1
|
Johnson JM, Peterlin AD, Balderas E, Sustarsic EG, Maschek JA, Lang MJ, Jara-Ramos A, Panic V, Morgan JT, Villanueva CJ, Sanchez A, Rutter J, Lodhi IJ, Cox JE, Fisher-Wellman KH, Chaudhuri D, Gerhart-Hines Z, Funai K. Mitochondrial phosphatidylethanolamine modulates UCP1 to promote brown adipose thermogenesis. SCIENCE ADVANCES 2023; 9:eade7864. [PMID: 36827367 PMCID: PMC9956115 DOI: 10.1126/sciadv.ade7864] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/24/2023] [Indexed: 05/08/2023]
Abstract
Thermogenesis by uncoupling protein 1 (UCP1) is one of the primary mechanisms by which brown adipose tissue (BAT) increases energy expenditure. UCP1 resides in the inner mitochondrial membrane (IMM), where it dissipates membrane potential independent of adenosine triphosphate (ATP) synthase. Here, we provide evidence that phosphatidylethanolamine (PE) modulates UCP1-dependent proton conductance across the IMM to modulate thermogenesis. Mitochondrial lipidomic analyses revealed PE as a signature molecule whose abundance bidirectionally responds to changes in thermogenic burden. Reduction in mitochondrial PE by deletion of phosphatidylserine decarboxylase (PSD) made mice cold intolerant and insensitive to β3 adrenergic receptor agonist-induced increase in whole-body oxygen consumption. High-resolution respirometry and fluorometry of BAT mitochondria showed that loss of mitochondrial PE specifically lowers UCP1-dependent respiration without compromising electron transfer efficiency or ATP synthesis. These findings were confirmed by a reduction in UCP1 proton current in PE-deficient mitoplasts. Thus, PE performs a previously unknown role as a temperature-responsive rheostat that regulates UCP1-dependent thermogenesis.
Collapse
Affiliation(s)
- Jordan M. Johnson
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Alek D. Peterlin
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Utah Center for Clinical and Translational Research, University of Utah, Salt Lake City, UT, USA
| | - Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Elahu G. Sustarsic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - J. Alan Maschek
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - Marisa J. Lang
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Alejandro Jara-Ramos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Vanja Panic
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey T. Morgan
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Claudio J. Villanueva
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Alejandro Sanchez
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jared Rutter
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - James E. Cox
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Althaher AR. An Overview of Hormone-Sensitive Lipase (HSL). ScientificWorldJournal 2022; 2022:1964684. [PMID: 36530555 PMCID: PMC9754850 DOI: 10.1155/2022/1964684] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 07/30/2023] Open
Abstract
Hormone-sensitive lipase (HSL) is a pivotal enzyme that mediates triglyceride hydrolysis to provide free fatty acids and glycerol in adipocytes in a hormonally controlled lipolysis process. Elevated plasma-free fatty acids were accompanied by insulin resistance, type-2 diabetes, and obesity. Inhibition of lipolysis through HSL inhibition may provide a mechanism to prevent the accumulation of free fatty acids and to improve the affectability of insulin and blood glucose handling in type II diabetes. The published studies that examine the structure, regulation, and function of HSL and major inhibitors were reviewed in this paper.
Collapse
Affiliation(s)
- Arwa R. Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
3
|
Facchinetti F, Appetecchia M, Aragona C, Bevilacqua A, Bezerra Espinola MS, Bizzarri M, D'Anna R, Dewailly D, Diamanti-Kandarakis E, Hernández Marín I, Kamenov ZA, Kandaraki E, Laganà AS, Monastra G, Montanino Oliva M, Nestler JE, Orio F, Ozay AC, Papalou O, Pkhaladze L, Porcaro G, Prapas N, Soulage CO, Stringaro A, Wdowiak A, Unfer V. Experts' opinion on inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: a further help for human reproduction and beyond. Expert Opin Drug Metab Toxicol 2020; 16:255-274. [PMID: 32129111 DOI: 10.1080/17425255.2020.1737675] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: This Experts' opinion provides an updated scientific support to gynecologists, obstetricians, endocrinologists, nutritionists, neurologists and general practitioners on the use of Inositols in the therapy of Polycystic Ovary Syndrome (PCOS) and non-insulin dependent (type 2) diabetes mellitus (NIDDM).Areas covered: This paper summarizes the physiology of Myo-Inositol (MI) and D-Chiro-Inositol (DCI), two important molecules present in human organisms, and their therapeutic role, also for treating infertility. Some deep differences between the physiological functions of MI and DCI, as well as their safety and intestinal absorption are discussed. Updates include new evidence on the efficacy exerted in PCOS by the 40:1 MI/DCI ratio, and the innovative approach based on alpha-lactalbumin to overcome the decreased therapeutic efficacy of Inositols in some patients.Expert opinion: The evidence suggests that MI, alone or with DCI in the 40:1 ratio, offers a promising treatment for PCOS and NIDDM. However, additional studies need to evaluate some still unresolved issues, such as the best MI/DCI ratio for treating NIDDM, the potential cost-effectiveness of reduced gonadotropins administration in IVF due to MI treatment, or the benefit of MI supplementation in ovulation induction with clomiphene citrate in PCOS patients.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Department of Obstetrics and Gynecology and Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Cesare Aragona
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosario D'Anna
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, Lille, France.,INSERM, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | | | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, México City Mexico.,Facultad de Medicina, Universidad Nacional Autónoma De México (UNAM), México City, México
| | - Zdravko A Kamenov
- Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Eleni Kandaraki
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Giovanni Monastra
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - John E Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Orio
- Department of Endocrinology, "Parthenope" University of Naples, Italy
| | - Ali Cenk Ozay
- Faculty of Medicine, Department of Obstetrics and Gynecology, Near East University, Nicosia Cyprus.,Near East University, Research Center of Experimental Health Sciences, Nicosia, Cyprus
| | - Olga Papalou
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Lali Pkhaladze
- Department of Gynecological Endocrinology, Ioseb Zhordania Institute of Reproductology, Tbilisi, Georgia
| | | | - Nikos Prapas
- 3rd Department of OB-GYNAE, Aristotle University of Thessaloniki, Thessaloniki Greece.,IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | | | - Annarita Stringaro
- National Center for Drug Research and Evaluation - Italian National Institute of Health, Rome, Italy
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, Poland
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Lan YL, Lou JC, Lyu W, Zhang B. Update on the synergistic effect of HSL and insulin in the treatment of metabolic disorders. Ther Adv Endocrinol Metab 2019; 10:2042018819877300. [PMID: 31565213 PMCID: PMC6755629 DOI: 10.1177/2042018819877300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is one of the three lipases in adipose tissue present during periods of energy demand. HSL is tightly controlled by insulin regulation via the central and peripheral systems. The suppressive effects of insulin on HSL are also associated with complex crosstalk with other pathways in the metabolic network. Because impaired insulin action is the driving force behind the pathogenesis of diabetes and other metabolic complications, elucidation of the intricate relationships between HSL and insulin may provide an in-depth understanding of these pandemic diseases and potentially identify strategies to inhibit disease development. Insulin not only differentially regulates HSL isoform transcription but also post-transcriptionally affects HSL phosphorylation by stimulating PKA and endothelin (ET-1), and controls its expression indirectly via regulating the activity of growth hormone (GH). In addition, a rapid elevation of HSL levels was detected after insulin injection in patients, which suggests that the inhibitory effects of insulin on HSL can be overridden by insulin-induced hypoglycemia. Conversely, individuals with hereditary HSL deficiency, and animals with experimental HSL deletion, showed major disruptions in mRNA/protein expression in insulin signaling pathways, ultimately leading to insulin resistance, diabetes, and fatty liver. Notably, HSL inactivation could cause insulin-independent fatty liver, while insulin resistance induced by HSL deficiency may further aggravate disease progression. The common beliefs that HSL is the overall rate-limiting enzyme in lipolysis and that insulin is an inhibitor of HSL have been challenged by recent discoveries; therefore, a renewed examination of their relationships is required. In this review, by analyzing current data related to the role of, and mutual regulation between, HSL and insulin and discussing unanswered questions and disparities in different lines of studies, the authors intend to shed light on our understanding of lipid metabolism and provide a rational basis for future research in drug development.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second
Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Neurosurgery, Shenzhen People’s
Hospital, Shenzhen, China
- Department of Pharmacy, Dalian Medical
University, Dalian, China
- Department of Physiology, Dalian Medical
University, Dalian, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second
Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Neurosurgery, Shenzhen People’s
Hospital, Shenzhen, China
| | - Wen Lyu
- Department of Neurosurgery, Shenzhen People’s
Hospital, Shenzhen, China
| | | |
Collapse
|
5
|
Stearoyl-CoA desaturase 1 deficiency reduces lipid accumulation in the heart by activating lipolysis independently of peroxisome proliferator-activated receptor α. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2029-2037. [PMID: 27751891 DOI: 10.1016/j.bbalip.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/19/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) has recently been shown to be a critical control point in the regulation of cardiac metabolism and function. Peroxisome proliferator-activated receptor α (PPARα) is an important regulator of myocardial fatty acid uptake and utilization. The present study used SCD1 and PPARα double knockout (SCD1-/-/PPARα-/-) mice to test the hypothesis that PPARα is involved in metabolic changes in the heart that are caused by SCD1 downregulation/inhibition. SCD1 deficiency decreased the intracellular content of free fatty acids, triglycerides, and ceramide in the heart of SCD1-/- and SCD1-/-/PPARα-/- mice. SCD1 ablation in PPARα-/- mice decreased diacylglycerol content in cardiomyocytes. These results indicate that the reduction of fat accumulation in the heart associated with SCD1 deficiency occurs independently of the PPARα pathway. To elucidate the mechanism of the observed changes, we treated HL-1 cardiomyocytes with the SCD1 inhibitor A939572 and/or PPARα inhibitor GW6471. SCD1 inhibition decreased the level of lipogenic proteins and increased lipolysis, reflected by a decrease in the content of adipose triglyceride lipase inhibitor G0S2 and a decrease in the ratio of phosphorylated hormone-sensitive lipase (HSL) at Ser565 to HSL (pHSL[Ser565]/HSL). PPARα inhibition alone did not affect the aforementioned protein levels. Finally, PPARα inhibition decreased the phosphorylation level of 5'-adenosine monophosphate-activated protein kinase, indicating lower mitochondrial fatty acid oxidation. In summary, SCD1 ablation/inhibition decreased cardiac lipid content independently of the action of PPARα by reducing lipogenesis and activating lipolysis. The present data suggest that SCD1 is an important component in maintaining proper cardiac lipid metabolism.
