1
|
Kocsis B, Pittman-Polletta B. Neuropsychiatric consequences of COVID-19 related olfactory dysfunction: could non-olfactory cortical-bound inputs from damaged olfactory bulb also contribute to cognitive impairment? Front Neurosci 2023; 17:1164042. [PMID: 37425004 PMCID: PMC10323442 DOI: 10.3389/fnins.2023.1164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | |
Collapse
|
2
|
Cansler HL, in ’t Zandt EE, Carlson KS, Khan WT, Ma M, Wesson DW. Organization and engagement of a prefrontal-olfactory network during olfactory selective attention. Cereb Cortex 2023; 33:1504-1526. [PMID: 35511680 PMCID: PMC9930634 DOI: 10.1093/cercor/bhac153] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Sensory perception is profoundly shaped by attention. Attending to an odor strongly regulates if and how it is perceived - yet the brain systems involved in this process are unknown. Here we report integration of the medial prefrontal cortex (mPFC), a collection of brain regions integral to attention, with the olfactory system in the context of selective attention to odors. METHODS First, we used tracing methods to establish the tubular striatum (TuS, also known as the olfactory tubercle) as the primary olfactory region to receive direct mPFC input in rats. Next, we recorded (i) local field potentials from the olfactory bulb (OB), mPFC, and TuS, or (ii) sniffing, while rats completed an olfactory selective attention task. RESULTS Gamma power and coupling of gamma oscillations with theta phase were consistently high as rats flexibly switched their attention to odors. Beta and theta synchrony between mPFC and olfactory regions were elevated as rats switched their attention to odors. Finally, we found that sniffing was consistent despite shifting attentional demands, suggesting that the mPFC-OB theta coherence is independent of changes in active sampling. CONCLUSIONS Together, these findings begin to define an olfactory attention network wherein mPFC activity, as well as that within olfactory regions, are coordinated based upon attentional states.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Estelle E in ’t Zandt
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Kaitlin S Carlson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Waseh T Khan
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 110 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, United States
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| |
Collapse
|
3
|
Staszelis A, Mofleh R, Kocsis B. The effect of ketamine on delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb. Brain Res 2022; 1791:147996. [PMID: 35779582 PMCID: PMC10038235 DOI: 10.1016/j.brainres.2022.147996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/22/2022]
Abstract
Respiratory rhythm plays an important role in cognitive functions in rodents, as well as in humans. Respiratory related oscillation (RRO), generated in the olfactory bulb (OB), is an extrinsic rhythm imposed on brain networks. In rats, RRO can couple with intrinsic brain oscillations at theta frequency during sniffing and in the delta range outside of such episodes. Disruption of gamma synchronization in cortical networks by ketamine is well established whereas its effects on slow rhythms are poorly understood. We found in this study, that RRO in prefrontal cortex (PFC) and hippocampus (HC) remains present after ketamine injection, even on the background of highly unstable respiratory rate, co-incident with "psychotic-like" behavior and abnormal cortical gamma activity. Guided by the timing of ketamine-induced gamma reaction, pairwise coherences between structures exhibiting RRO and their correlation structure was statistically tested in 5-min segments post-injection (0-25 min) and during recovery (1, 5, 10 h). As in control, RRO in the OB was firmly followed by cortical-bound OB exits directed toward PFC but not to HC. RRO between these structures, however, significantly correlated with OB-HC but not with OB-PFC. The only exception to this general observation was observed during a short transitional period, immediately after injection. Ketamine has a remarkable history in psychiatric research. Modeling chronic NMDA-hypofunction using acute NMDA-receptor blockade shifted the primary focus of schizophrenia research to dysfunctional cortical microcircuitry and the recent discovery of ketamine's antidepressant actions extended investigations to neurophysiology of anxiety and depression. Cortical oscillations are relevant for understanding their pathomechanism.
Collapse
Affiliation(s)
| | - Rola Mofleh
- Dept Psychiatry at BIDMC, Harvard Medical School, USA
| | - Bernat Kocsis
- Dept Psychiatry at BIDMC, Harvard Medical School, USA.
