1
|
François RMM, Massicard JM, Weissman KJ. The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture. Nat Prod Rep 2024. [PMID: 39555733 DOI: 10.1039/d4np00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.
Collapse
|
2
|
de Jesus VET, Alvarenga Y, Boffo EF, Geris R. Mycobolome of Phialomyces Macrosporus Across OSMAC-Based Assorted Culture Media. Chem Biodivers 2024; 21:e202401547. [PMID: 39136586 DOI: 10.1002/cbdv.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 11/17/2024]
Abstract
The fungus Phialomyces macrosporus was cultured using the One Strain Many Compounds (OSMAC) strategies to evaluate its metabolome. Variations in the nutrient culture media, culture regime, and cultivation parameters can significantly influence fungal extract quantity and chemical diversity. This study aimed to explore the mycobolome of P. macrosporus in five different culture media and two different cultivation conditions using NMR-based metabolomics. Principal component analysis (PCA) of 1H-NMR spectra revealed clear differentiation between these samples, highlighting the rice dextrose agar medium (RDA) and potato dextrose broth (PDB) as standard complex media for conducting a fungal metabolite screening program.
Collapse
Affiliation(s)
- Vitória Evelyn Teles de Jesus
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, Salvador, 40170-115, Brasil
| | - Yasmin Alvarenga
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, Salvador, 40170-115, Brasil
| | - Elisangela F Boffo
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, Salvador, 40170-115, Brasil
| | - Regina Geris
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, Salvador, 40170-115, Brasil
| |
Collapse
|
3
|
Pasqualetti M, Braconcini M, Barghini P, Gorrasi S, Schillaci D, Ferraro D, Della Sala G, De Marino S, Fenice M. From marine neglected substrata new fungal taxa of potential biotechnological interest: the case of Pelagia noctiluca. Front Microbiol 2024; 15:1473269. [PMID: 39464400 PMCID: PMC11502404 DOI: 10.3389/fmicb.2024.1473269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The marine environment is extremely complex and exerts strong evolutionary pressure often leading to the appearance of microbial strains with new metabolic competencies. Microorganisms in marine ecosystems are still largely unknown and should be explored and conserved for biodiversity preservation, possible ecosystem restoring, and other applications. Biodiversity conservation should become a basic ecological strategy of particular significance in relation to global change. In this context, the present research aimed at exploring the culturable mycobiota associated with the jellyfish Pelagia noctiluca, never studied before. In addition, the isolated strains were tested for potential application (antimicrobial activity and presence of genes related to the production of secondary metabolites). Methods Five jellyfishes were collected in the coastal area of Giglio Island and processed to isolate epizoic fungi. The strains were identified using a polyphasic approach (morphological, physiological, and molecular) and their salt preference was also investigated. The antifungal and antibacterial activity were tested for each strain with agar plug diffusion test. The presence of some key genes related to the main pathways for the production of secondary metabolites in fungi, polyketide synthases (PKSs), and non-ribosomal peptide synthase (NRPSs), was also assessed. Results A total of 164 isolates were obtained; after the dereplication, 40 morphotypes, and 23 species were identified. The phylogenetic analyses suggested the presence of new taxa belonging to Pleosporales: two new genera and species, and a new species of Tamaricicola. The detected mycobiota showed a relatively high diversity, if compared to other epizoic fungal communities. All isolated strains were marine fungi as confirmed by their salt preference and marked euryhalinism. The genes related to the two main pathways for the production of secondary metabolites in fungi, PKSs and NRPSs, were identified in four and nine strains, respectively. The antimicrobial activity was revealed in 70% of the strains, including the new taxa. The abundance of bioactive strains may be related to the potential involvement of epizoic fungi in host defense strategies. Moreover, these strains could show a high potential for further biotechnological applications particularly in the case of new taxa. All strains are maintained in culture collections.
Collapse
Affiliation(s)
- Marcella Pasqualetti
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
- Laboratory of Ecology of Marine Fungi (CoNISMa), University of Tuscia, Viterbo, Italy
| | - Martina Braconcini
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
| | - Paolo Barghini
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
| | - Susanna Gorrasi
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Donatella Ferraro
- Microbiology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Gerardo Della Sala
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Massimiliano Fenice
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
- Laboratory of Applied Marine Microbiology (CoNISMa), University of Tuscia, Viterbo, Italy
| |
Collapse
|
4
|
Saleh I, Zeidan R, Abu-Dieyeh M. The characteristics, occurrence, and toxicological effects of alternariol: a mycotoxin. Arch Toxicol 2024; 98:1659-1683. [PMID: 38662238 PMCID: PMC11106155 DOI: 10.1007/s00204-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Alternaria species are mycotoxin-producing fungi known to infect fresh produce and to cause their spoilage. Humans get exposed to fungal secondary metabolites known as mycotoxin via the ingestion of contaminated food. Alternariol (AOH) (C14H10O5) is an isocoumarins produced by different species of Alternaria including Alternaria alternata. AOH is often found in grain, fruits and fruits-based food products with high levels in legumes, nuts, and tomatoes. AOH was first discovered in 1953, and it is nowadays linked to esophagus cancer and endocrine disruption due to its similarity to estrogen. Although considered as an emerging mycotoxin with no regulated levels in food, AOH occurs in highly consumed dietary products and has been detected in various masked forms, which adds to its occurrence. Therefore, this comprehensive review was developed to give an overview on recent literature in the field of AOH. The current study summarizes published data on occurrence levels of AOH in different food products in the last ten years and evaluates those levels in comparison to recommended levels by the regulating entities. Such surveillance facilitates the work of health risk assessors and highlights commodities that are most in need of AOH levels regulation. In addition, the effects of AOH on cells and animal models were summarized in two tables; data include the last two-year literature studies. The review addresses also the main characteristics of AOH and the possible human exposure routes, the populations at risk, and the effect of anthropogenic activities on the widespread of the mycotoxin. The commonly used detection and control methods described in the latest literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry. This review aims mainly to serve as a guideline on AOH for mycotoxin regulation developers and health risk assessors.
Collapse
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Randa Zeidan
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
5
|
Sadeghi M, Mestivier D, Sobhani I. Contribution of pks+ Escherichia coli ( E. coli) to Colon Carcinogenesis. Microorganisms 2024; 12:1111. [PMID: 38930493 PMCID: PMC11205849 DOI: 10.3390/microorganisms12061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health concern, ranking second in mortality and third in frequency among cancers worldwide. While only a small fraction of CRC cases can be attributed to inherited genetic mutations, the majority arise sporadically due to somatic mutations. Emerging evidence reveals gut microbiota dysbiosis to be a contributing factor, wherein polyketide synthase-positive Escherichia coli (pks+ E. coli) plays a pivotal role in CRC pathogenesis. pks+ bacteria produce colibactin, a genotoxic protein that causes deleterious effects on DNA within host colonocytes. In this review, we examine the role of the gut microbiota in colon carcinogenesis, elucidating how colibactin-producer bacteria induce DNA damage, promote genomic instability, disrupt the gut epithelial barrier, induce mucosal inflammation, modulate host immune responses, and influence cell cycle dynamics. Collectively, these actions foster a microenvironment conducive to tumor initiation and progression. Understanding the mechanisms underlying pks+ bacteria-mediated CRC development may pave the way for mass screening, early detection of tumors, and therapeutic strategies such as microbiota modulation, bacteria-targeted therapy, checkpoint inhibition of colibactin production and immunomodulatory pathways.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Denis Mestivier
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Iradj Sobhani
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, 94010 Créteil, France
| |
Collapse
|
6
|
Atanasoff‐Kardjalieff AK, Seidl B, Steinert K, Daniliuc CG, Schuhmacher R, Humpf H, Kalinina S, Studt‐Reinhold L. Biosynthesis of the Isocoumarin Derivatives Fusamarins is Mediated by the PKS8 Gene Cluster in Fusarium. Chembiochem 2023; 24:e202200342. [PMID: 36137261 PMCID: PMC10947347 DOI: 10.1002/cbic.202200342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Fusarium mangiferae causes the mango malformation disease (MMD) on young mango trees and seedlings resulting in economically significant crop losses. In addition, F. mangiferae produces a vast array of secondary metabolites (SMs), including mycotoxins that may contaminate the harvest. Their production is tightly regulated at the transcriptional level. Here, we show that lack of the H3 K9-specific histone methyltransferase, FmKmt1, influences the expression of the F. mangiferae polyketide synthase (PKS) 8 (FmPKS8), a so far cryptic PKS. By a combination of reverse genetics, untargeted metabolomics, bioinformatics and chemical analyses including structural elucidation, we determined the FmPKS8 biosynthetic gene cluster (BGC) and linked its activity to the production of fusamarins (FMN), which can be structurally classified as dihydroisocoumarins. Functional characterization of the four FMN cluster genes shed light on the biosynthetic pathway. Cytotoxicity assays revealed moderate toxicities with IC50 values between 1 and 50 μM depending on the compound.
