1
|
Medeiros LDS, Rodrigues PDS, Santos DNL, Silva-Sampaio AC, Kirsten TB, Suffredini IB, Coque ADC, da Silva RA, Bernardi MM. Prenatal restraint stress downregulates the hypothalamic kisspeptidergic system transcripts genes, reduces the estrogen plasma levels, delayed the onset of puberty, and reduced the sexual behavior intensity in female rats. Physiol Behav 2023; 260:114055. [PMID: 36563733 DOI: 10.1016/j.physbeh.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
AIMS This study investigated the possible relationships between the expression of the Kiss1 and Gpr54 gene expressions and the pituitary-gonadal hormones with the female onset of puberty and sexual behavior. The Kiss1 and Gpr54 gene expressions were examined because they are critical to controlling the hypothalamic activation of GnRH neurons and, in turn, the pituitary-gonadal hormones related to the early onset of puberty and sexual behavior. Further, it was evaluated that the pituitary and gonadal hormones involved in the vaginal opening and the expression of sexual behavior. METHODS Pregnant rats exposed to PRS from gestation days 17 to 20 were evaluated for maternal and open-field behaviors. The maternal behavior was analyzed because it may alter brain sexual organization affecting the pups development. It was observed in female pups the physical and development and, in adult age, the open-field behavior, the anxiety-like behavior, the estrous cycle, the sexual behavior, the serum FSH, LH, estrogen, progesterone, and testosterone levels, and the gene expression of kisspeptin protein (Kiss1) and Gpr54 in the hypothalamus. RESULTS the maternal and open-field behaviors were unaffected. In the F1 generation, PRS reduced weight at weaning, delayed the day of the vaginal opening and reduced the intensity of lordosis, the estrogen levels, and the Kiss1 and Gpr54 gene expression. These effects were attributed to hypothalamic kisspeptidergic system downregulation of transcripts genes and the reduced estrogen levels affected by the PRS.
Collapse
Affiliation(s)
- Loren da Silva Medeiros
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Paula da Silva Rodrigues
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Daniel Nascimento Lago Santos
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ana Claudia Silva-Sampaio
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thiago Berti Kirsten
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ivana Barbosa Suffredini
- Núcleo de Pesquisas em Biodiversidade, Laboratório de Extração, Universidade Paulista - UNIP, Av. Paulista, 900, São Paulo, SP 01310-100, Brazil
| | - Alex de Camargo Coque
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Rodrigo Augusto da Silva
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil; School of Dentistry, Graduate Program in Health Sciences, University of Taubaté, Rua dos Operários, 9, Taubaté, SP 12020-340, Brazil
| | - Maria Martha Bernardi
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
2
|
Frye CA. Endocrine-disrupting chemicals: elucidating our understanding of their role in sex and gender-relevant end points. VITAMINS AND HORMONES 2014; 94:41-98. [PMID: 24388187 DOI: 10.1016/b978-0-12-800095-3.00003-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are diverse and pervasive and may have significant consequence for health, including reproductive development and expression of sex-/gender-sensitive parameters. This review chapter discusses what is known about common EDCs and their effects on reproductively relevant end points. It is proposed that one way that EDCs may exert such effects is by altering steroid levels (androgens or 17-estradiol, E₂) and/or intracellular E₂ receptors (ERs) in the hypothalamus and/or hippocampus. Basic research findings that demonstrate developmentally sensitive end points to androgens and E₂ are provided. Furthermore, an approach is suggested to examine differences in EDCs that diverge in their actions at ERs to elucidate their role in sex-/gender-sensitive parameters.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, New York, USA; Department of Biological Sciences, The University at Albany-SUNY, Albany, New York, USA; The Center for Neuroscience Research, The University at Albany-SUNY, Albany, New York, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, New York, USA; Department of Chemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA; IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, Fairbanks, Alaska, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
| |
Collapse
|
3
|
Brunton PJ, Russell JA, Hirst JJ. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol 2014; 113:106-36. [PMID: 24012715 DOI: 10.1016/j.pneurobio.2013.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023]
Abstract
A successful pregnancy requires multiple adaptations in the mother's brain that serve to optimise foetal growth and development, protect the foetus from adverse prenatal programming and prevent premature delivery of the young. Pregnancy hormones induce, organise and maintain many of these adaptations. Steroid hormones play a critical role and of particular importance is the progesterone metabolite and neurosteroid, allopregnanolone. Allopregnanolone is produced in increasing amounts during pregnancy both in the periphery and in the maternal and foetal brain. This review critically examines a role for allopregnanolone in both the maternal and foetal brain during pregnancy and development in protecting pregnancy and birth outcomes, with particular emphasis on its role in relation to stress exposure at this time. Late pregnancy is associated with suppressed stress responses. Thus, we begin by considering what is known about the central mechanisms in the maternal brain, induced by allopregnanolone, that protect the foetus(es) from exposure to harmful levels of maternal glucocorticoids as a result of stress during pregnancy. Next we discuss the central mechanisms that prevent premature secretion of oxytocin and consider a role for allopregnanolone in minimising the risk of preterm birth. Allopregnanolone also plays a key role in the foetal brain, where it promotes development and is neuroprotective. Hence we review the evidence about disruption to neurosteroid production in pregnancy, through prenatal stress or other insults, and the immediate and long-term adverse consequences for the offspring. Finally we address whether progesterone or allopregnanolone treatment can rescue some of these deficits in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, UK.
