1
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
2
|
Liu Y, Sweet IR, Boons GJ. 2,2-Difluoro Derivatives of Fucose Can Inhibit Cell Surface Fucosylation without Causing Slow Transfer to Acceptors. JACS AU 2024; 4:3953-3963. [PMID: 39483231 PMCID: PMC11522930 DOI: 10.1021/jacsau.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/03/2024]
Abstract
Fucosyl transferases (FUTs) are enzymes that transfer fucose (Fuc) from GDP-Fuc to acceptor substrates, resulting in fucosylated glycoconjugates that are involved in myriad physiological and disease processes. Previously, it has been shown that per-O-acetylated 2-F-Fuc can be taken up by cells and converted into GDP-2-F-Fuc, which is a competitive inhibitor of FUTs. Furthermore, it can act as a feedback inhibitor of de novo biosynthesis of GDP-Fuc resulting in reduced glycoconjugate fucosylation. However, GDP-2-F-Fuc and several other reported analogues are slow substrates, which can result in unintended incorporation of unnatural fucosides. Here, we describe the design, synthesis, and biological evaluation of GDP-2,2-di-F-Fuc and the corresponding prodrugs as an inhibitor of FUTs. This compound lacks the slow transfer activity observed for the monofluorinated counterpart. Furthermore, it was found that GDP-2-F-Fuc and GDP-2,2-di-F-Fuc have similar Ki values for the various human fucosyl transferases, while the corresponding phosphate prodrugs exhibit substantial differences in inhibition of cell surface fucosylation. Quantitative sugar nucleotide analysis by Liquid chromatography-mass spectrometry (LC-MS) indicates that the 2,2-di-F-Fuc prodrug has substantially greater feedback inhibitory activity. It was also found that by controlling the concentration of the inhibitor, varying degrees of inhibition of the biosynthesis of different types of fucosylated N-glycan structures can be achieved. These findings open new avenues for the modulation of fucosylation of cell surface glycoconjugates.
Collapse
Affiliation(s)
- Yanyan Liu
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Igor R. Sweet
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, 3584 CG Utrecht, The Netherlands
- Chemistry
Department, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Wu G, Grassi P, Molina BG, MacIntyre DA, Sykes L, Bennett PR, Dell A, Haslam SM. Glycomics of cervicovaginal fluid from women at risk of preterm birth reveals immuno-regulatory epitopes that are hallmarks of cancer and viral glycosylation. Sci Rep 2024; 14:20813. [PMID: 39242814 PMCID: PMC11379862 DOI: 10.1038/s41598-024-71950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
During pregnancy the immune system needs to maintain immune tolerance of the foetus while also responding to infection, which can cause premature activation of the inflammatory pathways leading to the onset of labour and preterm birth. The vaginal microbiome is an important modifier of preterm birth risk, with Lactobacillus dominance during pregnancy associated with term delivery while high microbial diversity is associated with an increased risk of preterm birth. Glycans on glycoproteins along the lower female reproductive tract are fundamental to microbiota-host interactions and the mediation of inflammatory responses. However, the specific glycan epitopes involved in these processes are not well understood. To address this, we conducted glycomic analyses of cervicovaginal fluid (CVF) from 36 pregnant women at high risk of preterm birth and 4 non-pregnant women. Our analysis of N- and O-glycans revealed a rich CVF glycome. While O-glycans were shown to be the main carriers of ABO blood group epitopes, the main features of N-glycans were the presence of abundant paucimannose and high mannose glycans, and a remarkable diversity of complex bi-, tri-, and tetra-antennary glycans decorated with fucose and sialic acid. We identified immuno-regulatory epitopes, such as Lewis antigens, and found that fucosylation was negatively correlated to pro-inflammatory factors, such as IL-1β, MMP-8, C3a and C5a, while glycans with only sialylated antennae were mainly positively correlated to those. Similarly, paucimannose glycans showed a positive correlation to pro-inflammatory factors. We revealed a high abundance of glycans which have previously been identified as hallmarks of cancer and viral glycosylation, such as Man8 and Man9 high mannose glycans. Although each pregnant woman had a unique glycomic profile, longitudinal studies showed that the main glycosylation features were consistent throughout pregnancy in women who delivered at term, whereas women who experienced extreme preterm birth exhibited sharp changes in the CVF glycome shortly before delivery. These findings shed light on the processes underlying the role of glycosylation in maintaining a healthy vaginal microbiome and associated host immune responses. In addition, these discoveries facilitate our understanding of the lower female reproductive tract which has broad implications for women's health.
Collapse
Affiliation(s)
- Gang Wu
- Department of Life Sciences, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Paola Grassi
- Department of Life Sciences, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Belen Gimeno Molina
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- The Parasol Foundation Centre for Women's Health and Cancer Research, St Mary's Hospital, London, W1 2NY, UK
| | - David A MacIntyre
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Lynne Sykes
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- The Parasol Foundation Centre for Women's Health and Cancer Research, St Mary's Hospital, London, W1 2NY, UK
| | - Phillip R Bennett
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK.
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK.
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
4
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Yang T, Chandel I, Gonzales M, Okuma H, Prouty SJ, Zarei S, Joseph S, Garringer KW, Landa SO, Yonekawa T, Walimbe AS, Venzke DP, Anderson ME, Hord JM, Campbell KP. Identification of a short, single site matriglycan that maintains neuromuscular function in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572361. [PMID: 38187633 PMCID: PMC10769215 DOI: 10.1101/2023.12.20.572361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Matriglycan (-1,3-β-glucuronic acid-1,3-α-xylose-) is a polysaccharide that is synthesized on α-dystroglycan, where it functions as a high-affinity glycan receptor for extracellular proteins, such as laminin, perlecan and agrin, thus anchoring the plasma membrane to the extracellular matrix. This biological activity is closely associated with the size of matriglycan. Using high-resolution mass spectrometry and site-specific mutant mice, we show for the first time that matriglycan on the T317/T319 and T379 sites of α-dystroglycan are not identical. T379-linked matriglycan is shorter than the previously characterized T317/T319-linked matriglycan, although it maintains its laminin binding capacity. Transgenic mice with only the shorter T379-linked matriglycan exhibited mild embryonic lethality, but those that survived were healthy. The shorter T379-linked matriglycan exists in multiple tissues and maintains neuromuscular function in adult mice. In addition, the genetic transfer of α-dystroglycan carrying just the short matriglycan restored grip strength and protected skeletal muscle from eccentric contraction-induced damage in muscle-specific dystroglycan knock-out mice. Due to the effects that matriglycan imparts on the extracellular proteome and its ability to modulate cell-matrix interactions, our work suggests that differential regulation of matriglycan length in various tissues optimizes the extracellular environment for unique cell types.
Collapse
Affiliation(s)
- Tiandi Yang
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ishita Chandel
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Miguel Gonzales
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Hidehiko Okuma
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Sally J Prouty
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Sanam Zarei
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Keith W Garringer
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Saul Ocampo Landa
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Takahiro Yonekawa
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Ameya S Walimbe
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - David P Venzke
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Mary E Anderson
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Jeffery M Hord
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| |
Collapse
|
6
|
Swaby C, Yeung-Luk B, Thapa S, Nishida K, Wally A, Ghosh B, Niederkofler A, Luk S, Girgis M, Keller A, Cortez C, Ramaswamy S, Wilmsen K, Bouché L, Dell A, Drummond MB, Putcha N, Haslam SM, Mathias R, Hansel NN, Sheng J, Sidhaye V. Decreased fucosylation impacts epithelial integrity and increases risk for COPD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564805. [PMID: 37961411 PMCID: PMC10635007 DOI: 10.1101/2023.10.31.564805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
COPD causes significant morbidity and mortality worldwide. Epithelial damage is fundamental to disease pathogenesis, although the mechanisms driving disease remain undefined. Published evidence from a COPD cohort (SPIROMICS) and confirmed in a second cohort (COPDgene) demonstrate a polymorphism in Fucosyltransferese-2 (FUT2) is a trans-pQTL for E-cadherin, which is critical in COPD pathogenesis. We found by MALDI-TOF analysis that FUT2 increased terminal fucosylation of E-cadherin. Using atomic force microscopy, we found that FUT2-dependent fucosylation enhanced E-cadherin-E-cadherin bond strength, mediating the improvement in monolayer integrity. Tracheal epithelial cells from Fut2-/- mice have reduced epithelial integrity, which is recovered with reconstitution of Fut2. Overexpression of FUT2 in COPD derived epithelia rescues barrier function. Fut2-/- mice show increased susceptibility in an elastase model of disease developing both emphysema and fibrosis. We propose this is due to the role of FUT2 in proliferation and cell differentiation. Overexpression of FUT2 significantly increased proliferation. Loss of Fut2 results in accumulation of Spc+ cells suggesting a failure of alveolar type 2 cells to undergo transdifferentiation to alveolar type 1. Using a combination of population data, genetically manipulated mouse models, and patient-derived cells, we present a novel mechanism by which post-translational modifications modulate tissue pathology and serve as a proof of concept for the development of a disease-modifying target in COPD.
Collapse
Affiliation(s)
- Carter Swaby
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Shreeti Thapa
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, 21224, Maryland, USA
| | - Kristine Nishida
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, 21224, Maryland, USA
| | - Arabelis Wally
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, 21224, Maryland, USA
| | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Austin Niederkofler
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Sean Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Mirit Girgis
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Allison Keller
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Cecilia Cortez
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Sahana Ramaswamy
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Kai Wilmsen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Laura Bouché
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - M. Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, 27514, USA
| | - Nirupama Putcha
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, 21224, Maryland, USA
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Rasika Mathias
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, 21224, Maryland, USA
| | - Nadia N. Hansel
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, 21224, Maryland, USA
| | - Jian Sheng
- Department of Engineering, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Venkataramana Sidhaye
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, 21224, Maryland, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, 21224, USA
| |
Collapse
|
7
|
Kikuchi C, Antonopoulos A, Wang S, Maemura T, Karamanska R, Lee C, Thompson AJ, Dell A, Kawaoka Y, Haslam SM, Paulson JC. Glyco-engineered MDCK cells display preferred receptors of H3N2 influenza absent in eggs used for vaccines. Nat Commun 2023; 14:6178. [PMID: 37794004 PMCID: PMC10551000 DOI: 10.1038/s41467-023-41908-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
Evolution of human H3N2 influenza viruses driven by immune selection has narrowed the receptor specificity of the hemagglutinin (HA) to a restricted subset of human-type (Neu5Acα2-6 Gal) glycan receptors that have extended poly-LacNAc (Galβ1-4GlcNAc) repeats. This altered specificity has presented challenges for hemagglutination assays, growth in laboratory hosts, and vaccine production in eggs. To assess the impact of extended glycan receptors on virus binding, infection, and growth, we have engineered N-glycan extended (NExt) cell lines by overexpressing β3-Ν-acetylglucosaminyltransferase 2 in MDCK, SIAT, and hCK cell lines. Of these, SIAT-NExt cells exhibit markedly increased binding of H3 HAs and susceptibility to infection by recent H3N2 virus strains, but without impacting final virus titers. Glycome analysis of these cell lines and allantoic and amniotic egg membranes provide insights into the importance of extended glycan receptors for growth of recent H3N2 viruses and relevance to their production for cell- and egg-based vaccines.