Collapse
|
6
|
α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation. Nutrients 2015; 7:3166-83. [PMID: 25942489 PMCID: PMC4446745 DOI: 10.3390/nu7053166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (BNF), inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF), an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs). Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF) (1-5 μM) for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM) from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG) accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL), estrogen receptor (ER), as well as decreased expression of AhR, AhR nuclear translocator (ARNT), cytochrome P4501B1 (CYP1B1), and nuclear factor erythroid-2-related factor (NRF-2) proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF) secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and enhanced mature adipocyte-stimulated tube formation in ECs, suggesting that the AhR may suppress obesity-induced adverse effects, and α-NF abolished the protective effects of the AhR.
Collapse
|
7
|
Dobrzyn P, Pyrkowska A, Duda MK, Bednarski T, Maczewski M, Langfort J, Dobrzyn A. Expression of lipogenic genes is upregulated in the heart with exercise training-induced but not pressure overload-induced left ventricular hypertrophy. Am J Physiol Endocrinol Metab 2013; 304:E1348-58. [PMID: 23632628 DOI: 10.1152/ajpendo.00603.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy is accompanied by molecular remodeling that affects different cellular pathways, including fatty acid (FA) utilization. In the present study, we show that cardiac lipid metabolism is differentially regulated in response to physiological (endurance training) and pathological [abdominal aortic banding (AAB)] hypertrophic stimuli. Physiological hypertrophy was accompanied by an increased expression of lipogenic genes and the activation of sterol regulatory element-binding protein-1c and Akt signaling. Additionally, FA oxidation pathways regulated by AMP-activated protein kinase (AMPK) and peroxisome proliferator activated receptor-α (PPARα) were induced in trained hearts. Cardiac lipid content was not changed by physiological stimulation, underlining balanced lipid utilization in the trained heart. Moreover, pathological hypertrophy induced the AMPK-regulated oxidative pathway, whereas PPARα and expression of its downstream targets, i.e., acyl-CoA oxidase and carnitine palmitoyltransferase I, were not affected by AAB. In contrast, pathological hypertrophy leads to cardiac triglyceride (TG) and diacylglycerol (DAG) accumulation, although the expression of lipogenic genes and the levels of FA transport proteins (CD36 and FATP) were not changed or reduced compared with the sham group. A possible explanation for this phenomenon is a decrease in lipolysis, as evidenced by the increased content of adipose triglyceride lipase inhibitor G0S2, the increased phosphorylation of hormone-sensitive lipase at Ser(565), and the decreased protein levels of DAG lipase that attenuate TG and DAG contents. The increased TG and DAG accumulation observed in AAB-induced hypertrophy might have lipotoxic effects, thereby predisposing to cardiomyopathy and heart failure in the future.
Collapse
Affiliation(s)
- Pawel Dobrzyn
- Laboratory of Molecular and Medical Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
8
|
Klenke S, Siffert W. SNPs in genes encoding G proteins in pharmacogenetics. Pharmacogenomics 2011; 12:633-54. [DOI: 10.2217/pgs.10.203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heterotrimeric guanine-binding proteins (G proteins) transmit signals from the cell surface to intracellular signal cascades and are involved in various physiological and pathophysiological processes. Polymorphisms in the genes GNB3 (encoding the Gβ3 subunit), GNAS (encoding the Gαs subunit) and GNAQ (encoding the Gαq subunit) have been the primary focus of investigation. Polymorphisms in these genes could be associated with different complex phenotypes underlining that alterations in G-protein signaling can cause multiple disorders. G proteins present a point of convergence or ‘bottleneck’ between various receptors and effectors, thus making them a sensible tool for pharmacogenetic studies. The pharmacogenetic studies performed to date mostly demonstrate an association between G-protein polymorphisms and response to therapy or occurrence of adverse drug effects. Therefore, polymorphisms in genes encoding G-protein subunits may help to individualize drug treatment in various diseases with regard to both efficacy and safety.
Collapse
Affiliation(s)
| | - Winfried Siffert
- Institut für Pharmakogenetik, Universität Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
9
|
Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ. The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene 2011; 477:1-11. [PMID: 21241784 DOI: 10.1016/j.gene.2011.01.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/22/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022]
Abstract
The ability to store energy in the form of energy-dense triacylglycerol and to mobilize these stores rapidly during periods of low carbohydrate availability or throughout the strong metabolic demand is a highly conserved process, absolutely essential for survival. In the industrialized world the regulation of this pathway is viewed as an important therapeutic target for disease prevention. Adipose tissue lipolysis is a catabolic process leading to the breakdown of triacylglycerols stored in fat cells, and release of fatty acids and glycerol. Mobilization of adipose tissue fat is mediated by the MGL, HSL and ATGL, similarly functioning enzymes. ATGL initiates lipolysis followed by the actions of HSL on diacylglycerol, and MGL on monoacylglycerol. HSL is regulated by reversible phosphorylation on five critical residues. Phosphorylation alone, however, is not enough to activate HSL. Probably, conformational alterations and a translocation from the cytoplasm to lipid droplets are also involved. In accordance, Perilipin functions as a master regulator of lipolysis, protecting or exposing the triacylglycerol core of a lipid droplet to lipases. The prototype processes of hormonal lipolytic control are the β-adrenergic stimulation and suppression by insulin, both of which affect cytoplasmic cyclic AMP levels. Lipolysis in adipocytes is an important process in the management of body energy reserves. Its deregulation may contribute to the symptoms of type 2 diabetes mellitus and other pathological situations. We, herein, discuss the metabolic regulation and function of lipases mediating mammalian lipolysis with a focus on HSL, quoting newly identified members of the lipolytic proteome.