Collapse
Affiliation(s)
- Anna K. Atanasoff‐Kardjalieff
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| | - Bernhard Seidl
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Katharina Steinert
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Hans‐Ulrich Humpf
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Svetlana Kalinina
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Lena Studt‐Reinhold
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| |
Collapse
|
7
|
Conrado R, Gomes TC, Roque GSC, De Souza AO. Overview of Bioactive Fungal Secondary Metabolites: Cytotoxic and Antimicrobial Compounds. Antibiotics (Basel) 2022; 11:1604. [PMID: 36421247 PMCID: PMC9687038 DOI: 10.3390/antibiotics11111604] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Microorganisms are known as important sources of natural compounds that have been studied and applied for different purposes in distinct areas. Specifically, in the pharmaceutical area, fungi have been explored mainly as sources of antibiotics, antiviral, anti-inflammatory, enzyme inhibitors, hypercholesteremic, antineoplastic/antitumor, immunomodulators, and immunosuppressants agents. However, historically, the high demand for new antimicrobial and antitumor agents has not been sufficiently attended by the drug discovery process, highlighting the relevance of intensifying studies to reach sustainable employment of the huge world biodiversity, including the microorganisms. Therefore, this review describes the main approaches and tools applied in the search for bioactive secondary metabolites, as well as presents several examples of compounds produced by different fungi species with proven pharmacological effects and additional examples of fungal cytotoxic and antimicrobial molecules. The review does not cover all fungal secondary metabolites already described; however, it presents some reports that can be useful at any phase of the drug discovery process, mainly for pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | - Ana Olívia De Souza
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
8
|
Sayari M, Dolatabadian A, El-Shetehy M, Rehal PK, Daayf F. Genome-Based Analysis of Verticillium Polyketide Synthase Gene Clusters. BIOLOGY 2022; 11:biology11091252. [PMID: 36138731 PMCID: PMC9495618 DOI: 10.3390/biology11091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Fungi can produce many types of secondary metabolites, including mycotoxins. Poisonous mushrooms and mycotoxins that cause food spoilage have been known for a very long time. For example, Aspergillus flavus, which can grow on grains and nuts, produces highly toxic substances called Aflatoxins. Despite their menace to other living organisms, mycotoxins can be used for medicinal purposes, i.e., as antibiotics, growth-promoting compounds, and other kinds of drugs. These and other secondary metabolites produced by plant-pathogenic fungi may cause host plants to display disease symptoms and may play a substantial role in disease progression. Therefore, the identification and characterization of the genes involved in their biosynthesis are essential for understanding the molecular mechanism involved in their biosynthetic pathways and further promoting sustainable knowledge-based crop production. Abstract Polyketides are structurally diverse and physiologically active secondary metabolites produced by many organisms, including fungi. The biosynthesis of polyketides from acyl-CoA thioesters is catalyzed by polyketide synthases, PKSs. Polyketides play roles including in cell protection against oxidative stress, non-constitutive (toxic) roles in cell membranes, and promoting the survival of the host organisms. The genus Verticillium comprises many species that affect a wide range of organisms including plants, insects, and other fungi. Many are known as causal agents of Verticillium wilt diseases in plants. In this study, a comparative genomics approach involving several Verticillium species led us to evaluate the potential of Verticillium species for producing polyketides and to identify putative polyketide biosynthesis gene clusters. The next step was to characterize them and predict the types of polyketide compounds they might produce. We used publicly available sequences from ten species of Verticillium including V. dahliae, V. longisporum, V. nonalfalfae, V. alfalfae, V. nubilum, V. zaregamsianum, V. klebahnii, V. tricorpus, V. isaacii, and V. albo-atrum to identify and characterize PKS gene clusters by utilizing a range of bioinformatic and phylogenetic approaches. We found 32 putative PKS genes and possible clusters in the genomes of Verticillium species. All the clusters appear to be complete and functional. In addition, at least five clusters including putative DHN-melanin-, cytochalasin-, fusarielien-, fujikurin-, and lijiquinone-like compounds may belong to the active PKS repertoire of Verticillium. These results will pave the way for further functional studies to understand the role of these clusters.
Collapse
Affiliation(s)
- Mohammad Sayari
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Mohamed El-Shetehy
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Pawanpuneet Kaur Rehal
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
9
|
Xiang P, Kemmerich B, Yang L, Li SM. Biosynthesis of Annullatin D in Penicillium roqueforti Implies Oxidative Lactonization between Two Hydroxyl Groups Catalyzed by a BBE-like Enzyme. Org Lett 2022; 24:6072-6077. [PMID: 35939524 DOI: 10.1021/acs.orglett.2c02438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Annullatins from Cordyceps annullata are alkylated aromatic polyketides including annullatin D with a fused dihydrobenzofuran lactone ring system. Here, we report the identification of a silent biosynthetic gene cluster for annullatins from Penicillium roqueforti by heterologous expression in Aspergillus nidulans, gene deletion, and feeding experiments as well as by biochemical characterization. The polyketide core structure is consecutively modified by hydroxylation and prenylation. A berberine bridge enzyme-like protein catalyzes the final step, an oxidative lactonization between two hydroxyl groups, to form (2S, 9S)-annullatin D.
Collapse
Affiliation(s)
- Pan Xiang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Bastian Kemmerich
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Li Yang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, 571101 Haikou, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
10
|
Zhao S, Lin C, Cheng M, Zhang K, Wang Z, Zhao T, Yang Q. New insight into the production improvement and resource generation of chaetoglobosin A in Chaetomium globosum. Microb Biotechnol 2022; 15:2562-2577. [PMID: 35930651 PMCID: PMC9518988 DOI: 10.1111/1751-7915.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Chaetoglobosin A is a complex macrocyclic alkaloid with potent antimycotic, antiparasitic and antitumor properties. However, the low output and high cost of chaetoglobosin A biosynthesis have hampered the application and commercialization of chaetoglobosin A in agriculture and biomedicine. Here, the CgMfs1 gene, which encodes the major facilitator superfamily secondary transporter, was identified based on bioinformatics analysis, and an intensive study of its effects on chaetoglobosin A biosynthesis and secretion was performed using CgMfs1‐silencing and CgMfs1‐overexpression strategies. Inactivation of CgMfs1 caused a notable decrease in chaetoglobosin A yield from 58.66 mg/L to 19.95 mg/L (MFS1–3) and 17.13 mg/L (MFS1–4). The use of an efficient expression plasmid in Chaetomium globosum W7 to generate the overexpression mutant OEX13 resulted in the highest chaetoglobosin A increase to 298.77 mg/L. Interestingly, the transcription level of the polyketide synthase gene significantly fluctuated with the change in CgMfs1, confirming that the predicted efflux gene CgMfs1 could play a crucial role in chaetoglobosin A transportation. Effective efflux of chaetoglobosin A could possibly alleviate feedback inhibition, resulting in notable increase in the expression of the polyketide synthase gene. Furthermore, we utilized cornstalk as the fermentation substrate to produce chaetoglobosin A, and scanning electron microscopy and Fourier transform‐infrared spectroscopy revealed that the strain OEX13 could well degrade cornstalk, presenting significant increases in the chaetoglobosin A yield, when compared with that produced by the wild‐type strain (from 40.32 to 191.90 mg/L). Thus, this research provides a novel analogous engineering strategy for the construction of high‐yielding strain and offers new insight into large‐scale chaetoglobosin A production.
Collapse
Affiliation(s)
- Shanshan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Congyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ming Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhengran Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
11
|
Toopaang W, Bunnak W, Srisuksam C, Wattananukit W, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat Prod Rep 2022; 39:2008-2029. [PMID: 35822627 DOI: 10.1039/d1np00058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand. .,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Warapon Bunnak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wilawan Wattananukit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
12
|
Phakeovilay J, Imaram W, Vuttipongchaikij S, Bunnak W, Lazarus CM, Wattana-Amorn P. C-Methylation controls the biosynthetic programming of alternapyrone. Org Biomol Chem 2022; 20:5050-5054. [PMID: 35695066 DOI: 10.1039/d2ob00947a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alternapyrone is a highly methylated polyene α-pyrone biosynthesised by a highly reducing polyketide synthase. Mutations of the catalytic dyad residues, H1578A/Q and E1604A, of the C-methyltransferase domain resulted in either significantly reduced or no production of alternapyrone, indicating the importance of C-methylation for alternapyrone biosynthesis.
