. cerevisiae are the branched-chain amino acid aminotransaminases (BCATs) Bat1 and Bat2. Deletion or overexpression of the genes encoding BCATs has an impact on the production of BCHAs; however, amino acid substitution variants of Bat1 and Bat2 that could affect enzymatic properties—and ultimately BCHA productivity—have not been fully studied. By using in silico analysis, we designed variants of Bat1 and Bat2 and expressed them in yeast cells. We found that the engineered BCATs decreased catalytic activities and increased BCHA production. Our approach provides new insight into the functions of BCATs and will be useful in the future construction of enzymes optimized for high-level production of BCHAs.
Collapse
|
5
|
Sonnabend R, Seiler L, Gressler M. Regulation of the Leucine Metabolism in Mortierella alpina. J Fungi (Basel) 2022; 8:196. [PMID: 35205950 PMCID: PMC8880518 DOI: 10.3390/jof8020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
The oleaginous fungus Mortierella alpina is a safe source of polyunsaturated fatty acids (PUFA) in industrial food and feed production. Besides PUFA production, pharmaceutically relevant surface-active and antimicrobial oligopeptides were isolated from this basal fungus. Both production of fatty acids and oligopeptides rely on the biosynthesis and high turnover of branched-chain-amino acids (BCAA), especially l-leucine. However, the regulation of BCAA biosynthesis in basal fungi is largely unknown. Here, we report on the regulation of the leucine, isoleucine, and valine metabolism in M. alpina. In contrast to higher fungi, the biosynthetic genes for BCAA are hardly transcriptionally regulated, as shown by qRT-PCR analysis, which suggests a constant production of BCAAs. However, the enzymes of the leucine metabolism are tightly metabolically regulated. Three enzymes of the leucine metabolism were heterologously produced in Escherichia coli, one of which is inhibited by allosteric feedback loops: The key regulator is the α-isopropylmalate synthase LeuA1, which is strongly disabled by l-leucine, α-ketoisocaproate, and propionyl-CoA, the precursor of the odd-chain fatty acid catabolism. Its gene is not related to homologs from higher fungi, but it has been inherited from a phototrophic ancestor by horizontal gene transfer.
Collapse
Affiliation(s)
| | | | - Markus Gressler
- Pharmaceutical Microbiology, Friedrich-Schiller-University Jena, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745 Jena, Germany; (R.S.); (L.S.)
| |
Collapse
|
6
|
Lee JH, Kim YC, Jung Y, Han JH, Zhang C, Yun CW, Lee S. The overexpression of cucumber (Cucumis sativus L.) genes that encode the branched-chain amino acid transferase modulate flowering time in Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:25-35. [PMID: 30298307 DOI: 10.1007/s00299-018-2346-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
The overexpression of CsBCATs promotes flowering in Arabidopsis by regulating the expression of flowering time genes. The branched-chain amino acid transferases (BCATs) play an important role in the metabolism of branched-chain amino acids (BCAAs), such as isoleucine, leucine, and valine. They function in both the synthesis and the degradation of this class of amino acids. We identified and characterized the three BCAT genes in cucumber (Cucumis sativus L.). The tissue-specific expression profiling in cucumber plants revealed that CsBCAT2 and CsBCAT7 were highly expressed in the reproductive tissues, whereas CsBCAT3 expression was highly detected in the vegetative tissues. The subcellular localization patterns of three CsBCATs were observed in the mitochondria. The functional analyses of CsBCATs showed that CsBCAT2 and CsBCAT3 restored the growth of bat1Δ/bat2Δ double knockout yeast (Saccharomyces cerevisiae), and CsBCAT3 and CsBCAT7 with different substrate preferences acted in a reverse reaction. The transgenic approach demonstrated that the overexpression of the three CsBCATs resulted in early flowering phenotypes, which were associated with the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) in a manner in which they were dependent on GIGANTEA (GI)/CONSTANS (CO) and SHORT VEGETATIVE PHASE (SVP)/FLOWERING LOCUS C (FLC) modules. Our results, which are observed in conjunction, suggest that there is an interconnection between BCAT genes that function in BCAA metabolism and the flowering time in plants.