Collapse
Affiliation(s)
- Chika Kikuchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Shengyang Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rositsa Karamanska
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Chiara Lee
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Andrew J Thompson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo, Japan
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
8
|
Bueno-Sánchez JC, Gómez-Gutiérrez AM, Maldonado-Estrada JG, Quintana-Castillo JC. Expression of placental glycans and its role in regulating peripheral blood NK cells during preeclampsia: a perspective. Front Endocrinol (Lausanne) 2023; 14:1087845. [PMID: 37206444 PMCID: PMC10190602 DOI: 10.3389/fendo.2023.1087845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/03/2023] [Indexed: 05/21/2023] Open
Abstract
Preeclampsia is a pregnancy-related multisystem disorder characterized by altered trophoblast invasion, oxidative stress, exacerbation of systemic inflammatory response, and endothelial damage. The pathogenesis includes hypertension and mild-to-severe microangiopathy in the kidney, liver, placenta, and brain. The main mechanisms involved in its pathogenesis have been proposed to limit trophoblast invasion and increase the release of extracellular vesicles from the syncytiotrophoblast into the maternal circulation, exacerbating the systemic inflammatory response. The placenta expresses glycans as part of its development and maternal immune tolerance during gestation. The expression profile of glycans at the maternal-fetal interface may play a fundamental role in physiological pregnancy changes and disorders such as preeclampsia. It is unclear whether glycans and their lectin-like receptors are involved in the mechanisms of maternal-fetal recognition by immune cells during pregnancy homeostasis. The expression profile of glycans appears to be altered in hypertensive disorders of pregnancy, which could lead to alterations in the placental microenvironment and vascular endothelium in pregnancy conditions such as preeclampsia. Glycans with immunomodulatory properties at the maternal-fetal interface are altered in early-onset severe preeclampsia, implying that innate immune system components, such as NK cells, exacerbate the systemic inflammatory response observed in preeclampsia. In this article, we discuss the evidence for the role of glycans in gestational physiology and the perspective of glycobiology on the pathophysiology of hypertensive disorders in gestation.
Collapse
Affiliation(s)
- Julio C. Bueno-Sánchez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Department of Obstetrics and Gynecology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Red Iberoamericana de Alteraciones Vasculares en Trastornos del Embarazo (RIVATREM), Chillan, Chile
| | - Alejandra M. Gómez-Gutiérrez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Juan G. Maldonado-Estrada
- One Health and Veterinary Innovative Research & Development (OHVRI) Research Group, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
9
|
Han K, Yue Y, Wang W, Wang F, Chai W, Zhao S, Yu M. Lewis x-carrying O-glycans are candidate modulators for conceptus attachment in pigs†. Biol Reprod 2023; 108:292-303. [PMID: 36401880 PMCID: PMC7614189 DOI: 10.1093/biolre/ioac204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Successful attachment of conceptus to the uterine luminal epithelium (LE) is crucial for establishing a functional placenta in pigs. However, the underlying mechanisms are yet to be elucidated. The uterine LE-conceptus interface is enriched in various glycoconjugates essential to implantation. Using MALDI-MS profiling, we identified for the first time the O-glycan repertoire of pig endometrium during the conceptus attachment stage. The expression pattern of blood group A, O(H), Lewis x, y, a, b (Lex, Ley, Lea, and Leb), the sialylated and sulfated Lex antigens in the uterine LE-conceptus interface was assessed using immunofluorescence assays. Notably, the Lex-carrying O-glycans exhibited a temporal-spatial expression pattern. They were absent in the endometrium on estrous cycle days but strongly and spatially presented in the conceptus and uterine LE to which the conceptus apposes during the early conceptus attachment stage. In addition, Lex-carrying O-glycans were co-localized with secreted phosphoprotein 1 (SPP1), a well-characterized factor that plays a role in promoting conceptus attachment through interacting with integrin αVβ3 and integrin αVβ6. Meanwhile, the immunoprecipitation assays revealed an interaction between the Lex-carrying O-glycans and SPP1, integrin αV, and integrin β6. Furthermore, we provided evidence that the β1,4-galactosyltransferase 1 (B4GALT1) gene is a potential regulator for Lex antigen expression in the uterine LE-conceptus interface during the early conceptus attachment stage. In conclusion, our findings show that Lex-carrying O-glycans, presumably dependent on B4GALT1 gene expression, might modulate conceptus attachment by interacting with the SPP1-integrin receptor complex in pigs.
Collapse
Affiliation(s)
- Kun Han
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulu Yue
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiwei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiyu Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Yung HW, Zhao X, Glover L, Burrin C, Pang PC, Jones CJ, Gill C, Duhig K, Olovsson M, Chappell LC, Haslam SM, Dell A, Burton GJ, Charnock-Jones DS. Perturbation of placental protein glycosylation by endoplasmic reticulum stress promotes maladaptation of maternal hepatic glucose metabolism. iScience 2023; 26:105911. [PMID: 36660474 PMCID: PMC9843443 DOI: 10.1016/j.isci.2022.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Placental hormones orchestrate maternal metabolic adaptations to support pregnancy. We hypothesized that placental ER stress, which characterizes early-onset pre-eclampsia (ePE), compromises glycosylation, reducing hormone bioactivity and these maladaptations predispose the mother to metabolic disease in later life. We demonstrate ER stress reduces the complexity and sialylation of trophoblast protein N-glycosylation, while aberrant glycosylation of vascular endothelial growth factor reduced its bioactivity. ER stress alters the expression of 66 of the 146 genes annotated with "protein glycosylation" and reduces the expression of sialyltransferases. Using mouse placental explants, we show ER stress promotes the secretion of mis-glycosylated glycoproteins. Pregnant mice carrying placentas with junctional zone-specific ER stress have reduced blood glucose, anomalous hepatic glucose metabolism, increased cellular stress and elevated DNA methyltransferase 3A. Using pregnancy-specific glycoproteins as a readout, we also demonstrate aberrant glycosylation of placental proteins in women with ePE, thus providing a mechanistic link between ePE and subsequent maternal metabolic disorders.
Collapse
Affiliation(s)
- Hong Wa Yung
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Luke Glover
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Charlotte Burrin
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, London, UK
| | - Carolyn J.P. Jones
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Carolyn Gill
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Kate Duhig
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Matts Olovsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Lucy C. Chappell
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Graham J. Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - D. Stephen Charnock-Jones
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, UK
| |
Collapse
|
11
|
Garber JM, Fordwour OB, Zandberg WF. A Rapid Protocol for Preparing 8-Aminopyrene-1,3,6-Trisulfonate-Labeled Glycans for Capillary Electrophoresis-Based Enzyme Assays. Methods Mol Biol 2023; 2657:223-239. [PMID: 37149535 DOI: 10.1007/978-1-0716-3151-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Purified glycan standards are required for glycan arrays, characterizing substrate specificities of glycan-active enzymes, and to serve as retention-time or mobility standards for various separation techniques. This chapter describes a method for the rapid separation, and subsequent desalting, of glycans labeled with the highly fluorescent fluorophore 8-aminopyrene-1,3,6-trisulfonate (APTS). By using fluorophore-assisted carbohydrate electrophoresis (FACE) on polyacrylamide gels, a technique amenable to equipment readily available in most molecular biology laboratories, many APTS-labeled glycans can be simultaneously resolved. Excising specific gel bands containing the desired APTS-labeled glycans, followed by glycan elution from the gel by simple diffusion and subsequent solid-phase extraction (SPE)-based desalting, affords a single glycan species free of excess labeling reagents and buffer components. The described protocol also offers a simple, rapid method for the simultaneous removal of excess APTS and unlabeled glycan material from reaction mixtures. This chapter describes a FACE/SPE procedure ideal for preparing glycans for capillary electrophoresis (CE)-based enzyme assays, as well as for the purification of rare, commercially unavailable glycans from tissue culture samples.
Collapse
Affiliation(s)
- Jolene M Garber
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Osei B Fordwour
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Wesley F Zandberg
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
12
|
Kudelka MR, Lasanajak Y, Smith DF, Song X, Hossain MS, Owonikoko TK. Serum glycomic profile as a predictive biomarker of recurrence in patients with differentiated thyroid cancer. Cancer Med 2022; 12:6768-6777. [PMID: 36437732 PMCID: PMC10067050 DOI: 10.1002/cam4.5465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Thyroid cancer recurrence following curative thyroidectomy is associated with increased morbidity and mortality, but current surveillance strategies are inadequate for early detection. Prior studies indicate that tissue glycosylation is altered in thyroid cancer, but the utility of serum glycosylation in thyroid cancer surveillance remains unexplored. We therefore assessed the potential utility of altered serum glycomic profile as a tumor-specific target for disease surveillance in recurrent thyroid cancer. EXPERIMENTAL DESIGN We employed banked serum samples from patients with recurrent thyroid cancer post thyroidectomy and healthy controls. N-glycans were enzymatically released from serum glycoproteins, labeled via permethylation, and analyzed by MALDI-TOF mass spectrometry. Global level and specific subtypes of glycan structures were compared between patients and controls. RESULTS We evaluated 28 independent samples from 13 patients with cancer recurrence and 15 healthy controls. Global features of glycosylation, including N-glycan class and terminal glycan modifications were similar between groups, but three of 35 individual glycans showed significant differences. The three glycans were biosynthetically related biantennary core fucosylated N-glycans that only varied by the degree of galactosylation (G0F, G1F, and G2F; G: galactose, F: fucose). The ratio of G0F:G1F that captures reduced galactosylation was observed in patients samples but not in healthy controls (p = 0.004) and predicted thyroid cancer recurrence (AUC = 0.82, CI 95% = 0.64-0.99). CONCLUSIONS Altered N-glycomic profile was associated with thyroid cancer recurrence. This serum-based biomarker would be useful as an effective surveillance tool to improve the care and prognosis of thyroid cancer after prospective validation.
Collapse
Affiliation(s)
- Matthew R. Kudelka
- Department of Medicine Memorial Sloan Kettering Cancer Center New York City New York USA
| | - Yi Lasanajak
- Department of Biochemistry Emory University School of Medicine Atlanta Georgia USA
| | - David F. Smith
- Department of Biochemistry Emory University School of Medicine Atlanta Georgia USA
| | - Xuezheng Song
- Department of Biochemistry Emory University School of Medicine Atlanta Georgia USA
| | - Mohammad S. Hossain
- Department of Hematology and Medical Oncology Emory University Winship Cancer Institute Atlanta Georgia USA
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology Emory University Winship Cancer Institute Atlanta Georgia USA
| |
Collapse
|
13
|
Cioce A, Calle B, Rizou T, Lowery SC, Bridgeman VL, Mahoney KE, Marchesi A, Bineva-Todd G, Flynn H, Li Z, Tastan OY, Roustan C, Soro-Barrio P, Rafiee MR, Garza-Garcia A, Antonopoulos A, Wood TM, Keenan T, Both P, Huang K, Parmeggian F, Snijders AP, Skehel M, Kjær S, Fascione MA, Bertozzi CR, Haslam SM, Flitsch SL, Malaker SA, Malanchi I, Schumann B. Cell-specific bioorthogonal tagging of glycoproteins. Nat Commun 2022; 13:6237. [PMID: 36284108 PMCID: PMC9596482 DOI: 10.1038/s41467-022-33854-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function.