Collapse
Affiliation(s)
- Jaiyfungkhong Phakeovilay
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10900, Thailand.
| | - Witcha Imaram
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Waraporn Bunnak
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Colin M Lazarus
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Pakorn Wattana-Amorn
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10900, Thailand. .,Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
13
|
Stierle SA, Li SM. Biosynthesis of Xylariolide D in Penicillium crustosum Implies a Chain Branching Reaction Catalyzed by a Highly Reducing Polyketide Synthase. J Fungi (Basel) 2022; 8:jof8050493. [PMID: 35628749 PMCID: PMC9147667 DOI: 10.3390/jof8050493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Fungi are important sources for the discovery of natural products. During the last decades, technological progress and the increasing number of sequenced genomes facilitated the exploration of new secondary metabolites. Among those, polyketides represent a structurally diverse group with manifold biological activities. In this study, we successfully used genome mining and genetic manipulation for functional proof of a polyketide biosynthetic gene cluster from the filamentous fungus Penicillium crustosum. Gene activation in the native host and heterologous expression in Aspergillus nidulans led to the identification of the xil cluster, being responsible for the formation of the 6-methyl-2-pyrone derivative xylariolide D. Feeding with 13C-labeled precursors supported the hypothesis of chain branching during the backbone formation catalyzed by a highly reducing fungal polyketide synthase. A cytochrome P450-catalyzed hydroxylation converts the PKS product to the final metabolite. This proved that just two enzymes are required for the biosynthesis of xylariolide D.
Collapse
|
14
|
Omar AM, Mohamed GA, Ibrahim SRM. Chaetomugilins and Chaetoviridins—Promising Natural Metabolites: Structures, Separation, Characterization, Biosynthesis, Bioactivities, Molecular Docking and Molecular Dynamics. J Fungi (Basel) 2022; 8:jof8020127. [PMID: 35205880 PMCID: PMC8875349 DOI: 10.3390/jof8020127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fungi are recognized as luxuriant metabolic artists that generate propitious biometabolites. Historically, fungal metabolites have largely been investigated as leads for various therapeutic agents. Chaetomugilins and the closely related chaetoviridins are fungal metabolites, and each has an oxygenated bicyclic pyranoquinone core. They are mainly produced by various Chaetomaceae species. These metabolites display unique chemical features and diversified bioactivities. The current review gives an overview of research about fungal chaetomugilins and chaetoviridins regarding their structures, separation, characterization, biosynthesis, and bioactivities. Additionally, their antiviral potential towards the SARS-CoV-2 protease was evaluated using docking studies and molecular dynamics (MD) simulations. We report on the docking and predictive binding energy estimations using reported crystal structures of the main protease (PDB ID: 6M2N, 6W81, and 7K0f) at variable resolutions—i.e., 2.20, 1.55, and 1.65 Å, respectively. Chaetovirdin D (43) exhibited highly negative docking scores of −7.944, −8.141, and −6.615 kcal/mol, when complexed with 6M2N, 6W81, and 7K0f, respectively. The reference inhibitors exhibited the following scores: −5.377, −6.995, and −8.159 kcal/mol, when complexed with 6M2N, 6W81, and 7K0f, respectively. By using molecular dynamics simulations, chaetovirdin D’s stability in complexes with the viral protease was analyzed, and it was found to be stable over the course of 100 ns.
Collapse
Affiliation(s)
- Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.M.O.); or (S.R.M.I.); Tel.: +966-56-768-1466 (A.M.O.); +966-58-118-3034 (S.R.M.I.)
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (A.M.O.); or (S.R.M.I.); Tel.: +966-56-768-1466 (A.M.O.); +966-58-118-3034 (S.R.M.I.)
| |
Collapse
|
15
|
Depside and Depsidone Synthesis in Lichenized Fungi Comes into Focus through a Genome-Wide Comparison of the Olivetoric Acid and Physodic Acid Chemotypes of Pseudevernia furfuracea. Biomolecules 2021; 11:biom11101445. [PMID: 34680078 PMCID: PMC8533459 DOI: 10.3390/biom11101445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Primary biosynthetic enzymes involved in the synthesis of lichen polyphenolic compounds depsides and depsidones are non-reducing polyketide synthases (NR-PKSs), and cytochrome P450s. However, for most depsides and depsidones the corresponding PKSs are unknown. Additionally, in non-lichenized fungi specific fatty acid synthases (FASs) provide starters to the PKSs. Yet, the presence of such FASs in lichenized fungi remains to be investigated. Here we implement comparative genomics and metatranscriptomics to identify the most likely PKS and FASs for olivetoric acid and physodic acid biosynthesis, the primary depside and depsidone defining the two chemotypes of the lichen Pseudevernia furfuracea. We propose that the gene cluster PF33-1_006185, found in both chemotypes, is the most likely candidate for the olivetoric acid and physodic acid biosynthesis. This is the first study to identify the gene cluster and the FAS likely responsible for olivetoric acid and physodic acid biosynthesis in a lichenized fungus. Our findings suggest that gene regulation and other epigenetic factors determine whether the mycobiont produces the depside or the depsidone, providing the first direct indication that chemotype diversity in lichens can arise through regulatory and not only through genetic diversity. Combining these results and existing literature, we propose a detailed scheme for depside/depsidone synthesis.
Collapse
|
16
|
Kamdem RST, Ogbole O, Wafo P, Philip FU, Ali Z, Ntie-Kang F, Khan IA, Spiteller P. Rational engineering of specialized metabolites in bacteria and fungi. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Bacteria and fungi have a high potential to produce compounds that display large structural change and diversity, thus displaying an extensive range of biological activities. Secondary metabolism or specialized metabolism is a term for pathways and small molecule products of metabolism that are not mandatory for the subsistence of the organism but improve and control their phenotype. Their interesting biological activities have occasioned their application in the fields of agriculture, food, and pharmaceuticals. Metabolic engineering is a powerful approach to improve access to these treasured molecules or to rationally engineer new ones. A thorough overview of engineering methods in secondary metabolism is presented, both in heterologous and epigenetic modification. Engineering methods to modify the structure of some secondary metabolite classes in their host are also intensively assessed.
Collapse
Affiliation(s)
- Ramsay Soup Teoua Kamdem
- Institut für Organische und Analytische Chemie , Universität Bremen , Leobener Strasse 7 (NW2C) , Bremen 28359 , Germany
- Department of Organic Chemistry, Higher Teachers’ Training College , University of Yaounde I. , P. O. Box 47 , Yaoundé , Cameroon
| | - Omonike Ogbole
- Department of Pharmacognosy , University of Ibadan , Ibadan , Nigeria
| | - Pascal Wafo
- Department of Organic Chemistry, Higher Teachers’ Training College , University of Yaounde I. , P. O. Box 47 , Yaoundé , Cameroon
| | - F. Uzor Philip
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences , University of Nigeria , Nsukka , 410001 Nigeria
| | - Zulfiqar Ali
- National Center for Natural Products Research , School of Pharmacy , University of Mississippi , MS 38677 , USA
| | - Fidele Ntie-Kang
- Chemistry Department , University of Buea , P. O. Box 63 , Buea , Cameroon
- Department of Pharmaceutical Chemistry , Martin-Luther-Universitat Halle-Wittenberg , Wolfgang-Langenbeck Str. 4 , Halle (Saale) 06120 , Germany
- Department of Informatics and Chemistry , University of Chemistry and Technology Prague , Technická 5 166 28 , Prague 6 Dejvice , Czech Republic
| | - Ikhlas A. Khan
- National Center for Natural Products Research , School of Pharmacy , University of Mississippi , MS 38677 , USA
| | - Peter Spiteller
- Institut für Organische und Analytische Chemie , Universität Bremen , Leobener Strasse 7 (NW2C) , Bremen 28359 , Germany
| |
Collapse
|
17
|
Erken MT, Cansaran-Duman D, Tanman U. In silico prediction of type I PKS gene modules in nine lichenized fungi. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1879679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
| | - Demet Cansaran-Duman
- System Biotechnology Advance Research Unit, Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Ummugulsum Tanman
- System Biotechnology Advance Research Unit, Biotechnology Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Hwang JY, Park SC, Byun WS, Oh DC, Lee SK, Oh KB, Shin J. Bioactive Bianthraquinones and Meroterpenoids from a Marine-Derived Stemphylium sp. Fungus. Mar Drugs 2020; 18:E436. [PMID: 32825785 PMCID: PMC7551059 DOI: 10.3390/md18090436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Three new bianthraquinones, alterporriol Z1-Z3 (1-3), along with three known compounds of the same structural class, were isolated from the culture broth of a marine-derived Stemphylium sp. fungus. Based upon the results of spectroscopic analyses and ECD measurements, the structures of new compounds were determined to be the 6-6'- (1 and 2) and 1-5'- (3) C-C connected pseudo-dimeric anthraquinones, respectively. Three new meroterpenoids, tricycloalterfurenes E-G (7-9), isolated together with the bianthraquinones from the same fungal culture broth, were structurally elucidated by combined spectroscopic methods. The relative and absolute configurations of these meroterpenoids were determined by modified Mosher's, phenylglycine methyl ester (PGME), and computational methods. The bianthraquinones significantly inhibited nitric oxide (NO) production and suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Ji-Yeon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.-Y.H.); (S.C.P.); (W.S.B.); (D.-C.O.); (S.K.L.)
| | - Sung Chul Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.-Y.H.); (S.C.P.); (W.S.B.); (D.-C.O.); (S.K.L.)