| | - John A Russell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, School of Biomedical Sciences, University of Newcastle, Newcastle, N.S.W., Australia
| |
Collapse
|
4
|
Sale A, Berardi N, Maffei L. Environment and Brain Plasticity: Towards an Endogenous Pharmacotherapy. Physiol Rev 2014; 94:189-234. [DOI: 10.1152/physrev.00036.2012] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.
Collapse
Affiliation(s)
- Alessandro Sale
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| | - Lamberto Maffei
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
5
|
Frye CA, Walf AA, Kohtz AS, Zhu Y. Membrane progestin receptors in the midbrain ventral tegmental area are required for progesterone-facilitated lordosis of rats. Horm Behav 2013; 64:539-45. [PMID: 23770270 PMCID: PMC4541797 DOI: 10.1016/j.yhbeh.2013.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 12/31/2022]
Abstract
Progesterone (P₄) and its metabolites, rapidly facilitate lordosis of rats partly through actions in the ventral tegmental area (VTA). The study of membrane progestin receptors (mPRs), of the Progestin and AdipoQ Receptor (PAQR) superfamily, has been limited to expression and regulation, instead of function. We hypothesized that if mPRs are required for progestin-facilitated lordosis in the VTA, then mPRs will be expressed in this region and knockdown will attenuate lordosis. First, expression of mPR was examined by reverse-transcriptase polymerase chain reaction (RT-PCR) in brain and peripheral tissues of proestrous Long-Evans rats. Expression of mPRα (paqr7) was observed in peripheral tissues and brain areas, including hypothalamus and midbrain. Expression of mPRβ (paqr8) was observed in brain tissues and was abundant in the midbrain and hypothalamus. Second, ovariectomized rats were estrogen (E₂; 0.09 mg/kg, SC), and P₄ (4 mg/kg, SC) or vehicle-primed, and infused with antisense oligodeoxynucleotides (AS-ODNs) targeted against mPRα and/or mPRβ intracerebroventricularly or to the VTA. Rats were assessed for motor (open field), anxiety (elevated plus maze), social (social interaction), and sexual (lordosis) behavior. P₄-facilitated lordosis was significantly reduced with administration of AS-ODNs for mPRα, mPRβ, or co-administration of mPRα and mPRβ to the lateral ventricle, compared to vehicle. P₄-facilitated lordosis was reduced, compared to vehicle, by administration of mPRβ AS-ODNs, or co-administration of mPRα and mPRβ AS-ODNs, but not mPRα AS-ODNs alone, to the VTA. No differences were observed for motor, anxiety, or social behaviors. Thus, mPRs in the VTA are targets of progestin-facilitated lordosis of rats.