Collapse
Affiliation(s)
- Antonis D Lampidonis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece
| | | | | | | |
Collapse
|
10
|
Abstract
BACKGROUND Cellulite describes the cutaneous dimpling of the thighs, buttocks, and hips that is seen predominately in women. Current evidence suggests that structural differences in fat architecture between the sexes account for its appearance. Mesotherapy, a method of delivering medication locally with the use of numerous cutaneous injections, has recently become a popular method to purportedly treat the condition. METHODS An overview of cellulite and adipocyte physiology, with a literature review and appraisal of compounds commonly used in mesotherapy. RESULTS Experimental studies using individual mesotherapy ingredients for other conditions suggest a number of mechanisms, including lipolysis, disrupting connective tissue and augmenting circulation, which may theoretically improve cellulite. Peer-reviewed studies have not evaluated whether these effects translate clinically. CONCLUSIONS Until further studies are performed, patients considering mesotherapy for cellulite must be aware that the substances currently being injected to treat this cosmetically disturbing, but medically benign, condition have not been thoroughly evaluated for safety or efficacy.
Collapse
Affiliation(s)
- Adam M Rotunda
- Department of Dermatology, University of Southern California Keck School of Medicine, Bennett Surgery Center, Santa Monica, CA 90404, USA.
| | | | | |
Collapse
|
11
|
de Piña MZ, Vázquez-Meza H, Pardo JP, Rendón JL, Villalobos-Molina R, Riveros-Rosas H, Piña E. Signaling the signal, cyclic AMP-dependent protein kinase inhibition by insulin-formed H2O2 and reactivation by thioredoxin. J Biol Chem 2008; 283:12373-86. [PMID: 18326045 DOI: 10.1074/jbc.m706832200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catecholamines in adipose tissue promote lipolysis via cAMP, whereas insulin stimulates lipogenesis. Here we show that H(2)O(2) generated by insulin in rat adipocytes impaired cAMP-mediated amplification cascade of lipolysis. These micromolar concentrations of H(2)O(2) added before cAMP suppressed cAMP activation of type IIbeta cyclic AMP-dependent protein kinase (PKA) holoenzyme, prevented hormone-sensitive lipase translocation from cytosol to storage droplets, and inhibited lipolysis. Similarly, H(2)O(2) impaired activation of type IIalpha PKA holoenzyme from bovine heart and from that reconstituted with regulatory IIalpha and catalytic alpha subunits. H(2)O(2) was ineffective (a) if these PKA holoenzymes were preincubated with cAMP, (b) if added to the catalytic alpha subunit, which is active independently of cAMP activation, and (c) if the catalytic alpha subunit was substituted by its C199A mutant in the reconstituted holoenzyme. H(2)O(2) inhibition of PKA activation remained after H(2)O(2) elimination by gel filtration but was reverted with dithiothreitol or with thioredoxin reductase plus thioredoxin. Electrophoresis of holoenzyme in SDS gels showed separation of catalytic and regulatory subunits after cAMP incubation but a single band after H(2)O(2) incubation. These data strongly suggest that H(2)O(2) promotes the formation of an intersubunit disulfide bond, impairing cAMP-dependent PKA activation. Phylogenetic analysis showed that Cys-97 is conserved only in type II regulatory subunits and not in type I regulatory subunits; hence, the redox regulation mechanism described is restricted to type II PKA-expressing tissues. In conclusion, phylogenetic analysis results, selective chemical behavior, and the privileged position in holoenzyme lead us to suggest that Cys-97 in regulatory IIalpha or IIbeta subunits is the residue forming the disulfide bond with Cys-199 in the PKA catalytic alpha subunit. A new molecular point for cross-talk among heterologous signal transduction pathways is demonstrated.
Collapse
Affiliation(s)
- Martha Zentella de Piña
- Departamento de Bioquímica, Facultad de Medicina, and Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, DF 04510, México
| | | | | | | | | | | | | |
Collapse
|
12
|
Ding ST, Yen CF, Wang PH, Lin HW, Hsu JC, Shen TF. The differential expression of hepatic genes between prelaying and laying geese. Poult Sci 2007; 86:1206-12. [PMID: 17495093 DOI: 10.1093/ps/86.6.1206] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Suppression subtractive hybridization was used to detect differential expression of genes in the livers of laying and prelaying geese. Liver tissues from prelaying and laying geese were dissected for mRNA extraction. The cDNA, reverse transcribed from liver mRNA of prelaying geese, was subtracted from the cDNA generated from the laying geese (forward subtraction). Five hundred seventy-six clones with possible differentially expressed gene fragments were observed by forward subtraction hybridization. After differential screening using the reverse and forward subtraction cDNA, 164 clones were subjected to gene sequence determination and further analysis. Using Northern analysis, 5 known and 8 unknown genes were shown to be highly expressed in the livers of laying geese compared with prelaying geese. Vitellogenin I, apoVLDL-II, ethanolamine kinase, G-protein gamma-5 subunit, and leucyl-tRNA synthase were highly expressed in the livers of laying geese compared with that from the prelaying geese (P<0.05). The expression of these known genes suggests that their function in the liver of laying geese is primarily involved in lipid and lipoprotein metabolism. Several of these differentially expressed genes were found to be responsive to estrogen stimulation, confirming the involvement of these genes in the egg-laying function of the goose.
Collapse
Affiliation(s)
- S T Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | | | | | |
Collapse
|
13
|
Cong L, Chen K, Li J, Gao P, Li Q, Mi S, Wu X, Zhao A. Regulation of adiponectin and leptin secretion and expression by insulin through a PI3K-PDE3B dependent mechanism in rat primary adipocytes. Biochem J 2007; 403:519-25. [PMID: 17286556 PMCID: PMC1876381 DOI: 10.1042/bj20061478] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adiponectin is intimately involved in the regulation of insulin sensitivity, carbohydrate and lipid metabolism, and cardiovascular functions. The circulating concentration of adiponectin is decreased in obesity and Type 2 diabetes. The present study attempts to elucidate the mechanisms underlying the regulation of adiponectin secretion and expression in rat primary adipocytes. The beta-agonist, isoprenaline, decreased adiponectin secretion and expression in a dose-dependent manner in primary adipocytes. Importantly, such an inhibitory effect could be blocked by insulin. The opposing effects of isoprenaline and insulin could be explained by differential regulation of intracellular cAMP levels, since cAMP analogues suppressed adiponectin secretion and expression in a fashion similar to isoprenaline, and insulin blocked the inhibitory effects of the cAMP analogue hydrolysable by PDE (phosphodiesterase). A specific PDE3 inhibitor, milrinone, and PI3K (phosphoinositide 3-kinase) inhibitors abolished the effects of insulin on adiponectin secretion and expression. In the same studies, leptin secretion and expression displayed a similar pattern of regulation to adiponectin. We conclude that insulin and beta-agonists act directly at the adipocytes in opposing fashions to regulate the production of adiponectin and leptin, and that a PI3K-PDE3B-cAMP pathway mediates the effects of insulin to restore beta-agonist/cAMP-suppressed secretion and expression of these two adipokines.
