1
|
Farrington LA, Callaway PC, Vance HM, Baskevitch K, Lutz E, Warrier L, McIntyre TI, Budker R, Jagannathan P, Nankya F, Musinguzi K, Nalubega M, Sikyomu E, Naluwu K, Arinaitwe E, Dorsey G, Kamya MR, Feeney ME. Opsonized antigen activates Vδ2+ T cells via CD16/FCγRIIIa in individuals with chronic malaria exposure. PLoS Pathog 2020; 16:e1008997. [PMID: 33085728 PMCID: PMC7605717 DOI: 10.1371/journal.ppat.1008997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/02/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Vγ9Vδ2 T cells rapidly respond to phosphoantigens produced by Plasmodium falciparum in an innate-like manner, without prior antigen exposure or processing. Vδ2 T cells have been shown to inhibit parasite replication in vitro and are associated with protection from P. falciparum parasitemia in vivo. Although a marked expansion of Vδ2 T cells is seen after acute malaria infection in naïve individuals, repeated malaria causes Vδ2 T cells to decline both in frequency and in malaria-responsiveness, and to exhibit numerous transcriptional and phenotypic changes, including upregulation of the Fc receptor CD16. Here we investigate the functional role of CD16 on Vδ2 T cells in the immune response to malaria. We show that CD16+ Vδ2 T cells possess more cytolytic potential than their CD16- counterparts, and bear many of the hallmarks of mature NK cells, including KIR expression. Furthermore, we demonstrate that Vδ2 T cells from heavily malaria-exposed individuals are able to respond to opsonized P.falciparum-infected red blood cells through CD16, representing a second, distinct pathway by which Vδ2 T cells may contribute to anti-parasite effector functions. This response was independent of TCR engagement, as demonstrated by blockade of the phosphoantigen presenting molecule Butyrophilin 3A1. Together these results indicate that Vδ2 T cells in heavily malaria-exposed individuals retain the capacity for antimalarial effector function, and demonstrate their activation by opsonized parasite antigen. This represents a new role both for Vδ2 T cells and for opsonizing antibodies in parasite clearance, emphasizing cooperation between the cellular and humoral arms of the immune system.
Collapse
Affiliation(s)
- Lila A. Farrington
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Perri C. Callaway
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Infectious Disease and Immunity Graduate Group, University of California Berkeley, California, United States of America
| | - Hilary M. Vance
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Kayla Baskevitch
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Emma Lutz
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Lakshmi Warrier
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Tara I. McIntyre
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Rachel Budker
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | | | | | | | - Ester Sikyomu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Kate Naluwu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
2
|
Fonseca S, Pereira V, Lau C, Teixeira MDA, Bini-Antunes M, Lima M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells 2020; 9:cells9030729. [PMID: 32188103 PMCID: PMC7140678 DOI: 10.3390/cells9030729] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1. Despite many studies in pathological conditions, only a few have quantified the γδ Tc subsets in healthy adults, and a comprehensive review of the factors influencing its representation in the blood is missing. Here we quantified the total γδ Tc and the Vδ2/Vγ9 and Vδ1 Tc subsets in the blood from 30 healthy, Caucasian, Portuguese adults, we characterized their immunophenotype by 8-color flow cytometry, focusing in a few relevant Tc markers (CD3/TCR-γδ, CD5, CD8), and costimulatory (CD28), cytotoxic (CD16) and adhesion (CD56) molecules, and we examined the impacts of age and gender. Additionally, we reviewed the literature on the influences of race/ethnicity, age, gender, special periods of life, past infections, diet, medications and concomitant diseases on γδ Tc and their subsets. Given the multitude of factors influencing the γδ Tc repertoire and immunophenotype and the high variation observed, caution should be taken in interpreting “abnormal” γδ Tc values and repertoire deviations, and the clinical significance of small populations of “phenotypically abnormal” γδ Tc in the blood.
