1
|
Long Y, Xie J, Zhang ZQ, Zhang Z, Meng F, He A. Substantive molecular and histological changes within the meniscus with tears. BMC Musculoskelet Disord 2019; 20:577. [PMID: 31787088 PMCID: PMC6886220 DOI: 10.1186/s12891-019-2943-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The meniscus plays a vital role in the normal biomechanics of the knee. However, it is not well studied at the molecular level. The purpose of this study was to determine whether molecular and pathological changes in the meniscal tissue vary depending on the presence or absence of meniscal and/or anterior cruciate ligament tear (ACL). METHODS Six normal menisci (group A), seven simple torn menisci (group B) and seven torn menisci with concomitant anterior cruciate ligament tears (group C) were collected. We observed the pathological changes in the menisci and used real-time polymerase chain reaction along with immunohistochemistry and in situ hybridisation to examine the levels of ACAN, ADAMTS5, COL10A1, CEBPβ, MMP13 and miR-381-3p, miR-455-3p, miR-193b-3p, miR-92a-3p, respectively. Patients were scored preoperatively and postoperatively using the Lysholm Knee Scoring Scale and International Knee Documentation Committee Subjective Knee Evaluation Form. RESULTS Compared with group A, the expression levels of ADAMTS5, COL10A1, CEBPβ, and MMP13 and all the miRNAs were increased while ACAN was down-regulated in groups B and C. Additionally, the gene expression and miRNA levels were higher in group C than that in group B, except for ACAN, which was lower. Several fibrochondrocytes strongly expressed ADAMTS5, CEBPβ, and MMP13 in groups B and C and had high levels of miR-381-3p and miR-455-3p than that in group A. Postoperative Lysholm and IKDC scores were higher in group B than in group C. CONCLUSIONS Our findings suggest that the meniscus tended to degenerate after it was injured, especially when combined with a torn ACL. The miRNAs investigated in this study might also contribute to meniscus degeneration. Patients with a combined injury patterns might have relatively worse joint function.
Collapse
Affiliation(s)
- Yi Long
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Department of Orthopedics, The Central Hospital of Shao Yang, Shaoyang, 422000, Hunan, China
| | - Jingping Xie
- Department of Orthopedics, The Central Hospital of Shao Yang, Shaoyang, 422000, Hunan, China
| | - Zhi-Qi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ziji Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Fangang Meng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Aishan He
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Zhang H, Zhou Z, Luo J, Hou J. Effects of corticosterone on the metabolic activity of cultured chicken chondrocytes. BMC Vet Res 2015; 11:86. [PMID: 25880747 PMCID: PMC4393584 DOI: 10.1186/s12917-015-0398-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/18/2015] [Indexed: 12/25/2022] Open
Abstract
Background Corticosterone is one of the most crucial glucocorticoids (GCs) in poultry. Our previous study shows that corticosterone can retard the longitudinal growth of bones by depressing the proliferation and differentiation of chondrocytes in broilers. The present study was designed to investigate whether corticosterone affect the development of chondrocytes and the synthesis of collagen in vitro. The chondrocytes were isolated from proximal tibial growth plates of 6-week-old broiler chickens and cultured with different doses of corticosterone for 48 h. Then the cell viability, alkaline phosphatase (ALP) activity and the expression of parathyroid hormone-related peptide (PTHrP) and type X collagen (Col X) were detected. Results At 10−9-10−6 M concentration, corticosterone significantly inhibited the viability and differentiation of chondrocytes, as indicated by decreases in ALP and type X collagen expression. Conversely, there was completely opposite effect at 10−10 M. In addition, the expression of PTHrP was significantly downregulated at 10−6 M and 10−8 M, and was upregulated at 10−10 M. Conclusions The results suggested that corticosterone regulated chicken chondrocytes performance depending on its concentration with high concentrations inhibiting the viability and differentiation of chondrocytes and light concentrations promoting them, and these roles of corticosterone may be in part mediated through PTHrP. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0398-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Jingwen Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Jiafa Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
3
|
Khanarian NT, Haney NM, Burga RA, Lu HH. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 2012; 33:5247-58. [PMID: 22531222 DOI: 10.1016/j.biomaterials.2012.03.076] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 03/24/2012] [Indexed: 11/26/2022]
Abstract