Collapse
Affiliation(s)
- Li Cong
- Department of Cell Biology and Physiology, University of Pittsburgh, S-326, 3500 Terrace Street, Pittsburgh, PA 15261, U.S.A
| | - Ke Chen
- Department of Cell Biology and Physiology, University of Pittsburgh, S-326, 3500 Terrace Street, Pittsburgh, PA 15261, U.S.A
| | - Ji Li
- Department of Cell Biology and Physiology, University of Pittsburgh, S-326, 3500 Terrace Street, Pittsburgh, PA 15261, U.S.A
| | - Ping Gao
- Department of Cell Biology and Physiology, University of Pittsburgh, S-326, 3500 Terrace Street, Pittsburgh, PA 15261, U.S.A
| | - Qiang Li
- Department of Cell Biology and Physiology, University of Pittsburgh, S-326, 3500 Terrace Street, Pittsburgh, PA 15261, U.S.A
| | - Shuhua Mi
- Department of Cell Biology and Physiology, University of Pittsburgh, S-326, 3500 Terrace Street, Pittsburgh, PA 15261, U.S.A
| | - Xin Wu
- Department of Cell Biology and Physiology, University of Pittsburgh, S-326, 3500 Terrace Street, Pittsburgh, PA 15261, U.S.A
| | - Allan Z. Zhao
- Department of Cell Biology and Physiology, University of Pittsburgh, S-326, 3500 Terrace Street, Pittsburgh, PA 15261, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
14
|
Zmuda-Trzebiatowska E, Manganiello V, Degerman E. Novel mechanisms of the regulation of protein kinase B in adipocytes; implications for protein kinase A, Epac, phosphodiesterases 3 and 4. Cell Signal 2006; 19:81-6. [PMID: 16839743 DOI: 10.1016/j.cellsig.2006.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Crosstalk between insulin and cAMP signalling pathways has a great impact on adipocyte metabolism. Whilst Protein kinase B (PKB) is a pivotal mediator of insulin action, in some cells regulation of PKB by cAMP has also been demonstrated. Here we provide evidence that, in a phosphatidyl inositol 3-kinase dependent manner, beta3-adrenergic stimulation (using CL316243) in adipocytes induces PKB phosphorylation in the absence of insulin and also potentiates insulin-induced phosphorylation of PKB. Interestingly, insulin- and CL316243-induced PKB phosphorylation was found to be inhibited by pools of cAMP controlled by PDE3B and PDE4 (mainly in the context of insulin), whereas a cAMP pool controlling protein kinase A appeared to mediate stimulation of PKB phosphorylation (mainly in the context of CL316243). Furthermore, an Epac (exchange protein directly activated by cAMP) agonist (8-pCPT-2'-O-Me-cAMP) mimicked the effect of the PDE inhibitors, giving evidence that Epac has an inhibitory effect on PKB phosphorylation in adipocytes. Further, we put the results obtained at the level of PKB in the context of possible downstream signalling components in the regulation of adipocyte metabolism. Thus, we found that overexpression of PKB induced lipogenesis in a PDE3B-dependent manner. Furthermore, overexpression or inhibition of PDE3B was associated with reduced or increased phosphorylation of the key lipogenic enzyme acetyl-CoA carboxylase (ACC), respectively. These PDE3B-dependent effects on ACC correlated with changes in lipogenesis. The Epac agonist, 8-pCPT-2'-O-Me-cAMP, mimicked the effect of PDE3B inhibition on ACC phosphorylation and lipogenesis.
Collapse
|
15
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|
16
|
Zmuda-Trzebiatowska E, Oknianska A, Manganiello V, Degerman E. Role of PDE3B in insulin-induced glucose uptake, GLUT-4 translocation and lipogenesis in primary rat adipocytes. Cell Signal 2005; 18:382-90. [PMID: 15961276 DOI: 10.1016/j.cellsig.2005.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 11/23/2022]
Abstract
In adipocytes, phosphorylation and activation of PDE3B is a key event in the antilipolytic action of insulin. The role of PDE4, another PDE present in adipocytes, is not yet known. In this work we investigate the role of PDE3B and PDE4 in insulin-induced glucose uptake, GLUT-4 translocation and lipogenesis. Inhibition of PDE3 (OPC3911, milrinone) but not PDE4 (RO 20-1724) lowered insulin-induced glucose uptake and lipogenesis, especially in the presence of isoproterenol (a general beta-adrenergic agonist), CL316243, a selective beta3-adrenergic agonist, and pituitary adenylate cyclase-activating peptide. The inhibitory effect of OPC3911 was associated with reduced translocation of GLUT-4 from the cytosol to the plasma membrane. Both OPC3911 and RO 20-1724 increased protein kinase A (PKA) activity and lipolysis. H89, a PKA inhibitor, did not affect OPC3911-mediated inhibition of insulin-induced glucose uptake and lipogenesis, whereas 8-pCPT-2'-O-Me-cAMP, an Epac agonist which mediates PKA independent cAMP signaling events, mimicked all the effects of OPC3911. Insulin-mediated activation of protein kinase B, a kinase involved in insulin-induced glucose uptake, was apparently not altered by OPC3911. In summary, our data suggest that PDE3B, but not PDE4, contributes to the regulation of insulin-induced glucose uptake, GLUT-4 translocation, and lipogenesis presumably by regulation of a cAMP/Epac signalling mechanisms.
Collapse
|
17
|
Perona J, Ruiz-Gutierrez V. Analysis of Neutral Lipids. FOOD SCIENCE AND TECHNOLOGY 2004. [DOI: 10.1201/b11081-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Akesson L, Ahrén B, Manganiello VC, Holst LS, Edgren G, Degerman E. Dual effects of pituitary adenylate cyclase-activating polypeptide and isoproterenol on lipid metabolism and signaling in primary rat adipocytes. Endocrinology 2003; 144:5293-9. [PMID: 12960103 DOI: 10.1210/en.2003-0364] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide that exerts its effects throughout the body by elevating the intracellular amounts of cAMP. In adipocytes, an increased amount of cAMP is associated with increased lipolysis. In this work we evaluated the effects of PACAP38 on triglyceride metabolism in primary rat adipocytes. Stimulation of adipocytes with PACAP (0.1-100 nm) resulted in stimulation of lipolysis to the same extent as isoproterenol. Lipolysis was blocked by 25 microm of the protein kinase A inhibitor H-89 and potentiated in the presence of 10 microm OPC3911, a phosphodiesterase 3 inhibitor. In addition, PACAP38 induced activation of protein kinase A. Insulin efficiently inhibited PACAP38-induced lipolysis in a phosphatidyl inositol 3-kinase and phosphodiesterase 3-dependent manner. Interestingly, we also found that PACAP38, as well as isoproterenol, induced potentiation of lipogenesis in the presence of insulin. These results show that PACAP38 and isoproterenol mediate catabolic as well as anabolic effects in adipocytes, depending on the concentration of insulin present. We speculate that in the early postprandial state and during fasting, when insulin levels are low, PACAP and beta-adrenergic catecholamines induce lipolysis, whereas when higher levels of insulin are present, these agents potentiate the anabolic effect of insulin, i.e. storage of triglycerides.
Collapse
Affiliation(s)
- Lina Akesson
- Section for Molecular Signaling, Department of Cell and Molecualar Biology, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
19
|
Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. J Biol Chem 2003; 278:47636-43. [PMID: 13129924 DOI: 10.1074/jbc.m307680200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adipose lipolysis is mediated, in part, via interaction of fatty acid-binding protein (FABP) with hormone-sensitive lipase (HSL). Mice with reduced FABP content in fat (adipocyte FABP null) exhibit diminished fat cell lipolysis, whereas transgenic mice with increased FABP content in fat (epithelial FABP transgenic) exhibit enhanced lipolysis. To examine the relationship between the binding of FABP to HSL and activation of catalytic activity, isothermal titration microcalorimetry as well as kinetic analysis using a variety of FABP isoforms have been employed. In the absence of fatty acids, no FABP-HSL association could be demonstrated for any FABP form. However, in the presence of 10 microm oleate, A-FABP and E-FABP each bound to HSL with high affinity (Kd of 0.5 and 3 nM, respectively) in a approximately 1:1 molar stoichiometry, whereas liver FABP and intestinal FABP did not exhibit any association. To compare binding to catalysis, each FABP isoform was incubated with HSL in vitro, and enzymatic activity was assessed. Importantly, each FABP form stimulated HSL activity approximately 2-fold using cholesteryl oleate as substrate but exhibited no activation using p-nitrophenyl butyrate. The activation by A-FABP was dependent upon its fatty acid binding properties because a non-fatty acid binding mutant, R126Q, failed to activate HSL. These results suggest that binding and activation of HSL by FABPs are separate and distinct functions and that HSL contains a site for fatty acid binding that allows for FABP association.
Collapse
|
20
|
Nan X, Cheng JX, Xie XS. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 2003; 44:2202-8. [PMID: 12923234 DOI: 10.1194/jlr.d300022-jlr200] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new vibrational imaging method based on coherent anti-Stokes Raman scattering (CARS) has been used for high-speed, selective imaging of neutral lipid droplets (LDs) in unstained live fibroblast cells. LDs have a high density of C-H bonds and show a high contrast in laser-scanning CARS images taken at 2,845 cm-1, the frequency for aliphatic C-H vibrations. The contrast from LDs was confirmed by comparing CARS and Oil Red O (ORO)-stained fluorescence images. The fluorescent labeling processes were examined with CARS microscopy. It was found that ORO staining of fixed cells caused aggregation of LDs, whereas fixing with formaldehyde or staining with Nile Red did not affect LDs. CARS microscopy was also used to monitor the 3T3-L1 cell differentiation process, revealing that there was an obvious clearance of LDs at the early stage of differentiation. After that, the cells started to differentiate and reaccumulate LDs in the cytoplasm in a largely unsynchronized manner. Differentiated cells formed small colonies surrounded by undifferentiated cells that were devoid of LDs. These observations demonstrate that CARS microscopy can follow dynamic changes in live cells with chemical selectivity and noninvasiveness. CARS microscopy, in tandem with other techniques, provides exciting possibilities for studying LD dynamics under physiological conditions without perturbation of cell functions.