Collapse
Affiliation(s)
- Sónia Fonseca
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Vanessa Pereira
- Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E); 4434-502 Vila Nova de Gaia, Portugal;
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Maria dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Marika Bini-Antunes
- Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001Porto, Portugal;
| | - Margarida Lima
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
- Correspondence: ; Tel.: + 351-22-20-77-500
| |
Collapse
|
3
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Hviid L, Smith-Togobo C, Willcox BE. Human Vδ1 + T Cells in the Immune Response to Plasmodium falciparum Infection. Front Immunol 2019; 10:259. [PMID: 30837999 PMCID: PMC6382743 DOI: 10.3389/fimmu.2019.00259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/29/2019] [Indexed: 02/03/2023] Open
Abstract
Naturally acquired protective immunity to Plasmodium falciparum malaria is mainly antibody-mediated. However, other cells of the innate and adaptive immune system also play important roles. These include so-called unconventional T cells, which express a γδ T-cell receptor (TCR) rather than the αβ TCR expressed by the majority of T cells—the conventional T cells. The γδ T-cell compartment can be divided into distinct subsets. One expresses a TCR involving Vγ9 and Vδ2, while another major subset uses instead a TCR composed of Vδ1 paired with one of several types of γ chains. The former of these subsets uses a largely semi-invariant TCR repertoire and responds in an innate-like fashion to pyrophosphate antigens generated by various stressed host cells and infectious pathogens, including P. falciparum. In this short review, we focus instead on the Vδ1 subset, which appears to have a more adaptive immunobiology, but which has been much less studied in general and in malaria in particular. We discuss the evidence that Vδ1+ cells do indeed play a role in malaria and speculate on the function and specificity of this cell type, which is increasingly attracting the attention of immunologists.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Medical Parasitology, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Cecilia Smith-Togobo
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Deroost K, Langhorne J. Gamma/Delta T Cells and Their Role in Protection Against Malaria. Front Immunol 2018; 9:2973. [PMID: 30619330 PMCID: PMC6306408 DOI: 10.3389/fimmu.2018.02973] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
Whether and how γδT cells play a protective role in immunity against Plasmodium infection remain open questions. γδT cells expand in patients and mice infected with Plasmodium spp, and cytokine production and cytotoxic responses against blood-stage parasites are observed in vitro. Their expansion is associated with protective immunity induced by irradiated sporozoite immunization, and depletion of γδT cells in some mouse models of malaria excacerbates blood-stage infections. It is now clear that these cells can have many different functions, and data are emerging suggesting that in addition to having direct parasitocidal effects, they can regulate other immune cells during Plasmodium infections. Here we review some of the historic and more recent data on γδT cells, and in light of the new information on their potential protective roles we suggest that it is a good time to re-evaluate their activation requirements, specificity and function during malaria.
Collapse
|
6
|
Taniguchi T, Md Mannoor K, Nonaka D, Toma H, Li C, Narita M, Vanisaveth V, Kano S, Takahashi M, Watanabe H. A Unique Subset of γδ T Cells Expands and Produces IL-10 in Patients with Naturally Acquired Immunity against Falciparum Malaria. Front Microbiol 2017; 8:1288. [PMID: 28769886 PMCID: PMC5515829 DOI: 10.3389/fmicb.2017.01288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023] Open
Abstract
Although expansions in γδ T cell populations are known to occur in the peripheral blood of patients infected with Plasmodium falciparum, the role of these cells in people with naturally acquired immunity against P. falciparum who live in malaria-endemic areas is poorly understood. We used a cross-sectional survey to investigate the role of peripheral blood γδ T cells in people living in Lao People's Democratic Republic, a malaria-endemic area. We found that the proportion of non-Vγ9 γδ T cells was higher in non-hospitalized uncomplicated falciparum malaria patients (UMPs) from this region. Notably, we found that the non-Vγ9 γδ T cells in the peripheral blood of UMPs and negative controls from this region had the potential to expand and produce IL-10 and interferon-γ when cultured in the presence of IL-2 and/or crude P. falciparum antigens for 10 days. Furthermore, these cells were associated with plasma interleukin 10 (IL-10), which was elevated in UMPs. This is the first report demonstrating that, in UMPs living in a malaria-endemic area, a γδ T cell subset, the non-Vγ9 γδT cells, expands and produces IL-10. These results contribute to understanding of the mechanisms of naturally acquired immunity against P. falciparum.