Regeneration of the osteochondral interface is critical for integrative and functional cartilage repair. This study focuses on the design and optimization of a hydrogel-ceramic composite scaffold of agarose and hydroxyapatite (HA) for calcified cartilage formation. The first study objective was to compare the effects of HA on non-hypertrophic and hypertrophic chondrocytes cultured in the composite scaffold. Specifically, cell growth, biosynthesis, hypertrophy, and scaffold mechanical properties were evaluated. Next, the ceramic phase of the scaffold was optimized in terms of particle size (200 nm vs. 25 μm) and dose (0-6 w/v%). It was observed that while deep zone chondrocyte (DZC) biosynthesis and hypertrophy remained unaffected, hypertrophic chondrocytes measured higher matrix deposition and mineralization potential with the addition of HA. Most importantly, higher matrix content translated into significant increases in both compressive and shear mechanical properties. While cell hypertrophy was independent of ceramic size, matrix deposition was higher only with the addition of micron-sized ceramic particles. In addition, the highest matrix content, mechanical properties and mineralization potential were found in scaffolds with 3% micro-HA, which approximates both the mineral aggregate size and content of the native interface. These results demonstrate that the biomimetic hydrogel-ceramic composite is optimal for calcified cartilage formation and is a promising design strategy for osteochondral interface regeneration.
Collapse
Affiliation(s)
- Nora T Khanarian
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, 351 Engineering Terrace, MC 8904, NY 10027, USA
| | | | | | | |
Collapse
|
4
|
Sasaki JI, Matsumoto T, Egusa H, Matsusaki M, Nishiguchi A, Nakano T, Akashi M, Imazato S, Yatani H. In vitro reproduction of endochondral ossification using a 3D mesenchymal stem cell construct. Integr Biol (Camb) 2012; 4:1207-14. [DOI: 10.1039/c2ib20027a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng Part A 2011; 18:533-45. [PMID: 21919797 DOI: 10.1089/ten.tea.2011.0279] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osteoarthritis is the leading cause of physical disability among Americans, and tissue engineered cartilage grafts have emerged as a promising treatment option for this debilitating condition. Currently, the formation of a stable interface between the cartilage graft and subchondral bone remains a significant challenge. This study evaluates the potential of a hybrid scaffold of hydroxyapatite (HA) and alginate hydrogel for the regeneration of the osteochondral interface. Specifically, the effects of HA on the response of chondrocytes were determined, focusing on changes in matrix production and mineralization, as well as scaffold mechanical properties over time. Additionally, the optimal chondrocyte population for interface tissue engineering was evaluated. It was observed that the HA phase of the composite scaffold promoted the formation of a proteoglycan- and type II collagen-rich matrix when seeded with deep zone chondrocytes. More importantly, the elevated biosynthesis translated into significant increases in both compressive and shear moduli relative to the mineral-free control. Presence of HA also promoted chondrocyte hypertrophy and type X collagen deposition. These results demonstrate that the hydrogel-calcium phosphate composite supported the formation of a calcified cartilage-like matrix and is a promising scaffold design for osteochondral interface tissue engineering.
Collapse
Affiliation(s)
- Nora T Khanarian
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
6
|
Iismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009; 89:991-1023. [PMID: 19584319 DOI: 10.1152/physrev.00044.2008] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human transglutaminase (TG) family consists of a structural protein, protein 4.2, that lacks catalytic activity, and eight zymogens/enzymes, designated factor XIII-A (FXIII-A) and TG1-7, that catalyze three types of posttranslational modification reactions: transamidation, esterification, and hydrolysis. These reactions are essential for biological processes such as blood coagulation, skin barrier formation, and extracellular matrix assembly but can also contribute to the pathophysiology of various inflammatory, autoimmune, and degenerative conditions. Some members of the TG family, for example, TG2, can participate in biological processes through actions unrelated to transamidase catalytic activity. We present here a comprehensive review of recent insights into the physiology and pathophysiology of TG family members that have come from studies of genetically engineered mouse models and/or inherited disorders. The review focuses on FXIII-A, TG1, TG2, TG5, and protein 4.2, as mice deficient in TG3, TG4, TG6, or TG7 have not yet been reported, nor have mutations in these proteins been linked to human disease.
