1
|
Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 2022; 23:499-515. [PMID: 35190722 DOI: 10.1038/s41580-022-00456-z] [Citation(s) in RCA: 565] [Impact Index Per Article: 282.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Navdeep S Chandel
- Division of Pulmonary & Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Christine Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
2
|
Chaiswing L, St. Clair WH, St. Clair DK. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Antioxid Redox Signal 2018; 29:1237-1272. [PMID: 29325444 PMCID: PMC6157438 DOI: 10.1089/ars.2017.7485] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cancer cells that are resistant to radiation and chemotherapy are a major problem limiting the success of cancer therapy. Aggressive cancer cells depend on elevated intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and metastasize. As a result, these aggressive cancers maintain high basal levels of ROS compared with normal cells. The prominence of the redox state in cancer cells led us to consider whether increasing the redox state to the condition of oxidative stress could be used as a successful adjuvant therapy for aggressive cancers. Recent Advances: Past attempts using antioxidant compounds to inhibit ROS levels in cancers as redox-based therapy have met with very limited success. However, recent clinical trials using pro-oxidant compounds reveal noteworthy results, which could have a significant impact on the development of strategies for redox-based therapies. CRITICAL ISSUES The major objective of this review is to discuss the role of the redox state in aggressive cancers and how to utilize the shift in redox state to improve cancer therapy. We also discuss the paradox of redox state parameters; that is, hydrogen peroxide (H2O2) as the driver molecule for cancer progression as well as a target for cancer treatment. FUTURE DIRECTIONS Based on the biological significance of the redox state, we postulate that this system could potentially be used to create a new avenue for targeted therapy, including the potential to incorporate personalized redox therapy for cancer treatment.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| | - William H. St. Clair
- Department of Radiation Medicine, University of Kentucky-Lexington, Lexington, Kentucky
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| |
Collapse
|
3
|
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol 2017; 11:613-619. [PMID: 28110218 PMCID: PMC5256672 DOI: 10.1016/j.redox.2016.12.035] [Citation(s) in RCA: 1450] [Impact Index Per Article: 207.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 11/29/2022] Open
Abstract
Hydrogen peroxide emerged as major redox metabolite operative in redox sensing, signaling and redox regulation. Generation, transport and capture of H2O2 in biological settings as well as their biological consequences can now be addressed. The present overview focuses on recent progress on metabolic sources and sinks of H2O2 and on the role of H2O2 in redox signaling under physiological conditions (1-10nM), denoted as oxidative eustress. Higher concentrations lead to adaptive stress responses via master switches such as Nrf2/Keap1 or NF-κB. Supraphysiological concentrations of H2O2 (>100nM) lead to damage of biomolecules, denoted as oxidative distress. Three questions are addressed: How can H2O2 be assayed in the biological setting? What are the metabolic sources and sinks of H2O2? What is the role of H2O2 in redox signaling and oxidative stress?
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Institute for Research in Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Kavoosi G, Amirghofran Z. Chemical composition, radical scavenging and anti-oxidant capacity of Ocimum Basilicum essential oil. JOURNAL OF ESSENTIAL OIL RESEARCH 2016. [DOI: 10.1080/10412905.2016.1213667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gholamreza Kavoosi
- Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Amirghofran
- Department of Immunology, Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Jones DP, Radi R. Redox pioneer: professor Helmut Sies. Antioxid Redox Signal 2014; 21:2459-68. [PMID: 25178739 PMCID: PMC4245851 DOI: 10.1089/ars.2014.6037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/12/2014] [Accepted: 08/31/2014] [Indexed: 12/17/2022]
Abstract
Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer.
Collapse
Affiliation(s)
- Dean P. Jones
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Rafael Radi
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Gupte A, Mumper RJ. An investigation into copper catalyzed D-penicillamine oxidation and subsequent hydrogen peroxide generation. J Inorg Biochem 2006; 101:594-602. [PMID: 17275091 DOI: 10.1016/j.jinorgbio.2006.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022]
Abstract
D-Penicillamine is a potent copper (Cu) chelating agent. D-Pen reduces Cu(II) to Cu(I) in the process of chelation while at the same time being oxidized to D-penicillamine disulfide. It has been proposed that hydrogen peroxide is generated during this process. However, definitive experimental proof that hydrogen peroxide is generated remains lacking. Thus, the major aims of these studies were to confirm and quantitatively assess the in vitro production of hydrogen peroxide during copper catalyzed D-penicillamine oxidation. The potential cytotoxic effect of hydrogen peroxide generation was also investigated in vitro against MCF-7 human breast cancer cells. Cell cytotoxicity resulting from the incubation of D-penicillamine with copper was compared to that of D-penicillamine, copper and hydrogen peroxide. The mechanism of copper catalyzed D-penicillamine oxidation and simultaneous hydrogen peroxide production was investigated as a function of time, concentration of cupric sulfate or ferric chloride, temperature, pH, anaerobic condition and chelators such as ethylenediaminetetraacetic acid and bathocuproinedisulfonic acid. A simple, sensitive and rapid HPLC assay was developed to simultaneously detect D-penicillamine, its major oxidation product D-penicillamine disulfide, and hydrogen peroxide in a single run. Hydrogen peroxide was shown to be generated in a concentration dependent manner as a result of D-penicillamine oxidation in the presence of cupric sulfate. Chelators such as ethylenediaminetetraacetic acid and bathocuproinedisulfonic acid were able to inhibit D-penicillamine oxidation. The incubation of MCF-7 human breast cancer cells with D-penicillamine plus cupric sulfate resulted in the production of reactive oxygen species within the cell and cytotoxicity that was comparable to free hydrogen peroxide.