Collapse
Affiliation(s)
- Tomoyo Taniguchi
- Department of Parasitology, Graduate School of Medicine, Gunma UniversityMaebashi, Japan
- Center for Medical Education, Graduate School of Medicine, Gunma UniversityMaebashi, Japan
- Immunobiology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the RyukyusNishihara, Japan
| | - Kaiissar Md Mannoor
- Department of Pathology, University of Maryland School of Medicine, BaltimoreMD, United States
| | - Daisuke Nonaka
- Department of Parasitology and Immunopathoetiology, Graduate School of Medicine, University of the RyukyusNishihara, Japan
| | - Hiromu Toma
- Department of Parasitology and Immunopathoetiology, Graduate School of Medicine, University of the RyukyusNishihara, Japan
| | - Changchun Li
- Department of Health Sciences, Trans-disciplinary Research Organization for Subtropics and Island Studies, University of the RyukyusNishihara, Japan
| | - Miwako Narita
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata UniversityNiigata, Japan
| | | | - Shigeyuki Kano
- Research Institute, National Center for Global Health and MedicineTokyo, Japan
| | - Masuhiro Takahashi
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata UniversityNiigata, Japan
| | - Hisami Watanabe
- Immunobiology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the RyukyusNishihara, Japan
- Infectious Diseases Research Center of Niigata University in Myanmar, Institute of Medicine and Dentistry, Niigata UniversityNiigata, Japan
| |
Collapse
|
7
|
Farrington LA, Jagannathan P, McIntyre TI, Vance HM, Bowen K, Boyle MJ, Nankya F, Wamala S, Auma A, Nalubega M, Sikyomu E, Naluwu K, Bigira V, Kapisi J, Dorsey G, Kamya MR, Feeney ME. Frequent Malaria Drives Progressive Vδ2 T-Cell Loss, Dysfunction, and CD16 Up-regulation During Early Childhood. J Infect Dis 2015; 213:1483-90. [PMID: 26667315 DOI: 10.1093/infdis/jiv600] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
γδ T cells expressing Vδ2 may be instrumental in the control of malaria, because they inhibit the replication of blood-stage parasites in vitro and expand during acute malaria infection. However, Vδ2 T-cell frequencies and function are lower among children with heavy prior malaria exposure. It remains unclear whether malaria itself is driving this loss. Here we measure Vδ2 T-cell frequency, cytokine production, and degranulation longitudinally in Ugandan children enrolled in a malaria chemoprevention trial from 6 to 36 months of age. We observed a progressive attenuation of the Vδ2 response only among children incurring high rates of malaria. Unresponsive Vδ2 T cells were marked by expression of CD16, which was elevated in the setting of high malaria transmission. Moreover, chemoprevention during early childhood prevented the development of dysfunctional Vδ2 T cells. These observations provide insight into the role of Vδ2 T cells in the immune response to chronic malaria.
Collapse
Affiliation(s)
| | | | - Tara I McIntyre
- Departments of Medicine, University of California San Francisco
| | - Hilary M Vance
- Departments of Medicine, University of California San Francisco
| | - Katherine Bowen
- Departments of Medicine, University of California San Francisco
| | - Michelle J Boyle
- Departments of Medicine, University of California San Francisco Center for Biomedical Research, The Burnet Institute, Melbourne, Victoria, Australia
| | - Felistas Nankya
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Samuel Wamala
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Ann Auma
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mayimuna Nalubega
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Esther Sikyomu
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kate Naluwu
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Victor Bigira
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - James Kapisi
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Departments of Medicine, University of California San Francisco
| | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Margaret E Feeney
- Departments of Medicine, University of California San Francisco Pediatrics, University of California San Francisco
| |
Collapse
|
8
|
Bank I, Marcu-Malina V. Quantitative peripheral blood perturbations of γδ T cells in human disease and their clinical implications. Clin Rev Allergy Immunol 2015; 47:311-33. [PMID: 24126758 DOI: 10.1007/s12016-013-8391-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human γδ T cells, which play innate and adaptive, protective as well as destructive, roles in the immune response, were discovered in 1986, but the clinical significance of alterations of the levels of these cells in the peripheral blood in human diseases has not been comprehensively reviewed. Here, we review patterns of easily measurable changes of this subset of T cells in peripheral blood from relevant publications in PubMed and their correlations with specific disease categories, specific diagnoses within disease categories, and prognostic outcomes. These collective data suggest that enumeration of γδ T cells and their subsets in the peripheral blood of patients could be a useful tool to evaluate diagnosis and prognosis in the clinical setting.