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.-Y.H.); (S.C.P.); (W.S.B.); (D.-C.O.); (S.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.-Y.H.); (S.C.P.); (W.S.B.); (D.-C.O.); (S.K.L.)
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.-Y.H.); (S.C.P.); (W.S.B.); (D.-C.O.); (S.K.L.)
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.-Y.H.); (S.C.P.); (W.S.B.); (D.-C.O.); (S.K.L.)
| |
Collapse
|
19
|
Endophytic fungi from Passiflora incarnata: an antioxidant compound source. Arch Microbiol 2020; 202:2779-2789. [PMID: 32743668 DOI: 10.1007/s00203-020-02001-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
Endophytes are considered one of the most important microbial resources for obtaining biomolecules of therapeutic use. Passiflora incarnata, widely employed by the pharmaceutical industry, shows therapeutic effects on anxiety, nervousness, constipation, dyspepsia and insomnia based on their antioxidant compounds. In this study, from 315 endophytic fungi isolated from P. incarnata leaves, 60 were selected to determinate presence of chemical constituents related with antioxidant activity, based on their production of soluble pigments. The promising fungi were evaluated specifically on their potential to produce phenolic compounds, flavonoids and for antioxidant activity. Five isolates significantly produced flavonoids and phenolic compounds in the ethyl acetate and n-Butanol extracts, also saponins and high antioxidant activity against the DPPH (2.2-diphenyl-1-picrylhydrazyl) free radical. A strain of Aspergillus nidulans var. dentatus (former Emericella dentata) was able to produce tannins as well; its butanolic extract was very similar than the BHT (butylated hydroxytoluene) (94.3% × 94.32%) and Rutin (95.8%) reference substances in the DPPH radical scavenging. Similarly, a Chaetomium strain exhibited 93.6% and 94.7% of antioxidant activity in their ethyl acetate and butanolic fractions, respectively. The chromatographic analysis of the ethyl acetate fraction from the Aspergillus strain revealed the production of orcinol (3.19%). Four-methoxymethylphenol (4.79%), sorbicillin (33.59%) and ergosterol (23.08%) was produced by Trichoderma longibrachiatum and isopropenyl-1,4-dimethyl-1,2,3,3a,4,5,6,7-octahydroazulene were found in two Fusarium oxysporum strains. The phytochemical screening showed that all analyzed fungi were able to produce a kind of secondary metabolite (phenols, flavonoids, tannins and/or saponins). The study shows a great underexplored potential for industrial application of P. incarnata endophytes.
Collapse
|
20
|
Yu FY, Chiu CM, Lee YZ, Lee SJ, Chou CM, You BJ, Hsieh DK, Lee MR, Lee MH, Bostock RM. Polyketide Synthase Gene Expression in Relation to Chloromonilicin and Melanin Production in Monilinia fructicola. PHYTOPATHOLOGY 2020; 110:1465-1475. [PMID: 32286920 DOI: 10.1094/phyto-02-20-0059-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monilinia fructicola is a fungal pathogen of worldwide significance that causes brown rot of stone fruits. There are only few reports related to the production of biologically active polyketides by this pathogen. In this study, we examined an atypical M. fructicola strain TW5-4 that shows strong antimicrobial activity against various plant pathogens. TW5-4 also displays sparse growth in culture, low virulence, and higher levels of melanin compared with its albino mutant, TW5-4WM, and a wild-type strain Mf13-81. Antifungal compounds were extracted from TW5-4 and purified by thin-layer chromatography following visualization with an on-the-chromatogram inhibition assay. The principal antifungal compound was identified by linear ion trap mass spectrometry, high-resolution electro-spray ionization mass spectrometry, and proton nuclear magnetic resonance analyses as the polyketide chloromonilicin. Multiple M. fructicola polyketide synthase (PKS) sequences were then cloned by degenerate PCR and inverse PCR. Sequence analyses support presence of a 10-member PKS gene family in the M. fructicola genome. Analyses of PKS gene expression found no strong correlation between chloromonilicin production in culture and transcript levels of any of the PKS gene family members in mycelium of strains TW5-4, TW5-4WM, and Mf13-81. However, MfPKS12, a homolog of BcPKS12 involved in biosynthesis of 1,8-dihydroxynaphthalene (DHN)-melanin in Botrytis cinerea, was strongly expressed in mycelia of TW5-4 and Mf13-81. An MfPKS12-silenced mutant accumulated significantly less melanin in mycelia, had lower resistance to polyethylene glycol-induced osmotic stress, and displayed reduced virulence on nectarine fruit. The results suggest that DHN-melanin is required for tolerance to osmotic stress and full virulence in M. fructicola.
Collapse
Affiliation(s)
- Fang-Yi Yu
- Department of Plant Pathology, National Chung Hsing University, Taiwan
| | - Chiu-Min Chiu
- Department of Plant Pathology, National Chung Hsing University, Taiwan
- Department of Plant Pathology, University of California, Davis, CA
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan
| | - Yue-Zhi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taiwan
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taiwan
| | - Chien-Ming Chou
- Department of Plant Pathology, National Chung Hsing University, Taiwan (deceased 18 September 2017)
| | - Bang-Jau You
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Dai-Keng Hsieh
- Department of Plant Pathology, National Chung Hsing University, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taiwan
| | - Maw-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan
| | - Richard M Bostock
- Department of Plant Pathology, University of California, Davis, CA
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan
| |
Collapse
|
21
|
Liang Y, Lu D, Wang S, Zhao Y, Gao S, Han R, Yu J, Zheng W, Geng J, Hu S. Genome Assembly and Pathway Analysis of Edible Mushroom Agrocybe cylindracea. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:341-351. [PMID: 32561469 PMCID: PMC7801210 DOI: 10.1016/j.gpb.2018.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022]
Abstract
Agrocybe cylindracea, an edible mushroom, is widely cultivated for its abundance of nutrients and flavor, and many of its metabolites are reported to have beneficial roles, such as medicinal effects on tumors and chronical illnesses. However, the lack of genomic information has hindered further molecular studies on this fungus. Here, we present a genome assembly of A. cylindracea together with comparative genomics and pathway analyses of Agaricales species. The draft, generated from both next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing platforms to overcome high genetic heterozygosity, is composed of a 56.5 Mb sequence and 15,384 predicted genes. This mushroom possesses a complex reproductive system, including tetrapolar heterothallic and secondary homothallic mechanisms, and harbors several hydrolases and peptidases for gradual and effective degradation of various carbon sources. Our pathway analysis reveals complex processes involved in the biosynthesis of polysaccharides and other active substances, including B vitamins, unsaturated fatty acids, and N-acetylglucosamine. RNA-seq data show that A. cylindracea stipes tend to synthesize carbohydrate for carbon sequestration and energy storage, whereas pilei are more active in carbon utilization and unsaturated fatty acid biosynthesis. These results reflect diverse functions of the two anatomical structures of the fruiting body. Our comprehensive genomic and transcriptomic data, as well as preliminary comparative analyses, provide insights into the molecular details of the medicinal effects in terms of active compounds and nutrient components.