Collapse
Affiliation(s)
- Jeong Hwan Lee
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
- Division of Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Young-Cheon Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Youjin Jung
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Ji Hoon Han
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Chunying Zhang
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Cheol-Won Yun
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sanghyeob Lee
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
7
|
Takpho N, Watanabe D, Takagi H. Valine biosynthesis in Saccharomyces cerevisiae is regulated by the mitochondrial branched-chain amino acid aminotransferase Bat1. MICROBIAL CELL 2018; 5:293-299. [PMID: 29850466 PMCID: PMC5972033 DOI: 10.15698/mic2018.06.637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the branched-chain amino acid aminotransferases (BCATs) Bat1 and Bat2 catalyze the conversion of α-ketoisovalerate, α-keto-β-methylvalerate, and α-ketoisokaproate and into valine, isoleucine, and leucine, respectively, as the final step of branched-chain amino acid biosynthesis. Bat1 and Bat2 are homologous proteins that share 77% identity, but Bat1 localizes in the mitochondria and Bat2 in the cytosol. Based on our preliminary finding that only disruption of the BAT1 gene led to slow-growth phenotype, we hypothesized that Bat1 and Bat2 play distinct roles in valine biosynthesis and the regulation of cell growth. In this study, we found that intracellular valine content was dramatically decreased in Δbat1 cells, whereas Δbat2 cells exhibited no changes in the valine level. To further examine the distinct roles of Bat1 and Bat2, we constructed two artificial genes encoding the mitochondrial-targeting signal (MTS)-deleted Bat1 (Bat1-MTS) and the MTS of Bat1-fused Bat2 (Bat2+MTS). Interestingly, Bat2+MTS was relocalized into the mitochondria, because Bat2 localization was changed to the mitochondria by addition of MTS, and could partially restore the valine content and growth in Δbat1Δbat2 cells. These results suggest that the mitochondria are the major site of valine biosynthesis, and mitochondrial BCAT is important for valine biosynthesis in S. cerevisiae.
Collapse
Affiliation(s)
- Natthaporn Takpho
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
8
|
Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis. Metab Eng 2017; 44:302-312. [DOI: 10.1016/j.ymben.2017.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
|
9
|
Whittaker JW. Intracellular trafficking of the pyridoxal cofactor. Implications for health and metabolic disease. Arch Biochem Biophys 2015; 592:20-6. [PMID: 26619753 DOI: 10.1016/j.abb.2015.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
Abstract
The importance of the vitamin B6-derived pyridoxal cofactor for human health has been established through more than 70 years of intensive biochemical research, revealing its fundamental roles in metabolism. B6 deficiency, resulting from nutritional limitation or impaired uptake from dietary sources, is associated with epilepsy, neuromuscular disease and neurodegeneration. Hereditary disorders of B6 processing are also known, and genetic defects in pathways involved in transport of B6 into the cell and its transformation to the pyridoxal-5'-phosphate enzyme cofactor can contribute to cardiovascular disease by interfering with homocysteine metabolism and the biosynthesis of vasomodulatory polyamines. Compared to the processes involved in cellular uptake and processing of the B6 vitamers, trafficking of the PLP cofactor across intracellular membranes is very poorly understood, even though the availability of PLP within subcellular compartments (particularly the mitochondrion) may have important health implications. The aim of this review is to concisely summarize the state of current knowledge of intracellular trafficking of PLP and to identify key directions for future research.
Collapse
Affiliation(s)
- James W Whittaker
- Institute of Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| |
Collapse
|
10
|
Clark SM, Vaitheeswaran V, Ambrose SJ, Purves RW, Page JE. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus). BMC PLANT BIOLOGY 2013; 13:12. [PMID: 23347725 PMCID: PMC3564914 DOI: 10.1186/1471-2229-13-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/12/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. RESULTS Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic) and reverse (catabolic) reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial) and catabolic (mitochondrial) clades. CONCLUSIONS Our analysis of the hop transcriptome significantly expands the genomic resources available for this agriculturally-important crop. This study provides evidence for the lupulin gland-specific biosynthesis of BCAAs and prenyl diphosphates to provide precursors for the production of bitter acids. The biosynthetic pathway leading to BCAAs in lupulin glands involves the plastidial enzyme, HlBCAT2. The mitochondrial enzyme HlBCAT1 degrades BCAAs as the first step in the catabolic pathway leading to branched chain-acyl-CoAs.