Collapse
Affiliation(s)
- Ilan Bank
- Department of Medicine F, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, 52621, Israel,
| | | |
Collapse
|
9
|
Schwartz E, Rosenthal E, Bank I. Gamma delta T cells in non-immune patients during primary schistosomal infection. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:56-61. [PMID: 25400925 PMCID: PMC4220667 DOI: 10.1002/iid3.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/05/2014] [Accepted: 03/26/2014] [Indexed: 12/30/2022]
Abstract
The mevalonate pathway is critical for the survival of Schistosoma. γδ T cells, a small subset of peripheral blood (PB) T cells, recognize low molecular weight phosphorylated antigens in the mevalonate pathway, which drive their expansion to exert protective and immunoregulatory effects. To evaluate their role in schistosomiasis, we measured γδ T cells in the PB of non-immune travelers who contracted Schistosoma hematobium or Schistosoma mansoni in Africa. The maximal level of γδ T-cells following infection was 5.78 ± 2.19% of the total T cells, versus 3.72 ± 3.15% in 16 healthy controls [P = 0.09] with no difference between S. hematobium and S. mansoni in this regard. However, among the nine patients in the cohort who presented with acute schistosomiasis syndrome (AS), the level (3.5 ± 1.9%) was significantly lower than in those who did not (8.6 ± 6.4%, P < 0.05), both before and after therapy. Furthermore, γδ T cells increased significantly in response to praziquantel therapy. In a patient with marked expansion of γδ T cells, most expressed the Vδ2 gene segment, a hallmark of cells responding to cognate antigens in the mevalonate pathways of the parasite or the human host. These results suggest an immunoregulatory role of antigen responsive γδ T cells in the clinical manifestations of early schistosomal infection.
Collapse
Affiliation(s)
- Eli Schwartz
- The Center for Geographical Medicine & Tropical Diseases, Chaim Sheba Medical Center Tel Hashomer, 52621, Israel
| | - Etti Rosenthal
- Institute of Hematology, Chaim Sheba Medical Center Ramat Gan, Israel
| | - Ilan Bank
- Department of Medicine F and Laboratory for Immunoregulation, Chaim Sheba Medical Center Ramat Gan, Israel
| |
Collapse
|
10
|
Cairo C, Longinaker N, Cappelli G, Leke RGF, Ondo MM, Djokam R, Fogako J, Leke RJ, Sagnia B, Sosso S, Colizzi V, Pauza CD. Cord blood Vγ2Vδ2 T cells provide a molecular marker for the influence of pregnancy-associated malaria on neonatal immunity. J Infect Dis 2013; 209:1653-62. [PMID: 24325967 DOI: 10.1093/infdis/jit802] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Plasmodium falciparum placental infection primes the fetal immune system and alters infant immunity. Mechanisms leading to these outcomes are not completely understood. We focused on Vγ2Vδ2 cells, which are part of the immune response against many pathogens, including P. falciparum. These unconventional lymphocytes respond directly to small, nonpeptidic antigens, independent of major histocompatibility complex presentation. We wondered whether placental malaria, which may increase fetal exposure to P. falciparum metabolites, triggers a response by neonatal Vγ2Vδ2 lymphocytes that can be a marker for the extent of fetal exposure to malarial antigens. METHODS Cord blood mononuclear cells were collected from 15 neonates born to mothers with P. falciparum infection during pregnancy (8 with placental malaria) and 25 unexposed neonates. Vγ2Vδ2 cell phenotype, repertoire, and proliferative responses were compared between newborns exposed and those unexposed to P. falciparum. RESULTS Placental malaria-exposed neonates had increased proportions of central memory Vγ2Vδ2 cells in cord blood, with an altered Vγ2 chain repertoire ex vivo and after stimulation. CONCLUSION Our results suggest that placental malaria affects the phenotype and repertoire of neonatal Vγ2Vδ2 lymphocytes. Placental malaria may lower the capacity for subsequent Vγ2Vδ2 cell responses and impair the natural resistance to infectious diseases or the response to pediatric vaccination.