Collapse
Affiliation(s)
- Yuan Liang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dengxue Lu
- Gansu Academy of Sciences, Lanzhou 730000, China
| | - Sen Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhui Zhao
- Gansu Academy of Sciences, Lanzhou 730000, China
| | - Shenghan Gao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongbing Han
- Gansu Academy of Sciences, Lanzhou 730000, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weili Zheng
- Gansu Academy of Sciences, Lanzhou 730000, China.
| | - Jianing Geng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Viridistratins A-C, Antimicrobial and Cytotoxic Benzo[ j]fluoranthenes from Stromata of Annulohypoxylon viridistratum (Hypoxylaceae, Ascomycota). Biomolecules 2020; 10:biom10050805. [PMID: 32456162 PMCID: PMC7277860 DOI: 10.3390/biom10050805] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022] Open
Abstract
During the course of our search for novel biologically active metabolites from tropical fungi, we are using chemotaxonomic and taxonomic methodology for the preselection of interesting materials. Recently, three previously undescribed benzo[j]fluoranthenes (1-3) together with the known derivatives truncatones A and C (4, 5) were isolated from the stromata of the recently described species Annulohypoxylon viridistratum collected in Thailand. Their chemical structures were elucidated by means of spectral methods, including nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). The new compounds, for which we propose the trivial names viridistratins A-C, exhibited weak-to-moderate antimicrobial and cytotoxic activities in cell-based assays.
Collapse
|
23
|
Liao J, Pang K, Sun G, Pai T, Hsu P, Lin J, Sun K, Hsieh C, Tang S. Chimeric 6-methylsalicylic acid synthase with domains of acyl carrier protein and methyltransferase from Pseudallescheria boydii shows novel biosynthetic activity. Microb Biotechnol 2019; 12:920-931. [PMID: 31199579 PMCID: PMC6681407 DOI: 10.1111/1751-7915.13445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 01/09/2023] Open
Abstract
Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7 H10 O3 , and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.
Collapse
Affiliation(s)
- Ji‐Long Liao
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Ka‐Lai Pang
- Department of Marine BiologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Guang‐Huan Sun
- Division of UrologyDepartment of SurgeryNational Defense Medical CenterTri‐Service General HospitalNo. 325, Sec. 2, Cheng‐gong Rd.TaipeiTaiwan
| | - Tun‐Wen Pai
- Department of Computer Science and EngineeringNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Pang‐Hung Hsu
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Jyuan‐Siou Lin
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Kuang‐Hui Sun
- Department of Biotechnology and Laboratory Science in MedicineNational Yang‐Ming UniversityNo. 155, Sec. 2, Linong StreetTaipeiTaiwan
- Department of Education and ResearchTaipei City HospitalTaipeiTaiwan
| | | | - Shye‐Jye Tang
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| |
Collapse
|
24
|
Docking analysis of hexanoic acid and quercetin with seven domains of polyketide synthase A provided insight into quercetin-mediated aflatoxin biosynthesis inhibition in Aspergillus flavus. 3 Biotech 2019; 9:149. [PMID: 30944796 DOI: 10.1007/s13205-019-1675-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Studies on phytochemicals as anti-aflatoxigenic agents have gained importance including quercetin. Thus, to understand the molecular mechanism behind inhibition of aflatoxin biosynthesis by quercetin, interaction study with polyketide synthase A (PksA) of Aspergillus flavus was undertaken. The 3D structure of seven domains of PksA was modeled using SWISS-MODEL server and docking studies were performed by Autodock tools-1.5.6. Docking energies of both the ligands (quercetin and hexanoic acid) were compared with each of the domains of PksA enzyme. Binding energy for quercetin was lesser that ranged from - 7.1 to - 5.25 kcal/mol in comparison to hexanoic acid (- 4.74 to - 3.54 kcal/mol). LigPlot analysis showed the formation of 12 H bonds in case of quercetin and 8 H bonds in hexanoic acid. During an interaction with acyltransferase domain, both ligands showed H bond formation at Arg63 position. Also, in product template domain, quercetin creates four H bonds in comparison to one in hexanoic acid. Our quantitative RT-PCR analysis of genes from aflatoxin biosynthesis showed downregulation of pksA, aflD, aflR, aflP and aflS at 24 h time point in comparison to 7 h in quercetin-treated A. flavus. Overall results revealed that quercetin exhibited the highest level of binding potential (more number of H bonds) with PksA domain in comparison to hexanoic acid; thus, quercetin possibly inhibits via competitively binding to the domains of polyketide synthase, a key enzyme of aflatoxin biosynthetic pathway. Further, we propose that key enzymes from aflatoxin biosynthetic pathway in aflatoxin-producing Aspergilli could be explored further using other phytochemicals as inhibitors.
Collapse
|
25
|
Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 2019; 37:107344. [PMID: 30738916 DOI: 10.1016/j.biotechadv.2019.01.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
The Basidiomycota constitutes the second largest higher taxonomic group of the Fungi after the Ascomycota and comprises over 30.000 species. Mycelial cultures of Basidiomycota have already been studied since the 1950s for production of antibiotics and other beneficial secondary metabolites. Despite the fact that unique and selective compounds like pleuromutilin were obtained early on, it took several decades more until they were subjected to a systematic screening for antimicrobial and anticancer activities. These efforts led to the discovery of the strobilurins and several hundreds of further compounds that mainly constitute terpenoids. In parallel the traditional medicinal mushrooms of Asia were also studied intensively for metabolite production, aimed at finding new therapeutic agents for treatment of various diseases including metabolic disorders and the central nervous system. While the evaluation of this organism group has in general been more tedious as compared to the Ascomycota, the chances to discover new metabolites and to develop them further to candidates for drugs, agrochemicals and other products for the Life Science industry have substantially increased over the past decade. This is owing to the revolutionary developments in -OMICS techniques, bioinformatics, analytical chemistry and biotechnological process technology, which are steadily being developed further. On the other hand, the new developments in polythetic fungal taxonomy now also allow a more concise selection of previously untapped organisms. The current review is dedicated to summarize the state of the art and to give an outlook to further developments.
Collapse
|
26
|
Guzmán-Chávez F, Zwahlen RD, Bovenberg RAL, Driessen AJM. Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Front Microbiol 2018; 9:2768. [PMID: 30524395 PMCID: PMC6262359 DOI: 10.3389/fmicb.2018.02768] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Penicillium chrysogenum (renamed P. rubens) is the most studied member of a family of more than 350 Penicillium species that constitute the genus. Since the discovery of penicillin by Alexander Fleming, this filamentous fungus is used as a commercial β-lactam antibiotic producer. For several decades, P. chrysogenum was subjected to a classical strain improvement (CSI) program to increase penicillin titers. This resulted in a massive increase in the penicillin production capacity, paralleled by the silencing of several other biosynthetic gene clusters (BGCs), causing a reduction in the production of a broad range of BGC encoded natural products (NPs). Several approaches have been used to restore the ability of the penicillin production strains to synthetize the NPs lost during the CSI. Here, we summarize various re-activation mechanisms of BGCs, and how interference with regulation can be used as a strategy to activate or silence BGCs in filamentous fungi. To further emphasize the versatility of P. chrysogenum as a fungal production platform for NPs with potential commercial value, protein engineering of biosynthetic enzymes is discussed as a tool to develop de novo BGC pathways for new NPs.
Collapse
Affiliation(s)
- Fernando Guzmán-Chávez
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Reto D Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,DSM Biotechnology Centre, Delft, Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Massonnet M, Morales-Cruz A, Minio A, Figueroa-Balderas R, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D. Whole-Genome Resequencing and Pan-Transcriptome Reconstruction Highlight the Impact of Genomic Structural Variation on Secondary Metabolite Gene Clusters in the Grapevine Esca Pathogen Phaeoacremonium minimum. Front Microbiol 2018; 9:1784. [PMID: 30150972 PMCID: PMC6099105 DOI: 10.3389/fmicb.2018.01784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
The Ascomycete fungus Phaeoacremonium minimum is one of the primary causal agents of Esca, a widespread and damaging grapevine trunk disease. Variation in virulence among Pm. minimum isolates has been reported, but the underlying genetic basis of the phenotypic variability remains unknown. The goal of this study was to characterize intraspecific genetic diversity and explore its potential impact on virulence functions associated with secondary metabolism, cellular transport, and cell wall decomposition. We generated a chromosome-scale genome assembly, using single molecule real-time sequencing, and resequenced the genomes and transcriptomes of multiple isolates to identify sequence and structural polymorphisms. Numerous insertion and deletion events were found for a total of about 1 Mbp in each isolate. Structural variation in this extremely gene dense genome frequently caused presence/absence polymorphisms of multiple adjacent genes, mostly belonging to biosynthetic clusters associated with secondary metabolism. Because of the observed intraspecific diversity in gene content due to structural variation we concluded that a transcriptome reference developed from a single isolate is insufficient to represent the virulence factor repertoire of the species. We therefore compiled a pan-transcriptome reference of Pm. minimum comprising a non-redundant set of 15,245 protein-coding sequences. Using naturally infected field samples expressing Esca symptoms, we demonstrated that mapping of meta-transcriptomics data on a multi-species reference that included the Pm. minimum pan-transcriptome allows the profiling of an expanded set of virulence factors, including variable genes associated with secondary metabolism and cellular transport.