Collapse
Affiliation(s)
- Shawn M Clark
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Vinidhra Vaitheeswaran
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Stephen J Ambrose
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Randy W Purves
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Jonathan E Page
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
11
|
Bedekovics T, Li H, Gajdos GB, Isaya G. Leucine biosynthesis regulates cytoplasmic iron-sulfur enzyme biogenesis in an Atm1p-independent manner. J Biol Chem 2011; 286:40878-88. [PMID: 21926174 DOI: 10.1074/jbc.m111.270082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fe-S clusters (ISCs) are versatile cofactors utilized by many mitochondrial, cytoplasmic, and nuclear enzymes. Whereas mitochondria can independently initiate and complete ISC synthesis, other cellular compartments are believed to assemble ISCs from putative precursors exported from the mitochondria via an ATP binding cassette (ABC) transporter conserved from yeast (Atm1p) to humans (ABCB7). However, the regulatory interactions between mitochondrial and extramitochondrial ISC synthesis are largely unknown. In yeast, we found that mitochondrial ISC synthesis is regulated by the leucine biosynthetic pathway, which among other proteins involves an abundant cytoplasmic [4Fe-4S] enzyme, Leu1p. Enzymatic blocks in the pathway (i.e. leu1Δ or leu2Δ gene deletion mutations) induced post-transcriptional up-regulation of core components of mitochondrial ISC biosynthesis (i.e. the sulfur donor Nfs1p, the iron donor Yfh1p, and the ISC scaffold Isu1p). In leu2Δ cells, transcriptional mechanisms also led to dramatic up-regulation of Leu1p with concomitant down-regulation of mitochondrial aconitase (Aco1p), a [4Fe-4S] enzyme in the tricarboxylic acid cycle. Accordingly, the leu2Δ deletion mutation exacerbated Aco1p inactivation in cells with mutations in Yfh1p. These data indicate that defects in leucine biosynthesis promote the biogenesis of enzymatically active Leu1p at the expense of Aco1p activity. Surprisingly, this effect is independent of Atm1p; previous reports linking the loss of Leu1p activity to Atm1p depletion were confounded by the fact that LEU2 was used as a selectable marker to create Atm1p-depleted cells, whereas a leu2Δ allele was present in Atm1p-repleted controls. Thus, still largely unknown transcriptional and post-transcriptional mechanisms control ISC distribution between mitochondria and other cellular compartments.
Collapse
Affiliation(s)
- Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The perception of wine flavor and aroma is the result of a multitude of interactions between a large number of chemical compounds and sensory receptors. Compounds interact and combine and show synergistic (i.e., the presence of one compound enhances the perception of another) and antagonistic (a compound suppresses the perception of another) interactions. The chemical profile of a wine is derived from the grape, the fermentation microflora (in particular the yeast Saccharomyces cerevisiae), secondary microbial fermentations that may occur, and the aging and storage conditions. Grape composition depends on the varietal and clonal genotype of the vine and on the interaction of the genotype and its phenotype with many environmental factors which, in wine terms, are usually grouped under the concept of "terroir" (macro, meso and microclimate, soil, topography). The microflora, and in particular the yeast responsible for fermentation, contributes to wine aroma by several mechanisms: firstly by utilizing grape juice constituents and biotransforming them into aroma- or flavor-impacting components, secondly by producing enzymes that transform neutral grape compounds into flavor-active compounds, and lastly by the de novo synthesis of many flavor-active primary (e.g., ethanol, glycerol, acetic acid, and acetaldehyde) and secondary metabolites (e.g., esters, higher alcohols, fatty acids). This review aims to present an overview of the formation of wine flavor and aroma-active components, including the varietal precursor molecules present in grapes and the chemical compounds produced during alcoholic fermentation by yeast, including compounds directly related to ethanol production or secondary metabolites. The contribution of malolactic fermentation, ageing, and maturation on the aroma and flavor of wine is also discussed.
Collapse
|
13
|
Styger G, Jacobson D, Bauer FF. Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 2011; 91:713-30. [DOI: 10.1007/s00253-011-3237-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
14
|
Colón M, Hernández F, López K, Quezada H, González J, López G, Aranda C, González A. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. PLoS One 2011; 6:e16099. [PMID: 21267457 PMCID: PMC3022659 DOI: 10.1371/journal.pone.0016099] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022] Open
Abstract
Background Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. Principal Findings Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs). This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1), while catabolic substrates are accumulated in the cytosol (Bat2). Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. Conclusions Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the biosynthetic and catabolic roles of the ancestral BCAT in two isozymes improving BCAAs metabolism and constituting an adaptation to facultative metabolism.