Collapse
|
11
|
Ness-Schwickerath KJ, Morita CT. Regulation and function of IL-17A- and IL-22-producing γδ T cells. Cell Mol Life Sci 2011; 68:2371-90. [PMID: 21573786 PMCID: PMC3152582 DOI: 10.1007/s00018-011-0700-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/21/2022]
Abstract
The regulation of IL-17A and IL-22 production differs between human and murine γδ T cells. We find that human γδ T cells expressing Vγ2Vδ2 T cell receptors are peripherally polarized to produce IL-17A or IL-22, much like CD4 αβ Th17 T cells. This requires IL-6, IL-1β, and TGF-β, whereas expansion and maintenance requires IL-23, IL-1β, and TGF-β. In contrast, IL-17A and IL-22 production by murine γδ T cells is innately programmed during thymic ontogeny but requires IL-23 and IL-1β for maintenance. Murine γδ cells producing IL-17A and IL-22 play important roles in microbial, autoimmune, and inflammatory responses. However, the roles played by human IL-17A- and IL-22-producing γδ T cells are less clear but are also likely to be important. These observations highlight differences between humans and murine γδ T cells and underscore the importance of IL-17A- and IL-22-producing γδ T cells.
Collapse
Affiliation(s)
- Kristin J. Ness-Schwickerath
- Division of Immunology, Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Craig T. Morita
- Division of Immunology, Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| |
Collapse
|
12
|
Pilsczek FH. T Cells Are Associated with Different Infections and Are V 1+ or V 2+ T Cells. Clin Infect Dis 2007; 44:1011-2; author reply 1012. [PMID: 17342659 DOI: 10.1086/512375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
13
|
Morita CT, Jin C, Sarikonda G, Wang H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 2007; 215:59-76. [PMID: 17291279 DOI: 10.1111/j.1600-065x.2006.00479.x] [Citation(s) in RCA: 347] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human Vgamma2Vdelta2 T cells play important roles in mediating immunity against microbial pathogens and have potent anti-tumor activity. Vgamma2Vdelta2 T cells recognize the pyrophosphorylated isoprenoid intermediates (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the foreign 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, and isopentenyl pyrophosphate (IPP), an intermediate in the self-mevalonate pathway. Infection with bacteria and protozoa using the MEP pathway leads to the rapid expansion of Vgamma2Vdelta2 T cells to very high numbers through preferential recognition of HMBPP. Activated Vgamma2Vdelta2 T cells produce proinflammatory cytokines and chemokines, kill infected cells, secrete growth factors for epithelial cells, and present antigens to alphabeta T cells. Vgamma2Vdelta2 T cells can also recognize high levels of IPP in certain tumors and in cells treated with pharmacological agents, such as bisphosphonates and alkylamines, that block farnesyl pyrophosphate synthase. Activated Vgamma2Vdelta2 T cells are able to kill most tumor cells because of recognition by T-cell receptor and natural killer receptors. The ubiquitous nature of the antigens converts essentially all Vgamma2Vdelta2 T cells to memory cells at an early age. Thus, primary infections with HMBPP-producing bacteria are perceived by Vgamma2Vdelta2 T cells as a repeat infection. Extensive efforts are underway to harness these cells to treat a variety of cancers and to provide microbial immunity.