Collapse
Affiliation(s)
- Mélanie Massonnet
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Philippe E. Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
28
|
Aspergillus flavus Secondary Metabolites: More than Just Aflatoxins. Food Saf (Tokyo) 2018; 6:7-32. [PMID: 32231944 DOI: 10.14252/foodsafetyfscj.2017024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 11/21/2022] Open
Abstract
Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of these secondary metabolites have been identified from A. flavus cultures, analysis of the genome has predicted the existence of at least 56 secondary metabolite gene clusters. Many of these gene clusters are not expressed during growth of the fungus on standard laboratory media. This presents researchers with a major challenge of devising novel strategies to manipulate the fungus and its genome so as to activate secondary metabolite gene expression and allow identification of associated cluster metabolites. In this review, we discuss the genetic, biochemical and bioinformatic methods that are being used to identify previously uncharacterized secondary metabolite gene clusters and their associated metabolites. It is important to identify as many of these compounds as possible to determine their bioactivity with respect to fungal development, survival, virulence and especially with respect to any potential synergistic toxic effects with aflatoxin.
Collapse
|
29
|
Anisha C, Sachidanandan P, Radhakrishnan EK. Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. Displays Broad-Spectrum Antimicrobial Activity by Production of Danthron. Curr Microbiol 2018; 75:343-352. [PMID: 29101453 DOI: 10.1007/s00284-017-1387-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
The bioactivity spectrum of fungal endophytes isolated from Zingiber officinale was analyzed against clinical pathogens and against the phytopathogen Pythium myriotylum, which causes Pythium rot in ginger. One of the isolates GFM13 showed broad bioactivity against various pathogens tested including P. myriotylum. The spore suspension as well as the culture filtrate of the endophytic fungal isolate was found to effectively protect ginger rhizomes from Pythium rot. By molecular identification, the fungal endophyte was identified as Paraconiothyrium sp. The bioactive compound produced by the isolate was separated by bioactivity-guided fractionation and was identified by GC-MS as danthron, an anthraquinone derivative. PCR amplification showed the presence of non-reducing polyketide synthase gene (NR-PKS) in the endophyte GFM13, which is reported to be responsible for the synthesis of anthraquinones in fungi. This is the first report of danthron being produced as the biologically active component of Paraconiothyrium sp. Danthron is reported to have wide pharmaceutical and agronomic applications which include its use as a fungicide in agriculture. The broad-spectrum antimicrobial activity of danthron and the endophytic origin of Paraconiothyrium sp. offer immense applications of the study.
Collapse
Affiliation(s)
- C Anisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| | | | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India.
| |
Collapse
|
30
|
De Novo Sequencing of a Sparassis latifolia Genome and Its Associated Comparative Analyses. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:1857170. [PMID: 29682127 PMCID: PMC5845502 DOI: 10.1155/2018/1857170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
Abstract
Known to be rich in β-glucan, Sparassis latifolia (S. latifolia) is a valuable edible fungus cultivated in East Asia. A few studies have suggested that S. latifolia is effective on antidiabetic, antihypertension, antitumor, and antiallergen medications. However, it is still unclear genetically why the fungus has these medical effects, which has become a key bottleneck for its further applications. To provide a better understanding of this fungus, we sequenced its whole genome, which has a total size of 48.13 megabases (Mb) and contains 12,471 predicted gene models. We then performed comparative and phylogenetic analyses, which indicate that S. latifolia is closely related to a few species in the antrodia clade including Fomitopsis pinicola, Wolfiporia cocos, Postia placenta, and Antrodia sinuosa. Finally, we annotated the predicted genes. Interestingly, the S. latifolia genome encodes most enzymes involved in carbohydrate and glycoconjugate metabolism and is also enriched in genes encoding enzymes critical to secondary metabolite biosynthesis and involved in indole, terpene, and type I polyketide pathways. As a conclusion, the genome content of S. latifolia sheds light on its genetic basis of the reported medicinal properties and could also be used as a reference genome for comparative studies on fungi.
Collapse
|
31
|
Liu N, Hung YS, Gao SS, Hang L, Zou Y, Chooi YH, Tang Y. Identification and Heterologous Production of a Benzoyl-Primed Tricarboxylic Acid Polyketide Intermediate from the Zaragozic Acid A Biosynthetic Pathway. Org Lett 2017; 19:3560-3563. [PMID: 28605916 PMCID: PMC5673471 DOI: 10.1021/acs.orglett.7b01534] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zaragozic acid A (1) is a potent cholesterol lowering, polyketide natural product made by various filamentous fungi. The reconstitution of enzymes responsible for the initial steps of the biosynthetic pathway of 1 is accomplished using an engineered fungal heterologous host. These initial steps feature the priming of a benzoic acid starter unit onto a highly reducing polyketide synthase (HRPKS), followed by oxaloacetate extension and product release to generate a tricarboxylic acid containing product 2. The reconstitution studies demonstrated that only three enzymes, HRPKS, citrate synthase, and hydrolase, are needed in A. nidulans to produce the structurally complex product.
Collapse
Affiliation(s)
- Nicholas Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Yiu-Sun Hung
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Shu-Shan Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Leibniz Hang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| |
Collapse
|
32
|
Kishimoto S, Tsunematsu Y, Sato M, Watanabe K. Elucidation of Biosynthetic Pathways of Natural Products. CHEM REC 2017; 17:1095-1108. [PMID: 28387469 DOI: 10.1002/tcr.201700015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 01/22/2023]
Abstract
During the last decade, we have revealed biosynthetic pathways responsible for the formation of important and chemically complex natural products isolated from various organisms through genetic manipulation. Detailed in vivo and in vitro characterizations enabled elucidation of unexpected mechanisms of secondary metabolite biosynthesis. This personal account focuses on our recent efforts in identifying the genes responsible for the biosynthesis of spirotryprostatin, aspoquinolone, Sch 210972, pyranonigrin, fumagillin and pseurotin. We exploit heterologous reconstitution of biosynthetic pathways of interest in our study. In particular, extensive involvement of oxidation reactions is discussed. Heterologous hosts employed here are Saccharomyces cerevisiae, Aspergillus nidulans and A. niger that can also be used to prepare biosynthetic intermediates and product analogs by engineering the biosynthetic pathways using the knowledge obtained by detailed characterizations of the enzymes. (998 char.).
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| |
Collapse
|
33
|
Palma-Guerrero J, Ma X, Torriani SFF, Zala M, Francisco CS, Hartmann FE, Croll D, McDonald BA. Comparative Transcriptome Analyses in Zymoseptoria tritici Reveal Significant Differences in Gene Expression Among Strains During Plant Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:231-244. [PMID: 28121239 DOI: 10.1094/mpmi-07-16-0146-r] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Zymoseptoria tritici is an ascomycete fungus that causes Septoria tritici blotch, a globally distributed foliar disease on wheat. Z. tritici populations are highly polymorphic and exhibit significant quantitative variation for virulence. Despite its importance, the genes responsible for quantitative virulence in this pathogen remain largely unknown. We investigated the expression profiles of four Z. tritici strains differing in virulence in an experiment conducted under uniform environmental conditions. Transcriptomes were compared at four different infection stages to characterize the regulation of gene families thought to be involved in virulence and to identify new virulence factors. The major components of the fungal infection transcriptome showed consistent expression profiles across strains. However, strain-specific regulation was observed for many genes, including some encoding putative virulence factors. We postulate that strain-specific regulation of virulence factors can determine the outcome of Z. tritici infections. We show that differences in gene expression may be major determinants of virulence variation among Z. tritici strains, adding to the already known contributions to virulence variation based on differences in gene sequence and gene presence/absence polymorphisms.