Collapse
Affiliation(s)
- Anna Cioce
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Beatriz Calle
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Tatiana Rizou
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah C Lowery
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Victoria L Bridgeman
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Andrea Marchesi
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Helen Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Zhen Li
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Omur Y Tastan
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Pablo Soro-Barrio
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Thomas M Wood
- Sarafan ChEM-H, Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tessa Keenan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Peter Both
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
- R&D Department, Axxence Slovakia s.r.o., 81107, Bratislava, Slovakia
| | - Kun Huang
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Fabio Parmeggian
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milano, Italy
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Carolyn R Bertozzi
- Sarafan ChEM-H, Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sabine L Flitsch
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Benjamin Schumann
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
14
|
N-glycosylation of cervicovaginal fluid reflects microbial community, immune activity, and pregnancy status. Sci Rep 2022; 12:16948. [PMID: 36216861 PMCID: PMC9551102 DOI: 10.1038/s41598-022-20608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022] Open
Abstract
Human cervicovaginal fluid (CVF) is a complex, functionally important and glycan rich biological fluid, fundamental in mediating physiological events associated with reproductive health. Using a comprehensive glycomic strategy we reveal an extremely rich and complex N-glycome in CVF of pregnant and non-pregnant women, abundant in paucimannose and high mannose glycans, complex glycans with 2-4 N-Acetyllactosamine (LacNAc) antennae, and Poly-LacNAc glycans decorated with fucosylation and sialylation. N-glycosylation profiles were observed to differ in relation to pregnancy status, microbial composition, immune activation, and pregnancy outcome. Compared to CVF from women experiencing term birth, CVF from women who subsequently experienced preterm birth showed lower sialylation, which correlated to the presence of a diverse microbiome, and higher fucosylation, which correlated positively to pro-inflammatory cytokine concentration. This study is the first step towards better understanding the role of cervicovaginal glycans in reproductive health, their contribution to the mechanism of microbial driven preterm birth, and their potential for preventative therapy.
Collapse
|
15
|
Cao H, Mathur A, Robertson C, Antonopoulos A, Henderson S, Girard LP, Wong JH, Davie A, Wright S, Brewin J, Rees DC, Dell A, Haslam SM, Vickers MA. Measurement of erythrocyte membrane mannoses to assess splenic function. Br J Haematol 2022; 198:155-164. [PMID: 35411940 PMCID: PMC9321840 DOI: 10.1111/bjh.18164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
Red blood cells (RBCs) lose plasma membrane in the spleen as they age, but the cells and molecules involved are yet to be identified. Sickle cell disease and infection by Plasmodium falciparum cause oxidative stress that induces aggregates of cross‐linked proteins with N‐linked high‐mannose glycans (HMGs). These glycans can be recognised by mannose‐binding lectins, including the mannose receptor (CD206), expressed on macrophages and specialised phagocytic endothelial cells in the spleen to mediate the extravascular haemolysis characteristic of these diseases. We postulated this system might also mediate removal of molecules and membrane in healthy individuals. Surface expression of HMGs on RBCs from patients who had previously undergone splenectomy was therefore assessed: high levels were indeed observable as large membrane aggregates. Glycomic analysis by mass spectrometry identified a mixture of Man5‐9GlcNAc2 structures. HMG levels correlated well with manual pit counts (r = 0.75–0.85). To assess further whether HMGs might act as a splenic reticuloendothelial function test, we measured levels on RBCs from patients with potential functional hyposplenism, some of whom exhibited high levels that may indicate risk of complications.
Collapse
Affiliation(s)
- Huan Cao
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Abhinav Mathur
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | | | - Sadie Henderson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Jin Hien Wong
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Adam Davie
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Sonja Wright
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - John Brewin
- Department of Haematology, King's College Hospital, London, UK
| | - David C Rees
- Department of Haematology, King's College Hospital, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Mark A Vickers
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.,Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK.,Scottish National Blood Transfusion Service, Aberdeen, UK
| |
Collapse
|
16
|
Ezeabikwa B, Mondal N, Antonopoulos A, Haslam SM, Matsumoto Y, Martin-Caraballo M, Lehoux S, Mandalasi M, Ishaque A, Heimburg-Molinaro J, Cummings RD, Nyame AK. Major differences in glycosylation and fucosyltransferase expression in low-grade versus high-grade bladder cancer cell lines. Glycobiology 2021; 31:1444-1463. [PMID: 34350945 PMCID: PMC8898038 DOI: 10.1093/glycob/cwab083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Bladder cancer is the ninth most frequently diagnosed cancer worldwide, and there is a need to develop new biomarkers for staging and prognosis of this disease. Here we report that cell lines derived from low-grade and high-grade bladder cancers exhibit major differences in expression of glycans in surface glycoproteins. We analyzed protein glycosylation in three low-grade bladder cancer cell lines RT4 (grade-1-2), 5637 (grade-2), and SW780 (grade-1), and three high-grade bladder cancer cell lines J82COT (grade-3), T24 (grade-3) and TCCSUP (grade-4), with primary bladder epithelial cells, A/T/N, serving as a normal bladder cell control. Using a variety of approaches including flow cytometry, immunofluorescence, glycomics and gene expression analysis, we observed that the low-grade bladder cancer cell lines RT4, 5637 and SW780 express high levels of the fucosylated Lewis-X antigen (Lex, CD15) (Galβ1-4(Fucα1-3)GlcNAcβ1-R), while normal bladder epithelial A/T/N cells lack Lex expression. T24 and TCCSUP cells also lack Lex, whereas J82COT cells express low levels of Lex. Glycomics analyses revealed other major differences in fucosylation and sialylation of N-glycans between these cell types. O-glycans are highly differentiated, as RT4 cells synthesize core 2-based O-glycans that are lacking in the T24 cells. These differences in glycan expression correlated with differences in RNA expression levels of their cognate glycosyltransferases, including α1-3/4-fucosyltransferase genes. These major differences in glycan structures and gene expression profiles between low- and high-grade bladder cancer cells suggest that glycans and glycosyltransferases are candidate biomarkers for grading bladder cancers.
Collapse
Affiliation(s)
- Bernadette Ezeabikwa
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Nandini Mondal
- Department of Surgery, Beth Israel Deaconess Medical Center—Harvard Medical School, Boston, MA, USA
| | | | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center—Harvard Medical School, Boston, MA, USA
| | - Miguel Martin-Caraballo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center—Harvard Medical School, Boston, MA, USA
- Novab Inc., Atlanta, GA, USA
| | - Msano Mandalasi
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Ali Ishaque
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center—Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center—Harvard Medical School, Boston, MA, USA
| | - Anthony K Nyame
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| |
Collapse
|
17
|
D'Addio M, Frey J, Tacconi C, Commerford CD, Halin C, Detmar M, Cummings RD, Otto VI. Sialoglycans on lymphatic endothelial cells augment interactions with Siglec-1 (CD169) of lymph node macrophages. FASEB J 2021; 35:e22017. [PMID: 34699642 DOI: 10.1096/fj.202100300r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Cellular interactions between endothelial cells and macrophages regulate macrophage localization and phenotype, but the mechanisms underlying these interactions are poorly understood. Here we explored the role of sialoglycans on lymphatic endothelial cells (LEC) in interactions with macrophage-expressed Siglec-1 (CD169). Lectin-binding assays and mass spectrometric analyses revealed that LEC from human skin express more sialylated glycans than the corresponding blood endothelial cells. Higher amounts of sialylated and/or sulfated glycans on LEC than BEC were consistently observed in murine skin, lung and lymph nodes. The floor LEC of the subcapsular sinus (SCS) in murine lymph nodes (LN) displayed sialylated glycans at particularly high densities. The sialoglycans of LN LEC were strongly bound by Siglec-1. Such binding plays an important role in the localization of Siglec-1+ LN-SCS macrophages, as their numbers are strongly reduced in mice expressing a Siglec-1 mutant that is defective in sialoglycan binding. The residual Siglec-1+ macrophages are less proliferative and have a more anti-inflammatory phenotype. We propose that the densely clustered, sialylated glycans on the SCS floor LEC are a key component of the macrophage niche, providing anchorage for the Siglec-1+ LN-SCS macrophages.
Collapse
Affiliation(s)
- Marco D'Addio
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jasmin Frey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivianne I Otto
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Abstract
Tissue glycans usually contain various structures, from simple to highly complicated, in different quantities. N-Glycans are particularly heterogeneous, with up to pentaantennary structures, different branch sequences, and several isomeric structures. 2-Aminopyridine (PA) tagging on released N-glycans is useful for separating isomers and to quantitatively analyze both the major and minor glycan structures in tissues using reversed-phase liquid chromatography (LC)-mass spectrometry (MS) and MS/MS analysis. Because the structural differences of PA-N-glycans influence their retention on a reversed-phase C18 column, it is easy to deduce the core structure, including core Fuc and bisecting GlcNAc as well as the branching pattern of each PA-N-glycan, based on the results of elution position, full MS, and MS/MS analysis. If more detailed structural analysis is required, combining sequential exoglycosidase digestions, sialic acid linkage-specific alkylamidation (SALSA), and/or SALSA/permethylation is useful for determining glycosidic linkages of branches. This article includes detailed protocols for the preparation of N-glycans released from glycoproteins/glycopeptides by glycoamidase F or hydrazinolysis, PA-tagging of N-glycans, fractionation with anion-exchange chromatography, and chemical or enzymatic modifications of PA-N-glycans, as well as reversed-phase LC-MS, MS/MS, and MSn analysis of PA-N-glycans from tissues. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of released N-glycans from tissue samples using glycoamidase F Alternate Protocol: Preparation of released N-glycans from tissue samples by hydrazinolysis Basic Protocol 2: PA-tagging of N-glycans and sample cleanup Support Protocol 1: Monitoring of PA-N-glycans using normal-phase HPLC Basic Protocol 3: Anion-exchange chromatography of PA-N-glycans Basic Protocol 4: Sequential exoglycosidase digestions Basic Protocol 5: Determination of Sia-linkages by SALSA Support Protocol 2: Cotton-HILIC solid-phase extraction to remove reagents for alkylamidation Basic Protocol 6: Sequential modifications of glycans with SALSA and permethylation Basic Protocol 7: LC-MS and MS/MS analysis of PA-N-glycans (before permethylation) Basic Protocol 8: LC-MS, MS/MS, and MSn analysis of PA-N-glycans (after permethylation).
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
19
|
Wu G, Murugesan G, Nagala M, McCraw A, Haslam SM, Dell A, Crocker PR. Activation of regulatory T cells triggers specific changes in glycosylation associated with Siglec-1-dependent inflammatory responses. Wellcome Open Res 2021; 6:134. [PMID: 35224210 PMCID: PMC8844539 DOI: 10.12688/wellcomeopenres.16834.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Siglec-1 is a macrophage lectin-like receptor that mediates sialic acid-dependent cellular interactions. Its upregulation on macrophages in autoimmune disease was shown previously to promote inflammation through suppressing the expansion of regulatory T cells (Tregs). Here we investigate the molecular basis for Siglec-1 binding to Tregs using in vitro-induced cells as a model system. Methods: Glycosylation changes that affect Siglec‑1 binding were studied by comparing activated and resting Tregs using RNA-Seq, glycomics, proteomics and binding of selected antibodies and lectins. A proximity labelling and proteomics strategy was used to identify Siglec-1 counter-receptors expressed on activated Tregs. Results: Siglec-1 binding was strongly upregulated on activated Tregs, but lost under resting conditions. Glycomics revealed changes in N-glycans and glycolipids following Treg activation and we observed changes in expression of multiple 'glycogenes' that could lead to the observed increase in Siglec-1 binding. Proximity labelling of intact, living cells identified 49 glycoproteins expressed by activated Tregs that may function as Siglec-1 counter-receptors. These represent ~5% of the total membrane protein pool and were mainly related to T cell activation and proliferation. We demonstrate that several of these counter-receptors were upregulated following activation of Tregs and provide initial evidence that their altered glycosylation may also be important for Siglec-1 binding. Conclusions: We provide the first comprehensive analysis of glycan changes that occur in activated Tregs, leading to recognition by the macrophage lectin, Siglec-1 and suppression of Treg expansion. We furthermore provide insights into glycoprotein counter-receptors for Siglec-1 expressed by activated Tregs that are likely to be important for suppressing Treg expansion.