Collapse
Affiliation(s)
- Craig T Morita
- Division of Rheumatology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
14
|
Li H, Deetz CO, Zapata JC, Cairo C, Hebbeler AM, Propp N, Salvato MS, Shao Y, Pauza CD. Vaccinia virus inhibits T cell receptor-dependent responses by human gammadelta T cells. J Infect Dis 2006; 195:37-45. [PMID: 17152007 PMCID: PMC2600876 DOI: 10.1086/509823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/29/2006] [Indexed: 11/03/2022] Open
Abstract
Vaccinia virus (VV) is an effective vaccine and vector but has evolved multiple mechanisms for evading host immunity. We characterized the interactions of VV (TianTan and New York City Board of Health strains) with human gammadelta T cells because of the role they play in immune control of this virus. Exposure to VV failed to trigger proliferative responses in gammadelta T cells from unprimed individuals, but it was an unexpected finding that VV blocked responses to model antigens by the Vgamma2Vdelta2 T cell subset. Infectious or ultraviolet light-inactivated VV inhibited proliferative Vgamma2Vdelta2 T cell responses to phosphoantigens and tumor cells, prevented cytolysis of Daudi B cells, and reduced cytokine production. Inhibiting Vgamma2Vdelta2 T cells may be a mechanism for evading host immunity and increasing VV virulence. Increased VV replication or expression in the absence of gammadelta T cell responses might contribute to its potency as a vaccine against poxvirus and recombinant antigens.
Collapse
MESH Headings
- Humans
- Leukocytes, Mononuclear
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Receptors, Immunologic/genetics
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/virology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Vaccinia/genetics
- Vaccinia/immunology
- Vaccinia/virology
- Vaccinia virus/immunology
- Vaccinia virus/pathogenicity
Collapse
Affiliation(s)
- Haishan Li
- Institute of Human Virology, University of Maryland, Baltimore
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Carl O. Deetz
- Institute of Human Virology, University of Maryland, Baltimore
- Departments of Molecular and Cellular Biology, University of Maryland, Baltimore
| | | | - Cristiana Cairo
- Institute of Human Virology, University of Maryland, Baltimore
| | - Andrew M. Hebbeler
- Institute of Human Virology, University of Maryland, Baltimore
- Departments of Medical Microbiology and Immunology, University of Maryland, Baltimore
| | - Nadia Propp
- Institute of Human Virology, University of Maryland, Baltimore
| | | | - Yiming Shao
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - C. David Pauza
- Institute of Human Virology, University of Maryland, Baltimore
| |
Collapse
|
15
|
Rojas RE, Chervenak KA, Thomas J, Morrow J, Nshuti L, Zalwango S, Mugerwa RD, Thiel BA, Whalen CC, Boom WH. Vdelta2+ gammadelta T cell function in Mycobacterium tuberculosis- and HIV-1-positive patients in the United States and Uganda: application of a whole-blood assay. J Infect Dis 2005; 192:1806-14. [PMID: 16235181 PMCID: PMC2869092 DOI: 10.1086/497146] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 06/06/2005] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Vgamma9(+)Vdelta2(+) gammadelta T cells (Vdelta 2(+) T cells) are activated by Mycobacterium tuberculosis and secrete interferon (IFN)-gamma. Vdelta 2(+) T cells recognize phosphoantigens, such as bromohydrin pyrophosphate (BrHPP), and link innate and adaptive immunity. METHODS A whole-blood assay was developed that used IFN-gamma secretion in response to BrHPP as a measurement of Vdelta2(+) T cell function. RESULTS Peak IFN-gamma levels were detected after stimulating whole blood with BrHPP for 7-9 days. IFN- gamma production in whole blood in response to BrHPP paralleled IFN-gamma production and Vdelta2(+) T cell expansion of peripheral-blood mononuclear cells. The assay was used to evaluate Vdelta2(+) T cell function in subjects in the United States (n = 24) and Uganda (n = 178) who were or were not infected with M. tuberculosis and/or human immunodeficiency virus (HIV) type 1. When 50 micromol/L BrHPP was used, 100% of healthy subjects produced IFN-gamma. The Vdelta2(+) T cell response was independent of the tuberculin skin test response. In Uganda, Vdelta2(+) T cell responses were decreased in patients with tuberculosis (n = 73) compared with responses in household contacts (n = 105). HIV-1-positive household contacts had lower responses than did HIV-1-negative household contacts. HIV-1-positive patients with tuberculosis had the lowest V delta 2(+) T cell responses. CONCLUSIONS Tuberculosis and HIV-1 infection are associated with decreased Velta2(+) T cell function. Decreased Vdelta2(+) T cell function may contribute to increased risk for tuberculosis in HIV-1-positive patients.
