1
|
Larkin CI, Dunn MD, Shoemaker JE, Klimstra WB, Faeder JR. A detailed kinetic model of Eastern equine encephalitis virus replication in a susceptible host cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628424. [PMID: 39764060 PMCID: PMC11703215 DOI: 10.1101/2024.12.13.628424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care. Although the general characteristics of EEEV infection within the host cell are well-studied, it remains unclear how these interactions lead to rapid production of progeny viral particles, limiting development of antiviral therapies. Here, we present a novel rule-based model that describes attachment, entry, uncoating, replication, assembly, and export of both infectious virions and virus-like particles within mammalian cells. Additionally, it quantitatively characterizes host ribosome activity in EEEV replication via a model parameter defining ribosome density on viral RNA. To calibrate the model, we performed experiments to quantify viral RNA, protein, and infectious particle production during acute infection. We used Bayesian inference to calibrate the model, discovering in the process that an additional constraint was required to ensure consistency with previous experimental observations of a high ratio between the amounts of full-length positive-sense viral genome and negative-sense template strand. Overall, the model recapitulates the experimental data and predicts that EEEV rapidly concentrates host ribosomes densely on viral RNA. Dense packing of host ribosomes was determined to be critical to establishing the characteristic positive to negative RNA strand ratio because of its role in governing the kinetics of transcription. Sensitivity analysis identified viral transcription as the critical step for infectious particle production, making it a potential target for future therapeutic development.
Collapse
Affiliation(s)
- Caroline I. Larkin
- Joint Carnegie Mellon University - University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jason E. Shoemaker
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
Tong Jia Ming S, Tan Yi Jun K, Carissimo G. Pathogenicity and virulence of O'nyong-nyong virus: A less studied Togaviridae with pandemic potential. Virulence 2024; 15:2355201. [PMID: 38797948 PMCID: PMC11135837 DOI: 10.1080/21505594.2024.2355201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
O'nyong-nyong virus (ONNV) is a neglected mosquito-borne alphavirus belonging to the Togaviridae family. ONNV is known to be responsible for sporadic outbreaks of acute febrile disease and polyarthralgia in Africa. As climate change increases the geographical range of known and potential new vectors, recent data indicate a possibility for ONNV to spread outside of the African continent and grow into a greater public health concern. In this review, we summarise the current knowledge on ONNV epidemiology, host-pathogen interactions, vector-virus responses, and insights into possible avenues to control risk of further epidemics. In this review, the limited ONNV literature is compared and correlated to other findings on mainly Old World alphaviruses. We highlight and discuss studies that investigate viral and host factors that determine viral-vector specificity, along with important mechanisms that determine severity and disease outcome of ONNV infection.
Collapse
Affiliation(s)
- Samuel Tong Jia Ming
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Katrina Tan Yi Jun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore, Singapore
| |
Collapse
|
3
|
Wei LLL, Tom R, Kim YC. Mayaro Virus: An Emerging Alphavirus in the Americas. Viruses 2024; 16:1297. [PMID: 39205271 PMCID: PMC11359717 DOI: 10.3390/v16081297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Mayaro virus (MAYV) is an arbovirus first isolated in Trinidad and Tobago in 1954. MAYV is the causative agent of Mayaro fever, which is characterised by high fever, maculopapular rash, myalgia and arthralgia. The potential for chronic arthralgia is of particular clinical concern. Currently, MAYV outbreaks are restricted to South and Central America, with some cases reported in Africa as well as several imported cases in Europe. However, in recent years, MAYV has become a growing global concern due to its potential to emerge into urban transmission cycles. Challenges faced with diagnostics, as well as a lack of specific antivirals or licensed vaccines further exacerbate the potential global health threat posed by MAYV. In this review, we discuss this emerging arboviral threat with a particular focus on the current treatment and vaccine development efforts. Overall, MAYV remains a neglected arbovirus due to its limited area of transmission. However, with the potential of its urbanisation and expanding circulation, the threat MAYV poses to global health cannot be overlooked. Further research into the improvement of current diagnostics, as well as the development of efficacious antivirals and vaccines will be crucial to help prevent and manage potential MAYV outbreaks.
Collapse
Affiliation(s)
- Lily Li Lin Wei
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK; (L.L.L.W.); (R.T.)
| | - Rufaro Tom
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK; (L.L.L.W.); (R.T.)
| | - Young Chan Kim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK
- Centre for Human Genetics, Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
4
|
Pradeep P, Sivakumar KC, Sreekumar E. Host Factor Nucleophosmin 1 (NPM1/B23) Exerts Antiviral Effects against Chikungunya Virus by Its Interaction with Viral Nonstructural Protein 3. Microbiol Spectr 2023; 11:e0537122. [PMID: 37409962 PMCID: PMC10433958 DOI: 10.1128/spectrum.05371-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
Chikungunya virus (CHIKV) hijacks host cell machinery to support its replication. Nucleophosmin 1 (NPM1/B23), a nucleolar phosphoprotein, is one of the host proteins known to restrict CHIKV infection; however, the mechanistic details of the antiviral role of NPM1 are not elucidated. It was seen in our experiments that the level of NPM1 expression affected the expression levels of interferon-stimulated genes (ISGs) that play antiviral roles in CHIKV infection, such as IRF1, IRF7, OAS3, and IFIT1, indicating that one of the antiviral mechanisms could be through modulation of interferon-mediated pathways. Our experiments also identified that for CHIKV restriction, NPM1 must move from the nucleus to the cytoplasm. A deletion of the nuclear export signal (NES), which confines NPM1 within the nucleus, abolishes its anti-CHIKV action. We observed that NPM1 binds CHIKV nonstructural protein 3 (nsP3) strongly via its macrodomain, thereby exerting a direct interaction with viral proteins to limit infection. Based on site-directed mutagenesis and coimmunoprecipitation studies, it was also observed that amino acid residues N24 and Y114 of the CHIKV nsP3 macrodomain, known to be involved in virus virulence, bind ADP-ribosylated NPM1 to inhibit infection. Overall, the results show a key role of NPM1 in CHIKV restriction and indicate it as a promising host target for developing antiviral strategies against CHIKV. IMPORTANCE Chikungunya, a recently reemerged mosquito-borne infection caused by a positive-sense, single-stranded RNA virus, has caused explosive epidemics in tropical regions. Unlike the classical symptoms of acute fever and debilitating arthralgia, incidences of neurological complications and mortality were reported. Currently there are no antivirals or commercial vaccines available against chikungunya. Like all viruses, CHIKV uses host cellular machinery for establishment of infection and successful replication. To counter this, the host cell activates several restriction factors and innate immune response mediators. Understanding these host-virus interactions helps to develop host-targeted antivirals against the disease. Here, we report the antiviral role of the multifunctional host protein NPM1 against CHIKV. The significant inhibitory effect of this protein against CHIKV involves its increased expression and movement from its natural location within the nucleus to the cytoplasm. There, it interacts with functional domains of key viral proteins. Our results support ongoing efforts toward development of host-directed antivirals against CHIKV and other alphaviruses.
Collapse
Affiliation(s)
- Parvanendhu Pradeep
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | | | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thiruvananthapuram, India
| |
Collapse
|
5
|
Pierce DM, Buchanan FJT, Macrae FL, Mills JT, Cox A, Abualsaoud KM, Ward JC, Ariëns RAS, Harris M, Stonehouse NJ, Herod MR. Thrombin cleavage of the hepatitis E virus polyprotein at multiple conserved locations is required for genome replication. PLoS Pathog 2023; 19:e1011529. [PMID: 37478143 PMCID: PMC10395923 DOI: 10.1371/journal.ppat.1011529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
The genomes of positive-sense RNA viruses encode polyproteins that are essential for mediating viral replication. These viral polyproteins must undergo proteolysis (also termed polyprotein processing) to generate functional protein units. This proteolysis can be performed by virally-encoded proteases as well as host cellular proteases, and is generally believed to be a key step in regulating viral replication. Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis. The positive-sense RNA genome is translated to generate a polyprotein, termed pORF1, which is necessary and sufficient for viral genome replication. However, the mechanism of polyprotein processing in HEV remains to be determined. In this study, we aimed to understand processing of this polyprotein and its role in viral replication using a combination of in vitro translation experiments and HEV sub-genomic replicons. Our data suggest no evidence for a virally-encoded protease or auto-proteolytic activity, as in vitro translation predominantly generates unprocessed viral polyprotein precursors. However, seven cleavage sites within the polyprotein (suggested by bioinformatic analysis) are susceptible to the host cellular protease, thrombin. Using two sub-genomic replicon systems, we demonstrate that mutagenesis of these sites prevents replication, as does pharmacological inhibition of serine proteases including thrombin. Overall, our data supports a model where HEV uses host proteases to support replication and could have evolved to be independent of a virally-encoded protease for polyprotein processing.