Collapse
Affiliation(s)
- Maritrini Colón
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Fabiola Hernández
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Karla López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Héctor Quezada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México City, México
| | - James González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Geovani López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Cristina Aranda
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Alicia González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
- * E-mail:
| |
Collapse
|
15
|
Maloney GS, Kochevenko A, Tieman DM, Tohge T, Krieger U, Zamir D, Taylor MG, Fernie AR, Klee HJ. Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato. PLANT PHYSIOLOGY 2010; 153:925-36. [PMID: 20435740 PMCID: PMC2899903 DOI: 10.1104/pp.110.154922] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 04/30/2010] [Indexed: 05/18/2023]
Abstract
Branched-chain amino acids (BCAAs) are synthesized in plants from branched-chain keto acids, but their metabolism is not completely understood. The interface of BCAA metabolism lies with branched-chain aminotransferases (BCAT) that catalyze both the last anabolic step and the first catabolic step. In this study, six BCAT genes from the cultivated tomato (Solanum lycopersicum) were identified and characterized. SlBCAT1, -2, -3, and -4 are expressed in multiple plant tissues, while SlBCAT5 and -6 were undetectable. SlBCAT1 and -2 are located in the mitochondria, SlBCAT3 and -4 are located in chloroplasts, while SlBCAT5 and -6 are located in the cytosol and vacuole, respectively. SlBCAT1, -2, -3, and -4 were able to restore growth of Escherichia coli BCAA auxotrophic cells, but SlBCAT1 and -2 were less effective than SlBCAT3 and -4 in growth restoration. All enzymes were active in the forward (BCAA synthesis) and reverse (branched-chain keto acid synthesis) reactions. SlBCAT3 and -4 exhibited a preference for the forward reaction, while SlBCAT1 and -2 were more active in the reverse reaction. While overexpression of SlBCAT1 or -3 in tomato fruit did not significantly alter amino acid levels, an expression quantitative trait locus on chromosome 3, associated with substantially higher expression of Solanum pennellii BCAT4, did significantly increase BCAA levels. Conversely, antisense-mediated reduction of SlBCAT1 resulted in higher levels of BCAAs. Together, these results support a model in which the mitochondrial SlBCAT1 and -2 function in BCAA catabolism while the chloroplastic SlBCAT3 and -4 function in BCAA synthesis.
Collapse
MESH Headings
- Amino Acids, Branched-Chain/biosynthesis
- Amino Acids, Branched-Chain/chemistry
- Biosynthetic Pathways
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA, Complementary/genetics
- Escherichia coli/growth & development
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Inbreeding
- Kinetics
- Solanum lycopersicum/enzymology
- Solanum lycopersicum/genetics
- Multigene Family
- Organ Specificity/genetics
- Physical Chromosome Mapping
- Plants, Genetically Modified
- Protein Transport
- Quantitative Trait Loci/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reproducibility of Results
- Sequence Homology, Amino Acid
- Subcellular Fractions/enzymology
- Transaminases/genetics
- Transaminases/metabolism
Collapse
|
16
|
Pirkov I, Norbeck J, Gustafsson L, Albers E. A complete inventory of all enzymes in the eukaryotic methionine salvage pathway. FEBS J 2008; 275:4111-20. [DOI: 10.1111/j.1742-4658.2008.06552.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Kohlhaw GB. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 2003; 67:1-15, table of contents. [PMID: 12626680 PMCID: PMC150519 DOI: 10.1128/mmbr.67.1.1-15.2003] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After exploring evolutionary aspects of branched-chain amino acid biosynthesis, the review focuses on the extended leucine biosynthetic pathway as it operates in Saccharomyces cerevisiae. First, the genes and enzymes specific for the leucine pathway are considered: LEU4 and LEU9 (encoding the alpha-isopropylmalate synthase isoenzymes), LEU1 (isopropylmalate isomerase), and LEU2 (beta-isopropylmalate dehydrogenase). Emphasis is given to the unusual distribution of the branched-chain amino acid pathway enzymes between mitochondrial matrix and cytosol, on the newly defined role of Leu5p, and on regulatory mechanisms governing gene expression and enzyme activity, including new evidence for the metabolic importance of the regulation of alpha-isopropylmalate synthase by coenzyme A. Next, structure-function relationships of the transcriptional regulator Leu3p are addressed, defining its dual role as activator and repressor and discussing evidence in support of the self-masking model. Recent data pointing at a more extended Leu3p regulon are discussed. An overview of the layered controls of the extended leucine pathway is provided that includes a description of the newly recognized roles of Ilv5p and Bat1p in maintaining mitochondrial integrity. Finally, branched-chain amino acid biosynthesis and its regulation in other fungi are summarized, the question of leucine as metabolic signal is addressed, and possible directions of future research in this area are outlined.