Collapse
Affiliation(s)
- Cheryl A Frye
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Dept. of Biological Sciences, The University at Albany-SUNY, Albany, NY 12222, USA; The Centers for Neuroscience, The University at Albany-SUNY, Albany, NY 12222, USA; Life Science Research, The University at Albany-SUNY, Albany, NY 12222, USA; Department of Chemistry, The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), 202 West Ridge Research Bldg., Fairbanks, AK 99775, USA.
| | | | | | | |
Collapse
|
6
|
Brunton PJ, Russell JA. Neuroendocrine control of maternal stress responses and fetal programming by stress in pregnancy. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1178-91. [PMID: 21216265 DOI: 10.1016/j.pnpbp.2010.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 02/07/2023]
Abstract
The major changes in highly dynamic neuroendocrine systems that are essential for establishing and maintaining pregnancy are outlined from studies on rodents. These changes optimise the internal environment to provide the life support system for the placenta, embryo and fetus. These include automatic prevention of further pregnancy, blood volume expansion, increased appetite and energy storage. The brain regulates these changes, in response to steroid (estrogens, progesterone) and peptide (lactogens, relaxin) hormone signals. Activation of inhibitory endogenous opioid mechanisms in the brain in late pregnancy restrains premature secretion of oxytocin, and attenuates hypothalamo-pituitary-adrenal (HPA) responses to stress. This opioid mechanism is activated by allopregnanolone, a neuroactive progesterone metabolite. The significance of reduced HPA axis responses in shifting maternal metabolic balance, and in protecting the fetuses from adverse programming of HPA axis stress responsiveness and anxious behaviour in later life is critically discussed. Experimental studies showing sex-dependent fetal programming by maternal stress or glucocorticoid exposure in late pregnancy are reviewed. The possibility of over-writing programming in offspring through neurosteroid administration is discussed. The impact of maternal stress on placental function is considered in the context of reconciling studies that show offspring programming by stress in very early or late pregnancy produce similar phenotypes in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH89XD, UK
| | | |
Collapse
|
7
|
Paris JJ, Frye CA. Juvenile offspring of rats exposed to restraint stress in late gestation have impaired cognitive performance and dysregulated progestogen formation. Stress 2011; 14:23-32. [PMID: 21034292 PMCID: PMC3103059 DOI: 10.3109/10253890.2010.512375] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gestational stress may have lasting effects on the physical and neurocognitive development of offspring. The mechanisms that may underlie these effects are of interest. Progesterone and its 5α-reduced metabolites, dihydroprogesterone and 5α-pregnan-3α-ol-20-one (3α,5α-THP), maintain pregnancy, have neurotrophic effects, and can enhance cognitive performance. We hypothesized that some of the deleterious effects of gestational stress on the cognitive performance of offspring may be related to progestogen formation. Pregnant rat dams were exposed to restraint under a bright light (thrice daily for 45 min) on gestational days 17-21 or were minimally handled controls. Dams that were exposed to restraint had lower circulating levels of 3α,5α-THP and significantly greater concentrations of corticosterone at the time of birth than did control dams. Male and female offspring, that were gestationally stressed or not, were cross-fostered to non-manipulated dams. Between postnatal days 28-30, offspring were assessed for object recognition, a prefrontal cortex (PFC)-dependent cognitive task. Restraint-exposed offspring performed more poorly in the object recognition task than did control offspring, irrespective of sex. As well, progesterone turnover to its 5α-reduced metabolites in the medial PFC (but not the diencephalon) was significantly reduced among restraint-exposed, compared to control, offspring. Progesterone turnover, and levels of 3α,5α-THP, positively correlated with performance in the object recognition task. Thus, restraint stress in late pregnancy impaired cognitive development and dysregulated progestogen formation in brain.
Collapse
Affiliation(s)
- Jason J Paris
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
8
|
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a key role in the neuroendocrine response to stress. Dynamic changes in HPA axis regulation and hence HPA responsivity occur over the lifetime of an animal. This article focuses on two extremes of the spectrum. The first occurs naturally during pregnancy when stress responses are dampened. The second, at the opposite end of the scale, occurs in offspring of mothers who were exposed to stress during pregnancy and display exaggerated HPA axis stress responses. Reduced glucocorticoid output in response to stress in pregnancy may have important consequences for conserving energy supply to the foetus(es), in modulating immune system adaptations and in protecting against adverse foetal programming by glucocorticoids. Understanding the mechanisms underpinning this adaptation in pregnancy may provide insights for manipulating HPA axis responsiveness in later life, particularly in the context of resetting HPA axis hyperactivity associated with prenatal stress exposure, which may underlie several major pathologies, including cardiovascular disease, diabetes mellitus type 2, obesity, cognitive decline and mood disorders.