| |
Collapse
|
4
|
Zhou G, Olofsson JK, Koubeissi MZ, Menelaou G, Rosenow J, Schuele SU, Xu P, Voss JL, Lane G, Zelano C. Human hippocampal connectivity is stronger in olfaction than other sensory systems. Prog Neurobiol 2021; 201:102027. [PMID: 33640412 DOI: 10.1016/j.pneurobio.2021.102027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
During mammalian evolution, primate neocortex expanded, shifting hippocampal functional networks away from primary sensory cortices, towards association cortices. Reflecting this rerouting, human resting hippocampal functional networks preferentially include higher association cortices, while those in rodents retained primary sensory cortices. Research on human visual, auditory and somatosensory systems shows evidence of this rerouting. Olfaction, however, is unique among sensory systems in its relative structural conservation throughout mammalian evolution, and it is unknown whether human primary olfactory cortex was subject to the same rerouting. We combined functional neuroimaging and intracranial electrophysiology to directly compare hippocampal functional networks across human sensory systems. We show that human primary olfactory cortex-including the anterior olfactory nucleus, olfactory tubercle and piriform cortex-has stronger functional connectivity with hippocampal networks at rest, compared to other sensory systems. This suggests that unlike other sensory systems, olfactory-hippocampal connectivity may have been retained in mammalian evolution. We further show that olfactory-hippocampal connectivity oscillates with nasal breathing. Our findings suggest olfaction might provide insight into how memory and cognition depend on hippocampal interactions.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonas K Olofsson
- Department of Psychology, Stockholm University, Stockholm, Sweden; Emotional Brain Institute, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephan U Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China; Guangdong-Hong Kong-Macao Greater Bay Area Research Institute for Neuroscience and Neurotechnologies, Kwun Tong, Hong Kong, China
| | - Joel L Voss
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb. J Neurosci 2020; 40:6189-6206. [PMID: 32605937 DOI: 10.1523/jneurosci.0769-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023] Open
Abstract
Delineation of functional synaptic connections is fundamental to understanding sensory processing. Olfactory signals are synaptically processed initially in the olfactory bulb (OB) where neural circuits are formed among inhibitory interneurons and the output neurons mitral cells (MCs) and tufted cells (TCs). TCs function in parallel with but differently from MCs and are further classified into multiple subpopulations based on their anatomic and functional heterogeneities. Here, we combined optogenetics with electrophysiology to characterize the synaptic transmission from a subpopulation of TCs, which exclusively express the neuropeptide cholecystokinin (CCK), to two groups of spatially segregated GABAergic interneurons, granule cells (GCs) and glomerular interneurons in mice of both sexes with four major findings. First, CCKergic TCs receive direct input from the olfactory sensory neurons (OSNs). This monosynaptic transmission exhibits high fidelity in response to repetitive OSN input. Second, CCKergic TCs drive GCs through two functionally distinct types of monosynaptic connections: (1) dendrodendritic synapses onto GC distal dendrites via their lateral dendrites in the superficial external plexiform layer (EPL); (2) axodendritic synapses onto GC proximal dendrites via their axon collaterals or terminals in the internal plexiform layer (IPL) on both sides of each bulb. Third, CCKergic TCs monosynaptically excite two subpopulations of inhibitory glomerular interneurons via dendrodendritic synapses. Finally, sniff-like patterned activation of CCKergic TCs induces robust frequency-dependent depression of the dendrodendritic synapses but facilitation of the axodendritic synapses. These results demonstrated important roles of the CCKergic TCs in olfactory processing by orchestrating OB inhibitory activities.SIGNIFICANCE STATEMENT Neuronal morphology and organization in the olfactory bulb (OB) have been extensively studied, however, the functional operation of neuronal interactions is not fully understood. We combined optogenetic and electrophysiological approaches to investigate the functional operation of synaptic connections between a specific population of excitatory output neuron and inhibitory interneurons in the OB. We found that these output neurons formed distinct types of synapses with two populations of spatially segregated interneurons. The functional characteristics of these synapses vary significantly depending on the presynaptic compartments so that these output neurons can dynamically rebalance inhibitory feedback or feedforward to other neurons types in the OB in response to dynamic rhythmic inputs.
Collapse
|
6
|
Heck DH, Kozma R, Kay LM. The rhythm of memory: how breathing shapes memory function. J Neurophysiol 2019; 122:563-571. [PMID: 31215344 DOI: 10.1152/jn.00200.2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mammalian olfactory bulb displays a prominent respiratory rhythm, which is linked to the sniff cycle and is driven by sensory input from olfactory receptors in the nasal sensory epithelium. In rats and mice, respiratory frequencies occupy the same band as the hippocampal θ-rhythm, which has been shown to be a key player in memory processes. Hippocampal and olfactory bulb rhythms were previously found to be uncorrelated except in specific odor-contingency learning circumstances. However, many recent electrophysiological studies in both rodents and humans reveal a surprising cycle-by-cycle influence of nasal respiration on neuronal activity throughout much of the cerebral cortex beyond the olfactory system, including the prefrontal cortex, hippocampus, and subcortical structures. In addition, respiratory phase has been shown to influence higher-frequency oscillations associated with cognitive functions, including attention and memory, such as the power of γ-rhythms and the timing of hippocampal sharp wave ripples. These new findings support respiration's role in cognitive function, which is supported by studies in human subjects, in which nasal respiration has been linked to memory processes. Here, we review recent reports from human and rodent experiments that link respiration to the modulation of memory function and the neurophysiological processes involved in memory in rodents and humans. We argue that respiratory influence on the neuronal activity of two key memory structures, the hippocampus and prefrontal cortex, provides a potential neuronal mechanism behind respiratory modulation of memory.