Collapse
Affiliation(s)
- Xiaolin Nan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
21
|
Pihlajamäki J, Karhapää P, Vauhkonen I, Kekäläinen P, Kareinen A, Viitanen L, Pesonen U, Kallio J, Uusitupa M, Laakso M. The Leu7Pro polymorphism of the neuropeptide Y gene regulates free fatty acid metabolism. Metabolism 2003; 52:643-6. [PMID: 12759898 DOI: 10.1053/meta.2003.50098] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Leu7Pro polymorphism in the signal peptide of the preproneuropeptide Y (NPY) has been associated with dyslipidemias and free fatty acid (FFA) levels during exercise. The association of this polymorphism with insulin sensitivity has not been studied. In this study, the Leu7Pro polymorphism was determined in 2 groups of nondiabetic middle-aged subjects (n = 266 and n = 295). Insulin sensitivity was measured with the hyperinsulinemic euglycemic clamp (n = 266) or with an intravenous glucose tolerance test (IVGTT, n = 295). First-phase insulin secretion was determined as insulin area under the curve (AUC) during the first 10 minutes of the IVGTT. FFAs were measured both in the fasting state and during the hyperinsulinemic clamp. The Leu7Pro polymorphism of the NPY gene was not associated with the rates of whole body glucose uptake, insulin sensitivity index, insulin secretion during the IVGTT, or insulin AUC during the oral glucose tolerance test. However, the Pro7 allele was associated with low FFA levels both in the fasting state (P =.043) and during the hyperinsulinemic clamp (P =.003). In conclusion, the Leu7Pro polymorphism of the NPY gene associates with alterations in FFA metabolism but does not have an impact on insulin sensitivity, insulin secretion, or glucose metabolism.
Collapse
Affiliation(s)
- Jussi Pihlajamäki
- Departments of Medicine and Clinical Nutrition, University of Kuopio, Kuopio, Finland; and the Department of Pharmacology and Clinical Pharmacology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ranganathan G, Phan D, Pokrovskaya ID, McEwen JE, Li C, Kern PA. The translational regulation of lipoprotein lipase by epinephrine involves an RNA binding complex including the catalytic subunit of protein kinase A. J Biol Chem 2002; 277:43281-7. [PMID: 12218046 DOI: 10.1074/jbc.m202560200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The balance of lipid flux in adipocytes is controlled by the opposing actions of lipolysis and lipogenesis, which are controlled primarily by hormone-sensitive lipase and lipoprotein lipase (LPL), respectively. Catecholamines stimulate adipocyte lipolysis through reversible phosphorylation of hormone-sensitive lipase, and simultaneously inhibit LPL activity. However, LPL regulation is complex and previous studies have described translational regulation of LPL in response to catecholamines because of an RNA-binding protein that interacts with the 3'-untranslated region of LPL mRNA. In this study, we identified several protein components of an LPL RNA binding complex. Using an LPL RNA affinity column, we identified two of the RNA-binding proteins as the catalytic (C) subunit of cAMP-dependent protein kinase (PKA), and A kinase anchoring protein (AKAP) 121/149, one of the PKA anchoring proteins, which has known RNA binding activity. To determine whether the C subunit was involved in LPL translation inhibition, the C subunit was depleted from the cytoplasmic extract of epinephrine-stimulated adipocytes by immunoprecipitation. This resulted in the loss of LPL translation inhibition activity of the extract, along with decreased RNA binding activity in a gel shift assay. To demonstrate the importance of the AKAPs, inhibition of PKA-AKAP binding with a peptide competitor (HT31) prevented epinephrine-mediated inhibition of LPL translation. C subunit kinase activity was necessary for LPL RNA binding and translation inhibition, suggesting that the phosphorylation of AKAP121/149 or other proteins was an important part of RNA binding complex formation. The hormonal activation of PKA results in the reversible phosphorylation of hormone-sensitive lipase, which is the primary mediator of adipocyte lipolysis. These studies demonstrate a dual role for PKA to simultaneously inhibit LPL-mediated lipogenesis through inhibition of LPL translation.
Collapse
Affiliation(s)
- Gouri Ranganathan
- Central Arkansas Veterans HealthCare System, and Department of Medicine, Division of Endocrinology, and the Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
23
|
Petridou A, Mougios V. Acute changes in triacylglycerol lipase activity of human adipose tissue during exercise. J Lipid Res 2002. [DOI: 10.1194/jlr.c200003-jlr200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Van der Horst DJ, Van Marrewijk WJ, Diederen JH. Adipokinetic hormones of insect: release, signal transduction, and responses. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 211:179-240. [PMID: 11597004 DOI: 10.1016/s0074-7696(01)11019-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Flight activity of insects provides an attractive yet relatively simple model system for regulation of processes involved in energy metabolism. This is particularly highlighted during long-distance flight, for which the locust constitutes a well-accepted model insect. Peptide adipokinetic hormones (AKHs) are synthesized and stored by neurosecretory cells of the corpus cardiacum, a neuroendocrine gland connected with the insect brain. The actions of these hormones on their fat body target cells trigger a number of coordinated signal transduction processes which culminate in the mobilization of both carbohydrate (trehalose) and lipid (diacylglycerol). These substrates fulfill differential roles in energy metabolism of the contracting flight muscles. The molecular mechanism of diacylglycerol transport in insect blood involving a reversible conversion of lipoproteins (lipophorins) has revealed a novel concept for lipid transport in the circulatory system. In an integrative approach, recent advances are reviewed on the consecutive topics of biosynthesis, storage, and release of insect AKHs, AKH signal transduction mechanisms and metabolic responses in fat body cells, and the dynamics of reversible lipophorin conversions in the insect blood.
Collapse
Affiliation(s)
- D J Van der Horst
- Department of Biochemical Physiology, Faculty of Biology and Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | |
Collapse
|
25
|
Mei J, Holst LS, Landström TR, Holm C, Brindley D, Manganiello V, Degerman E. C(2)-ceramide influences the expression and insulin-mediated regulation of cyclic nucleotide phosphodiesterase 3B and lipolysis in 3T3-L1 adipocytes. Diabetes 2002; 51:631-7. [PMID: 11872660 DOI: 10.2337/diabetes.51.3.631] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cyclic nucleotide phosphodiesterase (PDE) 3B plays an important role in the antilipolytic action of insulin and, thereby, the release of fatty acids from adipocytes. Increased concentrations of circulating fatty acids as a result of elevated or unrestrained lipolysis cause insulin resistance. The lipolytic action of tumor necrosis factor (TNF)-alpha is thought to be one of the mechanisms by which TNF-alpha induces insulin resistance. Ceramide is the suggested second messenger of TNF-alpha action, and in this study, we used 3T3-L1 adipocytes to investigate the effects of C(2)-ceramide (a short-chain ceramide analog) on the expression and regulation of PDE3B and lipolysis. Incubation of adipocytes with 100 micromol/l C(2)-ceramide (N-acetyl-sphingosine) resulted in a time-dependent decrease of PDE3B activity, accompanied by decreased PDE3B protein expression. C(2)-ceramide, in a time- and dose-dependent manner, stimulated lipolysis, an effect that was blocked by H-89, an inhibitor of protein kinase A. These ceramide effects were prevented by 20 micromol/l troglitazone, an antidiabetic drug. In addition to downregulation of PDE3B, the antilipolytic action of insulin was decreased by ceramide treatment. These results, together with data from other studies on PDE3B and lipolysis in diabetic humans and animals, suggest a novel pathway by which ceramide induces insulin resistance. Furthermore, PDE3B is demonstrated to be a target for troglitazone action in adipocytes.