Collapse
Affiliation(s)
- Danielle M Pierce
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Frazer J T Buchanan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Jake T Mills
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Abigail Cox
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Khadijah M Abualsaoud
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Department of Laboratory and Blood Bank, Al Mikhwah General Hospital, Al Mikhwah, Saudi Arabia
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Lin G, Zhang Y. Mutations in the non-structural protein coding region regulate gene expression from replicon RNAs derived from Venezuelan equine encephalitis virus. Biotechnol Lett 2023:10.1007/s10529-023-03379-7. [PMID: 37266878 DOI: 10.1007/s10529-023-03379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Self-replicating RNA (repRNA) derived from Venezuelan equine encephalitis (VEE) virus is a promising platform for gene therapy and confers prolonged gene expression due to its self-replicating capability, but repRNA suffers from a suboptimal transgene expression level due to its induction of intracellular innate response which may result in inhibition of translation. To improve transgene expression of repRNA, we introduced point mutations in the non-structural protein 1-4 (nsP1-4) coding region of VEE replicon vectors. As a proof of concept, inflammatory cytokines served as genes of interest and were cloned in their wild type and several mutant replicon vectors, followed by transfection in mammalian cells. Our data show that VEE replicons bearing nsP1GGAC-nsP2T or nsP1GGAC-nsP2AT mutations in the nsP1-4 coding region could significantly reduce the recognition by innate immunity as evidenced by the decreased production of type I interferon, and enhance transgene expression in host cells. Thus, the newly discovered mutant VEE replicon vectors could serve as promising gene expression platforms to advance VEE-derived repRNA-based gene therapies.
Collapse
Affiliation(s)
- Guibin Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
7
|
Peinado RDS, Eberle RJ, Arni RK, Coronado MA. A Review of Omics Studies on Arboviruses: Alphavirus, Orthobunyavirus and Phlebovirus. Viruses 2022; 14:2194. [PMID: 36298749 PMCID: PMC9607206 DOI: 10.3390/v14102194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Since the intricate and complex steps in pathogenesis and host-viral interactions of arthropod-borne viruses or arboviruses are not completely understood, the multi-omics approaches, which encompass proteomics, transcriptomics, genomics and metabolomics network analysis, are of great importance. We have reviewed the omics studies on mosquito-borne viruses of the Togaviridae, Peribuyaviridae and Phenuiviridae families, specifically for Chikungunya, Mayaro, Oropouche and Rift Valley Fever viruses. Omics studies can potentially provide a new perspective on the pathophysiology of arboviruses, contributing to a better comprehension of these diseases and their effects and, hence, provide novel insights for the development of new antiviral drugs or therapies.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Raphael J. Eberle
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Mônika A. Coronado
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
8
|
Pareek A, Kumar R, Mudgal R, Neetu N, Sharma M, Kumar P, Tomar S. Alphavirus antivirals targeting RNA‐dependent RNA polymerase domain of nsP4 divulged using surface plasmon resonance. FEBS J 2022; 289:4901-4924. [DOI: 10.1111/febs.16397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Akshay Pareek
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Ravi Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Rajat Mudgal
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Neetu Neetu
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Monica Sharma
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
9
|
MBZM-N-IBT, a Novel Small Molecule, Restricts Chikungunya Virus Infection by Targeting nsP2 Protease Activity In Vitro, In Vivo, and Ex Vivo. Antimicrob Agents Chemother 2022; 66:e0046322. [PMID: 35766508 PMCID: PMC9295557 DOI: 10.1128/aac.00463-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increase in disease incidences and persistent Chikungunya virus (CHIKV)-induced arthritis have been a huge burden on public health globally. In the absence of specific antivirals or vaccines, it is essential to continue efforts to develop effective anti-CHIKV strategies. Our previous study showing the in vitro anti-CHIKV potential of a novel molecule 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT) encouraged us to further validate its efficacy. Here, the effect of MBZM-N-IBT was evaluated in vitro in RAW 264.7 cells, in vivo in C57BL/6 mice, and ex vivo in human peripheral blood mononuclear cells (hPBMCs). The study demonstrated that CHIKV infection was efficiently abrogated in RAW 264.7 cells (IC50 = 22.34 μM) with significant inhibition in viral proteins. The inhibition was effective in the postentry step, and MBZM-N-IBT predominately interfered in the early stages of CHIKV life cycle. It was further supported when the protease activity of CHIKV-nsP2 was hindered by the compound. Moreover, it diminished the CHIKV-induced inflammatory responses in vitro through significant downregulation of all the major mitogen-activated protein kinases (MAPKs), NF-κB, cyclooxygenase (COX)-2, and cytokines. Furthermore, MBZM-N-IBT restricted CHIKV infection and inflammation in vivo, leading to reduced clinical scores and complete survival of C57BL/6 mice. Additionally, it has been noticed that the CHIKV infection was reduced remarkably in hPBMC-derived monocyte-macrophage populations ex vivo by the compound. In conclusion, it can be suggested that this novel compound MBZM-N-IBT has been demonstrated to be a potential anti-CHIKV molecule in vitro, in vivo, and ex vivo and fulfilled all the criteria to investigate further for successful treatment of CHIKV infection.
Collapse
|
10
|
Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021; 131:1-15. [PMID: 34133982 PMCID: PMC8198544 DOI: 10.1016/j.actbio.2021.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/16/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Synthetic modified messenger RNA (mRNA) has manifested great potentials for therapeutic applications such as vaccines and gene therapies, with the recent mRNA vaccines for global pandemic COVID-19 (corona virus disease 2019) attracting the tremendous attention. The chemical modifications and delivery vehicles of synthetic mRNAs are the two key factors for their in vivo therapeutic applications. Chemical modifications like nucleoside methylation endow the synthetic mRNAs with high stability and reduced stimulation of innate immunity. The development of scalable production of synthetic mRNA and efficient mRNA formulation and delivery strategies in recent years have remarkably advanced the field. It is worth noticing that we had limited knowledge on the roles of mRNA modifications in the past. However, the last decade has witnessed not only new discoveries of several naturally occurring mRNA modifications but also substantial advances in understanding their roles on regulating gene expression. It is highly necessary to reconsider the therapeutic system made by synthetic modified mRNAs and delivery vectors. In this review, we will mainly discuss the roles of various chemical modifications on synthetic mRNAs, briefly summarize the progresses of mRNA delivery strategies, and highlight some latest mRNA therapeutics applications including infectious disease vaccines, cancer immunotherapy, mRNA-based genetic reprogramming and protein replacement, mRNA-based gene editing. Statement of significance The development of synthetic mRNA drug holds great promise but lies behind small molecule and protein drugs largely due to the challenging issues regarding its stability, immunogenicity and potency. In the last 15 years, these issues have beensubstantially addressed by synthesizing chemically modified mRNA and developing powerful delivery systems; the mRNA therapeutics has entered an exciting new era begun with the approved mRNA vaccines for the COVID-19 infection disease. Here, we provide recent progresses in understanding the biological roles of various RNA chemical modifications, in developing mRNA delivery systems, and in advancing the emerging mRNA-based therapeutic applications, with the purpose to inspire the community to spawn new ideas for curing diseases.
Collapse
|
11
|
Abdullah N, Ahemad N, Aliazis K, Khairat JE, Lee TC, Abdul Ahmad SA, Adnan NAA, Macha NO, Hassan SS. The Putative Roles and Functions of Indel, Repetition and Duplication Events in Alphavirus Non-Structural Protein 3 Hypervariable Domain (nsP3 HVD) in Evolution, Viability and Re-Emergence. Viruses 2021; 13:v13061021. [PMID: 34071712 PMCID: PMC8228767 DOI: 10.3390/v13061021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Alphavirus non-structural proteins 1–4 (nsP1, nsP2, nsP3, and nsP4) are known to be crucial for alphavirus RNA replication and translation. To date, nsP3 has been demonstrated to mediate many virus–host protein–protein interactions in several fundamental alphavirus mechanisms, particularly during the early stages of replication. However, the molecular pathways and proteins networks underlying these mechanisms remain poorly described. This is due to the low genetic sequence homology of the nsP3 protein among the alphavirus species, especially at its 3′ C-terminal domain, the hypervariable domain (HVD). Moreover, the nsP3 HVD is almost or completely intrinsically disordered and has a poor ability to form secondary structures. Evolution in the nsP3 HVD region allows the alphavirus to adapt to vertebrate and insect hosts. This review focuses on the putative roles and functions of indel, repetition, and duplication events that have occurred in the alphavirus nsP3 HVD, including characterization of the differences and their implications for specificity in the context of virus–host interactions in fundamental alphavirus mechanisms, which have thus directly facilitated the evolution, adaptation, viability, and re-emergence of these viruses.