Collapse
Affiliation(s)
- Anshul Gupte
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536-0082, USA
| | | |
Collapse
|
7
|
Milton NGN. Role of hydrogen peroxide in the aetiology of Alzheimer's disease: implications for treatment. Drugs Aging 2004; 21:81-100. [PMID: 14960126 DOI: 10.2165/00002512-200421020-00002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) is a stable, uncharged and freely diffusable reactive oxygen species (ROS) and second messenger. The generation of H(2)O(2) in the brain is relatively high because of the high oxygen consumption in the tissue. Alzheimer's disease is a neurodegenerative disorder characterised by the appearance of amyloid-beta (Abeta)-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles. The pathology of Alzheimer's disease is also associated with oxidative stress and H(2)O(2) is implicated in this and the neurotoxicity of the Abeta peptide. The ability for Abeta to generate H(2)O(2), and interactions of H(2)O(2) with iron and copper to generate highly toxic ROS, may provide a mechanism for the oxidative stress associated with Alzheimer's disease. The role of heavy metals in Alzheimer's disease pathology and the toxicity of the H(2)O(2) molecule may be closely linked. Drugs that prevent oxidative stress include antioxidants, modifiers of the enzymes involved in ROS generation and metabolism, metal chelating agents and agents that can remove the stimulus for ROS generation. In Alzheimer's disease the H(2)O(2) molecule must be considered a therapeutic target for treatment of the oxidative stress associated with the disease. The actions of H(2)O(2) include modifications of proteins, lipids and DNA, all of which are effects seen in the Alzheimer's disease brain and may contribute to the loss of synaptic function characteristic of the disease. The effectiveness of drugs to target this component of the disease pathology remains to be determined; however, metal chelators may provide an effective route and have the added bonus in the case of clioquinol of potentially reducing the Abeta load. Future research and development of agents that specifically target the H(2)O(2) molecule or enzymes involved in its metabolism may provide the future route to Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Nathaniel G N Milton
- Department of Clinical Neurosciences, Royal Free & University College Medical School, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
8
|
Tarpey MM, Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 2001; 89:224-36. [PMID: 11485972 DOI: 10.1161/hh1501.094365] [Citation(s) in RCA: 422] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evanescent nature of reactive oxygen and nitrogen species, the multiple cellular mechanisms evolved to maintain these substances at low (submicromolar) concentrations within the vascular system, and the often multifaceted nature of their reactivities have made measurement of these compounds within the vasculature problematic. This review attempts to provide a critical description of some of the most common approaches to quantification of nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite, with attention to key issues that may influence the utility of a particular assay when adapted for use in vascular cells and tissues.