Collapse
Affiliation(s)
- P J Brunton
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Brunton PJ, Russell JA. Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex-specific effects. J Neuroendocrinol 2010; 22:258-71. [PMID: 20136688 DOI: 10.1111/j.1365-2826.2010.01969.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stress exposure during pregnancy can 'programme' adult behaviour and hypothalamic-pituitary-adrenal (HPA) axis stress responsiveness. In the present study, we utilised an ethologically relevant social stressor to model the type of stress that pregnant women may experience. We investigated the effects of social defeat by a resident lactating rat over 5 days during the last week of pregnancy on the pregnant intruder rat HPA axis, and on HPA responsivity to stress and anxiety-related behaviour in the adult offspring of the socially-defeated intruder rats. HPA axis responses after social defeat were attenuated in the pregnant rats compared to virgin females. In the adult offspring, systemic interleukin (IL)-1beta or restraint increased adrenocorticotrophic hormone and corticosterone secretion in male and female control rats; however, in prenatally stressed (PNS) offspring, HPA responses were greatly enhanced and peak hormone responses to IL-1beta were greater in females versus males. Male PNS rats displayed increased anxiety behaviour on the elevated plus maze; however, despite marked changes in anxiety behaviour across the oestrous cycle, there were no differences between female control and PNS rats. Investigation of possible mechanisms showed mineralocorticoid mRNA levels were reduced in the hippocampus of male and female PNS offspring, whereas glucocorticoid receptor mRNA expression was modestly reduced in the CA2 hippocampal subfield in female PNS rats only. Corticotropin-releasing hormone mRNA and glucocorticoid receptor mRNA expression in the central amygdala was greater in PNS males and females compared to controls. The data obtained in the present study indicate that prenatal social stress differentially programmes anxiety behaviour and HPA axis responses to stress in male and female offspring. Attenuated glucocorticoid feedback mechanisms in the limbic system may underlie HPA axis hyper-reactivity to stress in PNS offspring.
Collapse
Affiliation(s)
- P J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | | |
Collapse
|
10
|
Frye CA. Hormonal influences on seizures: basic neurobiology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 83:27-77. [PMID: 18929075 DOI: 10.1016/s0074-7742(08)00003-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
There are sex differences and effects of steroid hormones, such as androgens, estrogens, and progestogens, that influence seizures. Androgens exert early organizational and later activational effects that can amplify sex/gender differences in the expression of some seizure disorders. Female-typical sex steroids, such as estrogen (E2) and progestins, can exert acute activational effects to reduce convulsive seizures and these effects are mediated in part by the actions of steroids in the hippocampus. Some of these anticonvulsive effects of sex steroids are related to their formation of ligands which have agonist-like actions at gamma-aminobutyric acid (GABAA) receptors or antagonist actions at glutamatergic receptors. Differences in stress, developmental phase, reproductive status, endocrine status, and treatments, such as anti-epileptic drugs (AEDs), may alter levels of these ligands and/or the function of target sites, which may mitigate differences in sensitivity to, and/or tolerance of, steroids among some individuals. The evidence implicating sex steroids in differences associated with hormonal, reproductive, developmental, stress, seizure type, and/or therapeutics are discussed.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-State University of New York, New York 12222, USA
| |
Collapse
|
11
|
Leret ML, Lecumberri M, Garcia-Montojo M, González JC. Role of maternal corticosterone in the development and maturation of the aminoacidergic systems of the rat brain. Int J Dev Neurosci 2007; 25:465-71. [PMID: 17890040 DOI: 10.1016/j.ijdevneu.2007.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/03/2007] [Accepted: 08/14/2007] [Indexed: 11/15/2022] Open
Abstract
Previous studies have suggested an important role for maternal glucocorticoids in the development of the aminoacidergic systems of the rat brain. This study examines the effect of metyrapone (2-methyl-1,2-di-3-pyridyl-1-propanone), i.p.-administered to gestating mothers, on the maturation of the aminoacidergic systems of their offsprings' brains. gamma-Aminobutyric acid (GABA) and glutamate concentrations were determined in male and female offspring at postnatal days (PN) 23 and 90 in four brain areas: the hippocampus, hypothalamus, striatum and cortex. The activity of glutamic acid decarboxylase (GAD), the most important enzyme in the synthesis of GABA, was also analysed. The results show that a reduction in maternal corticosterone during gestation leads to a reduced GABAergic content in all brain areas studied at PN23; permanent organizational changes occurred in the cortex, striatum and hypothalamus. Maternal metyrapone treatment also affected the development of the glutamatergic systems, females being more affected than males at both PN23 and PN90 particularly in the hypothalamus and cortex. The metyrapone treatment produced no changes in GAD activity at PN23, but induced an important increase in this activity at PN90.