Collapse
Affiliation(s)
- Javier Palma-Guerrero
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Xin Ma
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Stefano F F Torriani
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
- 2 Syngenta Crop Protection AG, Schaffhauserstrasse, 4332 Stein, Switzerland
| | - Marcello Zala
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Carolina S Francisco
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Fanny E Hartmann
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Daniel Croll
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Bruce A McDonald
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| |
Collapse
|
34
|
Mishra VK, Passari AK, Leo VV, Singh BP. Molecular Diversity and Detection of Endophytic Fungi Based on Their Antimicrobial Biosynthetic Genes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Zhang J, Zhu L, Chen H, Li M, Zhu X, Gao Q, Wang D, Zhang Y. A Polyketide Synthase Encoded by the Gene An15g07920 Is Involved in the Biosynthesis of Ochratoxin A in Aspergillus niger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9680-9688. [PMID: 27959549 DOI: 10.1021/acs.jafc.6b03907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The polyketide synthase gene An15g07920 was known in Aspergillus niger CBS 513.88 as putatively involved in the production of ochratoxin A (OTA). Genome resequencing analysis revealed that the gene An15g07920 is also present in the ochratoxin-producing A. niger strain 1062. Disruption of An15g07920 in A. niger 1062 removed its capacity to biosynthesize ochratoxin β (OTβ), ochratoxin α (OTα), and OTA. These results indicate that the polyketide synthase encoded by An15g07920 is a crucial player in the biosynthesis of OTA, in the pathway prior to the phenylalanine ligation step. The gene An15g07920 reached its maximum transcription level before OTA accumulation reached its highest level, confirming that gene transcription precedes OTA production. These findings will not only help explain the mechanism of OTA production in A. niger but also provide necessary information for the development of effective diagnostic, preventive, and control strategies to reduce the risk of OTA contamination in foods.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
- Tianjin SF-Bio Industrial Bio-Tec Co., Ltd. , Tianjin 300462, China
| | - Liuyang Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Haoyu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Min Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Xiaojuan Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Qiang Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Depei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Ying Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
| |
Collapse
|
36
|
Abstract
Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops, food distribution, and human environments.
Collapse
Affiliation(s)
- Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77054
| | - James B Gloer
- Department of Chemistry, University of Iowa, Iowa City, IA 52245
| |
Collapse
|
37
|
Hang L, Liu N, Tang Y. Coordinated and Iterative Enzyme Catalysis in Fungal Polyketide Biosynthesis. ACS Catal 2016; 6:5935-5945. [PMID: 28529817 DOI: 10.1021/acscatal.6b01559] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fungal polyketides are natural products with great chemical diversity that exhibit a wide range of biological activity. This chemical diversity stems from specialized enzymes encoded in the biosynthetic gene cluster responsible for the natural product biosynthesis. Fungal polyketide synthases (PKS) are the megasynthases that produce the carbon scaffolds for the molecules. Subsequent downstream tailoring enzymes such as oxygenases will then further modify the organic framework. In fungi, many of these enzymes have been found to work iteratively-catalyzing multiple reactions on different sites of the substrate. This perspective will analyze several examples of fungal polyketides that are assembled from a scaffold-building iterative PKS and an accompanying iterative tailoring oxygenase. In these examples, the PKS product is designed for downstream iterative oxygenations to generate additional complexity. Together, these iterative enzymes orchestrate the efficient biosynthesis of elaborate natural products such as lovastatin, chaetoglobosin A, cytochalasin E, and aurovertin E.
Collapse
Affiliation(s)
- Leibniz Hang
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular
Engineering, University of California, Los Angeles, California 90095, United States
| | - Nicholas Liu
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular
Engineering, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular
Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
38
|
Harnessing natural product assembly lines: structure, promiscuity, and engineering. J Ind Microbiol Biotechnol 2015; 43:371-87. [PMID: 26527577 DOI: 10.1007/s10295-015-1704-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
Abstract
Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies has been developed that enables the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and non-ribosomal peptide analogues.
Collapse
|
39
|
Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster. EUKARYOTIC CELL 2015. [PMID: 26209694 DOI: 10.1128/ec.00092-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The global regulatory veA gene governs development and secondary metabolism in numerous fungal species, including Aspergillus flavus. This is especially relevant since A. flavus infects crops of agricultural importance worldwide, contaminating them with potent mycotoxins. The most well-known are aflatoxins, which are cytotoxic and carcinogenic polyketide compounds. The production of aflatoxins and the expression of genes implicated in the production of these mycotoxins are veA dependent. The genes responsible for the synthesis of aflatoxins are clustered, a signature common for genes involved in fungal secondary metabolism. Studies of the A. flavus genome revealed many gene clusters possibly connected to the synthesis of secondary metabolites. Many of these metabolites are still unknown, or the association between a known metabolite and a particular gene cluster has not yet been established. In the present transcriptome study, we show that veA is necessary for the expression of a large number of genes. Twenty-eight out of the predicted 56 secondary metabolite gene clusters include at least one gene that is differentially expressed depending on presence or absence of veA. One of the clusters under the influence of veA is cluster 39. The absence of veA results in a downregulation of the five genes found within this cluster. Interestingly, our results indicate that the cluster is expressed mainly in sclerotia. Chemical analysis of sclerotial extracts revealed that cluster 39 is responsible for the production of aflavarin.
Collapse
|
40
|
Ding W, Li Y, Zhang Q. Substrate-Controlled Stereochemistry in Natural Product Biosynthesis. ACS Chem Biol 2015; 10:1590-8. [PMID: 25844528 DOI: 10.1021/acschembio.5b00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzymes are generally believed to be highly regio- and stereoselective catalysts that strictly control the reaction coordinates and dominate the final catalytic outcomes. However, recent studies have started to suggest that substrates sometimes play key roles in determining the product selectivity in enzyme catalysis. Here, we highlight several enzymatic reactions in which the stereoselectivity is, at least in large part, governed by the intrinsic properties of the substrate rather than by characteristics of the enzyme. These reactions are involved in the biosynthesis of different classes of natural products, including lanthipeptides, sactipeptides, and polyketides. Understanding the mechanism of substrate-controlled stereospecificity may not only expand our knowledge of enzyme catalysis and enzyme evolution but also guide bioengineering efforts to produce novel valuable products.
Collapse
Affiliation(s)
- Wei Ding
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
41
|
Ye Z, Musiol EM, Weber T, Williams GJ. Reprogramming acyl carrier protein interactions of an Acyl-CoA promiscuous trans-acyltransferase. ACTA ACUST UNITED AC 2014; 21:636-46. [PMID: 24726832 DOI: 10.1016/j.chembiol.2014.02.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 11/29/2022]
Abstract
Protein interactions between acyl carrier proteins (ACPs) and trans-acting acyltransferase domains (trans-ATs) are critical for regioselective extender unit installation by many polyketide synthases, yet little is known regarding the specificity of these interactions, particularly for trans-ATs with unusual extender unit specificities. Currently, the best-studied trans-AT with nonmalonyl specificity is KirCII from kirromycin biosynthesis. Here, we developed an assay to probe ACP interactions based on leveraging the extender unit promiscuity of KirCII. The assay allows us to identify residues on the ACP surface that contribute to specific recognition by KirCII. This information proved sufficient to modify a noncognate ACP from a different biosynthetic system to be a substrate for KirCII. The findings form a foundation for further understanding the specificity of trans-AT:ACP protein interactions and for engineering modular polyketide synthases to produce analogs.
Collapse
Affiliation(s)
- Zhixia Ye
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Ewa M Musiol
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tilmann Weber
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Gavin J Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
42
|
Identification and characterization of the polyketide synthase involved in ochratoxin A biosynthesis in Aspergillus carbonarius. Int J Food Microbiol 2014; 179:10-7. [PMID: 24699234 DOI: 10.1016/j.ijfoodmicro.2014.03.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 11/24/2022]
Abstract
Ochratoxin A (OTA) is a potent mycotoxin produced by Aspergillus and Penicillium species and is a common contaminant of a wide variety of food commodities, with Aspergillus carbonarius being the main producer of OTA contamination in grapes and wine. The molecular structure of OTA comprises a dihydroisocoumarin ring linked to phenylalanine and, as shown in different producing fungal species, a polyketide synthase (PKS) is a component of the OTA biosynthetic pathway. Similar to observations in other filamentous ascomycetes, the genome sequence of A. carbonarius contains a large number of genes predicted to encode PKSs. In this work a pks gene identified within the putative OTA cluster of A. carbonarius, designated as AcOTApks, was inactivated and the resulting mutant strain was unable to produce OTA, confirming the role of AcOTApks in this biosynthetic pathway. AcOTApks protein is characteristic of the highly reduced (HR)-PKS family, and also contains a putative methyltransferase domain likely responsible for the addition of the methyl group to the OTA polyketide structure. AcOTApks is different from the ACpks protein that we previously described in A. carbonarius, which showed an expression profile compatible with OTA production. We performed phylogenetic analyses of the β-ketosynthase and acyl-transferase domains of the OTA PKSs that had been identified and characterized in different OTA producing fungal species. The phylogenetic results were similar for both domains analyzed and showed that OTA PKS of A. carbonarius, Aspergillus niger and Aspergillus ochraceus clustered in a monophyletic group with 100% bootstrap support suggesting a common origin, while the other OTA PKSs analyzed were phylogenetically distant. A quantitative RT-PCR assay monitored AcOTApks expression during fungal growth and concomitant production of OTA by A. carbonarius in synthetic grape medium. A clear correlation between the expression profile of AcOTApks and kinetics of OTA production was observed, with AcOTApks reaching its maximum level of transcription before OTA accumulation in mycelium reached its highest level, confirming the fact that gene transcription always precedes phenotypic production.