Collapse
Affiliation(s)
- Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Konstantinos Aliazis
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Thong Chuan Lee
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia;
| | - Siti Aisyah Abdul Ahmad
- Immunogenetic Unit, Allergy and Immunology Research Center, Institute for Medical Research, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia;
| | - Nur Amelia Azreen Adnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nur Omar Macha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-5514-6340
| |
Collapse
|
12
|
Interdomain Flexibility of Chikungunya Virus nsP2 Helicase-Protease Differentially Influences Viral RNA Replication and Infectivity. J Virol 2021; 95:JVI.01470-20. [PMID: 33328310 DOI: 10.1128/jvi.01470-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for chikungunya fever. Nonstructural protein 2 (nsP2), a multifunctional protein essential for viral replication, has an N-terminal helicase region (nsP2h), which has both nucleotide triphosphatase and RNA triphosphatase activities, as well as a C-terminal cysteine protease region (nsP2p), which is responsible for nonstructural polyprotein processing. The two functional units are connected through a linker of 14 residues. Although crystal structures of the helicase and protease regions of CHIKV nsP2 have been solved separately, the conformational arrangement of the full-length nsP2 and the biological role of the linker remain elusive. Using the small-angle X-ray scattering (SAXS) method, we demonstrated that the full-length nsP2 is elongated and partially folded in solution. The reconstructed model of the structure of nsP2 contains a flexible interdomain linker, and there is no direct interaction between the two structured regions. To examine the function of the interdomain linker, we constructed and characterized a set of CHIKV mutants. The deletion of three or five amino acid residues in the linker region resulted in a modest defect in viral RNA replication and transcription but completely abolished viral infectivity. In contrast, increasing the flexibility of nsP2 by lengthening the interdomain linker increased both genomic RNA replication and viral infectivity. The enzymatic activities of the corresponding mutant proteins were largely unaffected. This work suggests that increasing the interdomain flexibility of nsP2 could facilitate the assembly of the replication complex (RC) with increased efficiency and promote virus production.IMPORTANCE CHIKV nsP2 plays multiple roles in viral RNA replication and virus-host interactions. The helicase and protease regions of nsP2 are connected through a short linker. Here, we determined that the conformation of full-length CHIKV nsP2 is elongated and that the protein is flexible in solution. We also highlight the importance of the flexibility of the interdomain of nsP2 on viral RNA synthesis and infectivity. CHIKV mutants harboring shortened linkers fail to produce infectious virus particles despite showing only relatively mild defects in genomic and subgenomic RNA synthesis. Mutations increasing the length of the interdomain linker have only mild and generally beneficial impacts on virus replication. Thus, our findings link interdomain flexibility with the regulation of viral RNA replication and infectivity of the viral genome.
Collapse
|
13
|
Current Understanding of the Role of Cholesterol in the Life Cycle of Alphaviruses. Viruses 2020; 13:v13010035. [PMID: 33383613 PMCID: PMC7823518 DOI: 10.3390/v13010035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/28/2022] Open
Abstract
Enveloped viruses rely on different lipid classes present in cell membranes to accomplish several steps of their life cycle in the host. Particularly for alphaviruses, a medically important group of arboviruses, which are part of the Togaviridae family, cholesterol seems to be a critical lipid exploited during infection, although its relevance may vary depending on which stage of the virus life cycle is under consideration and whether infection takes place in vertebrate or invertebrate hosts. In this review, the role of cholesterol in both early and late events of alphavirus infection and how viral replication may affect cholesterol metabolism are summarized, taking into account studies on Old World and New World alphaviruses in different cell lines. Moreover, the importance of cholesterol for the structural stability of alphavirus particles is also discussed, shedding light on the role played by this lipid when they leave the host cell.
Collapse
|
14
|
Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther 2020; 28:117-129. [PMID: 33093657 PMCID: PMC7580817 DOI: 10.1038/s41434-020-00204-y] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
Vaccinology is shifting toward synthetic RNA platforms which allow for rapid, scalable, and cell-free manufacturing of prophylactic and therapeutic vaccines. The simple development pipeline is based on in vitro transcription of antigen-encoding sequences or immunotherapies as synthetic RNA transcripts, which are then formulated for delivery. This approach may enable a quicker response to emerging disease outbreaks, as is evident from the swift pursuit of RNA vaccine candidates for the global SARS-CoV-2 pandemic. Both conventional and self-amplifying RNAs have shown protective immunization in preclinical studies against multiple infectious diseases including influenza, RSV, Rabies, Ebola, and HIV-1. Self-amplifying RNAs have shown enhanced antigen expression at lower doses compared to conventional mRNA, suggesting this technology may improve immunization. This review will explore how self-amplifying RNAs are emerging as important vaccine candidates for infectious diseases, the advantages of synthetic manufacturing approaches, and their potential for preventing and treating chronic infections.
Collapse
Affiliation(s)
- Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa.
| | - Fiona van den Berg
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| |
Collapse
|
15
|
Cunha MS, Costa PAG, Correa IA, de Souza MRM, Calil PT, da Silva GPD, Costa SM, Fonseca VWP, da Costa LJ. Chikungunya Virus: An Emergent Arbovirus to the South American Continent and a Continuous Threat to the World. Front Microbiol 2020; 11:1297. [PMID: 32670231 PMCID: PMC7332961 DOI: 10.3389/fmicb.2020.01297] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/20/2020] [Indexed: 01/23/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus (arbovirus) of epidemic concern, transmitted by Aedes ssp. mosquitoes, and is the etiologic agent of a febrile and incapacitating arthritogenic illness responsible for millions of human cases worldwide. After major outbreaks starting in 2004, CHIKV spread to subtropical areas and western hemisphere coming from sub-Saharan Africa, South East Asia, and the Indian subcontinent. Even though CHIKV disease is self-limiting and non-lethal, more than 30% of the infected individuals will develop chronic disease with persistent severe joint pain, tenosynovitis, and incapacitating polyarthralgia that can last for months to years, negatively impacting an individual's quality of life and socioeconomic productivity. The lack of specific drugs or licensed vaccines to treat or prevent CHIKV disease associated with the global presence of the mosquito vector in tropical and temperate areas, representing a possibility for CHIKV to continually spread to different territories, make this virus an agent of public health burden. In South America, where Dengue virus is endemic and Zika virus was recently introduced, the impact of the expansion of CHIKV infections, and co-infection with other arboviruses, still needs to be estimated. In Brazil, the recent spread of the East/Central/South Africa (ECSA) and Asian genotypes of CHIKV was accompanied by a high morbidity rate and acute cases of abnormal disease presentation and severe neuropathies, which is an atypical outcome for this infection. In this review, we will discuss what is currently known about CHIKV epidemics, clinical manifestations of the human disease, the basic concepts and recent findings in the mechanisms underlying virus-host interaction, and CHIKV-induced chronic disease for both in vitro and in vivo models of infection. We aim to stimulate scientific debate on how the characterization of replication, host-cell interactions, and the pathogenic potential of the new epidemic viral strains can contribute as potential developments in the virology field and shed light on strategies for disease control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luciana J. da Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Gottipati K, Woodson M, Choi KH. Membrane binding and rearrangement by chikungunya virus capping enzyme nsP1. Virology 2020; 544:31-41. [PMID: 32174512 PMCID: PMC7103501 DOI: 10.1016/j.virol.2020.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 01/20/2023]
Abstract
Alphavirus genome replication is carried out by the viral replication complex inside modified membrane structures called spherules. The viral nonstructural protein 1 (nsP1) is the only membrane-associated protein that anchors the replication complex to the cellular membranes. Although an internal amphipathic helix of nsP1 is critical for membrane association, the mechanism of nsP1 interaction with membranes and subsequent membrane reorganization is not well understood. We studied the membrane interaction of chikungunya virus (CHIKV) nsP1 and show that both the CHIKV nsP1 protein and the amphipathic peptide specifically bind to negatively charged phospholipid vesicles. Using cryo-electron microscopy, we further show that nsP1 forms a contiguous coat on lipid vesicles and induces structural reorganization, while the amphipathic peptide alone failed to deform the membrane bilayer. This suggests that although amphipathic helix of nsP1 is required for initial membrane binding, the remaining cytoplasmic domain of nsP1 is involved in the subsequent membrane reorganization.
Collapse
Affiliation(s)
- Keerthi Gottipati
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| | - Michael Woodson
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| |
Collapse
|
17
|
NF-κB Activation Promotes Alphavirus Replication in Mature Neurons. J Virol 2019; 93:JVI.01071-19. [PMID: 31554691 DOI: 10.1128/jvi.01071-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Alphaviruses are enveloped, positive-sense RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV) infects the neurons of rodents and is a model for studying factors that regulate infection of neuronal cells. The outcome of alphavirus infection of the central nervous system is dependent on neuronal maturation status. Differentiated mature neurons survive and control viral replication better than undifferentiated immature neurons. The cellular factors involved in age-dependent susceptibility include higher levels of antiapoptotic and innate immune factors in mature neurons. Because NF-κB pathway activation is required for the initiation of both apoptosis and the host antiviral response, we analyzed the role of NF-κB during SINV infection of differentiated and undifferentiated rat neuronal cells. SINV infection induced canonical NF-κB activation, as evidenced by the degradation of IκBα and the phosphorylation and nuclear translocation of p65. Inhibition or deletion of the upstream IκB kinase substantially reduced SINV replication in differentiated but not in undifferentiated neuronal cells or mouse embryo fibroblasts. NF-κB inhibition did not affect the establishment of infection, replication complex formation, the synthesis of nonstructural proteins, or viral RNA synthesis in differentiated neurons. However, the translation of structural proteins was impaired, phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) was decreased, and host protein synthesis was maintained, suggesting that NF-κB activation was involved in the regulation of translation during infection of mature neurons. Inhibition or deletion of double-stranded RNA-activated protein kinase (PKR) also decreased eIF2α phosphorylation, the translation of viral structural proteins, and virus production. Therefore, canonical NF-κB activation synergizes with PKR to promote SINV replication in differentiated neurons by facilitating viral structural protein translation.IMPORTANCE Mosquito-borne alphaviruses are a significant and growing cause of viral encephalomyelitis worldwide. The outcome of alphaviral neuronal infections is host age dependent and greatly affected by neuronal maturation status, with differentiated, mature neurons being more resistant to infection than undifferentiated, immature neurons. The biological factors that change during neuronal maturation and that influence the outcome of viral infection are currently only partially defined. These studies investigated the role of NF-κB in determining the outcome of alphaviral infection in mature and immature neurons. Inhibition of canonical NF-κB activation decreased alphavirus replication in mature neurons by regulating protein synthesis and limiting the production of the viral structural proteins but had little effect on viral replication in immature neurons or fibroblasts. Therefore, NF-κB is a signaling pathway that influences the maturation-dependent outcome of alphaviral infection in neurons and that highlights the importance of cellular context in determining the effects of signal pathway activation.