Collapse
Affiliation(s)
- Roxana E Rojas
- Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Battistini L, Caccamo N, Borsellino G, Meraviglia S, Angelini DF, Dieli F, Cencioni MT, Salerno A. Homing and memory patterns of human γδ T cells in physiopathological situations. Microbes Infect 2005; 7:510-7. [PMID: 15804491 DOI: 10.1016/j.micinf.2004.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 12/14/2004] [Indexed: 12/24/2022]
Abstract
Vgamma9Vdelta2 are a heterogeneous population of T cells and comprise distinct naive, memory and effector populations that can be distinguished on the basis of surface marker expression and effector functions. We review here these recently studied features of Vgamma9Vdelta2 T lymphocyte biology and the roles they play in infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Alfano M, Poli G. Role of cytokines and chemokines in the regulation of innate immunity and HIV infection. Mol Immunol 2005; 42:161-82. [PMID: 15488606 DOI: 10.1016/j.molimm.2004.06.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The earliest defense against microbial infection is represented by the responses of the innate (or natural) immune system, that also profoundly regulates the adaptive (or acquired) T- and B-cell immune responses. Activation of the innate immune system is primed by microbial invasion in response to conserved structures present in large groups of microorganisms (LPS, peptidoglycan, double-stranded RNA), and is finely tuned by different cell types (including dendritic cells, macrophages, natural killer cells, natural killer T cells, and gammadelta T cells). In addition, several soluble factors (complement components, defensins, mannose-binding lectins, interferons, cytokines and chemokines) can play a major role in the regulation of both the innate and adaptive immunity. In this review, we will briefly overview the regulation of some cellular subsets of the innate immune system particularly involved in human immunodeficiency virus (HIV) infection and then focus our attention on those cytokines and chemokines whose levels of expression are more profoundly affected by HIV infection and that, conversely, can modulate virus infection and replication.
Collapse
Affiliation(s)
- Massimo Alfano
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, P2-P3 Laboratories, DIBIT, Via Olgettina no. 58, 20132 Milano, Italy
| | | |
Collapse
|
18
|
Abstract
Vgamma2Vdelta2(+) T cells exist only in primates and constitute the majority of circulating human gammadelta T cells. Recent studies have demonstrated that this unique gammadelta T cell subpopulation can be a component of adaptive immune responses and contribute to anti-microbial immunity to infections.
Collapse
Affiliation(s)
- Zheng W Chen
- Tuberculosis Research Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RE 113/213C, Boston MA 02115, USA.
| | | |
Collapse
|
19
|
Martini F, Paglia MG, Montesano C, Enders PJ, Gentile M, Pauza CD, Gioia C, Colizzi V, Narciso P, Pucillo LP, Poccia F. V gamma 9V delta 2 T-cell anergy and complementarity-determining region 3-specific depletion during paroxysm of nonendemic malaria infection. Infect Immun 2003; 71:2945-9. [PMID: 12704176 PMCID: PMC153242 DOI: 10.1128/iai.71.5.2945-2949.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
V gamma 9V delta 2 T lymphocytes strongly respond to phosphoantigens from Plasmodium parasites. Thus, we analyzed the changes in V gamma 9V delta 2 T-cell function and repertoire during the paroxysm phase of nonendemic malaria infection. During malaria paroxysm, V gamma 9V delta 2 T cells were early activated but rapidly became anergic and finally loose J gamma 1.2 V gamma 9 complementarity-determining region 3 transcripts.