Collapse
Affiliation(s)
- Gang Wu
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Gavuthami Murugesan
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Manjula Nagala
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Alex McCraw
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Paul R. Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| |
Collapse
|
20
|
Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans 2021; 49:915-931. [PMID: 33704400 PMCID: PMC8106501 DOI: 10.1042/bst20200840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Collapse
Affiliation(s)
- Roberto Donini
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
21
|
Cao H, Antonopoulos A, Henderson S, Wassall H, Brewin J, Masson A, Shepherd J, Konieczny G, Patel B, Williams ML, Davie A, Forrester MA, Hall L, Minter B, Tampakis D, Moss M, Lennon C, Pickford W, Erwig L, Robertson B, Dell A, Brown GD, Wilson HM, Rees DC, Haslam SM, Alexandra Rowe J, Barker RN, Vickers MA. Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nat Commun 2021; 12:1792. [PMID: 33741926 PMCID: PMC7979802 DOI: 10.1038/s41467-021-21814-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
In both sickle cell disease and malaria, red blood cells (RBCs) are phagocytosed in the spleen, but receptor-ligand pairs mediating uptake have not been identified. Here, we report that patches of high mannose N-glycans (Man5-9GlcNAc2), expressed on diseased or oxidized RBC surfaces, bind the mannose receptor (CD206) on phagocytes to mediate clearance. We find that extravascular hemolysis in sickle cell disease correlates with high mannose glycan levels on RBCs. Furthermore, Plasmodium falciparum-infected RBCs expose surface mannose N-glycans, which occur at significantly higher levels on infected RBCs from sickle cell trait subjects compared to those lacking hemoglobin S. The glycans are associated with high molecular weight complexes and protease-resistant, lower molecular weight fragments containing spectrin. Recognition of surface N-linked high mannose glycans as a response to cellular stress is a molecular mechanism common to both the pathogenesis of sickle cell disease and resistance to severe malaria in sickle cell trait.
Collapse
Affiliation(s)
- Huan Cao
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Sadie Henderson
- grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Heather Wassall
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - John Brewin
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Alanna Masson
- grid.417581.e0000 0000 8678 4766Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Jenna Shepherd
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gabriela Konieczny
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bhinal Patel
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Maria-Louise Williams
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Adam Davie
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Megan A. Forrester
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Lindsay Hall
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Beverley Minter
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Dimitris Tampakis
- grid.13097.3c0000 0001 2322 6764Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University and Division of Cancer Studies, King’s College London, London, UK
| | - Michael Moss
- grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Charlotte Lennon
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Wendy Pickford
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Lars Erwig
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Beverley Robertson
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Gordon D. Brown
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK ,grid.8391.30000 0004 1936 8024Medical Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Heather M. Wilson
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David C. Rees
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Stuart M. Haslam
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - J. Alexandra Rowe
- grid.4305.20000 0004 1936 7988Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Robert N. Barker
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Mark A. Vickers
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK ,grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK ,grid.417581.e0000 0000 8678 4766Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
22
|
Silver ZA, Antonopoulos A, Haslam SM, Dell A, Dickinson GM, Seaman MS, Desrosiers RC. Discovery of O-Linked Carbohydrate on HIV-1 Envelope and Its Role in Shielding against One Category of Broadly Neutralizing Antibodies. Cell Rep 2021; 30:1862-1869.e4. [PMID: 32049016 DOI: 10.1016/j.celrep.2020.01.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/02/2019] [Accepted: 01/17/2020] [Indexed: 10/25/2022] Open
Abstract
Approximately 50% of the mass of the Envelope (Env) glycoprotein surface subunit (gp120) of human immunodeficiency virus type 1 (HIV-1) is composed of N-linked carbohydrate. Until now, the dogma has been that HIV-1 lacks O-linked carbohydrate on Env. Here we show that a subset of patient-derived HIV-1 isolates contain O-linked carbohydrate on the variable 1 (V1) domain of Env gp120. We demonstrate the presence of this O-glycosylation both on virions and on gp120 expressed as a secreted protein. Further, we establish that these O-linked glycans can confer a more than 1,000-fold decrease in neutralization sensitivity (IC50) to V3-glycan broadly neutralizing antibodies. These findings uncover a structural modification to the HIV-1 Env and suggest a functional role in promoting viral escape from one category of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Zachary A Silver
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Gordon M Dickinson
- Infectious Diseases Section, Miami Veterans Affairs Health Care System, University of Miami, Miami, FL, USA; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
23
|
Cao H, Bagchi A, Tampakis D, Laidvee I, Williams M, Minter B, Wright S, Antonopoulos A, Haslam SM, Barker RN, Vickers MA. Human erythrocyte surface fucose expression increases with age and hyperglycemia. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16409.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Reactive oxygen species and other free radicals, together with glucose and its metabolites are believed to play important roles in the aging process. The carbohydrate components of glycosylated proteins are important in mediating cell-cell interactions and a role has been suggested for them in the aging process. Erythrocytes are critical cells in the human body, heavily glycosylated and relatively easily available and so are good candidates to yield insights into how patterns of glycosylation change with age and disease. It has been claimed, based on a periodic acid Schiff assay, that human aging is associated with a decline of erythrocyte surface sialic acids. Plant lectins allow for more specific assays for glycans, including determining the linkage of sialic acids and analysis of single cells by flow cytometry. Methods: Plant lectins, including Maackia amurensis lectin II (MAL), binding to α-2,3 linked sialic acids and Sambucus nigra (SNA), α-2,6 sialic acids, were used in flow cytometry and western blot of erythrocyte surface membrane. N-glycomics mass spectrometry determines glycan structures. Donors varying in age and hyperglycemia, as indicated by HbA1c were analysed. Results: Erythrocyte surface sialic acids have no significant associations with donor age. A combination of storage and cellular aging produces a specific loss of α-2,6 sialic acids. By contrast, erythrocyte surface terminal fucoses increase significantly with donor age. In order to determine which aspects of aging are important in determining this change, we investigated whether this novel human aging biomarker is associated with higher plasma glucose values, assessed by glycated hemoglobin (HbA1c) and reactive oxygen species (ROS) generation. Fucose levels were associated with HbA1c levels, but not ROS generation. Conclusion: Our study identifies novel glycan-based biomarkers for human aging and disease. The simplicity of lectin-based assays provide an attractive cellular tool to study aging and disease processes.
Collapse
|
24
|
A mass spectrometry-based glycotope-centric cellular glycomics is the more fruitful way forward to see the forest for the trees. Biochem Soc Trans 2021; 49:55-69. [PMID: 33492355 DOI: 10.1042/bst20190861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The nature of protein glycosylation renders cellular glycomics a very challenging task in having to deal with all the disparate glycans carried on membrane glycoproteins. Rapid mapping by mass spectrometry analysis provides only a coarse sketch of the glycomic complexity based primarily on glycosyl compositions, whereby the missing high-resolution structural details require a combination of multi-mode separations and multi-stages of induced fragmentation to gain sufficiently discriminative precision, often at the expenses of throughput and sensitivity. Given the available technology and foreseeable advances in the near future, homing in on resolving the terminal fucosylated, sialylated and/or sulfated structural units, or glycotopes, maybe a more pragmatic and ultimately more rewarding approach to gain insights into myriad biological processes mediated by these terminal coding units carried on important glycoproteins, to be decoded by a host of endogenous glycan-binding proteins and antibodies. A broad overview of recent technical advances and limitations in cellular glycomics is first provided as a backdrop to the propounded glycotope-centric approach based on advanced nanoLC-MS2/MS3 analysis of permethylated glycans. To prioritize analytical focus on the more tangible glycotopes is akin to first identifying the eye-catching and characteristic-defining flowers and fruits of the glyco-forest, to see the forest for the trees. It has the best prospects of attaining the much-needed balance in sensitivity, structural precision and analytical throughput to match advances in other omics.
Collapse
|
25
|
Loxley GM, Hooks DO, Antonopoulos A, Dell A, Haslam SM, Linklater WL, Hurst JL, Beynon RJ. Vulpeculin: a novel and abundant lipocalin in the urine of the common brushtail possum, Trichosurus vulpecula. Open Biol 2020; 10:200218. [PMID: 33022194 PMCID: PMC7653361 DOI: 10.1098/rsob.200218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lipocalins are a family of secreted proteins. They are capable of binding small lipophilic compounds and have been extensively studied for their role in chemosignalling in rodent urine. Urine of the common brushtail possum (Trichosurus vulpecula) contains a prominent glycoprotein of 20 kDa, expressed in both sexes. We have isolated this protein and determined its primary sequence by mass spectrometry, including the use of metabolic labelling to resolve the leucine/isoleucine isobaric ambiguity. The protein sequence was identified as a lipocalin, and phylogenetic analysis grouped the protein with other marsupial lipocalin sequences in a phylogenetic clade distinct from established cross-species lipocalin sub-families. The pattern of expression in possum urine and the similarity in sequence and structure to other lipocalins suggests this protein may have a role in brushtail possum chemosignalling.
Collapse
Affiliation(s)
- Grace M Loxley
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David O Hooks
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Wayne L Linklater
- Department of Environmental Studies, California State University, Sacramento, CA 95819, USA
| | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
26
|
Walimbe AS, Okuma H, Joseph S, Yang T, Yonekawa T, Hord JM, Venzke D, Anderson ME, Torelli S, Manzur A, Devereaux M, Cuellar M, Prouty S, Ocampo Landa S, Yu L, Xiao J, Dixon JE, Muntoni F, Campbell KP. POMK regulates dystroglycan function via LARGE1-mediated elongation of matriglycan. eLife 2020; 9:e61388. [PMID: 32975514 PMCID: PMC7556876 DOI: 10.7554/elife.61388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Matriglycan [-GlcA-β1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetyl-glucosaminyltransferase 1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNAc-β1,3-GlcNAc-β1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk gene expression in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~ 90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy.
Collapse
Affiliation(s)
- Ameya S Walimbe
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Hidehiko Okuma
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Tiandi Yang
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Takahiro Yonekawa
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Jeffrey M Hord
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - David Venzke
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Mary E Anderson
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street HospitalLondonUnited Kingdom
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street HospitalLondonUnited Kingdom
| | - Megan Devereaux
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Marco Cuellar
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Sally Prouty
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Saul Ocampo Landa
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Liping Yu
- Medical Nuclear Magnetic Resonance Facility, University of Iowa Roy J. and Lucille A. Carver College of MedicineIowa CityUnited States
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Jack E Dixon
- Department of Pharmacology, Department of Cellular and Molecular Medicine, Department of Chemistry and Biochemistry, University of California, San DiegoSan DiegoUnited States
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street HospitalLondonUnited Kingdom
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| |
Collapse
|
27
|
Osimanjiang W, Roballo KCS, Houck BD, Ito M, Antonopoulos A, Dell A, Haslam SM, Bushman JS. Analysis of N- and O-Linked Glycosylation: Differential Glycosylation after Rat Spinal Cord Injury. J Neurotrauma 2020; 37:1954-1962. [PMID: 32316850 DOI: 10.1089/neu.2019.6974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosylation is a fundamental cellular process that has a dramatic impact on the functionality of glycoconjugates such as proteins or lipids and mediates many different biological interactions including cell migration, cellular signaling, and synaptic interactions in the nervous system. In spinal cord injury (SCI), all of these cellular processes are altered, but the potential contributions of glycosylation changes to these alterations has not been thoroughly investigated. We studied the glycosylation of injured spinal cord tissue from rats that received a contusion SCI. The N- and O-linked glycosylation was assessed at 3 and 14 days post-injury (DPI), and compared with uninjured control and time-matched sham spinal tissue. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS/MS) were performed to analyze carbohydrate structures. Results revealed diverse and abundant glycosylation in all groups, with some carbohydrate structures differentially produced in SCI animals compared with uninjured controls and shams. One such change occurred in the abundance of the Sda structure, Neu5Ac-α-(2,3)-[GalNAc-β-(1,4)-]Gal-β-(1,4)-GlcNAc, which was increased in SCI samples compared with shams and non-injured controls. Immunohistochemistry (IHC) and western blot were performed on SCI and sham samples using the CT1 antibody, which recognizes the terminal trisaccharide of Sda with high specificity. Both of these metrics confirmed elevated Sda structure in SCI tissue, where IHC further showed that Sda is expressed mainly by microglia. The results of these studies suggest that SCI causes a significant alteration in N- and O-linked glycosylation.