Collapse
|
18
|
Tsika AC, Melekis E, Tsatsouli SA, Papageorgiou N, Maté MJ, Canard B, Coutard B, Bentrop D, Spyroulias GA. Deciphering the Nucleotide and RNA Binding Selectivity of the Mayaro Virus Macro Domain. J Mol Biol 2019; 431:2283-2297. [PMID: 30998933 PMCID: PMC7094482 DOI: 10.1016/j.jmb.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
Abstract
Mayaro virus (MAYV) is a member of Togaviridae family, which also includes Chikungunya virus as a notorious member. MAYV recently emerged in urban areas of the Americas, and this emergence emphasized the current paucity of knowledge about its replication cycle. The macro domain (MD) of MAYV belongs to the N-terminal region of its non-structural protein 3, part of the replication complex. Here, we report the first structural and dynamical characterization of a previously unexplored Alphavirus MD investigated through high-resolution NMR spectroscopy, along with data on its ligand selectivity and binding properties. The structural analysis of MAYV MD reveals a typical "macro" (ββαββαβαβα) fold for this polypeptide, while NMR-driven interaction studies provide in-depth insights into MAYV MD-ligand adducts. NMR data in concert with thermodynamics and biochemical studies provide convincing experimental evidence for preferential binding of adenosine diphosphate ribose (ADP-r) and adenine-rich RNAs to MAYV MD, thus shedding light on the structure-function relationship of a previously unexplored viral MD. The emerging differences with any other related MD are expected to enlighten distinct functions.
Collapse
Affiliation(s)
| | | | | | | | - Maria J Maté
- AFMB, UMR7257 CNRS/Aix Marseille Université, Marseille, CEDEX 9, France
| | - Bruno Canard
- AFMB, UMR7257 CNRS/Aix Marseille Université, Marseille, CEDEX 9, France
| | - Bruno Coutard
- UVE: Aix-Marseille Univ-IRD 190-Inserm 27-IHU Méditerranée Infection, Marseille, France.
| | - Detlef Bentrop
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
19
|
Src Family Kinase Inhibitors Block Translation of Alphavirus Subgenomic mRNAs. Antimicrob Agents Chemother 2019; 63:AAC.02325-18. [PMID: 30917980 PMCID: PMC6496153 DOI: 10.1128/aac.02325-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that can cause arthralgia, myalgia, and encephalitis in humans. Since the role of cellular kinases in alphavirus replication is unknown, we profiled kinetic changes in host kinase abundance and phosphorylation following chikungunya virus (CHIKV) infection of fibroblasts. Alphaviruses are arthropod-transmitted RNA viruses that can cause arthralgia, myalgia, and encephalitis in humans. Since the role of cellular kinases in alphavirus replication is unknown, we profiled kinetic changes in host kinase abundance and phosphorylation following chikungunya virus (CHIKV) infection of fibroblasts. Based upon the results of this study, we treated CHIKV-infected cells with kinase inhibitors targeting the Src family kinase (SFK)–phosphatidylinositol 3-kinase (PI3K)–AKT–mTORC signaling pathways. Treatment of cells with SFK inhibitors blocked the replication of CHIKV as well as multiple other alphaviruses, including Mayaro virus, O’nyong-nyong virus, Ross River virus, and Venezuelan equine encephalitis virus. Dissecting the effect of SFK inhibition on alphavirus replication, we found that viral structural protein levels were significantly reduced, but synthesis of viral genomic and subgenomic RNAs was unaffected. By measuring the association of viral RNA with polyribosomes, we found that the SFK inhibitor dasatinib blocks alphavirus subgenomic RNA translation. Our results demonstrate a role for SFK signaling in alphavirus subgenomic RNA translation and replication. Targeting host factors involved in alphavirus replication represents an innovative, perhaps paradigm-shifting, strategy for exploring the replication of CHIKV and other alphaviruses while promoting antiviral therapeutic development.
Collapse
|
20
|
The RNA Capping Enzyme Domain in Protein A is Essential for Flock House Virus Replication. Viruses 2018; 10:v10090483. [PMID: 30205593 PMCID: PMC6165433 DOI: 10.3390/v10090483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/18/2023] Open
Abstract
The nodavirus flock house virus (FHV) and the alphavirus Semliki Forest virus (SFV) show evolutionarily intriguing similarities in their replication complexes and RNA capping enzymes. In this study, we first established an efficient FHV trans-replication system in mammalian cells, which disjoins protein expression from viral RNA synthesis. Following transfection, FHV replicase protein A was associated with mitochondria, whose outer surface displayed pouch-like invaginations with a ‘neck’ structure opening towards the cytoplasm. In mitochondrial pellets from transfected cells, high-level synthesis of both genomic and subgenomic RNA was detected in vitro and the newly synthesized RNA was of positive polarity. Secondly, we initiated the study of the putative RNA capping enzyme domain in protein A by mutating the conserved amino acids H93, R100, D141, and W215. RNA replication was abolished for all mutants inside cells and in vitro except for W215A, which showed reduced replication. Transfection of capped RNA template did not rescue the replication activity of the mutants. Comparing the efficiency of SFV and FHV trans-replication systems, the FHV system appeared to produce more RNA. Using fluorescent marker proteins, we demonstrated that both systems could replicate in the same cell. This work may facilitate the comparative analysis of FHV and SFV replication.
Collapse
|
21
|
Blakney AK, McKay PF, Shattock RJ. Structural Components for Amplification of Positive and Negative Strand VEEV Splitzicons. Front Mol Biosci 2018; 5:71. [PMID: 30094239 PMCID: PMC6070733 DOI: 10.3389/fmolb.2018.00071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 01/25/2023] Open
Abstract
RNA is a promising nucleic acid technology for both vaccines and therapeutics, and replicon RNA has gained traction as a next-generation RNA modality. Replicon RNA self-amplifies using a replicase complex derived from alphaviral non-structural proteins and yields higher protein expression than a similar dose of messenger RNA. Here, we debut RNA splitzicons; a split replicon system wherein the non-structural proteins (NSPs) and the gene of interest are encoded on separate RNA molecules, but still exhibit the self-amplification properties of replicon RNA. We designed both positive and negative strand splitzicons encoding firefly luciferase as a reporter protein to determine which structural components, including the 5' untranslated region (UTR), a 51-nucleotide conserved sequence element (CSE) from the first nonstructural protein, the subgenomic promoter (SGP) and corresponding untranslated region, and an internal ribosomal entry site (IRES) affect amplification. When paired with a NSP construct derived from the whole, wild type replicon, both the positive and negative strand splitzicons were amplified. The combination of the 51nt CSE, subgenomic promoter and untranslated region were imperative for the positive strand splitzicon, while the negative strand was amplified simply with inclusion of the subgenomic promoter. The splitzicons were amplified by NSPs in multiple cell types and show increasing protein expression with increasing doses of NSP. Furthermore, both the positive and negative strand splitzicons continued to amplify over the course of 72 h, up to >100,000-fold. This work demonstrates a system for screening the components required for amplification from the positive and negative strand intermediates of RNA replicons and presents a new approach to RNA replicon technology.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Paul F McKay
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin J Shattock
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Ching KC, F P Ng L, Chai CLL. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses. J Antimicrob Chemother 2018; 72:2973-2989. [PMID: 28981632 PMCID: PMC7110243 DOI: 10.1093/jac/dkx224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally widespread, infecting a large variety of terrestrial animals, birds, insects and even fish. Moreover, they are capable of surviving and circulating in both sylvatic and urban environments, causing considerable human morbidity and mortality. The re-emergence of Chikungunya virus (CHIKV) in almost every part of the world has caused alarm to many health agencies throughout the world. The mosquito vector for this virus, Aedes, is globally distributed in tropical and temperate regions and capable of thriving in both rural and urban landscapes, giving the opportunity for CHIKV to continue expanding into new geographical regions. Despite the importance of alphaviruses as human pathogens, there is currently no targeted antiviral treatment available for alphavirus infection. This mini-review discusses some of the major features in the replication cycle of alphaviruses, highlighting the key viral targets and host components that participate in alphavirus replication and the molecular functions that were used in drug design. Together with describing the importance of these targets, we review the various direct-acting and host-targeting inhibitors, specifically small molecules that have been discovered and developed as potential therapeutics as well as their reported in vitro and in vivo efficacies.
Collapse
Affiliation(s)
- Kuan-Chieh Ching
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| | - Lisa F P Ng
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, #04-06, Singapore 138648.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive, #14-01T, Singapore 117599.,Institute of Infection and Global Health, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L697BE, UK
| | - Christina L L Chai
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
23
|
Feibelman KM, Fuller BP, Li L, LaBarbera DV, Geiss BJ. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme. Antiviral Res 2018; 154:124-131. [PMID: 29680670 DOI: 10.1016/j.antiviral.2018.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 01/09/2023]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies.