Collapse
Affiliation(s)
- Federico Martini
- Laboratory of Clinical Pathology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S., Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kroca M, Tärnvik A, Sjöstedt A. The proportion of circulating gammadelta T cells increases after the first week of onset of tularaemia and remains elevated for more than a year. Clin Exp Immunol 2000; 120:280-4. [PMID: 10792377 PMCID: PMC1905656 DOI: 10.1046/j.1365-2249.2000.01215.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In various human intracellular bacterial diseases, an increase of the proportion of circulating Vgamma9Vdelta2 T cells has been observed. The prevalence of the finding among infected subjects and the time course of the elevation remain to be investigated. In the present study, comprising blood samples from a large number of cases of ulceroglandular tularaemia, the percentage of Vgamma9Vdelta2 T cells within the first week of onset of disease (5.3 +/- 0.7% (mean +/- s.e.m.)) did not differ from that of control subjects (5.3 +/- 0. 8%). Thereafter, percentages increased rapidly and within the interval of 8-40 days mean levels were > 20% (P < 0.001). Of 45 individuals sampled within 3 months of onset, 42 showed a percentage of Vgamma9Vdelta2 T cells of > 10%. Significantly increased levels were still recorded at 18 months (13.8 +/- 2.4%; P < 0.05) but not at 24 months (10.2 +/- 2.1%; P > 0.10). Thus, a consistent increase of circulating Vgamma9Vdelta2 T cells was demonstrated in tularaemia. The initial delay and the prolonged course of elevation may suggest a role in immunoregulation and/or immunological memory. Furthermore, the percentage of gammadelta T cells expressing tumour necrosis factor-alpha in response to phorbol myristate acetate was decreased during the first week and up to 40 days after onset, possibly reflecting the modulation of an inflammatory response.
Collapse
Affiliation(s)
- M Kroca
- Department of Clinical Microbiology, Infectious Diseases and Clinical Bacteriology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
21
|
Morita CT, Mariuzza RA, Brenner MB. Antigen recognition by human gamma delta T cells: pattern recognition by the adaptive immune system. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2000; 22:191-217. [PMID: 11116953 DOI: 10.1007/s002810000042] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
MESH Headings
- Animals
- Antigen Presentation
- Antigens, Bacterial/immunology
- Antigens, CD1/immunology
- Antigens, Protozoan/immunology
- Hemiterpenes
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunity, Active
- Immunity, Cellular
- Lipids/immunology
- Major Histocompatibility Complex/immunology
- Organophosphorus Compounds/immunology
- Organophosphorus Compounds/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- C T Morita
- Division of Rheumatology, Department of Internal Medicine, Interdisciplinary Group in Immunology, EMRB 340F, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
22
|
Morita CT, Lee HK, Leslie DS, Tanaka Y, Bukowski JF, Märker-Hermann E. Recognition of nonpeptide prenyl pyrophosphate antigens by human γδ T cells. Microbes Infect 1999. [DOI: 10.1016/s1286-4579(99)80032-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Boismenu R, Havran WL. Gammadelta T cells in host defense and epithelial cell biology. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1998; 86:121-33. [PMID: 9473374 DOI: 10.1006/clin.1997.4468] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have demonstrated increased numbers of gammadelta T cells in a variety of human infectious as well as noninfectious diseases. In some cases gammadelta T cells could be shown to destroy infected or transformed cells. Advances in the identification of ligands recognized by gammadelta T cells and the development of animal model systems to study these cells in vivo should overcome some of the major obstacles currently preventing a better understanding of gammadelta T cell function in immune responses. As we gain this knowledge it may become possible to design therapeutic strategies exploiting unique properties of gammadelta T cells to promote more effective immunity.
Collapse
Affiliation(s)
- R Boismenu
- The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|