Collapse
Affiliation(s)
- Wupu Osimanjiang
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | | | - Brenda D Houck
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | - Mai Ito
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
28
|
Yu SY, Snovida S, Khoo KH. Permethylation and Microfractionation of Sulfated Glycans for MS Analysis. Bio Protoc 2020; 10:e3617. [PMID: 33659290 PMCID: PMC7842599 DOI: 10.21769/bioprotoc.3617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 07/30/2023] Open
Abstract
Sulfated glycans are barely detectable in routine mass spectrometry (MS)-based glycomic analysis due to ion suppression by the significantly more abundant neutral glycans in the positive ion mode, and sialylated non-sulfated glycans in the negative ion mode, respectively. Nevertheless, the negative charge imparted by sulfate can be advantageous for selective detection in the negative ion mode if the sialic acids can first be neutralized. This is most conveniently achieved by a concerted sample preparation workflow in which permethylation is followed by solid phase fractionation to isolate the sulfated glycans prior to MS analysis. Importantly, we demonstrated that conventional NaOH/DMSO slurry permethylation method can retain the sulfates. Instead of extracting permethylated glycans into chloroform for sample clean-up, reverse phase C18 cartridge coupled with self-packed amine-tip or mixed mode weak anion exchange cartridge can be utilized to obtain in good yield the non-sulfated, mono-sulfated, and multiply sulfated permethylated glycans in separate fractions for sulfoglycomic analysis.
Collapse
Affiliation(s)
- Shin-Yi Yu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- University Lille, CNRS, UMR 8576 –UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Sergei Snovida
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
29
|
Ibeto L, Antonopoulos A, Grassi P, Pang PC, Panico M, Bobdiwala S, Al-Memar M, Davis P, Davis M, Norman Taylor J, Almeida P, Johnson MR, Harvey R, Bourne T, Seckl M, Clark G, Haslam SM, Dell A. Insights into the hyperglycosylation of human chorionic gonadotropin revealed by glycomics analysis. PLoS One 2020; 15:e0228507. [PMID: 32045434 PMCID: PMC7012436 DOI: 10.1371/journal.pone.0228507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein hormone that is essential for the maintenance of pregnancy. Glycosylation of hCG is known to be essential for its biological activity. "Hyperglycosylated" variants secreted during early pregnancy have been proposed to be involved in initial implantation of the embryo and as a potential diagnostic marker for gestational diseases. However, what constitutes "hyperglycosylation" is not yet fully understood. In this study, we perform comparative N-glycomic analysis of hCG expressed in the same individuals during early and late pregnancy to help provide new insights into hCG function, reveal new targets for diagnostics and clarify the identity of hyperglycosylated hCG. hCG was isolated in urine collected from women at 7 weeks and 20 weeks' gestation. hCG was also isolated in urine from women diagnosed with gestational trophoblastic disease (GTD). We used glycomics methodologies including matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) and MS/MS methods to characterise the N-glycans associated with hCG purified from the individual samples. The structures identified on the early pregnancy (EP-hCG) and late pregnancy (LP-hCG) samples corresponded to mono-, bi-, tri-, and tetra-antennary N-glycans. A novel finding was the presence of substantial amounts of bisected type N-glycans in pregnancy hCG samples, which were present at much lower levels in GTD samples. A second novel observation was the presence of abundant LewisX antigens on the bisected N-glycans. GTD-hCG had fewer glycoforms which constituted a subset of those found in normal pregnancy. When compared to EP-hCG, GTD-hCG samples had decreased signals for tri- and tetra-antennary N-glycans. In terms of terminal epitopes, GTD-hCG had increased signals for sialylated structures, while LewisX antigens were of very minor abundance. hCG carries the same N-glycans throughout pregnancy but in different proportions. The N-glycan repertoire is more diverse than previously reported. Bisected and LewisX structures are potential targets for diagnostics. hCG isolated from pregnancy urine inhibits NK cell cytotoxicity in vitro at nanomolar levels and bisected type glycans have previously been implicated in the suppression of NK cell cytotoxicity, suggesting that hCG-related bisected type N-glycans may directly suppress NK cell cytotoxicity.
Collapse
Affiliation(s)
- Linda Ibeto
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | | | - Paola Grassi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maria Panico
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Shabnam Bobdiwala
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Maya Al-Memar
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Paul Davis
- Mologic LTD, Bedford Technology Park, Bedfordshire, United Kingdom
| | - Mark Davis
- Mologic LTD, Bedford Technology Park, Bedfordshire, United Kingdom
| | - Julian Norman Taylor
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Paula Almeida
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R. Johnson
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Richard Harvey
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Tom Bourne
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Michael Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, United States of America
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Al-wajeeh AS, Salhimi SM, Al-Mansoub MA, Khalid IA, Harvey TM, Latiff A, Ismail MN. Comparative proteomic analysis of different stages of breast cancer tissues using ultra high performance liquid chromatography tandem mass spectrometer. PLoS One 2020; 15:e0227404. [PMID: 31945087 PMCID: PMC6964830 DOI: 10.1371/journal.pone.0227404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/18/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Breast cancer is the fifth most prevalent cause of death among women worldwide. It is also one of the most common types of cancer among Malaysian women. This study aimed to characterize and differentiate the proteomics profiles of different stages of breast cancer and its matched adjacent normal tissues in Malaysian breast cancer patients. Also, this study aimed to construct a pertinent protein pathway involved in each stage of cancer. METHODS In total, 80 samples of tumor and matched adjacent normal tissues were collected from breast cancer patients at Seberang Jaya Hospital (SJH) and Kepala Batas Hospital (KBH), both in Penang, Malaysia. The protein expression profiles of breast cancer and normal tissues were mapped by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Gel-Eluted Liquid Fractionation Entrapment Electrophoresis (GELFREE) Technology System was used for the separation and fractionation of extracted proteins, which also were analyzed to maximize protein detection. The protein fractions were then analyzed by tandem mass spectrometry (LC-MS/MS) analysis using LC/MS LTQ-Orbitrap Fusion and Elite. This study identified the proteins contained within the tissue samples using de novo sequencing and database matching via PEAKS software. We performed two different pathway analyses, DAVID and STRING, in the sets of proteins from stage 2 and stage 3 breast cancer samples. The lists of molecules were generated by the REACTOME-FI plugin, part of the CYTOSCAPE tool, and linker nodes were added in order to generate a connected network. Then, pathway enrichment was obtained, and a graphical model was created to depict the participation of the input proteins as well as the linker nodes. RESULTS This study identified 12 proteins that were detected in stage 2 tumor tissues, and 17 proteins that were detected in stage 3 tumor tissues, related to their normal counterparts. It also identified some proteins that were present in stage 2 but not stage 3 and vice versa. Based on these results, this study clarified unique proteins pathways involved in carcinogenesis within stage 2 and stage 3 breast cancers. CONCLUSIONS This study provided some useful insights about the proteins associated with breast cancer carcinogenesis and could establish an important foundation for future cancer-related discoveries using differential proteomics profiling. Beyond protein identification, this study considered the interaction, function, network, signaling pathway, and protein pathway involved in each profile. These results suggest that knowledge of protein expression, especially in stage 2 and stage 3 breast cancer, can provide important clues that may enable the discovery of novel biomarkers in carcinogenesis.
Collapse
Affiliation(s)
- Abdullah Saleh Al-wajeeh
- Anti-Doping Lab Qatar, Doha, Qatar
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, USM, Penang, Malaysia
| | | | | | | | | | | | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, USM, Penang, Malaysia
| |
Collapse
|
31
|
Lin N, Li J, Shao R, Zhang H. Site-Specific Analysis of N-Linked Glycosylation Heterogeneity from Royal Jelly Glycoproteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9411-9422. [PMID: 31393126 DOI: 10.1021/acs.jafc.9b03080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Royal jelly (RJ) is secreted by young worker bees, and it plays key roles in the development and physiological function in honeybees and can improve human health. Although there have been analyses on the glycosylation modification of RJ proteins, none of these methods have been conducted on a site-specific analysis of glycosylation from these glycoproteins. Here, a combined glycomics and glycoproteomics strategy was developed for the site-specific analysis of N-linked glycosylation heterogeneity of RJ glycoproteins. First, global characterization of the N-glycome of RJ was performed using a direct infusion ion trap-sequential mass spectrometry (IT-MSn) method. Second, tryptic glycopeptides were enriched and separated by hydrophilic interaction liquid chromatography-ion trap-sequential mass spectrometry (HILIC-IT-MSn). A total of 50 N-glycopeptides and 30 N-glycans have been site-specific glycosylation profiled in major royal jelly protein 1 (MRJP1) and MRJP2 of RJ for the first time. Eighteen of the identified N-glycans have been structurally characterized by IT-MSn, including oligosaccharide composition, sequence, branching, and linkage. Two N-glycosylation sites (N177 and N394), 3 sites (N145, N178, and N92), and 1 site of N183 were identified in MRJP1, MRJP2, and MRJP3, respectively. There were 18, 17, and 2 N-glycans attached to MRJP1, MRJP2, and MRJP3, respectively. The diversity of N-glycans attached to each single glycosylation site of these glycoproteins confirmed that MRJP1 and MRJP2 heterogeneity was mostly associated with their glycoform populations. Understanding the properties of the site-specific glycosylation heterogeneity of the RJ glycoproteins can be potentially useful for producing a glycoprotein with desirable pharmacokinetic and biological activity.
Collapse
Affiliation(s)
- Na Lin
- School of Food Science and Biological Engineering , Zhejiang Gongshang University , Hangzhou , Zhejiang Province 310018 , P. R. China
| | - Junmin Li
- School of Food Science and Biological Engineering , Zhejiang Gongshang University , Hangzhou , Zhejiang Province 310018 , P. R. China
| | - Rouming Shao
- School of Food Science and Biological Engineering , Zhejiang Gongshang University , Hangzhou , Zhejiang Province 310018 , P. R. China
| | - Hong Zhang
- School of Food Science and Biological Engineering , Zhejiang Gongshang University , Hangzhou , Zhejiang Province 310018 , P. R. China
| |
Collapse
|
32
|
Giovannone N, Antonopoulos A, Liang J, Geddes Sweeney J, Kudelka MR, King SL, Lee GS, Cummings RD, Dell A, Barthel SR, Widlund HR, Haslam SM, Dimitroff CJ. Human B Cell Differentiation Is Characterized by Progressive Remodeling of O-Linked Glycans. Front Immunol 2018; 9:2857. [PMID: 30619255 PMCID: PMC6302748 DOI: 10.3389/fimmu.2018.02857] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022] Open
Abstract
Germinal centers (GC) are microanatomical niches where B cells proliferate, undergo antibody affinity maturation, and differentiate to long-lived memory B cells and antibody-secreting plasma cells. For decades, GC B cells have been defined by their reactivity to the plant lectin peanut agglutinin (PNA), which binds serine/threonine (O-linked) glycans containing the asialylated disaccharide Gal-β1,3-GalNAc-Ser/Thr (also called T-antigen). In T cells, acquisition of PNA binding by activated T cells and thymocytes has been linked with altered tissue homing patterns, cell signaling, and survival. Yet, in GC B cells, the glycobiological basis and significance of PNA binding remains surprisingly unresolved. Here, we investigated the basis for PNA reactivity of GC B cells. We found that GC B cell binding to PNA is associated with downregulation of the α2,3 sialyltransferase, ST3GAL1 (ST3Gal1), and overexpression of ST3Gal1 was sufficient to reverse PNA binding in B cell lines. Moreover, we found that the primary scaffold for PNA-reactive O-glycans in B cells is the B cell receptor-associated receptor-type tyrosine phosphatase CD45, suggesting a role for altered O-glycosylation in antigen receptor signaling. Consistent with similar reports in T cells, ST3Gal1 overexpression in B cells in vitro induced drastic shortening in O-glycans, which we confirmed by both antibody staining and mass spectrometric O-glycomic analysis. Unexpectedly, ST3Gal1-induced changes in O-glycan length also correlated with altered binding of two glycosylation-sensitive CD45 antibodies, RA3-6B2 (more commonly called B220) and MEM55, which (in humans) have previously been reported to favor binding to naïve/GC subsets and memory/plasmablast subsets, respectively. Analysis of primary B cell binding to B220, MEM55, and several plant lectins suggested that B cell differentiation is accompanied by significant loss of O-glycan complexity, including loss of extended Core 2 O-glycans. To our surprise, decreased O-glycan length from naïve to post-GC fates best correlated not with ST3Gal1, but rather downregulation of the Core 2 branching enzyme GCNT1. Thus, our data suggest that O-glycan remodeling is a feature of B cell differentiation, dually regulated by ST3Gal1 and GCNT1, that ultimately results in expression of distinct O-glycosylation states/CD45 glycoforms at each stage of B cell differentiation.