Collapse
Affiliation(s)
- Siiri E Iismaa
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute and Universityof New South Wales, Sydney, New South Wales 2010, Australia
| | | | | | | |
Collapse
|
7
|
Higashikawa A, Saito T, Ikeda T, Kamekura S, Kawamura N, Kan A, Oshima Y, Ohba S, Ogata N, Takeshita K, Nakamura K, Chung UI, Kawaguchi H. Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type x collagen gene. ACTA ACUST UNITED AC 2009; 60:166-78. [DOI: 10.1002/art.24243] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Tien YC, Lin SD, Chen CH, Lu CC, Su SJ, Chih TT. Effects of pulsed low-intensity ultrasound on human child chondrocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1174-1181. [PMID: 18359144 DOI: 10.1016/j.ultrasmedbio.2007.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/18/2007] [Accepted: 12/21/2007] [Indexed: 05/26/2023]
Abstract
The effect of pulsed low-intensity ultrasound (PLIUS) on human articular chondrocytes was evaluated in an in vitro 3-D agarose gel culture model. Chondrocytes isolated from young children's articular cartilage of ablated polydactylia were embedded in gel after expansion and exposed to PLIUS on the third day after embedding. Another group of cells was exposed to sham PLIUS as a control. Different intensities of PLIUS treatment-18 mW/cm(2), 48 mW/cm(2), 72 mW/cm(2) and 98 mW/cm(2) (1.0 MHz, with burst duration of 200 micros repeated at 1.0 kHz)-were administered for 20 min/d, and the medium was replaced twice a week. The cultures were evaluated for aggrecan synthesis by enzyme-linked immunosorbent assay (ELISA), type II collagen production by Western blotting or ELISA and cell proliferation by total DNA measurement. The PLIUS was found to increase aggrecan synthesis in a time-dependent manner. The maximal response was observed at an intensity of 48 mW/cm(2). After 14 d of exposure at this intensity, the aggrecan synthesis was 214 +/- 26% of control, and type II collagen synthesis was 148.5 +/- 8.0% of control. However, PLIUS treatment revealed no significant influence on cell proliferation, confirming that the stimulation of aggrecan and type II collagen synthesis by PLIUS was not the result of an increase in chondrocyte cell proliferation. In addition, it was found that human chondrocytes harvested from older donors become less responsive to PLIUS. From this in vitro 3-D study of cultured human chondrocytes, our findings suggest that PLIUS may be applied to the tissue engineering of cartilage constructs.
Collapse
Affiliation(s)
- Yin-Chun Tien
- Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
9
|
Johnson KA, Rose DM, Terkeltaub RA. Factor XIIIA mobilizes transglutaminase 2 to induce chondrocyte hypertrophic differentiation. J Cell Sci 2008; 121:2256-64. [PMID: 18544639 DOI: 10.1242/jcs.011262] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two transglutaminases (TGs), factor XIIIA (FXIIIA) and TG2, undergo physiologic upregulation in growth plate hypertrophic chondrocytes, and pathological upregulation in osteoarthritic cartilage. Externalization of guanine-nucleotide-bound TG2 drives chondrocyte maturation to hypertrophy, a state linked to matrix remodeling and calcification. Here, we tested the hypothesis that FXIIIA also promotes hypertrophic differentiation. Using human articular chondrocytes, we determined that extracellular FXIIIA induced chondrocyte hypertrophy associated with rapid movement of TG2 to the cell surface. Site-directed mutagenesis revealed that FXIIIA Pro37 bordering the thrombin endoproteolytic Arg38-Gly39 site, but not intrinsic TG catalytic activity, were necessary for FXIIIA to induce chondrocyte hypertrophy. TGs have been demonstrated to interact with certain integrins and, during osteoarthritis (OA), alpha1beta1 integrin is upregulated and associated with hypertrophic chondrocytes. FXIIIA engaged alpha1beta1 integrin in chondrocytes. Antibody crosslinking of alpha1beta1 integrin mobilized TG2. Conversely, an alpha1beta1-integrin-specific blocking antibody inhibited the capacity of FXIIIA to induce TG2 mobilization to the cell surface, phosphorylation of p38 MAP kinase, and chondrocyte hypertrophy. Our results identify a unique functional network between two cartilage TG isoenzymes that accelerates chondrocyte maturation without requirement for TG-catalyzed transamidation by either TG.