Collapse
Affiliation(s)
- Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center
| | - Robert Kozma
- Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee.,Department of Computer Sciences, University of Massachusetts Amherst, Massachusetts
| | - Leslie M Kay
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
7
|
Mankin EA, Thurley K, Chenani A, Haas OV, Debs L, Henke J, Galinato M, Leutgeb JK, Leutgeb S, Leibold C. The hippocampal code for space in Mongolian gerbils. Hippocampus 2019; 29:787-801. [PMID: 30746805 DOI: 10.1002/hipo.23075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 11/11/2022]
Abstract
Large parts of our knowledge about the physiology of the hippocampus in the intact brain are derived from studies in rats and mice. While many of those findings fit well to the limited data available from humans and primates, there are also marked differences, for example, in hippocampal oscillation frequencies and in the persistence of theta oscillations. To test whether the distinct sensory specializations of the visual and auditory system of primates play a key role in explaining these differences, we recorded basic hippocampal physiological properties in Mongolian gerbils, a rodent species with high visual acuity, and good low-frequency hearing, similar to humans. We found that gerbils show only minor differences to rats regarding hippocampal place field activity, theta properties (frequency, persistence, phase precession, theta compression), and sharp wave ripple events. The only major difference between rats and gerbils was a considerably higher degree of head direction selectivity of gerbil place fields, which may be explained by their visual system being able to better resolve distant cues. Thus, differences in sensory specializations between rodent species only affect hippocampal circuit dynamics to a minor extent, which implies that differences to other mammalian lineages, such as bats and primates, cannot be solely explained by specialization in the auditory or visual system.
Collapse
Affiliation(s)
- Emily A Mankin
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California.,Department of Neurosurgery, David Geffen School of Medicine and Semel Institute For Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Kay Thurley
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Alireza Chenani
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Olivia V Haas
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Luca Debs
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California
| | - Josephine Henke
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Melissa Galinato
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California.,Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California
| | - Christian Leibold
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| |
Collapse
|
8
|
Grimaud J, Murthy VN. How to monitor breathing in laboratory rodents: a review of the current methods. J Neurophysiol 2018; 120:624-632. [PMID: 29790839 DOI: 10.1152/jn.00708.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Accurately measuring respiration in laboratory rodents is essential for many fields of research, including olfactory neuroscience, social behavior, learning and memory, and respiratory physiology. However, choosing the right technique to monitor respiration can be tricky, given the many criteria to take into account: reliability, precision, and invasiveness, to name a few. This review aims to assist experimenters in choosing the technique that will best fit their needs, by surveying the available tools, discussing their strengths and weaknesses, and offering suggestions for future improvements.
Collapse
Affiliation(s)
- Julien Grimaud
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University , Cambridge, Massachusetts
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University , Cambridge, Massachusetts
| |
Collapse
|
9
|
Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb. J Neurosci 2018; 38:2189-2206. [PMID: 29374137 DOI: 10.1523/jneurosci.0714-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 12/17/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
In mammals, olfactory sensation depends on inhalation, which controls activation of sensory neurons and temporal patterning of central activity. Odor representations by mitral and tufted (MT) cells, the main output from the olfactory bulb (OB), reflect sensory input as well as excitation and inhibition from OB circuits, which may change as sniff frequency increases. To test the impact of sampling frequency on MT cell odor responses, we obtained whole-cell recordings from MT cells in anesthetized male and female mice while varying inhalation frequency via tracheotomy, allowing comparison of inhalation-linked responses across cells. We characterized frequency effects on MT cell responses during inhalation of air and odorants using inhalation pulses and also "playback" of sniffing recorded from awake mice. Inhalation-linked changes in membrane potential were well predicted across frequency from linear convolution of 1 Hz responses; and, as frequency increased, near-identical temporal responses could emerge from depolarizing, hyperpolarizing, or multiphasic MT responses. However, net excitation was not well predicted from 1 Hz responses and varied substantially across MT cells, with some cells increasing and others decreasing in spike rate. As a result, sustained odorant sampling at higher frequencies led to increasing decorrelation of the MT cell population response pattern over time. Bulk activation of sensory inputs by optogenetic stimulation affected MT cells more uniformly across frequency, suggesting that frequency-dependent decorrelation emerges from odor-specific patterns of activity in the OB network. These results suggest that sampling behavior alone can reformat early sensory representations, possibly to optimize sensory perception during repeated sampling.SIGNIFICANCE STATEMENT Olfactory sensation in mammals depends on inhalation, which increases in frequency during active sampling of olfactory stimuli. We asked how inhalation frequency can shape the neural coding of odor information by recording from projection neurons of the olfactory bulb while artificially varying odor sampling frequency in the anesthetized mouse. We found that sampling an odor at higher frequencies led to diverse changes in net responsiveness, as measured by action potential output, that were not predicted from low-frequency responses. These changes led to a reorganization of the pattern of neural activity evoked by a given odorant that occurred preferentially during sustained, high-frequency inhalation. These results point to a novel mechanism for modulating early sensory representations solely as a function of sampling behavior.