Collapse
Affiliation(s)
- Kristen M Feibelman
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Benjamin P Fuller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
24
|
The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last. Viruses 2018; 10:v10030105. [PMID: 29495654 PMCID: PMC5869498 DOI: 10.3390/v10030105] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
Alphaviruses encode 4 non-structural proteins (nsPs), most of which have well-understood functions in capping and membrane association (nsP1), polyprotein processing and RNA helicase activity (nsP2) and as RNA-dependent RNA polymerase (nsP4). The function of nsP3 has been more difficult to pin down and it has long been referred to as the more enigmatic of the nsPs. The protein comprises three domains, an N-terminal macro domain, a central zinc-binding domain and a C-terminal hypervariable domain (HVD). In this article, we review old and new literature about the functions of the three domains. Much progress in recent years has contributed to a picture of nsP3, particularly through its HVD as a hub for interactions with host cell molecules, with multiple effects on the biology of the host cell at early points in infection. These and many future discoveries will provide targets for anti-viral therapies as well as strategies for modification of vectors for vaccine and oncolytic interventions.
Collapse
|
25
|
Lim EXY, Lee WS, Madzokere ET, Herrero LJ. Mosquitoes as Suitable Vectors for Alphaviruses. Viruses 2018; 10:v10020084. [PMID: 29443908 PMCID: PMC5850391 DOI: 10.3390/v10020084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/28/2022] Open
Abstract
Alphaviruses are arthropod-borne viruses and are predominantly transmitted via mosquito vectors. This vector preference by alphaviruses raises the important question of the determinants that contribute to vector competence. There are several tissue barriers of the mosquito that the virus must overcome in order to establish a productive infection. Of importance are the midgut, basal lamina and the salivary glands. Infection of the salivary glands is crucial for virus transmission during the mosquito’s subsequent bloodfeed. Other factors that may contribute to vector competence include the microflora and parasites present in the mosquito, environmental conditions, the molecular determinants of the virus to adapt to the vector, as well as the effect of co-infection with other viruses. Though mosquito innate immunity is a contributing factor to vector competence, it will not be discussed in this review. Detailed understanding of these factors will be instrumental in minimising transmission of alphaviral diseases.
Collapse
Affiliation(s)
- Elisa X Y Lim
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| | - Wai Suet Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| | - Eugene T Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| |
Collapse
|
26
|
Lundberg L, Carey B, Kehn-Hall K. Venezuelan Equine Encephalitis Virus Capsid-The Clever Caper. Viruses 2017; 9:E279. [PMID: 28961161 PMCID: PMC5691631 DOI: 10.3390/v9100279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a New World alphavirus that is vectored by mosquitos and cycled in rodents. It can cause disease in equines and humans characterized by a febrile illness that may progress into encephalitis. Like the capsid protein of other viruses, VEEV capsid is an abundant structural protein that binds to the viral RNA and interacts with the membrane-bound glycoproteins. It also has protease activity, allowing cleavage of itself from the growing structural polypeptide during translation. However, VEEV capsid protein has additional nonstructural roles within the host cell functioning as the primary virulence factor for VEEV. VEEV capsid inhibits host transcription and blocks nuclear import in mammalian cells, at least partially due to its complexing with the host CRM1 and importin α/β1 nuclear transport proteins. VEEV capsid also shuttles between the nucleus and cytoplasm and is susceptible to inhibitors of nuclear trafficking, making it a promising antiviral target. Herein, the role of VEEV capsid in viral replication and pathogenesis will be discussed including a comparison to proteins of other alphaviruses.
Collapse
Affiliation(s)
- Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Brian Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
27
|
Partially Uncleaved Alphavirus Replicase Forms Spherule Structures in the Presence and Absence of RNA Template. J Virol 2017; 91:JVI.00787-17. [PMID: 28701392 DOI: 10.1128/jvi.00787-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Alphaviruses are positive-strand RNA viruses expressing their replicase as a polyprotein, P1234, which is cleaved to four final products, nonstructural proteins nsP1 to nsP4. The replicase proteins together with viral RNA and host factors form membrane invaginations termed spherules, which act as the replication complexes producing progeny RNAs. We have previously shown that the wild-type alphavirus replicase requires a functional RNA template and active polymerase to generate spherule structures. However, we now find that specific partially processed forms of the replicase proteins alone can give rise to membrane invaginations in the absence of RNA or replication. The minimal requirement for spherule formation was the expression of properly cleaved nsP4, together with either uncleaved P123 or with the combination of nsP1 and uncleaved P23. These inactive spherules were morphologically less regular than replication-induced spherules. In the presence of template, nsP1 plus uncleaved P23 plus nsP4 could efficiently assemble active replication spherules producing both negative-sense and positive-sense RNA strands. P23 alone did not have membrane affinity, but could be recruited to membrane sites in the presence of nsP1 and nsP4. These results define the set of viral components required for alphavirus replication complex assembly and suggest the possibility that it could be reconstituted from separately expressed nonstructural proteins.IMPORTANCE All positive-strand RNA viruses extensively modify host cell membranes to serve as efficient platforms for viral RNA replication. Alphaviruses and several other groups induce protective membrane invaginations (spherules) as their genome factories. Most positive-strand viruses produce their replicase as a polyprotein precursor, which is further processed through precise and regulated cleavages. We show here that specific cleavage intermediates of the alphavirus replicase can give rise to spherule structures in the absence of viral RNA. In the presence of template RNA, the same intermediates yield active replication complexes. Thus, partially cleaved replicase proteins play key roles that connect replication complex assembly, membrane deformation, and the different stages of RNA synthesis.
Collapse
|
28
|
Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication. Virus Res 2017; 234:44-57. [DOI: 10.1016/j.virusres.2017.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
29
|
Jose J, Taylor AB, Kuhn RJ. Spatial and Temporal Analysis of Alphavirus Replication and Assembly in Mammalian and Mosquito Cells. mBio 2017; 8:e02294-16. [PMID: 28196962 PMCID: PMC5312085 DOI: 10.1128/mbio.02294-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022] Open
Abstract
Sindbis virus (SINV [genus Alphavirus, family Togaviridae]) is an enveloped, mosquito-borne virus. Alphaviruses cause cytolytic infections in mammalian cells while establishing noncytopathic, persistent infections in mosquito cells. Mosquito vector adaptation of alphaviruses is a major factor in the transmission of epidemic strains of alphaviruses. Though extensive studies have been performed on infected mammalian cells, the morphological and structural elements of alphavirus replication and assembly remain poorly understood in mosquito cells. Here we used high-resolution live-cell imaging coupled with single-particle tracking and electron microscopy analyses to delineate steps in the alphavirus life cycle in both the mammalian host cell and insect vector cells. Use of dually labeled SINV in conjunction with cellular stains enabled us to simultaneously determine the spatial and temporal differences of alphavirus replication complexes (RCs) in mammalian and insect cells. We found that the nonstructural viral proteins and viral RNA in RCs exhibit distinct spatial organization in mosquito cytopathic vacuoles compared to replication organelles from mammalian cells. We show that SINV exploits filopodial extensions for virus dissemination in both cell types. Additionally, we propose a novel mechanism for replication complex formation around glycoprotein-containing vesicles in mosquito cells that produced internally released particles that were seen budding from the vesicles by live imaging. Finally, by characterizing mosquito cell lines that were persistently infected with fluorescent virus, we show that the replication and assembly machinery are highly modified, and this allows continuous production of alphaviruses at reduced levels.IMPORTANCE Reemerging mosquito-borne alphaviruses cause serious human epidemics worldwide. Several structural and imaging studies have helped to define the life cycle of alphaviruses in mammalian cells, but the mode of virus replication and assembly in the invertebrate vector and mechanisms producing two disease outcomes in two types of cells are yet to be identified. Using transmission electron microscopy and live-cell imaging with dual fluorescent protein-tagged SINV, we show that while insect and mammalian cells display similarities in entry and exit, they present distinct spatial and temporal organizations in virus replication and assembly. By characterizing acutely and persistently infected cells, we provide new insights into alphavirus replication and assembly in two distinct hosts, resulting in high-titer virus production in mammalian cells and continuous virus production at reduced levels in mosquito cells-presumably a prerequisite for alphavirus maintenance in nature.
Collapse
Affiliation(s)
- Joyce Jose
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Aaron B Taylor
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
30
|
Abstract
Alphaviruses, such as Chikungunya virus, O’Nyong–Nyong virus, Ross River virus, have been widely known to cause fever, rash, and rheumatic diseases. In addition, several other alphaviruses, for instance Eastern equine encephalitis virus, Venezuelan equine encephalitis virus, and Western equine encephalitis virus, potentially cause fatal encephalitis in humans. These diseases are considered as neglected tropical diseases for which there are no current antiviral therapies or vaccines available. The replication process in alphaviruses depends on four nonstructural proteins, NSP1–NSP4, which are produced as a single polyprotein. Therefore, the Alphavirus-mediated diseases in humans remain challenging among the virologists worldwide. Thus researchers are trying to find out proficient approaches, including the discovery of novel chemotherapeutic agents for the possible management and treatment of infected patients. Attempts were also made to identify an active compound against alphaviruses from natural sources. The genomes of various alphaviruses have already been revealed, and the function of proteins may be predicted by homology modeling, with the known proteins of closely related viruses. With the help of this information of protein modeling and subsequent virtual screening approach, the research teams will be able to identify few potential leads. The drug discovery against various alphaviruses is still in its early stages. Moreover, consolidating the available information and making it available for the scientific community are urgent requirements to expedite the research of potential drug discovery. The current chapter describes the techniques available to prevent Alphavirus infection and to treat Alphavirus-associated malignancies. In addition, we also discuss the recent outcomes in the fields of synthetic and natural medicinal chemistry research that were solely aimed to fight against Alphavirus infection. Thus the present chapter may also help and expedite the drug discovery and development of inhibitors against nonstructural proteins of various alphaviruses.