Collapse
Affiliation(s)
- Maria Luisa Leret
- Department of Animal Physiology, Faculty of Biological Sciences, Complutense University of Madrid, Jose Antonio Novais 2, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
12
|
Walf AA, Frye CA. Estradiol decreases anxiety behavior and enhances inhibitory avoidance and gestational stress produces opposite effects. Stress 2007; 10:251-60. [PMID: 17613939 DOI: 10.1080/00958970701220416] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Although there is evidence that estradiol has effects in women and in animal models to reduce anxiety and depressive behavior and enhance performance in some cognitive tasks, this is not seen among all individuals. Given the interaction between estradiol and hypothalamic-pituitary-adrenal function, we hypothesized that an individual's prior exposure to stress may mitigate some of the subsequent effects of estradiol. To address this, rats were exposed to gestational stress, or not, to determine if stress exposure during development alters behavioral responses to estradiol in adulthood. If estradiol's effects on anxiety and cognitive behavior are modulated by prior stress experience, then gestationally-stressed rats administered estradiol should have decreased anti-anxiety (open field, elevated plus maze) behavior and cognitive performance in the inhibitory avoidance task. Offspring of dams that were exposed to restraint stress daily on gestational days 14-20, or no such manipulation, were used as adults either intact in behavioral estrus (high estradiol) or diestrus (low estradiol), or ovariectomized (OVX) with empty or estradiol-containing silastic implants. Rats were used for blood collection to determine plasma corticosterone and estradiol concentrations, or were used for behavioral testing. Compared with rats in diestrus or OVX and vehicle-replaced, rats in behavioral estrus and OVX rats with estradiol implants had higher estradiol concentrations, entered more central squares in an open field, spent more time on the open arms of the plus maze, and had a longer latency to crossover to the dark, shock-associated side of the inhibitory avoidance chamber. Gestational stress increased plasma corticosterone but not estradiol levels, decreased plus maze open arm time in cycling rats, and decreased inhibitory avoidance performance. Thus, estradiol and gestational stress can have opposite effects on anxiety and inhibitory avoidance performance.
Collapse
Affiliation(s)
- Alicia A Walf
- Department of Psychology, Research, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
13
|
Walf AA, Frye CA. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology 2006; 31:1097-111. [PMID: 16554740 PMCID: PMC3624621 DOI: 10.1038/sj.npp.1301067] [Citation(s) in RCA: 346] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Estrogen (E2) has many effects in the central nervous system, including effects on anxiety and depression behavior. This review will address effects of E2 on behaviors related to anxiety and depression in women and animal models and include recent findings from our laboratory related to this topic. E2's antianxiety and antidepressant-like effects may depend upon many factors, including the regimen of E2 utilized and interactions with the hypothalamic-pituitary-adrenal axis. Brain targets for E2's effects on anxiety and depression include the hippocampus and amygdala. Administration of E2, compared to vehicle, subcutaneously or to the hippocampus or amygdala of ovariectomized rats decreases anxiety and depressive behavior. Intracellular estrogen receptors (ERs) may be important for E2's anxiolytic and antidepressant-like effects. Administration of an ER antagonist to the hippocampus, but not amygdala, increases anxiety and depression behavior of naturally receptive female rats. Studies utilizing ER knockout mice or selective ER modulators suggest that ER-mediated effects of E2 on anxiety and depressive behavior may require ERbeta. In addition, the behavioral effects of E2 may involve membrane actions and/or changes in cell cycle processes involved in energy expenditure. Elucidating the mechanisms by which E2 affects anxiety and depression is important in order to enhance its therapeutic potential. It is particularly important to investigate the putative receptor mechanisms and brain targets for E2 to determine whether mood-enhancing effects of E2 can occur without deleterious proliferative effects in reproductive tissues.