Collapse
Affiliation(s)
- Jie Mei
- Section for Molecular Signalling, Department of Cell and Molecular Biology, Lund University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
26
|
Resjö S, Göransson O, Härndahl L, Zolnierowicz S, Manganiello V, Degerman E. Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal 2002; 14:231-8. [PMID: 11812651 DOI: 10.1016/s0898-6568(01)00238-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In adipocytes, protein kinase B (PKB) has been suggested to be the enzyme that phosphorylates phosphodiesterase 3B (PDE3B), a key enzyme in insulin's antilipolytic signalling pathway. In order to screen for PKB phosphatases, adipocyte homogenates were fractionated using ion-exchange chromatography and analysed for PKB phosphatase activities. PKB phosphatase activity eluted as one main peak, which coeluted with serine/threonine phosphatases (PP)2A. In addition, adipocytes were incubated with inhibitors of PP. Incubation of adipocytes with 1 microM okadaic acid inhibited PP2A by 75% and PP1 activity by only 17%, while 1 microM tautomycin inhibited PP1 activity by 54% and PP2A by only 7%. Okadaic acid, but not tautomycin, induced the activation of both PKBalpha and PKBbeta. Finally, PP2A subunits were found in several subcellular compartments, including plasma membranes (PM) where the phosphorylation of PKB is thought to occur. In summary, our results suggest that PP2A is the principal phosphatase that dephosphorylates PKB in adipocytes.
Collapse
Affiliation(s)
- Svante Resjö
- Biomedical Center, C11, Lund University, SE-22184, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
27
|
Göransson O, Resjö S, Rönnstrand L, Manganiello V, Degerman E. Ser-474 is the major target of insulin-mediated phosphorylation of protein kinase B beta in primary rat adipocytes. Cell Signal 2002; 14:175-82. [PMID: 11781143 DOI: 10.1016/s0898-6568(01)00242-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanism of activation for protein kinase B (PKB), an important target for insulin signaling, has been scarcely investigated in primary cells. In this study, we have characterized the insulin-induced phosphorylation and activation of PKB beta in primary rat adipocytes. Insulin stimulation resulted in a translocation of PKB beta from cytosol to membranes, and phosphorylation and activation of PKB beta. Phosphoamino acid analysis and phosphopeptide mapping demonstrated that the phosphorylation occurred mainly on serines, also when using calyculin A, and that these were localized within one major phosphopeptide. Radiosequencing showed that the radioactivity was released in Cycle No. 7. In addition, the peptide was specifically immunoprecipitated from a tryptic digest of PKB beta using the anti-phospho-PKB (Ser-473) antibody. Taken together, these results show that rat adipocyte PKB beta mainly is phosphorylated on Ser-474 in response to insulin stimulation, in contrast to previous studies in human embryonic kidney (HEK) 293 cells demonstrating, in addition, phosphorylation of Thr-309.
Collapse
Affiliation(s)
- Olga Göransson
- Section for Molecular Signalling, Department of Cell and Molecular Biology, Lund University, BMC, C11, S-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Xue B, Greenberg AG, Kraemer FB, Zemel MB. Mechanism of intracellular calcium ([Ca2+]i) inhibition of lipolysis in human adipocytes. FASEB J 2001; 15:2527-9. [PMID: 11641262 DOI: 10.1096/fj.01-0278fje] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the mechanisms responsible for the anti-lipolytic effect of intracellular Ca2+ ([Ca2+]i) in human adipocytes. Increasing [Ca2+]i inhibited lipolysis induced by b-adrenergic receptor activation, A1 adenosine receptor inhibition, adenylate cyclase activation, and phosphodiesterase (PDE) inhibition, as well as by a hydrolyzable cAMP analog, but not by a nonhydrolyzable cAMP analog. This finding indicates that the anti-lipolytic effect of [Ca2+]i may be mediated by the activation of adipocyte PDE. Consistent with this theory, [Ca2+]i inhibition of isoproterenol-stimulated lipolysis was reversed completely by the nonselective PDE inhibitor isobutyl methylxanthine and also by the selective PDE 3B inhibitor cilostamide, but not by selective PDE 1 and 4 inhibitors. In addition, phosphatidylinositol-3 kinase inhibition with wortmannin completely prevented insulin's anti-lipolytic effect but only minimally blocked [Ca2+]i's effect, which suggests that [Ca2+]i and insulin may activate PDE 3B via different mechanisms. In contrast, the antilipolytic effect of [Ca2+]i was not affected by inhibitors of calmodulin, Ca2+/calmodulin-dependent kinase, protein phosphatase 2B, and protein kinase C. Finally, [Ca2+]i inhibited significantly isoproterenol-stimulated increases in cAMP levels and hormone-sensitive lipase phosphorylation in human adipocytes. In conclusion, increasing [Ca2+]i exerts an antilipolytic effect mainly by activation of PDE, leading to a decrease in cAMP and HSL phosphorylation and, consequently, inhibition of lipolysis.
Collapse
Affiliation(s)
- B Xue
- Department of Nutrition, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
29
|
Kearns CF, McKeever KH, Malinowski K, Struck MB, Abe T. Chronic administration of therapeutic levels of clenbuterol acts as a repartitioning agent. J Appl Physiol (1985) 2001; 91:2064-70. [PMID: 11641345 DOI: 10.1152/jappl.2001.91.5.2064] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the effect of therapeutic levels of clenbuterol, with and without exercise training, on body composition. Twenty-three unfit Standardbred mares were divided into four experimental groups: clenbuterol (2.4 microg/kg body wt twice daily) plus exercise (ClenEx; 20 min at 50% maximal oxygen consumption 3 days/wk; n = 6), clenbuterol only (Clen; n = 6), exercise only (Ex; n = 5), and control (Con; n = 6). Rump fat thickness was measured at 2-wk intervals by using B-mode ultrasound, and percent body fat (%fat) was calculated by using previously published methods. For Ex, body fat decreased (P < 0.05) at week 4 (-9.3%), %fat at week 6 (-6.9%), and fat-free mass (FFM) increased (P < 0.05) at week 8 (+3.2%). On the other hand, Clen had significant changes in %fat (-15.4%), fat mass (-14.7%), and FFM (+4.3%) at week 2. ClenEx had significant decreases in %fat (-17.6%) and fat mass (-19.5%) at week 2, which was similar to Clen; however, this group had a different FFM response, which significantly increased (+4.4%) at week 6. Con showed no changes (P > 0.05) in any variable at any time. These results suggest that exercise training and clenbuterol have additive effects with respect to %fat and fat mass but antagonistic effects in terms of FFM. Furthermore, chronic clenbuterol administration causes significant repartitioning in the horse, even when administered in therapeutic doses.
Collapse
Affiliation(s)
- C F Kearns
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
30
|
Osterlund T. Structure-function relationships of hormone-sensitive lipase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1899-907. [PMID: 11277912 DOI: 10.1046/j.1432-1327.2001.02097.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Research into the structure-function relationships of lipases and esterases has increased significantly during the past decade. Of particular importance has been the deduction of several crystal structures, providing a new basis for understanding these enzymes. The generated insights have, together with cloning and expression, aided studies on structure-function relationships of hormone-sensitive lipase (HSL). Novel phosphorylation sites have been identified in HSL, which are probably important for activation of HSL and lipolysis. Functional and structural analyses have revealed features in HSL common to lipases and esterases. In particular, the catalytic core with a catalytic triad has been unveiled. Furthermore, the investigations have given clear suggestions with regard to the identity of functional and structural domains of HSL. In the present paper, these studies on HSL structure-function relationships and short-term regulation are reviewed, and the results presented in relation to other discoveries in regulated lipolysis.