Collapse
Affiliation(s)
- Gunter B Kohlhaw
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
18
|
Cooper AJL, Conway M, Hutson SM. A continuous 96-well plate spectrophotometric assay for branched-chain amino acid aminotransferases. Anal Biochem 2002; 308:100-5. [PMID: 12234469 DOI: 10.1016/s0003-2697(02)00243-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new, continuous 96-well plate spectrophotometric assay for the branched-chain amino acid aminotransferases is described. Transamination of L-leucine with alpha-ketoglutarate results in formation of alpha-ketoisocaproate, which is reductively aminated back to L-leucine by leucine dehydrogenase in the presence of ammonia and NADH. The disappearance of absorbance at 340 nm due to NADH oxidation is measured continuously. The specific activities obtained by this procedure for the highly purified human mitochondrial and cytosolic isoforms of BCAT compare favorably with those obtained by a commonly used radiochemical procedure, which measures transamination between alpha-ketoiso[1-14C]valerate and L-isoleucine. Due to the presence of glutamate dehydrogenase substrates (alpha-ketoglutarate, ammonia, and NADH) and L-leucine (an activator of glutamate dehydrogenase) in the standard assay mixture, interference with the measurement of BCAT activity in tissue homogenates by glutamate dehydrogenase is observed. However, by limiting the amount of ammonia and including the inhibitor GTP in the assay mixture, the interference from the glutamate dehydrogenase reaction is minimized. By comparing the rate of loss of absorbance at 340 nm in the modified spectrophotometric assay mixture containing leucine dehydrogenase to that obtained in the modified spectrophotometric assay mixture lacking leucine dehydrogenase, it is possible to measure BCAT activity in microliter amounts of rat tissue homogenates. The specific activities of BCAT in homogenates of selected rat tissues obtained by this method are comparable to those obtained previously by the radiochemical procedure.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
19
|
Abstract
In contrast to bacteria, mitochondria contain only a few ATP binding cassette (ABC) transporters in their inner membrane. The known mitochondrial ABC proteins fall into two major classes that, in the yeast Saccharomyces cerevisiae, are represented by the half-transporter Atm1p and the two closely homologous proteins Mdl1p and Mdl2p. In humans two Atm1p orthologues (ABC7 and MTABC3) and two proteins homologous to Mdll/2p have been localized to mitochondria. The Atm1p-like proteins perform an important function in mitochondrial iron homeostasis and in the maturation of Fe/S proteins in the cytosol. Mutations in ABC7 are causative of hereditary X-linked sideroblastic anemia and cerebellar ataxia (XLSA/A). MTABC3 may be a candidate gene for the lethal neonatal syndrome. The function of the mitochondrial Mdl1/2p-like proteins is not clear at present with the notable exception of murine ABC-me that may transport intermediates of heme biosynthesis from the matrix to the cytosol in erythroid tissues.
Collapse
Affiliation(s)
- R Lill
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Germany.
| | | |
Collapse
|
20
|
Mühlenhoff U, Lill R. Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:370-82. [PMID: 11004453 DOI: 10.1016/s0005-2728(00)00174-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fe/S clusters are co-factors of numerous proteins with important functions in metabolism, electron transport and regulation of gene expression. Presumably, Fe/S proteins have occurred early in evolution and are present in cells of virtually all species. Biosynthesis of these proteins is a complex process involving numerous components. In mitochondria, this process is accomplished by the so-called ISC (iron-sulfur cluster assembly) machinery which is derived from the bacterial ancestor of the organelles and is conserved from lower to higher eukaryotes. The mitochondrial ISC machinery is responsible for biogenesis iron-sulfur proteins both within and outside the organelle. Maturation of the latter proteins involves the ABC transporter Atm1p which presumably exports iron-sulfur clusters from the organelle. This review summarizes recent developments in our understanding of the biogenesis of iron-sulfur proteins both within bacteria and eukaryotes.
Collapse
Affiliation(s)
- U Mühlenhoff
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Germany
| | | |
Collapse
|