Collapse
Affiliation(s)
- Nicholas Giovannone
- Department of Dermatology, Brigham and Women's Hospital, Boston MA, United States.,Harvard Medical School, Boston MA, United States
| | | | - Jennifer Liang
- Department of Dermatology, Brigham and Women's Hospital, Boston MA, United States
| | - Jenna Geddes Sweeney
- Department of Dermatology, Brigham and Women's Hospital, Boston MA, United States.,Harvard Medical School, Boston MA, United States
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Sandra L King
- Department of Dermatology, Brigham and Women's Hospital, Boston MA, United States
| | - Gi Soo Lee
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, United States
| | - Richard D Cummings
- Harvard Medical School, Boston MA, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Steven R Barthel
- Department of Dermatology, Brigham and Women's Hospital, Boston MA, United States
| | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Boston MA, United States.,Harvard Medical School, Boston MA, United States
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Department of Dermatology, Brigham and Women's Hospital, Boston MA, United States.,Harvard Medical School, Boston MA, United States
| |
Collapse
|
33
|
Richards E, Bouché L, Panico M, Arbeloa A, Vinogradov E, Morris H, Wren B, Logan SM, Dell A, Fairweather NF. The S-layer protein of a Clostridium difficile SLCT-11 strain displays a complex glycan required for normal cell growth and morphology. J Biol Chem 2018; 293:18123-18137. [PMID: 30275012 PMCID: PMC6254364 DOI: 10.1074/jbc.ra118.004530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Indexed: 12/16/2022] Open
Abstract
Clostridium difficile is a bacterial pathogen that causes major health challenges worldwide. It has a well-characterized surface (S)-layer, a para-crystalline proteinaceous layer surrounding the cell wall. In many bacterial and archaeal species, the S-layer is glycosylated, but no such modifications have been demonstrated in C. difficile. Here, we show that a C. difficile strain of S-layer cassette type 11, Ox247, has a complex glycan attached via an O-linkage to Thr-38 of the S-layer low-molecular-weight subunit. Using MS and NMR, we fully characterized this glycan. We present evidence that it is composed of three domains: (i) a core peptide-linked tetrasaccharide with the sequence -4-α-Rha-3-α-Rha-3-α-Rha-3-β-Gal-peptide; (ii) a repeating pentasaccharide with the sequence -4-β-Rha-4-α-Glc-3-β-Rha-4-(α-Rib-3-)β-Rha-; and (iii) a nonreducing end-terminal 2,3 cyclophosphoryl-rhamnose attached to a ribose-branched sub-terminal rhamnose residue. The Ox247 genome contains a 24-kb locus containing genes for synthesis and protein attachment of this glycan. Mutations in genes within this locus altered or completely abrogated formation of this glycan, and their phenotypes suggested that this S-layer modification may affect sporulation, cell length, and biofilm formation of C. difficile In summary, our findings indicate that the S-layer protein of SLCT-11 strains displays a complex glycan and suggest that this glycan is required for C. difficile sporulation and control of cell shape, a discovery with implications for the development of antimicrobials targeting the S-layer.
Collapse
Affiliation(s)
- Emma Richards
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Laura Bouché
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Maria Panico
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Ana Arbeloa
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Evgeny Vinogradov
- the Vaccine Program, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Howard Morris
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,; Biopharmaspec, Suite 3.1, Lido Medical Centre, St. Saviours Road, JE2 7LA Jersey, United Kingdom, and
| | - Brendan Wren
- the London School of Hygiene and Tropical Medicine, WC1E 7HT, London, United Kingdom
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Anne Dell
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,.
| | - Neil F Fairweather
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,.
| |
Collapse
|
34
|
Kudelka MR, Nairn AV, Sardar MY, Sun X, Chaikof EL, Ju T, Moremen KW, Cummings RD. Isotopic labeling with cellular O-glycome reporter/amplification (ICORA) for comparative O-glycomics of cultured cells. Glycobiology 2018; 28:214-222. [PMID: 29390058 DOI: 10.1093/glycob/cwy005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Mucin-type O-glycans decorate >80% of secretory and cell surface proteins and contribute to health and disease. However, dynamic alterations in the O-glycome are poorly understood because current O-glycomic methodologies are not sufficiently sensitive nor quantitative. Here we describe a novel isotope labeling approach termed Isotope-Cellular O-glycome Reporter Amplification (ICORA) to amplify and analyze the O-glycome from cells. In this approach, cells are incubated with Ac3GalNAc-Bn (Ac3GalNAc-[1H7]Bn) or a heavy labeled Ac3GalNAc-BnD7 (Ac3GalNAc-[2D7]Bn) O-glycan precursor (7 Da mass difference), which enters cells and upon de-esterification is modified by Golgi enzymes to generate Bn-O-glycans secreted into the culture media. After recovery, heavy and light Bn-O-glycans from two separate conditions are mixed, analyzed by MS, and statistically interrogated for changes in O-glycan abundance using a semi-automated approach. ICORA enables ~100-1000-fold enhanced sensitivity and increased throughput compared to traditional O-glycomics. We validated ICORA with model cell lines and used it to define alterations in the O-glycome in colorectal cancer. ICORA is a useful tool to explore the dynamic regulation of the O-glycome in health and disease.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Alison V Nairn
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mohammed Y Sardar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaodong Sun
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.,Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Sweeney JG, Liang J, Antonopoulos A, Giovannone N, Kang S, Mondala TS, Head SR, King SL, Tani Y, Brackett D, Dell A, Murphy GF, Haslam SM, Widlund HR, Dimitroff CJ. Loss of GCNT2/I-branched glycans enhances melanoma growth and survival. Nat Commun 2018; 9:3368. [PMID: 30135430 PMCID: PMC6105653 DOI: 10.1038/s41467-018-05795-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer cells often display altered cell-surface glycans compared to their nontransformed counterparts. However, functional contributions of glycans to cancer initiation and progression remain poorly understood. Here, from expression-based analyses across cancer lineages, we found that melanomas exhibit significant transcriptional changes in glycosylation-related genes. This gene signature revealed that, compared to normal melanocytes, melanomas downregulate I-branching glycosyltransferase, GCNT2, leading to a loss of cell-surface I-branched glycans. We found that GCNT2 inversely correlated with clinical progression and that loss of GCNT2 increased melanoma xenograft growth, promoted colony formation, and enhanced cell survival. Conversely, overexpression of GCNT2 decreased melanoma xenograft growth, inhibited colony formation, and increased cell death. More focused analyses revealed reduced signaling responses of two representative glycoprotein families modified by GCNT2, insulin-like growth factor receptor and integrins. Overall, these studies reveal how subtle changes in glycan structure can regulate several malignancy-associated pathways and alter melanoma signaling, growth, and survival.
Collapse
Affiliation(s)
- Jenna Geddes Sweeney
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Jennifer Liang
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Aristotelis Antonopoulos
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Nicholas Giovannone
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Shuli Kang
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Tony S. Mondala
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Steven R. Head
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sandra L. King
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Yoshihiko Tani
- 0000 0004 1762 2623grid.410775.0Japanese Red Cross Kinki Block Blood Center, 7-5-17 Saito Asagi, Ibaraki-shi, Osaka 567-0085 Japan
| | - Danielle Brackett
- 0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Anne Dell
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - George F. Murphy
- 000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA ,0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Stuart M. Haslam
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Hans R. Widlund
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Charles J. Dimitroff
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
36
|
Giovannone N, Liang J, Antonopoulos A, Geddes Sweeney J, King SL, Pochebit SM, Bhattacharyya N, Lee GS, Dell A, Widlund HR, Haslam SM, Dimitroff CJ. Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat Commun 2018; 9:3287. [PMID: 30120234 PMCID: PMC6098069 DOI: 10.1038/s41467-018-05770-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/26/2018] [Indexed: 12/29/2022] Open
Abstract
Leukocytes are coated with a layer of heterogeneous carbohydrates (glycans) that modulate immune function, in part by governing specific interactions with glycan-binding proteins (lectins). Although nearly all membrane proteins bear glycans, the identity and function of most of these sugars on leukocytes remain unexplored. Here, we characterize the N-glycan repertoire (N-glycome) of human tonsillar B cells. We observe that naive and memory B cells express an N-glycan repertoire conferring strong binding to the immunoregulatory lectin galectin-9 (Gal-9). Germinal center B cells, by contrast, show sharply diminished binding to Gal-9 due to upregulation of I-branched N-glycans, catalyzed by the β1,6-N-acetylglucosaminyltransferase GCNT2. Functionally, we find that Gal-9 is autologously produced by naive B cells, binds CD45, suppresses calcium signaling via a Lyn-CD22-SHP-1 dependent mechanism, and blunts B cell activation. Thus, our findings suggest Gal-9 intrinsically regulates B cell activation and may differentially modulate BCR signaling at steady state and within germinal centers.
Collapse
Affiliation(s)
- N Giovannone
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - J Liang
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - A Antonopoulos
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - J Geddes Sweeney
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S L King
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - S M Pochebit
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - N Bhattacharyya
- Department of Surgery, Division of Otolaryngology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - G S Lee
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - A Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - H R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - S M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - C J Dimitroff
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Hsiao CT, Wang PW, Chang HC, Chen YY, Wang SH, Chern Y, Khoo KH. Advancing a High Throughput Glycotope-centric Glycomics Workflow Based on nanoLC-MS 2-product Dependent-MS 3 Analysis of Permethylated Glycans. Mol Cell Proteomics 2017; 16:2268-2280. [PMID: 29066631 DOI: 10.1074/mcp.tir117.000156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/21/2017] [Indexed: 01/08/2023] Open
Abstract
The intrinsic nature of glycosylation, namely nontemplate encoded, stepwise elongation and termination with a diverse range of isomeric glyco-epitopes (glycotopes), translates into ambiguity in most cases of mass spectrometry (MS)-based glycomic mapping. It is arguable that whether one needs to delineate every single glycomic entity, which may be counterproductive. Instead, one should focus on identifying as many structural features as possible that would collectively define the glycomic characteristics of a cell or tissue, and how these may change in response to self-programmed development, immuno-activation, and malignant transformation. We have been pursuing this line of analytical strategy that homes in on identifying the terminal sulfo-, sialyl, and/or fucosylated glycotopes by comprehensive nanoLC-MS2-product dependent MS3 analysis of permethylated glycans, in conjunction with development of a data mining computational tool, GlyPick, to enable an automated, high throughput, semi-quantitative glycotope-centric glycomic mapping amenable to even nonexperts. We demonstrate in this work that diagnostic MS2 ions can be relied on to inform the presence of specific glycotopes, whereas their possible isomeric identities can be resolved at MS3 level. Both MS2 and associated MS3 data can be acquired exhaustively and processed automatically by GlyPick. The high acquisition speed, resolution, and mass accuracy afforded by top-notch Orbitrap Fusion MS system now allow a sensible spectral count and/or summed ion intensity-based glycome-wide glycotope quantification. We report here the technical aspects, reproducibility and optimization of such an analytical approach that uses the same acidic reverse phase C18 nanoLC conditions fully compatible with proteomic analysis to allow rapid hassle-free switching. We further show how this workflow is particularly effective when applied to larger, multiply sialylated and fucosylated N-glycans derived from mouse brain. The complexity of their terminal glycotopes including variants of fucosylated and disialylated type 1 and 2 chains would otherwise not be adequately delineated by any conventional LC-MS/MS analysis.