Collapse
Affiliation(s)
- T Osterlund
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
31
|
Pihlajamäki J, Valve R, Karjalainen L, Karhapää P, Vauhkonen I, Laakso M. The hormone sensitive lipase gene in familial combined hyperlipidemia and insulin resistance. Eur J Clin Invest 2001; 31:302-8. [PMID: 11298776 DOI: 10.1046/j.1365-2362.2001.00813.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Insulin resistance in the most common familial dyslipidemia, familial combined hyperlipidemia (FCHL), could be due to variations in the hormone sensitive lipase (HSL) gene. MATERIALS AND METHODS The coding region of the HSL gene was screened with the single strand conformation polymorphism analysis in probands of 27 FCHL families with 228 members. In addition, the C-60G promoter substitution of the HSL gene was determined by the restriction fragment length polymorphism analysis in these subjects. RESULTS No variants in the coding region of the HSL gene were found and the allele frequencies of the C-60G promoter substitution and the silent variant (G3138A) in the 3' untranslated region did not differ between 110 control subjects and 27 probands with FCHL. However, in control women the C-60G substitution was associated with high body mass index [30.6 +/- 0.9 kg m(-2) (mean +/- SD) in subjects with the C/G genotype and 24.8 +/- 4.6 in subjects with the C/C genotype, P = 0.012], and in control men with high rates of insulin-stimulated whole body glucose uptake (70.1 +/- 14.7 vs. 56.7 +/- 14.2 micromol kg(-1) min(-1), P = 0.014). In 228 FCHL family members this substitution was associated with high low-density lipoprotein cholesterol levels in men (4.51 +/- 1.12 vs. 5.17 +/- 1.28 mmol L(-1), P = 0.049), but not in women. CONCLUSIONS The HSL gene is not a major gene for FCHL. However, the - 60G allele of this gene may affect body weight, insulin sensitivity and serum cholesterol levels.
Collapse
Affiliation(s)
- J Pihlajamäki
- Department of Medicine, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Morimoto C, Kameda K, Tsujita T, Okuda H. Relationships between lipolysis induced by various lipolytic agents and hormone-sensitive lipase in rat fat cells. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32343-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Yaney GC, Civelek VN, Richard AM, Dillon JS, Deeney JT, Hamilton JA, Korchak HM, Tornheim K, Corkey BE, Boyd AE. Glucagon-like peptide 1 stimulates lipolysis in clonal pancreatic beta-cells (HIT). Diabetes 2001; 50:56-62. [PMID: 11147795 DOI: 10.2337/diabetes.50.1.56] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is the most potent physiological incretin for insulin secretion from the pancreatic beta-cell, but its mechanism of action has not been established. It interacts with specific cell-surface receptors, generates cAMP, and thereby activates protein kinase A (PKA). Many changes in pancreatic beta-cell function have been attributed to PKA activation, but the contribution of each one to the secretory response is unknown. We show here for the first time that GLP-1 rapidly released free fatty acids (FFAs) from cellular stores, thereby lowering intracellular pH (pHi) and stimulating FFA oxidation in clonal beta-cells (HIT). Similar changes were observed with forskolin, suggesting that stimulation of lipolysis was a function of PKA activation in beta-cells. Triacsin C, which inhibits the conversion of FFAs to long-chain acyl CoA (LC-CoA), enhanced basal FFA efflux as well as GLP-1-induced acidification and efflux of FFAs from the cell. Increasing the concentration of the lipase inhibitor orlistat progressively and largely diminished the increment in secretion caused by forskolin. However, glucose-stimulated secretion was less inhibited by orlistat and only at the highest concentration tested. Because the acute addition of FFAs also increases glucose-stimulated insulin secretion, these data suggest that the incretin function of GLP-1 may involve a major role for lipolysis in cAMP-mediated potentiation of secretion.
Collapse
Affiliation(s)
- G C Yaney
- Evans Department of Medicine, Boston Medical Center, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martinez-Botas J, Anderson JB, Tessier D, Lapillonne A, Chang BH, Quast MJ, Gorenstein D, Chen KH, Chan L. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet 2000; 26:474-9. [PMID: 11101849 DOI: 10.1038/82630] [Citation(s) in RCA: 443] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity is a disorder of energy balance. Hormone-sensitive lipase (HSL) mediates the hydrolysis of triacylglycerol, the major form of stored energy in the body. Perilipin (encoded by the gene Plin), an adipocyte protein, has been postulated to modulate HSL activity. We show here that targeted disruption of Plin results in healthy mice that have constitutively activated fat-cell HSL. Plin -/- mice consume more food than control mice, but have normal body weight. They are much leaner and more muscular than controls, have 62% smaller white adipocytes, show elevated basal lipolysis that is resistant to beta-adrenergic agonist stimulation, and are cold-sensitive except when fed. They are also resistant to diet-induced obesity. Breeding the Plin -/- alleles into Leprdb/db mice reverses the obesity by ncreasing the metabolic rate of the mice. Our results demonstrate a role for perilipin in reining in basal HSL activity and regulating lipolysis and energy balance; thus, agents that inactivate perilipin may prove useful as anti-obesity medications.
Collapse
Affiliation(s)
- J Martinez-Botas
- Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Berraondo B, Martínez JA. Free fatty acids are involved in the inverse relationship between hormone-sensitive lipase (HSL) activity and expression in adipose tissue after high-fat feeding or beta3-adrenergic stimulation. OBESITY RESEARCH 2000; 8:255-61. [PMID: 10832769 DOI: 10.1038/oby.2000.30] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The hormone-sensitive lipase (HSL) is the rate-limiting enzyme in adipose tissue lipolysis. The aim of this experimental trial was to study the effects of a beta3-adrenergic agonist (Trecadrine) on plasma fatty acids, adipocyte HSL activity, and gene expression in control and cafeteria-induced obese animals. RESEARCH METHODS AND PROCEDURES Control and cafeteria-fed rats were treated with a placebo or Trecadrine during 35 days. Plasma fatty acids were measured by an enzymatic method, whereas HSL activity was assessed by using labeled triolein as substrate. Finally, HSL gene expression from white adipose tissue (WAT) was determined using a reverse transcription-polymerase chain reaction method. RESULTS Trecadrine administration reduced plasma fatty acids and HSL mRNA levels in abdominal WAT, whereas HSL activity was significantly higher in the Trecadrine-treated obese rats than in the obese nontreated rats. Also, abdominal WAT HSL activity significantly increased, whereas WAT HSL gene expression fell in control rats treated with beta3-adrenergic agonist as compared with control untreated animals. DISCUSSION In situations of fat accumulation (high-fat feeding) or lipid mobilization (beta3-adrenergic stimulation), changes in HSL activity and HSL gene expression seem to follow a trend related to plasma fatty acids levels, as indicated by the positive correlation (r = 0.39, p < 0.05) between HSL mRNA levels and plasma fatty acids, and the negative correlation (r = -0.38, p < 0.05) between plasma fatty acids and HSL activity. Furthermore, a highly negative correlation (r = -0.59, p < 0.001) between HSL activity and HSL mRNA expression was found, in which plasma-free fatty acids are apparently involved.
Collapse
Affiliation(s)
- B Berraondo
- Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
36
|
Ardévol A, Bladé C, Salvadó MJ, Arola L. Changes in lipolysis and hormone-sensitive lipase expression caused by procyanidins in 3T3-L1 adipocytes. Int J Obes (Lond) 2000; 24:319-24. [PMID: 10757625 DOI: 10.1038/sj.ijo.0801130] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To find out whether lipid stores are influenced by phenolic compounds in wine. DESIGN Differentiated 3T3-L1 cells were treated with catechin, epicatechin or procyanidin extracts with different degrees of polymerization at 150 microM for different periods of time (0.5-24 h). SUBJECTS Cell line 3T3-L1. MEASUREMENTS Cellular viability, glycerol-3-phosphate dehydrogenase activity, glycerol release in the medium, HSL mRNA levels, triacylglycerols and protein. RESULTS Catechin, epicatechin and procyanidin extracts were not toxic for the 3T3-L1 cells in the conditions assayed. Glycerol-3-phosphate dehydrogenase activity was markedly decreased by 150 microM procyanidin extracts. The release of glycerol into the medium was increased in 150 microM procyanidin extract-treated cells and reached a plateau after 15 h exposure. Procyanidins caused a time-dependent reduction in the HSL mRNA levels. CONCLUSIONS These results suggest that procyanidins from grape and wine affect lipid metabolism whilst their monomers (catechin and epicatechin) do not. This effect is more pronounced when the degree of polymerization is higher. Procyanidin extracts cause a time-dependent reduction in the HSL mRNA levels, inhibit triacylglycerol synthesis and also favour triacylglycerol hydrolysis until the HSL mRNA had reached very low levels.