Collapse
|
31
|
Chen R, Puri V, Fedorova N, Lin D, Hari KL, Jain R, Rodas JD, Das SR, Shabman RS, Weaver SC. Comprehensive Genome Scale Phylogenetic Study Provides New Insights on the Global Expansion of Chikungunya Virus. J Virol 2016; 90:10600-10611. [PMID: 27654297 PMCID: PMC5110187 DOI: 10.1128/jvi.01166-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
Since the India and Indian Ocean outbreaks of 2005 and 2006, the global distribution of chikungunya virus (CHIKV) and the locations of epidemics have dramatically shifted. First, the Indian Ocean lineage (IOL) caused sustained epidemics in India and has radiated to many other countries. Second, the Asian lineage has caused frequent outbreaks in the Pacific islands and in 2013 was introduced into the Caribbean, followed by rapid spread to nearly all of the neotropics. Further, CHIKV epidemics, as well as exported cases, have been reported in central Africa after a long period of perceived silence. To understand these changes and to anticipate the future of the virus, the exact distribution, genetic diversity, transmission routes, and future epidemic potential of CHIKV require further assessment. To do so, we conducted the most comprehensive phylogenetic analysis to date, examined CHIKV evolution and transmission, and explored distinct genetic factors associated with the emergence of the East/Central/South African (ECSA) lineage, the IOL, and the Asian lineage. Our results reveal contrasting evolutionary patterns among the lineages, with growing genetic diversities observed in each, and suggest that CHIKV will continue to be a major public health threat with the potential for further emergence and spread. IMPORTANCE Chikungunya fever is a reemerging infectious disease that is transmitted by Aedes mosquitoes and causes severe health and economic burdens in affected populations. Since the unprecedented Indian Ocean and Indian subcontinent outbreaks of 2005 and 2006, CHIKV has further expanded its geographic range, including to the Americas in 2013. Its evolution and transmission during and following these epidemics, as well as the recent evolution and spread of other lineages, require optimal assessment. Using newly obtained genome sequences, we provide a comprehensive update of the global distribution of CHIKV genetic diversity and analyze factors associated with recent outbreaks. These results provide a solid foundation for future evolutionary studies of CHIKV that can elucidate emergence mechanisms and also may help to predict future epidemics.
Collapse
Affiliation(s)
- Rubing Chen
- Institute of Human Infections and Immunology and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vinita Puri
- J. Craig Venter Institute, Rockville, Maryland, USA
| | | | | | | | | | | | - Suman R Das
- J. Craig Venter Institute, Rockville, Maryland, USA
| | | | - Scott C Weaver
- Institute of Human Infections and Immunology and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
32
|
Mathur K, Anand A, Dubey SK, Sanan-Mishra N, Bhatnagar RK, Sunil S. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference (RNAi) suppressor activity. Sci Rep 2016; 6:38065. [PMID: 27901124 PMCID: PMC5128919 DOI: 10.1038/srep38065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
RNAi pathway is an antiviral defence mechanism employed by insects that result in degradation of viral RNA thereby curbing infection. Several viruses including flaviviruses encode viral suppressors of RNAi (VSRs) to counteract the antiviral RNAi pathway. Till date, no VSR has been reported in alphaviruses. The present study was undertaken to evaluate chikungunya virus (CHIKV) proteins for RNAi suppressor activity. We systematically analyzed all nine CHIKV proteins for RNAi suppressor activity using Sf21 RNAi sensor cell line based assay. Two non-structural proteins, namely, nsP2 and nsP3 were found to exhibit RNAi suppressor activity. We further validated the findings in natural hosts, namely in Aedes and in mammalian cell lines and further through EMSA and Agrobacterium infiltration in GFP silenced transgenic tobacco plants. Domains responsible for maximum RNAi suppressor activity were also identified within these proteins. RNA binding motifs in these domains were identified and their participation in RNAi suppression evaluated using site directed mutagenesis. Sequence alignment of these motifs across all species of known alphaviruses revealed conservation of these motifs emphasizing on a similar role of action in other species of alphaviruses as well. Further validation of RNAi suppressor activity of these proteins awaits establishment of specific virus infection models.
Collapse
Affiliation(s)
- Kalika Mathur
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Abhishek Anand
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sunil Kumar Dubey
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
33
|
Hellström K, Kallio K, Meriläinen HM, Jokitalo E, Ahola T. Ability of minus strands and modified plus strands to act as templates in Semliki Forest virus RNA replication. J Gen Virol 2016; 97:1395-1407. [DOI: 10.1099/jgv.0.000448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kirsi Hellström
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katri Kallio
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hanna-Mari Meriläinen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Varghese FS, Kaukinen P, Gläsker S, Bespalov M, Hanski L, Wennerberg K, Kümmerer BM, Ahola T. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res 2016; 126:117-24. [PMID: 26752081 DOI: 10.1016/j.antiviral.2015.12.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/10/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Abstract
Chikungunya virus (CHIKV) is an arthritogenic arbovirus of the Alphavirus genus, which has infected millions of people after its re-emergence in the last decade. In this study, a BHK cell line containing a stable CHIKV replicon with a luciferase reporter was used in a high-throughput platform to screen approximately 3000 compounds. Following initial validation, 25 compounds were chosen as primary hits for secondary validation with wild type and reporter CHIKV infection, which identified three promising compounds. Abamectin (EC50 = 1.5 μM) and ivermectin (EC50 = 0.6 μM) are fermentation products generated by a soil dwelling actinomycete, Streptomyces avermitilis, whereas berberine (EC50 = 1.8 μM) is a plant-derived isoquinoline alkaloid. They inhibited CHIKV replication in a dose-dependent manner and had broad antiviral activity against other alphaviruses--Semliki Forest virus and Sindbis virus. Abamectin and ivermectin were also active against yellow fever virus, a flavivirus. These compounds caused reduced synthesis of CHIKV genomic and antigenomic viral RNA as well as downregulation of viral protein expression. Time of addition experiments also suggested that they act on the replication phase of the viral infectious cycle.
Collapse
Affiliation(s)
- Finny S Varghese
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pasi Kaukinen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sabine Gläsker
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Maxim Bespalov
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Leena Hanski
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Beate M Kümmerer
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
35
|
Abstract
The nonstructural proteins (nsPs) of chikungunya virus (CHIKV) are expressed as one or two polyprotein precursors, which are translated directly from the viral genomic RNA. Mature nsPs are generated by precise processing of these polyproteins. Both the precursors and mature nsPs are essential for CHIKV replication. Similar to other alphaviruses, CHIKV nsPs not only perform virus RNA replication but are also crucial for other activities essential for virus infection and pathogenesis. Thus far the best-studied CHIKV ns-protein is nsP2, for which protease, NTPase, RNA triphosphatase, and RNA helicase activities have been demonstrated. In addition, nsP2 is crucial for shut-off of host cell transcription and translation and it counteracts cellular antiviral responses. Compared to their homologues from the well-studied Sindbis and Semliki Forest viruses, CHIKV nsP1, nsP3, and nsP4 have been subjected to only few studies. Nevertheless, there are strong indirect pieces of evidence indicating that these CHIKV proteins have the same enzymatic activities as their counterparts in the other alphaviruses. Information concerning the specific interaction of CHIKV nsPs with host components is beginning to emerge. All the nsPs are involved in the functioning of membrane-bound replication complexes also called spherules, but the finer details of the structure and assembly of these complexes are currently poorly understood.
Collapse
|
36
|
RNA Replication and Membrane Modification Require the Same Functions of Alphavirus Nonstructural Proteins. J Virol 2015; 90:1687-92. [PMID: 26581991 DOI: 10.1128/jvi.02484-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/12/2015] [Indexed: 01/20/2023] Open
Abstract
The alphaviruses induce membrane invaginations known as spherules as their RNA replication sites. Here, we show that inactivation of any function (polymerase, helicase, protease, or membrane association) essential for RNA synthesis also prevents the generation of spherule structures in a Semliki Forest virus trans-replication system. Mutants capable of negative-strand synthesis, including those defective in RNA capping, gave rise to spherules. Recruitment of RNA to membranes in the absence of spherule formation was not detected.
Collapse
|
37
|
Mota MTDO, Ribeiro MR, Vedovello D, Nogueira ML. Mayaro virus: a neglected arbovirus of the Americas. Future Virol 2015. [DOI: 10.2217/fvl.15.76] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mayaro virus is a neglected tropical arbovirus that causes a mild, self-limited febrile syndrome, sometimes accompanied by a highly incapacitating arthralgia. First isolated in Trinidad and Tobago in 1954, it was reported in several countries within the tropical regions of South and Central America. Human infections are accidental spillover of the enzootic cycle. Little epidemiological data are available due to inadequate surveillance and the generic nature of clinical manifestations resulting in the misdiagnosis with other viral fevers. Despite its restricted distribution, Mayaro fever may become a public health issue due to their urbanization potential. Accurate epidemiological data are urgently needed to access the real distribution of this virus guiding public health policies better.