Collapse
Affiliation(s)
- Alicia A Walf
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
| | - Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
- Department of Biological Sciences, The University at Albany-SUNY, Albany, NY, USA
- Center for Neuroscience Research, The University at Albany-SUNY, Albany, NY, USA
- Center for Life Science Research, The University at Albany-SUNY, Albany, NY, USA
| |
Collapse
|
14
|
Petralia SM, Jahagirdar V, Frye CA. Inhibiting biosynthesis and/or metabolism of progestins in the ventral tegmental area attenuates lordosis of rats in behavioural oestrus. J Neuroendocrinol 2005; 17:545-52. [PMID: 16101892 DOI: 10.1111/j.1365-2826.2005.01342.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the ventral tegmental area (VTA), lordosis of rats is facilitated by 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP). Central 3alpha,5alpha-THP results from metabolism of peripheral progesterone, from the ovaries and/or adrenals, by sequential enzymatic activity of 5alpha-reductase and 3alpha-hydroxysteroid oxidoreductase (3alpha-HSOR). In addition, in glial cells, cholesterol is converted into pregnenolone by the P450 side-chain cleavage enzyme (P450scc), which is then metabolized to progesterone by 3beta-hydroxysteroid dehydrogenase, and subsequently reduced to 3alpha,5alpha-THP. We hypothesize that, in the VTA, formation of 3alpha,5alpha-THP by both metabolism and biosynthesis is necessary for facilitation of lordosis of female rats. In Experiment 1, naturally-receptive rats received bilateral VTA infusions of a P450scc inhibitor, digitoxin (1 microg/side); a 5alpha-reductase inhibitor, finasteride (10 microg/side); digitoxin (1 microg/side)+finasteride (10 microg/side); or vehicle and were tested 3 h later for lordosis. In Experiment 2, the effects of VTA infusions of digitoxin, finasteride, digitoxin+finasteride, or vehicle on lordosis and midbrain and plasma 3alpha,5alpha-THP levels were examined. In Experiment 3, we investigated whether infusions of 3alpha,5alpha-THP to the VTA reinstated lordosis and midbrain 3alpha,5alpha-THP levels following administration of inhibitors. VTA infusions of digitoxin, finasteride, or digitoxin+finasteride, significantly and similarly reduced lordosis and midbrain, but not plasma 3alpha,5alpha-THP levels, compared to vehicle. Following receipt of inhibitor infusions, 3alpha,5alpha-THP to the VTA restored lordosis and midbrain 3alpha,5alpha-THP levels. These data suggest that, in the VTA, both central biosynthesis of progesterone and metabolism of progesterone (from central and/or peripheral sources) to 3alpha,5alpha-THP are important for mediating lordosis of rats.