Collapse
|
43
|
Wang X, Wang H, Liu T, Xin Z. A PKS I gene-based screening approach for the discovery of a new polyketide from Penicillium citrinum Salicorn 46. Appl Microbiol Biotechnol 2014; 98:4875-85. [PMID: 24535256 DOI: 10.1007/s00253-014-5572-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 01/04/2023]
Abstract
Salicorn 46, an endophytic fungus isolated from Salicornia herbacea Torr., was identified as Penicillium citrinum based on its internal transcribed spacer and ribosomal large-subunit DNA sequences using a type I polyketide synthase (PKS I) gene screening approach. A new polyketide, penicitriketo (1), and seven known compounds, including ergone (2), (3β,5α,8α,22E)-5,8-epidioxyergosta-6,9,22-trien-3-ol (3), (3β,5α,8α,22E)-5,8-epidioxyergosta-6,22-dien-3-ol (4), stigmasta-7,22-diene-3β,5α,6α-triol (5), 3β,5α-dihydroxy-(22E,24R)-ergosta-7,22-dien-6β-yl oleate (6), N b-acetyltryptamine (7), and 2-(1-oxo-2-hydroxyethyl) furan (8), were isolated from the culture of Salicorn 46, and their chemical structures were elucidated by spectroscopic analysis. Antioxidant experiments revealed that compound 1 possessed moderate DPPH radical scavenging activity with an IC50 value of 85.33 ± 1.61 μM. Antimicrobial assays revealed that compound 2 exhibited broad-spectrum antimicrobial activity against Candida albicans, Clostridium perfringens, Mycobacterium smegmatis, and Mycobacterium phlei with minimal inhibitory concentration (MIC) values of 25.5, 25.5, 18.5, and 51.0 μM, respectively. Compound 3 displayed potent antimicrobial activities against C. perfringens and Micrococcus tetragenus with a MIC value of 23.5 μM. Compounds 5 and 6 showed high levels of selectivity toward Bacillus subtilis and M. phlei with MIC values of 22.5 and 14.4 μM, respectively. The results of this study highlight the use of PCR-based techniques for the screening of new polyketides from endophytic fungi containing PKS I genes.
Collapse
Affiliation(s)
- Xiaomin Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
44
|
|
45
|
Williams GJ. Engineering polyketide synthases and nonribosomal peptide synthetases. Curr Opin Struct Biol 2013; 23:603-12. [PMID: 23838175 DOI: 10.1016/j.sbi.2013.06.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 01/05/2023]
Abstract
Naturally occurring polyketides and nonribosomal peptides with broad and potent biological activities continue to inspire the discovery of new and improved analogs. The biosynthetic apparatus responsible for the construction of these natural products has been the target of intensive protein engineering efforts. Traditionally, engineering has focused on substituting individual enzymatic domains or entire modules with those of different building block specificity, or by deleting various enzymatic functions, in an attempt to generate analogs. This review highlights strategies based on site-directed mutagenesis of substrate binding pockets, semi-rational mutagenesis, and whole-gene random mutagenesis to engineer the substrate specificity, activity, and protein interactions of polyketide and nonribosomal peptide biosynthetic machinery.
Collapse
Affiliation(s)
- Gavin J Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
46
|
Zhang Q, Pang B, Ding W, Liu W. Aromatic Polyketides Produced by Bacterial Iterative Type I Polyketide Synthases. ACS Catal 2013. [DOI: 10.1021/cs400211x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Zhang
- State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo Pang
- State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei Ding
- State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
47
|
Gallo A, Ferrara M, Perrone G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins (Basel) 2013; 5:717-42. [PMID: 23604065 PMCID: PMC3705289 DOI: 10.3390/toxins5040717] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/22/2013] [Accepted: 04/10/2013] [Indexed: 01/07/2023] Open
Abstract
Polyketide synthase (PKSs) and nonribosomal peptide synthetase (NRPSs) are large multimodular enzymes involved in biosynthesis of polyketide and peptide toxins produced by fungi. Furthermore, hybrid enzymes, in which a reducing PKS region is fused to a single NRPS module, are also responsible of the synthesis of peptide-polyketide metabolites in fungi. The genes encoding for PKSs and NRPSs have been exposed to complex evolutionary mechanisms, which have determined the great number and diversity of metabolites. In this study, we considered the most important polyketide and peptide mycotoxins and, for the first time, a phylogenetic analysis of both PKSs and NRPSs involved in their biosynthesis was assessed using two domains for each enzyme: β-ketosynthase (KS) and acyl-transferase (AT) for PKSs; adenylation (A) and condensation (C) for NRPSs. The analysis of both KS and AT domains confirmed the differentiation of the three classes of highly, partially and non-reducing PKSs. Hybrid PKS-NRPSs involved in mycotoxins biosynthesis grouped together in the phylogenetic trees of all the domains analyzed. For most mycotoxins, the corresponding biosynthetic enzymes from distinct fungal species grouped together, except for PKS and NRPS involved in ochratoxin A biosynthesis, for which an unlike process of evolution could be hypothesized in different species.
Collapse
Affiliation(s)
- Antonia Gallo
- Institute of Sciences of Food Production ISPA, National Research Council CNR, Bari, Italy.
| | | | | |
Collapse
|
48
|
Vagstad AL, Newman AG, Storm PA, Belecki K, Crawford JM, Townsend CA. Combinatorial Domain Swaps Provide Insights into the Rules of Fungal Polyketide Synthase Programming and the Rational Synthesis of Non-Native Aromatic Products. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Vagstad AL, Newman AG, Storm PA, Belecki K, Crawford JM, Townsend CA. Combinatorial domain swaps provide insights into the rules of fungal polyketide synthase programming and the rational synthesis of non-native aromatic products. Angew Chem Int Ed Engl 2013; 52:1718-21. [PMID: 23283670 DOI: 10.1002/anie.201208550] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Anna L Vagstad
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abbas A, Coghlan A, O'Callaghan J, García-Estrada C, Martín JF, Dobson ADW. Functional characterization of the polyketide synthase gene required for ochratoxin A biosynthesis in Penicillium verrucosum. Int J Food Microbiol 2012; 161:172-81. [PMID: 23334095 DOI: 10.1016/j.ijfoodmicro.2012.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
The ochratoxin A (OTA) polyketide synthase otapks gene has been cloned from Penicillium verrucosum. A P. verrucosum mutant in which the otapksPV gene has been interrupted cannot synthesize ochratoxin A. The protein is most similar to the citrinin polyketide synthase CtnpksMa from Monascus anka (83% identity at the amino acid level). Different nutritional conditions influence OTA production in P. verrucosum, with the addition of glycerol and galactose to MCB resulting in approximately 19 and 32 fold increases in OTA production respectively. These effects are mirrored in increased levels of otapksPV gene transcription. In contrast, the addition of glucose to MCB containing galactose results in an approximate 10 fold repression in OTA production, with this repression again being mirrored in decreased levels of otapksPV gene transcription. Thus the effects of different carbon sources on OTA production in P. verucosum appear to be regulated at the level of gene transcription. Two additional open reading frames, otaE and otaT, were identified in the 5' and 3' flanking regions of otapksPV, respectively. The otaT and otaE genes are co-expressed with P. verrucosum otapksPv, indicating a possible role for these genes in OTA biosynthesis. Furthermore, otaT and otaE were identified as putative homologues of the M. anka citrinin transporter ctnC (72% amino acid identity) and M. anka citrinin oxidoreductase ctnB (83% amino acid identity); suggesting that the genes involved in OTA production in P. verrucosum may be very similar to those involved in citrinin production in M. anka.
Collapse
Affiliation(s)
- Abdelhamid Abbas
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|