Collapse
Affiliation(s)
- Mânlio Tasso de Oliveira Mota
- Faculty of Medicine of São José do Rio Preto (FAMERP),5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, Brazil, 15090-000
| | - Milene Rocha Ribeiro
- Faculty of Medicine of São José do Rio Preto (FAMERP),5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, Brazil, 15090-000
| | - Danila Vedovello
- Faculty of Medicine of São José do Rio Preto (FAMERP),5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, Brazil, 15090-000
| | - Maurício Lacerda Nogueira
- Faculty of Medicine of São José do Rio Preto (FAMERP),5416 Brigadeiro Faria Lima Avenue, São José do Rio Preto, SP, Brazil, 15090-000
| |
Collapse
|
38
|
Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW. Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol 2015. [PMID: 26219641 DOI: 10.1099/jgv.0.000249] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field.
Collapse
Affiliation(s)
- Jonathan C Rupp
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Kevin J Sokoloski
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Natasha N Gebhart
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Richard W Hardy
- Department of Biology, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| |
Collapse
|
39
|
Harak C, Lohmann V. Ultrastructure of the replication sites of positive-strand RNA viruses. Virology 2015; 479-480:418-33. [PMID: 25746936 PMCID: PMC7111692 DOI: 10.1016/j.virol.2015.02.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. In this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication.
Collapse
Affiliation(s)
- Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Rana J, Rajasekharan S, Gulati S, Dudha N, Gupta A, Chaudhary VK, Gupta S. Network mapping among the functional domains of Chikungunya virus nonstructural proteins. Proteins 2014; 82:2403-11. [PMID: 24825751 DOI: 10.1002/prot.24602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 11/11/2022]
Abstract
Formation of virus specific replicase complex is among the most important steps that determines the fate of viral transcription and replication during Chikungunya virus (CHIKV) infection. In the present study, the authors have computationally generated a 3D structure of CHIKV late replicase complex on the basis of the interactions identified among the domains of CHIKV nonstructural proteins (nsPs) which make up the late replicase complex. The interactions among the domains of CHIKV nsPs were identified using systems such as pull down, protein interaction ELISA, and yeast two-hybrid. The structures of nsPs were generated using I-TASSER and the biological assembly of the replicase complex was determined using ZRANK and RDOCK. A total of 36 interactions among the domains and full length proteins were tested and 12 novel interactions have been identified. These interactions included the homodimerization of nsP1 and nsP4 through their respective C-ter domains; the associations of nsP2 helicase domain and C-ter domain of nsP4 with methyltransferase and membrane binding domains of nsP1; the interaction of nsP2 protease domain with C-ter domain of nsP4; and the interaction of nsP3 macro and alphavirus unique domains with the C-ter domain of nsP1. The novel interactions identified in the current study form a network of organized associations that suggest the spatial arrangement of nsPs in the late replicase complex of CHIKV.
Collapse
Affiliation(s)
- Jyoti Rana
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Noida, 201307, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
41
|
Forde PF, Hall LJ, Sadadcharam M, de Kruijf M, O' Sullivan GC, Soden DM. Development and characterization of an enhanced nonviral expression vector for electroporation cancer treatment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14012. [PMID: 26015957 PMCID: PMC4362347 DOI: 10.1038/mtm.2014.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/21/2014] [Indexed: 12/21/2022]
Abstract
Nonviral plasmid DNA gene therapy represents a promising approach for the treatment of many diseases including cancer. Intracellular delivery of DNA can be achieved with the application of electroporation, which facilitates the initial transport of exogenous DNA across the cell membrane into the cytoplasm. However, it does not guarantee further transport of the DNA from the cytoplasm to the nucleus for subsequent mRNA expression, resulting in varying degrees of exogenous gene translation and a major limitation in comparison to viral approaches. To overcome these expression difficulties, we developed a proof-of-concept vector enhanced expression vector (EEV), which incorporates elements from viral systems including nuclear localization sequences and a viral replicase from the Semliki Forest virus. The replicase allows for cytoplasmic mRNA expression and bypasses the need for nuclear localization to generate high levels of gene expression. We have demonstrated that our EEV is capable of achieving high levels of expression in a variety of tissue types. Antitumor effects of pEEV were demonstrated by the delayed growth and increased survival of the nontherapeutic pEEV-treated CT26 tumor model. Using a novel endoscopic electroporation system, EndoVe, we demonstrate and compare, for the first time, both standard cytomegalovirus (CMV) promoter-driven plasmid and EEV gene expression in intraluminal porcine tissues. Our EEV plasmid displays reliable and superior expression capability, and due to its inherent induced oncolytic activity in transfected cells, it may enhance the efficacy and safety of several cancer immunogene therapy approaches.
Collapse
Affiliation(s)
- Patrick F Forde
- Cork Cancer Research Centre, Leslie C Quick Laboratory, BioSciences Institute, University College Cork , Cork, Ireland
| | - Lindsay J Hall
- Norwich Medical School, University of East Anglia , Norwich, UK
| | - Mira Sadadcharam
- Cork Cancer Research Centre, Leslie C Quick Laboratory, BioSciences Institute, University College Cork , Cork, Ireland
| | - Marcle de Kruijf
- Cork Cancer Research Centre, Leslie C Quick Laboratory, BioSciences Institute, University College Cork , Cork, Ireland
| | - Gerald C O' Sullivan
- Cork Cancer Research Centre, Leslie C Quick Laboratory, BioSciences Institute, University College Cork , Cork, Ireland
| | - Declan M Soden
- Cork Cancer Research Centre, Leslie C Quick Laboratory, BioSciences Institute, University College Cork , Cork, Ireland
| |
Collapse
|
42
|
Collet B, Urquhart K, Noguera P, Larsen KH, Lester K, Smail D, Bruno D. A method to measure an indicator of viraemia in Atlantic salmon using a reporter cell line. J Virol Methods 2013; 191:113-7. [DOI: 10.1016/j.jviromet.2013.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/26/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
|
43
|
Presentation overrides specificity: probing the plasticity of alphaviral proteolytic activity through mutational analysis. J Virol 2013; 87:10207-20. [PMID: 23864614 DOI: 10.1128/jvi.01485-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semliki Forest virus (genus Alphavirus) is an important model for studying regulated nonstructural (ns) polyprotein processing. In this study, we evaluated the strictness of the previously outlined cleavage rules, accounting for the timing and outcome of each of three cleavages within the ns polyprotein P1234, and assessed the significance of residues P6 to P4 within the cleavage sites using an alanine scanning approach. The processing of the 1/2 and 3/4 sites was most strongly affected following changes in residues P5 and P4, respectively. However, none of the mutations had a detectable effect on the processing of the 2/3 site. An analysis of recombinant viruses bearing combinations of mutations in cleavage sites revealed tolerance toward the cooccurrence of native and mutated cleavage sites within the same polyprotein, suggesting a remarkable plasticity of the protease recognition pocket. Even in a virus in which all of the cleavage sequences were replaced with alanines in the P6, P5, and P4 positions, the processing pattern was largely preserved, without leading to reversion of cleavage site mutations. Instead, the emergence of second-site mutations was identified, among which Q706R/L in nsP2 was confirmed to be associated with the recognition of the P4 position within the modified cleavage sites. Our results imply that the spatial arrangement of the viral replication complex inherently contributes to scissile-site presentation for the protease, alleviating stringent sequence recognition requirements yet ensuring the precision and the correct order of processing events. Obtaining a proper understanding of the consequences of cleavage site manipulations may provide new tools for taming alphaviruses.
Collapse
|
44
|
Template RNA length determines the size of replication complex spherules for Semliki Forest virus. J Virol 2013; 87:9125-34. [PMID: 23760239 DOI: 10.1128/jvi.00660-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The replication complexes of positive-strand RNA viruses are always associated with cellular membranes. The morphology of the replication-associated membranes is altered in different ways in different viral systems, but many viruses induce small membrane invaginations known as spherules as their replication sites. We show here that for Semliki Forest virus (SFV), an alphavirus, the size of the spherules is tightly connected with the length of the replicating RNA template. Cells with different model templates, expressed in trans and copied by the viral replicase, were analyzed with correlative light and electron microscopy. It was demonstrated that the viral-genome-sized template of 11.5 kb induced spherules that were ∼58 nm in diameter, whereas a template of 6 kb yielded ∼39-nm spherules. Different sizes of viral templates were replicated efficiently in trans, as assessed by radioactive labeling and Northern blotting. The replication of two different templates, in cis and trans, yielded two size classes of spherules in the same cell. These results indicate that RNA plays a crucial determining role in spherule assembly for SFV, in direct contrast with results from other positive-strand RNA viruses, in which either the presence of viral RNA or the RNA size do not contribute to spherule formation.