Collapse
|
10
|
Rath NC, Richards MP, Huff WE, Huff GR, Balog JM. Changes in the Tibial Growth Plates of Chickens with Thiram-induced Dyschondroplasia. J Comp Pathol 2005; 133:41-52. [PMID: 15899490 DOI: 10.1016/j.jcpa.2005.01.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 01/13/2005] [Indexed: 01/30/2023]
Abstract
Tibial dyschondroplasia (TD) is a metabolic cartilage disease of young poultry in which endochondral bone formation is disrupted leading to the retention of a non-calcified, avascular plug of cartilage in the tibial growth plate. Chicks aged 7 days were fed either a control diet or one containing thiram 100 ppm for 48 h to induce TD. Cell multiplication in the growth plate was determined thereafter with bromodeoxyuridine (BrdU) labelling, and metabolic changes by measuring alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP), and glutathione (GSH) activities. The effect on chondrocyte maturation was examined by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of gene expression. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) and DNA fragmentation were used to determine the effects of thiram on cell survival. The results showed that thiram-induced TD was not due to the multiplication of cells in the post-proliferative zones. Thiram did not affect ALP activity, which would have indicated a loss of calcification potential, but it reduced both TRAP and the glutathione concentrations, suggesting that the growth plate metabolism and remodelling functions were adversely affected. Thiram appeared to have no effect on the expression of type X collagen, transglutaminase, RUNX2, or matrix metalloproteinase-2 (MMP) genes suggesting that it did not alter the maturation potential of chondrocytes. On the contrary, the expressions of MMP-13 and vascular endothelial growth factor (VEGF) genes were "up-regulated," suggesting that thiram has pro-angiogenic activity. However, TUNEL assay showed that thiram induced endothelial cell apoptosis in the capillary vessels of the growth plates, as early as 10 days of age, when TD was not visually evident. The vascular death increased on subsequent days accompanied by massive death of chondrocytes in the transition zone of the growth plate. The induction of apoptosis in the growth plate was also demonstrated by DNA fragmentation. It was concluded that thiram induced TD not through an increase in the multiplication of chondrocytes in the transition zone and not by altering the expression of genes causing the arrest of chondrocytes in a prehypertrophic state, but by creating a metabolic dysfunction which led to the destruction of blood capillaries in the transition zone chondrocytes.
Collapse
Affiliation(s)
- N C Rath
- Poultry Production and Product Safety Research, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | |
Collapse
|
11
|
Johnson KA, van Etten D, Nanda N, Graham RM, Terkeltaub RA. Distinct transglutaminase 2-independent and transglutaminase 2-dependent pathways mediate articular chondrocyte hypertrophy. J Biol Chem 2003; 278:18824-32. [PMID: 12606540 DOI: 10.1074/jbc.m301055200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Altered chondrocyte differentiation, including development of chondrocyte hypertrophy, mediates osteoarthritis and pathologic articular cartilage matrix calcification. Similar changes in endochondral chondrocyte differentiation are essential for physiologic growth plate mineralization. In both articular and growth plate cartilages, chondrocyte hypertrophy is associated with up-regulated expression of certain protein-crosslinking enzymes (transglutaminases (TGs)) including the unique dual-functioning TG and GTPase TG2. Here, we tested if TG2 directly mediates the development of chondrocyte hypertrophic differentiation. To do so, we employed normal bovine chondrocytes and mouse knee chondrocytes from recently described TG2 knockout mice, which are phenotypically normal. We treated chondrocytes with the osteoarthritis mediator IL-1 beta, with the all-trans form of retinoic acid (ATRA), which promotes endochondral chondrocyte hypertrophy and pathologic calcification, and with C-type natriuretic peptide, an essential factor in endochondral development. IL-1 beta and ATRA induced TG transamidation activity and calcification in wild-type but not in TG2 (-/-) mouse knee chondrocytes. In addition, ATRA induced multiple features of hypertrophic differentiation (including type X collagen, alkaline phosphatase, and MMP-13), and these effects required TG2. Significantly, TG2 (-/-) chondrocytes lost the capacity for ATRA-induced expression of Cbfa1, a transcription factor necessary for ATRA-induced chondrocyte hypertrophy. Finally, C-type natriuretic peptide, which did not modulate TG activity, comparably promoted Cbfa1 expression and hypertrophy (without associated calcification) in TG2 (+/+) and TG2 (-/-) chondrocytes. Thus, distinct TG2-independent and TG2-dependent mechanisms promote Cbfa1 expression, articular chondrocyte hypertrophy, and calcification. TG2 is a potential site for intervention in pathologic calcification promoted by IL-1 beta and ATRA.