Collapse
Affiliation(s)
- A Ardévol
- Departament de Bioquimica i Biotecnologia, CeRTA, Universitat Rovira i Virgili, Tarragona, Spain.
| | | | | | | |
Collapse
|
37
|
Brasaemle DL, Levin DM, Adler-Wailes DC, Londos C. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:251-62. [PMID: 10634941 DOI: 10.1016/s1388-1981(99)00179-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hormone-sensitive lipase catalyzes the rate-limiting step in the release of fatty acids from triacylglycerol-rich lipid storage droplets of adipocytes, which contain the body's major energy reserves. Hormonal stimulation of cAMP formation and the activation of cAMP-dependent protein kinase leads to the phosphorylation of hormone-sensitive lipase and a large increase in lipolysis in adipocytes. By contrast, phosphorylation of hormone-sensitive lipase by the kinase in vitro results in a comparatively minor increase in catalytic activity. In this study, we investigate the basis for this discrepancy by using immunofluorescence microscopy to locate hormone-sensitive lipase in lipolytically stimulated and unstimulated 3T3-L1 adipocytes. In unstimulated cells, hormone-sensitive lipase is diffusely distributed throughout the cytosol. Upon stimulation of cells with the beta-adrenergic receptor agonist, isoproterenol, hormone-sensitive lipase translocates from the cytosol to the surfaces of intracellular lipid droplets concomitant with the onset of lipolysis, as measured by the release of glycerol to the culture medium. Both hormone-sensitive lipase translocation and lipolysis are reversed by the incubation of cells with the beta-adrenergic receptor antagonist, propranolol. The treatment of cells with cycloheximide fails to inhibit lipase translocation or lipolysis, indicating that the synthesis of nascent proteins is not required. Cytochalasin D and nocodazole used singly and in combination also failed to have a major effect, thus suggesting that the polymerization of microfilaments and microtubules and the formation of intermediate filament networks is unnecessary. Hormone-sensitive lipase translocation and lipolysis were inhibited by N-ethylmaleimide and a combination of deoxyglucose and sodium azide. We propose that the major consequence of the phosphorylation of hormone-sensitive lipase following the lipolytic stimulation of adipocytes is the translocation of the lipase from the cytosol to the surfaces of lipid storage droplets.
Collapse
Affiliation(s)
- D L Brasaemle
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-2715, USA
| | | | | | | |
Collapse
|
38
|
Gibbons GF, Islam K, Pease RJ. Mobilisation of triacylglycerol stores. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:37-57. [PMID: 10601694 DOI: 10.1016/s1388-1981(99)00182-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triacylglycerol (TAG) is an energy dense substance which is stored by several body tissues, principally adipose tissue and the liver. Utilisation of stored TAG as an energy source requires its mobilisation from these depots and transfer into the blood plasma. The means by which TAG is mobilised differs in adipose tissue and liver although the regulation of lipid metabolism in each of these organs is interdependent and synchronised in an integrated manner. This review deals principally with the mechanism of hepatic TAG mobilisation since this is a rapidly expanding area of research and may have important implications for the regulation of plasma very-low-density lipoprotein metabolism. TAG mobilisation plays an important role in fuel selection in non-hepatic tissues such as cardiac muscle and pancreatic islets and these aspects are also reviewed briefly. Finally, studies of certain rare inherited disorders of neutral lipid storage and mobilisation may provide useful information about the normal enzymology of TAG mobilisation in healthy tissues.
Collapse
Affiliation(s)
- G F Gibbons
- Metabolic Research Laboratory, Oxford Lipid Metabolism Group, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford, UK.
| | | | | |
Collapse
|
39
|
Ryan RO, van der Horst DJ. Lipid transport biochemistry and its role in energy production. ANNUAL REVIEW OF ENTOMOLOGY 2000; 45:233-260. [PMID: 10761577 DOI: 10.1146/annurev.ento.45.1.233] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent advances on the biochemistry of flight-related lipid mobilization, transport, and metabolism are reviewed. The synthesis and release of adipokinetic hormones and their function in activation of fat body triacylglycerol lipase to produce diacylglycerol is discussed. The dynamics of reversible lipoprotein conversions and the structural properties and role of the exchangeable apolipoprotein, apolipophorin III, in this process is presented. The nature and structure of hemolymph lipid transfer particle and the potential role of a recently discovered lipoprotein receptor of the low-density lipoprotein receptor family, in lipophorin metabolism and lipid transport is reviewed.
Collapse
Affiliation(s)
- R O Ryan
- Department of Biochemistry, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
40
|
|
41
|
Osterlund T, Beussman DJ, Julenius K, Poon PH, Linse S, Shabanowitz J, Hunt DF, Schotz MC, Derewenda ZS, Holm C. Domain identification of hormone-sensitive lipase by circular dichroism and fluorescence spectroscopy, limited proteolysis, and mass spectrometry. J Biol Chem 1999; 274:15382-8. [PMID: 10336425 DOI: 10.1074/jbc.274.22.15382] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structure-function relationship analyses of hormone-sensitive lipase (HSL) have suggested that this metabolically important enzyme consists of several functional and at least two structural domains (Osterlund, T., Danielsson, B., Degerman, E., Contreras, J. A., Edgren, G., Davis, R. C., Schotz, M. C., and Holm, C. (1996) Biochem. J. 319, 411-420; Contreras, J. A., Karlsson, M., Osterlund, T., Laurell, H., Svensson, A., and Holm, C. (1996) J. Biol. Chem. 271, 31426-31430). To analyze the structural domain composition of HSL in more detail, we applied biophysical methods. Denaturation of HSL was followed by circular dichroism measurements and fluorescence spectroscopy, revealing that the unfolding of HSL is a two-step event. Using limited proteolysis in combination with mass spectrometry, several proteolytic fragments of HSL were identified, including one corresponding exactly to the proposed N-terminal domain. Major cleavage sites were found in the predicted hinge region between the two domains and in the regulatory module of the C-terminal, catalytic domain. Analyses of a hinge region cleavage mutant and calculations of the hydropathic pattern of HSL further suggest that the hinge region and regulatory module are exposed parts of HSL. Together, these data support our previous hypothesis that HSL consists of two major structural domains, encoded by exons 1-4 and 5-9, respectively, of which the latter contains an exposed regulatory module outside the catalytic alpha/beta-hydrolase fold core.
Collapse
Affiliation(s)
- T Osterlund
- Department of Cell and Molecular Biology, Lund University, S-221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Anthonsen MW, Rönnstrand L, Wernstedt C, Degerman E, Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem 1998; 273:215-21. [PMID: 9417067 DOI: 10.1074/jbc.273.1.215] [Citation(s) in RCA: 355] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hormone-sensitive lipase (HSL) is the rate-limiting enzyme in lipolysis. Stimulation of rat adipocytes with isoproterenol results in phosphorylation of HSL and a 50-fold increase in the rate of lipolysis. In this study, we used site-directed mutagenesis and two-dimensional phosphopeptide mapping to show that phosphorylation sites other than the previously identified Ser-563 are phosphorylated in HSL in response to isoproterenol stimulation of 32P-labeled rat adipocytes. Phosphorylation of HSL in adipocytes in response to isoproterenol and in vitro phosphorylation of HSL containing Ser --> Ala mutations in residues 563 and 565 (S563A, S565A) with protein kinase A (PKA), followed by tryptic phosphopeptide mapping resulted in two tryptic phosphopeptides. These tryptic phosphopeptides co-migrated with the phosphopeptides released by the same treatment of F654HPRRSSQGVLHMPLYSSPIVK675 phosphorylated with PKA. Analysis of the phosphorylation site mutants, S659A, S660A, and S659A,S660A disclosed that mutagenesis of both Ser-659 and Ser-660 was necessary to abolish the activation of HSL toward a triolein substrate after phosphorylation with PKA. Mutation of Ser-563 to alanine did not cause significant change of activation compared with wild-type HSL. Hence, our results demonstrate that in addition to the previously identified Ser-563, two other PKA phosphorylation sites, Ser-659 and Ser-660, are present in HSL and, furthermore, that Ser-659 and Ser-660 are the major activity controlling sites in vitro.
Collapse
Affiliation(s)
- M W Anthonsen
- Department of Cell and Molecular Biology, Section for Molecular Signaling, Lund University, S-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|