Collapse
Affiliation(s)
- Cheng-Te Hsiao
- From the ‡Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.,§Institute of Biological Chemistry and
| | | | | | - Yen-Ying Chen
- From the ‡Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | - Yijuang Chern
- ¶Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- From the ‡Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; .,§Institute of Biological Chemistry and
| |
Collapse
|
38
|
Shajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Anal Bioanal Chem 2017. [PMID: 28585084 DOI: 10.1007/s00216-017-04067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The structural analysis of glycoproteins is a challenging endeavor and is under steadily increasing demand, but only a very limited number of labs have the expertise required to accomplish this task. This tutorial is aimed at researchers from the fields of molecular biology and biochemistry that have discovered that glycoproteins are important in their biological research and are looking for the tools to elucidate their structure. It provides brief descriptions of the major and most common analytical techniques used in glycomics and glycoproteomics analysis, including explanations of the rationales for individual steps and references to published literature containing the experimental details necessary to carry out the analyses. Glycomics includes the comprehensive study of the structure and function of the glycans expressed in a given cell or organism along with identification of all the genes that encode glycoproteins and glycosyltransferases. Glycoproteomics which is subset of both glycomics and proteomics is the identification and characterization of proteins bearing carbohydrates as posttranslational modification. This tutorial is designed to ease entry into the glycomics and glycoproteomics field for those without prior carbohydrate analysis experience.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
39
|
Shajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Anal Bioanal Chem 2017; 409:4483-4505. [PMID: 28585084 PMCID: PMC5498624 DOI: 10.1007/s00216-017-0406-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
Abstract
The structural analysis of glycoproteins is a challenging endeavor and is under steadily increasing demand, but only a very limited number of labs have the expertise required to accomplish this task. This tutorial is aimed at researchers from the fields of molecular biology and biochemistry that have discovered that glycoproteins are important in their biological research and are looking for the tools to elucidate their structure. It provides brief descriptions of the major and most common analytical techniques used in glycomics and glycoproteomics analysis, including explanations of the rationales for individual steps and references to published literature containing the experimental details necessary to carry out the analyses. Glycomics includes the comprehensive study of the structure and function of the glycans expressed in a given cell or organism along with identification of all the genes that encode glycoproteins and glycosyltransferases. Glycoproteomics which is subset of both glycomics and proteomics is the identification and characterization of proteins bearing carbohydrates as posttranslational modification. This tutorial is designed to ease entry into the glycomics and glycoproteomics field for those without prior carbohydrate analysis experience.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
40
|
Termini JM, Silver ZA, Connor B, Antonopoulos A, Haslam SM, Dell A, Desrosiers RC. HEK293T cell lines defective for O-linked glycosylation. PLoS One 2017; 12:e0179949. [PMID: 28654657 PMCID: PMC5487050 DOI: 10.1371/journal.pone.0179949] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/07/2017] [Indexed: 11/18/2022] Open
Abstract
Here we describe derivatives of the HEK293T cell line that are defective in their ability to generate mucin-type O-linked glycosylation. Using CRISPR/Cas9 and a single-cell GFP-sorting procedure, the UDP-galactose-4-epimerase (GALE), galactokinase 1 (GALK1), and galactokinase 2 (GALK2) genes were knocked out individually and in combinations with greater than 90% of recovered clones having the desired mutations. Although HEK293T cells are tetraploid, we found this approach to be an efficient method to target and disrupt all 4 copies of the target gene. Deficient glycosylation in the GALE knockout cell line could be rescued by the addition of galactose and N-acetylgalactosamine (GalNAc) to the cell culture media. However, when key enzymes of the galactose/GalNAc salvage pathways were disrupted in tandem (GALE+GALK1 or GALE+GALK2), O-glycosylation was eliminated and could not be rescued by the addition of either galactose plus GalNAc or UDP-galactose plus UDP-GalNAc. GALK1 and GALK2 are key enzymes of the galactose/GalNAc salvage pathways. Mass spectrometry was performed on whole cell lysate of the knockout cell lines to verify the glycosylation phenotype. As expected, the GALE knockout was almost completely devoid of all O-glycosylation, with minimal glycosylation as a result of functional salvage pathways. However, the GALE+GALK1 and GALE+GALK2 knockout lines were devoid of all O-glycans. Mass spectrometry analysis revealed that the disruption of GALE, GALK1, and GALE+GALK2 had little effect on the N-glycome. But when GALE was knocked out in tandem with GALK1, N-glycans were exclusively of the high mannose type. Due to the well-characterized nature of these five knockout cell lines, they will likely prove useful for a wide variety of applications.
Collapse
Affiliation(s)
- James M. Termini
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Zachary A. Silver
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Bryony Connor
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
41
|
Pham ND, Pang PC, Krishnamurthy S, Wands AM, Grassi P, Dell A, Haslam SM, Kohler JJ. Effects of altered sialic acid biosynthesis on N-linked glycan branching and cell surface interactions. J Biol Chem 2017; 292:9637-9651. [PMID: 28424265 PMCID: PMC5465488 DOI: 10.1074/jbc.m116.764597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
GNE (UDP-GlcNAc 2-epimerase/ManNAc kinase) myopathy is a rare muscle disorder associated with aging and is related to sporadic inclusion body myositis, the most common acquired muscle disease of aging. Although the cause of sporadic inclusion body myositis is unknown, GNE myopathy is associated with mutations in GNE. GNE harbors two enzymatic activities required for biosynthesis of sialic acid in mammalian cells. Mutations to both GNE domains are linked to GNE myopathy. However, correlation between mutation-associated reductions in sialic acid production and disease severity is imperfect. To investigate other potential effects of GNE mutations, we compared sialic acid production in cell lines expressing wild type or mutant forms of GNE. Although we did not detect any differences attributable to disease-associated mutations, lectin binding and mass spectrometry analysis revealed that GNE deficiency is associated with unanticipated effects on the structure of cell-surface glycans. In addition to exhibiting low levels of sialylation, GNE-deficient cells produced distinct N-linked glycan structures with increased branching and extended poly-N-acetyllactosamine. GNE deficiency may affect levels of UDP-GlcNAc, a key metabolite in the nutrient-sensing hexosamine biosynthetic pathway, but this modest effect did not fully account for the change in N-linked glycan structure. Furthermore, GNE deficiency and glucose supplementation acted independently and additively to increase N-linked glycan branching. Notably, N-linked glycans produced by GNE-deficient cells displayed enhanced binding to galectin-1, indicating that changes in GNE activity can alter affinity of cell-surface glycoproteins for the galectin lattice. These findings suggest an unanticipated mechanism by which GNE activity might affect signaling through cell-surface receptors.
Collapse
Affiliation(s)
- Nam D Pham
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038 and
| | - Poh-Choo Pang
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Soumya Krishnamurthy
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038 and
| | - Amberlyn M Wands
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038 and
| | - Paola Grassi
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Anne Dell
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Stuart M Haslam
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Jennifer J Kohler
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038 and
| |
Collapse
|
42
|
The redefinition of Helicobacter pylori lipopolysaccharide O-antigen and core-oligosaccharide domains. PLoS Pathog 2017; 13:e1006280. [PMID: 28306723 PMCID: PMC5371381 DOI: 10.1371/journal.ppat.1006280] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/29/2017] [Accepted: 03/08/2017] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori lipopolysaccharide promotes chronic gastric colonisation through O-antigen host mimicry and resistance to mucosal antimicrobial peptides mediated primarily by modifications of the lipid A. The structural organisation of the core and O-antigen domains of H. pylori lipopolysaccharide remains unclear, as the O-antigen attachment site has still to be identified experimentally. Here, structural investigations of lipopolysaccharides purified from two wild-type strains and the O-antigen ligase mutant revealed that the H. pylori core-oligosaccharide domain is a short conserved hexasaccharide (Glc-Gal-DD-Hep-LD-Hep-LD-Hep-KDO) decorated with the O-antigen domain encompassing a conserved trisaccharide (-DD-Hep-Fuc-GlcNAc-) and variable glucan, heptan and Lewis antigens. Furthermore, the putative heptosyltransferase HP1284 was found to be required for the transfer of the third heptose residue to the core-oligosaccharide. Interestingly, mutation of HP1284 did not affect the ligation of the O-antigen and resulted in the attachment of the O-antigen onto an incomplete core-oligosaccharide missing the third heptose and the adjoining Glc-Gal residues. Mutants deficient in either HP1284 or O-antigen ligase displayed a moderate increase in susceptibility to polymyxin B but were unable to colonise the mouse gastric mucosa. Finally, mapping mutagenesis and colonisation data of previous studies onto the redefined organisation of H. pylori lipopolysaccharide revealed that only the conserved motifs were essential for colonisation. In conclusion, H. pylori lipopolysaccharide is missing the canonical inner and outer core organisation. Instead it displays a short core and a longer O-antigen encompassing residues previously assigned as the outer core domain. The redefinition of H. pylori lipopolysaccharide domains warrants future studies to dissect the role of each domain in host-pathogen interactions. Also enzymes involved in the assembly of the conserved core structure, such as HP1284, could be attractive targets for the design of new therapeutic agents for managing persistent H. pylori infection causing peptic ulcers and gastric cancer.
Collapse
|
43
|
Mulagapati S, Koppolu V, Raju TS. Decoding of O-Linked Glycosylation by Mass Spectrometry. Biochemistry 2017; 56:1218-1226. [PMID: 28196325 DOI: 10.1021/acs.biochem.6b01244] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein glycosylation (N- and O-linked) plays an important role in many biological processes, including protein structure and function. However, the structural elucidation of glycans, specifically O-linked glycans, remains a major challenge and is often overlooked during protein analysis. Recently, mass spectrometry (MS) has matured as a powerful technology for high-quality analytical characterization of O-linked glycans. This review summarizes the recent developments and insights of MS-based glycomics technologies, with a focus on mucin-type O-glycan analysis. Three main MS-based approaches are outlined: O-glycan profiling (structural analysis of released O-glycan), a "bottom-up" approach (analysis of an O-glycan covalently attached to a glycopeptide), and a "top-down" approach (analysis of a glycan attached to an intact glycoprotein). In addition, the most widely used MS ionization techniques, i.e., matrix-assisted laser desorption ionization and electrospray ionization, as well as ion activation techniques like collision-induced dissociation, electron capture dissociation, and electron transfer dissociation during O-glycan analysis are discussed. The MS technical approaches mentioned above are already major improvements for studying O-linked glycosylation and appear to be valuable for in-depth analysis of the type of O-glycan attached, branching patterns, and the occupancy of O-glycosylation sites.