Collapse
Affiliation(s)
- Kristen A Johnson
- Veterans Affairs Medical Center, University of California San Diego, La Jolla, California 92161, USA
| | | | | | | | | |
Collapse
|
12
|
Zhang ZIJ, Huckle J, Francomano CA, Spencer RGS. The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study. ULTRASOUND IN MEDICINE & BIOLOGY 2002; 28:1547-1553. [PMID: 12498950 DOI: 10.1016/s0301-5629(02)00659-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The proximal and distal parts of sterna of chick embryos represent cartilage undergoing endochondral ossification and hyaline cartilage, respectively. Cartilage explants from both regions were exposed for 20 min to pulsed low-intensity ultrasound (PLIUS) with an intensity of 30 mW. cm(-2) (spatial average-temporal average) at a frequency of 1.5 MHz, with a pulse burst frequency of 1 kHz and burst duration of 200 micros. Histological and immunohistochemical analysis was performed on days 1, 3, 5 and 7 after treatment. An anabolic effect of PLIUS on matrix production was shown by an increase of up to 10% to 20% in quantitative immunohistochemical staining for type II collagen and aggrecan in the two parts of the sternum. PLIUS also increased type X collagen staining by up to 10% in certain regions of the proximal part of the sternum. Staining for type X collagen was negative in the distal part of the sternum in both PLIUS and control groups. These results suggest that PLIUS may stimulate bone formation by increasing hypertrophy of chondrocytes directed to terminal differentiation. However, PLIUS did not induce hypertrophy in hyaline cartilage; moreover, increased matrix synthesis indicates a potential role in cartilage repair.
Collapse
Affiliation(s)
- Z i-Jun Zhang
- National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | | | | | | |
Collapse
|
13
|
Boskey A, Paschalis E, Binderman I, Doty S. BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures. J Cell Biochem 2002. [DOI: 10.1002/jcb.10032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Johnson K, Hashimoto S, Lotz M, Pritzker K, Terkeltaub R. Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:149-63. [PMID: 11438463 PMCID: PMC1850418 DOI: 10.1016/s0002-9440(10)61682-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two transglutaminases (TGases), Factor XIIIa and tissue TGase (tTGase), are expressed in temporal-spatial association with matrix calcification in growth plates. Meniscal and articular cartilage matrix calcification are prevalent in osteoarthritis (OA) and aging. Here, we demonstrated up-regulation of tTGase and Factor XIIIa in superficial and deep zones of knee OA articular cartilage and the central (chondrocytic) zone of OA menisci. Transforming growth factor-beta and interleukin (IL)-1beta induced Factor XIIIa and tTGase expression in cartilage and meniscal organ cultures. Thus, we studied TGase activity. Donor age-dependent, OA severity-related, and IL-1-induced increases in TGase activity were demonstrated in both knee menisci and cultured meniscal cells. Meniscal cell TGase activity was stimulated by nitric oxide donors and tumor necrosis factor-alpha, but transforming growth factor-beta did not stimulate TGase activity. The iNOS inhibitor N-monomethylarginine (NMMA) and an inhibitor of tumor necrosis factor receptor-associated factor (TRAF)2 and TRAF6 signaling (the zinc finger protein A20) suppressed IL-1 induction of TGase activity. Increased Factor XIIIa and tTGase activities, achieved via direct transfection of chondrocytic TC28 and meniscal cells, both induced matrix apatite deposition. Thus, Factor XIIIa and tTGase activities were increased in aging, degenerative cartilages and induced by IL-1. Because TGase activity promoted apatite deposition, our findings potentially implicate inflammation in the pathogenesis of cartilage matrix calcification.
Collapse
Affiliation(s)
- K Johnson
- Department of Medicine, Rheumatology Allergy-Immunology Division, Veterans Affairs Medical Center, University of California at San Diego, USA
| | | | | | | | | |
Collapse
|