Collapse
Affiliation(s)
- S M Petralia
- Department of Psychology, The University at Albany, SUNY, Albany, NY 12222, USA
| | | | | |
Collapse
|
15
|
Walf AA, Frye CA. Antianxiety and antidepressive behavior produced by physiological estradiol regimen may be modulated by hypothalamic-pituitary-adrenal axis activity. Neuropsychopharmacology 2005; 30:1288-301. [PMID: 15756306 DOI: 10.1038/sj.npp.1300708] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Variations in estradiol (E(2)) may influence expression of stress-related anxiety and depression symptoms among women. Effects of E(2) and stress on anxiety and depressive behavior were investigated using an animal model. E(2) was administered subcutaneously (0, 2, 5, 10, 20, 50 mug/rat) to ovariectomized rats 2 days before testing. In experiment 1, open field (anxiety), elevated plus maze (anxiety), or forced swim test (depressive) behavior was evaluated following 20 min of restraint or no such stressor. Rats administered 5 or 10 mug E(2), which produced physiological plasma E(2) concentrations, showed significantly less anxiety and depressive behavior and lower corticosterone levels compared to vehicle, lower, or higher E(2) dosages. Restraint stress prior to behavioral testing attenuated the antianxiety and antidepressive effects of 5 or 10 mug E(2). In experiment 2, effects of adrenalectomy or sham surgery and vehicle or corticosterone replacement in their drinking water on behavior and neuroendocrine measures of rats administered 0, 10, or 50 mug E(2) were examined. E(2), 10 mug, compared to vehicle or 50 mug, reduced anxiety and depressive behavior of sham and adrenalectomized rats administered the low dosage of corticosterone, but not vehicle or the high dosage of corticosterone, suggesting that there may be an optimal level of corticosterone necessary for E(2) to exert these effects. Together, these data suggest that E(2) may have dose-dependent effects on anxiety and depressive behavior of female rodents, which may depend on the tone of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Alicia A Walf
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
16
|
Frye CA, Walf AA. Hippocampal 3α,5α-THP may alter depressive behavior of pregnant and lactating rats. Pharmacol Biochem Behav 2004; 78:531-40. [PMID: 15251262 DOI: 10.1016/j.pbb.2004.03.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/17/2004] [Accepted: 03/29/2004] [Indexed: 10/26/2022]
Abstract
The 5alpha-reduced metabolite of progesterone (P), 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), may mediate progestins' effects to reduce depressive behavior of female rats in part through actions in the hippocampus. To investigate, forced swim test behavior and plasma and hippocampal progestin levels were assessed in groups of rats expected to differ in their 3alpha,5alpha-THP levels due to endogenous differences (pregnant and postpartum), administration of a 5alpha-reductase inhibitor (finasteride; 50 mg/kg sc), and/or gestational stress [prenatal stress (PNS)], an animal model of depression. Pregnant rats had higher plasma and hippocampal 3alpha,5alpha-THP levels and less depressive behavior (decreased immobility, increased struggling and swimming) in the forced swim test than did postpartum rats. Finasteride, compared to vehicle-administration, reduced plasma and hippocampal 3alpha,5alpha-THP levels and increased depressive behavior (increased immobility, decreased struggling and swimming). PNS was associated with lower hippocampal, but not plasma, 3alpha,5alpha-THP levels and increased swimming compared to that observed in control rats. Together, these data suggest that 3alpha,5alpha-THP in the hippocampus may mediate antidepressive behavior of female rats.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, Social Science 220, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | |
Collapse
|
17
|
Frye CA, Orecki ZA. Prenatal stress alters reproductive responses of rats in behavioral estrus and paced mating of hormone-primed rats. Horm Behav 2002; 42:472-83. [PMID: 12488113 DOI: 10.1006/hbeh.2002.1834] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult female offspring of dams exposed to gestational stress (prenatal stress, PNS) may show altered reproductive behavior, exploration in novel environments, and/or social interactions than do their non-PNS counterparts. These behavioral differences may be more readily observed in a seminatural, paced mating paradigm, in which females have greater control of their sexual contacts, than in a standard mating situation. Adult offspring of dams exposed to restraint and lights for 45 min on Gestational Days 14-20 (PNS) were compared with those not subjected to stress (non-PNS, control condition). The motor, reproductive, and sociosexual behaviors of hormone-primed (Experiment 1) or cycling adult offspring in behavioral estrus (Experiment 2) were examined following 20 min of restraint stress under bright lights (postnatal stress). Hormone-primed PNS rats displayed less motor behavior in a novel arena than did non-PNS rats. In a standard mating test, hormone-primed PNS females tended to be more aggressive toward the male than were non-PNS rats. In a seminatural mating situation, hormone-primed PNS females showed increased avoidance behavior, such as longer latencies to the initial intromission, greater return latencies following mounts and intromissions, and more exiting subsequent to mounts and intromissions, than did non-PNS rats. PNS rats in behavioral estrus had decreased incidence and intensity of lordosis, and fewer solicitation behaviors, in both standard or paced mating situations, in which latency to and number of mounts were also increased. Thus, hormone-primed PNS rats exposed to restraint showed more avoidance behaviors in paced mating situations, while cycling PNS rats in behavioral estrus had greater disruption of reproductive responses in standard or paced mating paradigms than did non-PNS control rats.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, University at Albany-SUNY, 1400 Washington Avenue, Albany, New York 12222, USA.
| | | |
Collapse
|