Collapse
|
45
|
Saxton-Shaw KD, Ledermann JP, Borland EM, Stovall JL, Mossel EC, Singh AJ, Wilusz J, Powers AM. O'nyong nyong virus molecular determinants of unique vector specificity reside in non-structural protein 3. PLoS Negl Trop Dis 2013; 7:e1931. [PMID: 23359824 PMCID: PMC3554527 DOI: 10.1371/journal.pntd.0001931] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
O'nyong nyong virus (ONNV) and Chikungunya virus (CHIKV) are two closely related alphaviruses with very different infection patterns in the mosquito, Anopheles gambiae. ONNV is the only alphavirus transmitted by anopheline mosquitoes, but specific molecular determinants of infection of this unique vector specificity remain unidentified. Fifteen distinct chimeric viruses were constructed to evaluate both structural and non-structural regions of the genome and infection patterns were determined through artificial infectious feeds in An. gambiae with each of these chimeras. Only one region, non-structural protein 3 (nsP3), was sufficient to up-regulate infection to rates similar to those seen with parental ONNV. When ONNV non-structural protein 3 (nsP3) replaced nsP3 from CHIKV virus in one of the chimeric viruses, infection rates in An. gambiae went from 0% to 63.5%. No other single gene or viral region addition was able to restore infection rates. Thus, we have shown that a non-structural genome element involved in viral replication is a major element involved in ONNV's unique vector specificity.
Collapse
Affiliation(s)
- Kali D. Saxton-Shaw
- Division of Vector Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Jeremy P. Ledermann
- Division of Vector Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Erin M. Borland
- Division of Vector Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Janae L. Stovall
- Division of Vector Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Eric C. Mossel
- Division of Vector Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amber J. Singh
- Division of Vector Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ann M. Powers
- Division of Vector Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
46
|
Sreejith R, Rana J, Dudha N, Kumar K, Gabrani R, Sharma SK, Gupta A, Vrati S, Chaudhary VK, Gupta S. Mapping interactions of Chikungunya virus nonstructural proteins. Virus Res 2012; 169:231-6. [PMID: 22951312 DOI: 10.1016/j.virusres.2012.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022]
Abstract
The four nonstructural proteins (nsPs1-4) of Chikungunya virus (CHIKV) play important roles involving enzymatic activities and specific interactions with both viral and host components, during different stages of viral pathogenesis. Elucidation of the presence and/or absence of interactions among nsPs in a systematic manner is thus of scientific interest. In the current study, each pair-wise combination among the four nonstructural proteins of CHIKV was systematically analyzed for possible interactions. Six novel protein interactions were identified for CHIKV, using systems such as yeast two-hybrid, GST pull down and ELISA, three of which have not been previously reported for the genus Alphavirus. These interactions form a network of organized associations that suggest the spatial arrangement of nonstructural proteins in the late replicase complex. The study identified novel interactions as well as concurred with previously described associations in related alphaviruses.
Collapse
Affiliation(s)
- R Sreejith
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida 201 307, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li J, Zhu W, Wang H, Li J, Zhang Q, He Y, Li J, Fu J, Li D, Liang G. Rapid, specific detection of alphaviruses from tissue cultures using a replicon-defective reporter gene assay. PLoS One 2012; 7:e33007. [PMID: 22427930 PMCID: PMC3299729 DOI: 10.1371/journal.pone.0033007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/02/2012] [Indexed: 12/22/2022] Open
Abstract
We established a rapid, specific technique for detecting alphaviruses using a replicon-defective reporter gene assay derived from the Sindbis virus XJ-160. The pVaXJ expression vector containing the XJ-160 genome was engineered to form the expression vectors pVaXJ-EGFP expressing enhanced green fluorescence protein (EGFP) or pVaXJ-GLuc expressing Gaussia luciferase (GLuc). The replicon-defective reporter plasmids pVaXJ-EGFPΔnsp4 and pVaXJ-GLucΔnsp4 were constructed by deleting 1139 bp in the non-structural protein 4 (nsP4) gene. The deletion in the nsP4 gene prevented the defective replicons from replicating and expressing reporter genes in transfected BHK-21 cells. However, when these transfected cells were infected with an alphavirus, the non-structural proteins expressed by the alphavirus could act on the defective replicons in trans and induce the expression of the reporter genes. The replicon-defective plasmids were used to visualize the presence of alphavirus qualitatively or detect it quantitatively. Specificity tests showed that this assay could detect a variety of alphaviruses from tissue cultures, while other RNA viruses, such as Japanese encephalitis virus and Tahyna virus, gave negative results with this system. Sensitivity tests showed that the limit of detection (LOD) of this replicon-defective assay is between 1 and 10 PFU for Sindbis viruses. These results indicate that, with the help of the replicon-defective alphavirus detection technique, we can specifically, sensitively, and rapidly detect alphaviruses in tissue cultures. The detection technique constructed here may be well suited for use in clinical examination and epidemiological surveillance, as well as for rapid screening of potential viral biological warfare agents.
Collapse
Affiliation(s)
- Jiangjiao Li
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC), Beijing, China
| | - Wuyang Zhu
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC), Beijing, China
| | - Huanqin Wang
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC), Beijing, China
| | - Jiandong Li
- State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Department of Viral Hemorrhagic Fever (IVDC, China CDC), Beijing, China
| | - Quanfu Zhang
- State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Department of Viral Hemorrhagic Fever (IVDC, China CDC), Beijing, China
| | - Ying He
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC), Beijing, China
| | - Jia Li
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC), Beijing, China
| | - Juanjuan Fu
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC), Beijing, China
| | - Dexin Li
- State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Department of Viral Hemorrhagic Fever (IVDC, China CDC), Beijing, China
| | - Guodong Liang
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC), Beijing, China
- * E-mail:
| |
Collapse
|
48
|
Neuvonen M, Kazlauskas A, Martikainen M, Hinkkanen A, Ahola T, Saksela K. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication. PLoS Pathog 2011; 7:e1002383. [PMID: 22114558 PMCID: PMC3219718 DOI: 10.1371/journal.ppat.1002383] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/02/2011] [Indexed: 01/08/2023] Open
Abstract
Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3) domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV), Sindbis (SINV), and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication. The genus Alphavirus contains 29 known species that are transmitted by arthropods and include many important pathogens, such as Chikungunya virus (CHKV), which during the past decade has re-emerged to cause massive epidemics of febrile arthralgia around the Indian Ocean. The role of the alphaviral non-structural protein 3 (nsP3) has been linked to RNA replication and disease pathogenesis, but its molecular functions have remained elusive. Here we show that the nsP3s of CHKV as well as Sindbis and Semliki Forest viruses use a conserved proline-rich motif to interact with the Src-homology-3 (SH3) domain of host cell amphiphysins Amph1 and BIN1/Amph2, two adaptor proteins prominently involved in cellular membrane dynamics. We observed a striking re-localization of amphiphysin to alphaviral replication complexes in infected cells, and found that disruption of the amphiphysin SH3 binding motif in nsP3 strongly suppressed virus replication in vitro and attenuated Semliki Forest virus in infected mice. Thus, we conclude that amphiphysins are novel and important host cell factors involved in supporting alphavirus replication.
Collapse
Affiliation(s)
- Maarit Neuvonen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Arunas Kazlauskas
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Miika Martikainen
- A. I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland and the Cancer Center of Eastern Finland, Kuopio, Finland
| | - Ari Hinkkanen
- A. I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland and the Cancer Center of Eastern Finland, Kuopio, Finland
| | - Tero Ahola
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- * E-mail:
| |
Collapse
|
49
|
Macromolecular assembly-driven processing of the 2/3 cleavage site in the alphavirus replicase polyprotein. J Virol 2011; 86:553-65. [PMID: 22031949 DOI: 10.1128/jvi.05195-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semliki Forest virus (SFV) is a member of the Alphavirus genus, which produces its replicase proteins in the form of a nonstructural (ns) polyprotein precursor P1234. The maturation of the replicase occurs in a temporally controlled manner by protease activity of nsP2. The template preference and enzymatic capabilities of the alphaviral replication complex have a very important connection with its composition, which is irreversibly altered by proteolysis. The final cleavage of the 2/3 site in the ns polyprotein apparently leads to significant rearrangements within the replication complex and thus denotes the "point of no return" for viral replication progression. Numerous studies have devised rules for when and how ns protease acts, but how the alphaviral 2/3 site is recognized remained largely unexplained. In contrast to the other two cleavage sites within the ns polyprotein, the 2/3 site evidently lacks primary sequence elements in the vicinity of the scissile bond sufficient for specific protease recognition. In this study, we sought to investigate the molecular details of the regulation of the 2/3 site processing in the SFV ns polyprotein. We present evidence that correct macromolecular assembly, presumably strengthened by exosite interactions rather than the functionality of the individual nsP2 protease, is the driving force for specific substrate targeting. We conclude that structural elements within the macrodomain of nsP3 are used for precise positioning of a substrate recognition sequence at the catalytic center of the protease and that this process is coordinated by the exact N-terminal end of nsP2, thus representing a unique regulation mechanism used by alphaviruses.
Collapse
|
50
|
Viru L, Heller G, Lehto T, Pärn K, El Andaloussi S, Langel Ü, Merits A. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells. Virol J 2011; 8:243. [PMID: 21595942 PMCID: PMC3113310 DOI: 10.1186/1743-422x-8-243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. METHODS Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s). RESULTS It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s), which corrected the splicing defects. CONCLUSIONS Splice-switch technology, originally developed for genetic disease therapy, can also be used to control gene expression of viral vectors. This approach represents a novel, universal and powerful method for controlling gene expression, replication, viral spread and, by extension, virus-induced cytotoxic effects and can be used both for basic studies of virus infection and in virus-based gene- and anti-cancer therapy.
Collapse
Affiliation(s)
- Liane Viru
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|