Collapse
Affiliation(s)
- M M Tarpey
- Department of Anesthesiology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | |
Collapse
|
9
|
Review. Clin Chem Lab Med 1990. [DOI: 10.1515/cclm.1990.28.9.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Byczkowski JZ, Gessner T. Biological role of superoxide ion-radical. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1988; 20:569-80. [PMID: 2839383 DOI: 10.1016/0020-711x(88)90095-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J Z Byczkowski
- Grace Cancer Drug Center, Roswell Park Memorial Institute, New York State Department of Health, Buffalo 14263
| | | |
Collapse
|
11
|
Almagor M, Kahane I, Gilon C, Yatziv S. Protective effects of the glutathione redox cycle and vitamin E on cultured fibroblasts infected by Mycoplasma pneumoniae. Infect Immun 1986; 52:240-4. [PMID: 3082758 PMCID: PMC262226 DOI: 10.1128/iai.52.1.240-244.1986] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of the glutathione (GSH) redox cycle and vitamin E as antioxidant defense systems was studied in normal human cultured skin fibroblasts infected by virulent Mycoplasma pneumoniae. In cells infected for 20 h, catalase activity was inhibited by 75% and the intracellular GSH decreased to 32% of its normal values. GSH peroxidase and oxidized glutathione (reductase activities in the infected cells were unaffected.) GSSG glutathione in the medium of the infected cells rose in accordance with the intracellular GSH decrease. The observed elevation in GSSG/GSH ratio was attributed to the increase in intracellular H2O2 content in M. pneumoniae-infected cells due to the marked inhibition in their catalase activity. The protective effect of the GSH redox cycle in infected cells was studied by depletion of cellular GSH, prior to their infection with M. pneumoniae, using buthionine sulfoximine (BSO), a selective inhibitor of gamma-glutamyl cysteine synthetase. After 16 h of incubation with BSO, the GSH levels were reduced to 38% of their normal value and recovered to 55% during 24 h after removal of the inhibitor. BSO had no effect on GSH peroxidase and catalase activities in either infected or noninfected cells. The level of malonyldialdehyde (an indicator of membrane lipid peroxidation) in BSO-treated cells infected by M. pneumoniae was 1.8 times higher than in infected controls. Cells enriched with 0.25 and 2.25 micrograms of vitamin E per mg of protein prior to their infection by M. pneumoniae revealed the following: a lesser degree of catalase inhibition, 46 and 30%, respectively, versus 64% in infected control cells that were not supplemented with vitamin E; lower levels of malonyldialdehyde, 55 and 20% increments, respectively, versus a 140% increment in infected controls; higher residual activity of lactate dehydrogenase, 76 and 96%, respectively, versus 58% in infected controls. Our data indicate that the oxidative damage induced in M. pneumoniae-infected cells due to the increase in intracellular levels of H2O2 and O2- is limited by the host cell GSH redox cycle and by supplementation with vitamin E.
Collapse
|
12
|
Abstract
Cytochrome c is degraded by a large excess of hydrogen peroxide, leading to opening of the heme porphyrin ring and loss of the Soret absorption bands. The kinetic parameters of this reaction have been determined, and it is shown that a small concentration of oxygen is liberated at the same rate as degradation. Low-level chemiluminescence and release of a hydroxylating species also accompany heme destruction. It is proposed that heme iron activates hydrogen peroxide to a more powerful oxidant, perhaps the hydroxyl radical, which remains bound to the heme iron and initiates attack on the porphyrin ring. Chemiluminescence appears to result from a side reaction involving singlet oxygen attack on the alpha-methene bridge, yielding a dioxetane. The in vivo degradation of cytochrome c by excess hydrogen peroxide may interfere with respiration, accelerate aging, and enhance the metabolism of carcinogens.
Collapse
|
13
|
Elovaara E, Marselos M, Vainio H. N,N-Dimethylformamide-induced effects on hepatic and renal xenobiotic enzymes with emphasis on aldehyde metabolism in the rat. ACTA PHARMACOLOGICA ET TOXICOLOGICA 1983; 53:159-65. [PMID: 6353859 DOI: 10.1111/j.1600-0773.1983.tb01885.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Male Wistar rats were dosed with N,N-dimethylformamide (DMF) in drinking water at four concentration levels (0,0.1,0.5 or 1.0 g/l) for 2 or 7 weeks. Upon evaluation of the effects in the liver increased values were found for the following parameters: liver/body weight-ratio, GSH content, ethoxycoumarin O-deethylase and UDPglucuronosyltransferase activities. The GSH content, deethylase activity and, transiently, the glucuronidation activity were slightly increased also in the kidneys. Oxidative N-demethylation of DMF by hepatic microsomes in vitro was not enhanced by oral treatment. No DMF-dependent formaldehyde liberation in vitro could be detected under conditions where formaldehyde liberation from N,N-dimethylnitrosamine could be demonstrated. However, the endogenous rate of formaldehyde generation by liver microsomes isolated from DMF-treated rats was enhanced with the highest oral dose of DMF. The daily intake of DMF lowered the activities of both formaldehyde and propionaldehyde dehydrogenases in the liver soluble fraction. No inhibition of these dehydrogenases was shown in vitro by DMF (less than or equal to 10 mM) or by its main urinary metabolite N-methylformamide (less than or equal to 10 mM). The observed impairment of aldehyde oxidation in liver and kidneys of the rat after the DMF intake could explain the mechanism behind the alcohol intolerance observed in man after DMF-exposure.
Collapse
|
14
|
Sies H, Graf P, Oshino N, Boveris A, Chance B. Peroxisomal function in perfused liver as studied by organ photometry. Ann N Y Acad Sci 1982; 386:153-64. [PMID: 6124200 DOI: 10.1111/j.1749-6632.1982.tb21413.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|