Collapse
Affiliation(s)
- SriHariRaju Mulagapati
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Veerendra Koppolu
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - T Shantha Raju
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
44
|
Letkemann R, Wittkowski H, Antonopoulos A, Podskabi T, Haslam SM, Föll D, Dell A, Marquardt T. Partial correction of neutrophil dysfunction by oral galactose therapy in glycogen storage disease type Ib. Int Immunopharmacol 2017; 44:216-225. [PMID: 28126686 DOI: 10.1016/j.intimp.2017.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/30/2023]
Abstract
Glycogen storage disease type Ib (GSD-Ib) is characterized by impaired glucose homeostasis, neutropenia and neutrophil dysfunction. Mass spectrometric glycomic profiling of GSD-Ib neutrophils showed severely truncated N-glycans, lacking galactose. Experiments indicated the hypoglycosylation of the electron transporting subunit of NADPH oxidase, which is crucial for the defense against bacterial infections. In phosphoglucomutase 1 (PGM1) deficiency, an inherited disorder with an enzymatic defect just one metabolic step ahead, hypogalactosylation can be successfully treated by dietary galactose. We hypothesized the same pathomechanism in GSD-Ib and started a therapeutic trial with oral galactose and uridine. The aim was to improve neutrophil dysfunction through the correction of hypoglycosylation in neutrophils. The GSD-Ib patient was treated for 29weeks. Monitoring included glycomics analysis of the patient's neutrophils and neutrophil function tests including respiratory burst activity, phagocytosis and migration. Although no substantial restoration of neutrophil glycosylation was found, there was partial improvement of respiratory burst activity.
Collapse
Affiliation(s)
- Rudolf Letkemann
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Muenster, Germany.
| | - Helmut Wittkowski
- Department of Pediatric Rheumatology and Imunology, University Children's Hospital Muenster, Germany.
| | | | - Teodor Podskabi
- Molecular Genetics and Metabolism Laboratory, Munich, Germany.
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK.
| | - Dirk Föll
- Department of Pediatric Rheumatology and Imunology, University Children's Hospital Muenster, Germany.
| | - Anne Dell
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK.
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Muenster, Germany.
| |
Collapse
|
45
|
Danyluk HJ, Shum LK, Zandberg WF. A Rapid Procedure for the Purification of 8-Aminopyrene Trisulfonate (APTS)-Labeled Glycans for Capillary Electrophoresis (CE)-Based Enzyme Assays. Methods Mol Biol 2017; 1588:223-236. [PMID: 28417373 DOI: 10.1007/978-1-4939-6899-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Purified glycan standards are required for glycan arrays, characterizing substrate specificities of glycan-active enzymes, and to serve as retention-time or mobility standards for various separation techniques. This chapter describes a method for the rapid separation, and subsequent desalting, of glycans labeled with the highly fluorescent fluorophore 8-aminopyrene 1,3,6-trisulfonate (APTS). By using fluorophore-assisted carbohydrate electrophoresis (FACE) on polyacrylamide gels, which utilizes equipment readily available in most molecular biology laboratories, many APTS-labeled glycans can be simultaneously resolved. Excising specific gel bands containing the desired APTS-labeled glycans, followed by glycan elution from the gel and subsequent solid-phase extraction (SPE), yields single glycan species free of excess labeling reagents and buffer components. This chapter describes a FACE/SPE procedure ideal for preparing glycans for capillary electrophoresis (CE)-based enzyme assays, as well as for the purification of rare, commercially unavailable glycans from tissue culture samples.
Collapse
Affiliation(s)
- Hayden J Danyluk
- Simon Fraser University, Department of Molecular Biology and Biochemistry, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Leona K Shum
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Wesley F Zandberg
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, BC, Canada.
- Department of Chemistry, Science Building, 1177 Research Road, Kelowna, BC, Canada, V1M 1V7.
| |
Collapse
|
46
|
Panico M, Bouché L, Binet D, O’Connor MJ, Rahman D, Pang PC, Canis K, North SJ, Desrosiers RC, Chertova E, Keele BF, Bess JW, Lifson JD, Haslam SM, Dell A, Morris HR. Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding. Sci Rep 2016; 6:32956. [PMID: 27604319 PMCID: PMC5015092 DOI: 10.1038/srep32956] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
The surface envelope glycoprotein (SU) of Human immunodeficiency virus type 1 (HIV-1), gp120(SU) plays an essential role in virus binding to target CD4+ T-cells and is a major vaccine target. Gp120 has remarkably high levels of N-linked glycosylation and there is considerable evidence that this "glycan shield" can help protect the virus from antibody-mediated neutralization. In recent years, however, it has become clear that gp120 glycosylation can also be included in the targets of recognition by some of the most potent broadly neutralizing antibodies. Knowing the site-specific glycosylation of gp120 can facilitate the rational design of glycopeptide antigens for HIV vaccine development. While most prior studies have focused on glycan analysis of recombinant forms of gp120, here we report the first systematic glycosylation site analysis of gp120 derived from virions produced by infected T lymphoid cells and show that a single site is exclusively substituted with complex glycans. These results should help guide the design of vaccine immunogens.
Collapse
Affiliation(s)
- Maria Panico
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Laura Bouché
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Daniel Binet
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, UK
| | - Michael-John O’Connor
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, UK
| | - Dinah Rahman
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Kevin Canis
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Simon J. North
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | - Elena Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Julian W. Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Howard R. Morris
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, UK
| |
Collapse
|
47
|
Mehta N, Porterfield M, Struwe WB, Heiss C, Azadi P, Rudd PM, Tiemeyer M, Aoki K. Mass Spectrometric Quantification of N-Linked Glycans by Reference to Exogenous Standards. J Proteome Res 2016; 15:2969-80. [PMID: 27432553 DOI: 10.1021/acs.jproteome.6b00132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Environmental and metabolic processes shape the profile of glycoprotein glycans expressed by cells, whether in culture, developing tissues, or mature organisms. Quantitative characterization of glycomic changes associated with these conditions has been achieved historically by reductive coupling of oligosaccharides to various fluorophores following release from glycoprotein and subsequent HPLC or capillary electrophoretic separation. Such labeling-based approaches provide a robust means of quantifying glycan amount based on fluorescence yield. Mass spectrometry, on the other hand, has generally been limited to relative quantification in which the contribution of the signal intensity for an individual glycan is expressed as a percent of the signal intensity summed over the total profile. Relative quantification has been valuable for highlighting changes in glycan expression between samples; sensitivity is high, and structural information can be derived by fragmentation. We have investigated whether MS-based glycomics is amenable to absolute quantification by referencing signal intensities to well-characterized oligosaccharide standards. We report the qualification of a set of N-linked oligosaccharide standards by NMR, HPLC, and MS. We also demonstrate the dynamic range, sensitivity, and recovery from complex biological matrices for these standards in their permethylated form. Our results indicate that absolute quantification for MS-based glycomic analysis is reproducible and robust utilizing currently available glycan standards.
Collapse
Affiliation(s)
| | | | - Weston B Struwe
- National Institute for Bioprocessing Research and Training (NIBRT) , Dublin, Ireland
| | | | | | - Pauline M Rudd
- National Institute for Bioprocessing Research and Training (NIBRT) , Dublin, Ireland.,University College , Dublin, Ireland
| | | | | |
Collapse
|
48
|
Lattová E, Bryant J, Skřičková J, Zdráhal Z, Popovič M. Efficient Procedure for N-Glycan Analyses and Detection of Endo H-Like Activity in Human Tumor Specimens. J Proteome Res 2016; 15:2777-86. [PMID: 27312819 DOI: 10.1021/acs.jproteome.6b00346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the importance of glycosylation has been thoroughly recognized in association with a number of biological processes, efficient assessments of glycans have been hampered by both the limited size of specimens and lengthy sample preparations, particularly in clinical settings. Here we report a simple preparative method for N-glycan analyses. It involves only short one-step chloroform-methanol extraction in presence or absence of water prior to PNGase F deglycosylation. The procedure was successfully applied to the investigation of N-glycans obtained from small numbers of in vitro cultured cancer cells (≤1 × 10(5)) and to tumor tissues, including patient biopsies of small size. MALDI-MS analysis confirmed the efficient release of all N-glycan types including complex forms with poly-N-acetyllactosamine chains. In addition, nonaqueous extraction of specimens from several established cancer cell lines, as well as patient tumor tissues, yielded high-mannose glycans with one GlcNAc moiety (Man3-9GlcNAc), strongly suggesting preservation of enzymatic activity analogous to Endo H enzyme. In summary, the method is both a step toward the practical use of glycan profiling and a way to detect Endo H-like activity in cancer specimens.
Collapse
Affiliation(s)
- Erika Lattová
- Central European Institute for Technology, Masaryk University , Kamenice 5, 625 00 Brno, Czech Republic
| | - Joseph Bryant
- The Institute of Human Virology, University of Maryland School of Medicine , 725 West Lombard Street, Baltimore, Maryland 21201, United States
| | - Jana Skřičková
- Department of Respiratory Diseases and Tuberculosis, University Hospital Brno, Medical Faculty, Masaryk University , 625 00 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute for Technology, Masaryk University , Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University , Kamenice 5, 625 00 Brno, Czech Republic
| | - Mikuláš Popovič
- The Institute of Human Virology, University of Maryland School of Medicine , 725 West Lombard Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
49
|
Chen Q, Pang PC, Cohen ME, Longtine MS, Schust DJ, Haslam SM, Blois SM, Dell A, Clark GF. Evidence for Differential Glycosylation of Trophoblast Cell Types. Mol Cell Proteomics 2016; 15:1857-66. [PMID: 26929217 DOI: 10.1074/mcp.m115.055798] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered.
Collapse
Affiliation(s)
- Qiushi Chen
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Poh-Choo Pang
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marie E Cohen
- §Department of Gynaecology and Obstetrics, Faculty of Medicine, Geneva, Switzerland
| | - Mark S Longtine
- ¶Department of Obstetrics and Gynecology, Washington University, School of Medicine, St. Louis, Missouri 63110
| | - Danny J Schust
- ‖Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - Stuart M Haslam
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sandra M Blois
- **Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Dell
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;
| | - Gary F Clark
- ‖Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, Missouri 65212;
| |
Collapse
|
50
|
Nita-Lazar M, Mancini J, Feng C, González-Montalbán N, Ravindran C, Jackson S, de Las Heras-Sánchez A, Giomarelli B, Ahmed H, Haslam SM, Wu G, Dell A, Ammayappan A, Vakharia VN, Vasta GR. The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:241-252. [PMID: 26429411 PMCID: PMC4684960 DOI: 10.1016/j.dci.2015.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
The infectious hematopoietic necrosis virus (IHNV; Rhabdoviridae, Novirhabdovirus) infects teleost fish, such as salmon and trout, and is responsible for significant losses in the aquaculture industry and in wild fish populations. Although IHNV enters the host through the skin at the base of the fins, the viral adhesion and entry mechanisms are not fully understood. In recent years, evidence has accumulated in support of the key roles played by protein-carbohydrate interactions between host lectins secreted to the extracellular space and virion envelope glycoproteins in modulating viral adhesion and infectivity. In this study, we assessed in vitro the potential role(s) of zebrafish (Danio rerio) proto type galectin-1 (Drgal1-L2) and a chimera galectin-3 (Drgal3-L1) in IHNV adhesion to epithelial cells. Our results suggest that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion.
Collapse
Affiliation(s)
- Mihai Nita-Lazar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Núria González-Montalbán
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Chinnarajan Ravindran
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Shawn Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Ana de Las Heras-Sánchez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Barbara Giomarelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Hafiz Ahmed
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Stuart M Haslam
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Gang Wu
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Anne Dell
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Arun Ammayappan
- Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Vikram N Vakharia
- Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| |
Collapse
|