Collapse
|
10
|
Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function. J Neurosci 2017; 36:12448-12467. [PMID: 27927961 DOI: 10.1523/jneurosci.2586-16.2016] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/24/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022] Open
Abstract
The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2-12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16-0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. SIGNIFICANCE STATEMENT Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions.
Collapse
|
11
|
Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice. Neural Plast 2016; 2016:4570831. [PMID: 27247803 PMCID: PMC4877487 DOI: 10.1155/2016/4570831] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022] Open
Abstract
It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.
Collapse
|
12
|
Abstract
UNLABELLED We have recently described a slow oscillation in the hippocampus of urethane-anesthetized mice, which couples to nasal respiration and is clearly distinct from co-occurring theta oscillations. Here we set out to investigate whether such type of patterned network activity, which we named "hippocampal respiration rhythm" (HRR), also occurs in awake mice. In freely moving mice, instantaneous respiration rate is extremely variable, and respiration is superimposed by bouts of sniffing. To reduce this variability, we clamped the behavior of the animal to either awake immobility or treadmill running by using a head-fixed setup while simultaneously recording respiration and field potentials from the olfactory bulb (OB) and hippocampus. Head-fixed animals often exhibited long periods of steady respiration rate during either immobility or running, which allowed for spectral and coherence analyses with a sufficient frequency resolution to sort apart respiration and theta activities. We could thus demonstrate the existence of HRR in awake animals, namely, a respiration-entrained slow rhythm with highest amplitude at the dentate gyrus. HRR was most prominent during immobility and running with respiration rates slower than theta oscillations. Nevertheless, HRR could also be faster than theta. Discharges of juxtacellularly recorded cells in CA1 and dentate gyrus were modulated by HRR and theta oscillations. Granger directionality analysis revealed that HRR is caused by the OB and that theta oscillations in OB are caused by the hippocampus. Our results suggest that respiration-coupled oscillations aid the exchange of information between olfactory and memory networks. SIGNIFICANCE STATEMENT Olfaction is a major sense in rodents. In consequence, the olfactory bulb (OB) should be able to transmit information to downstream regions. Here we report potential mechanisms underlying such information transfer. We demonstrate the existence of a respiration-entrained rhythm in the hippocampus of awake mice. Frequencies of the hippocampal respiration rhythm (HRR) overlap with classical theta oscillations, but both rhythms are clearly distinct. HRR is most prominent in the dentate gyrus, especially when respiration is slower than theta frequency. Discharges of neurons in CA1 and dentate gyrus are modulated by both HRR and theta. Directionality analysis shows that HRR is caused by the OB. Our results suggest that respiration-coupled oscillations aid the exchange of information between olfactory and memory networks.
Collapse
|
13
|
Kleinfeld D, Deschênes M, Ulanovsky N. Whisking, Sniffing, and the Hippocampal θ-Rhythm: A Tale of Two Oscillators. PLoS Biol 2016; 14:e1002385. [PMID: 26890361 PMCID: PMC4758648 DOI: 10.1371/journal.pbio.1002385] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hippocampus has unique access to neuronal activity across all of the neocortex. Yet an unanswered question is how the transfer of information between these structures is gated. One hypothesis involves temporal-locking of activity in the neocortex with that in the hippocampus. New data from the Matthew E. Diamond laboratory shows that the rhythmic neuronal activity that accompanies vibrissa-based sensation, in rats, transiently locks to ongoing hippocampal θ-rhythmic activity during the sensory-gathering epoch of a discrimination task. This result complements past studies on the locking of sniffing and the θ-rhythm as well as the relation of sniffing and whisking. An overarching possibility is that the preBötzinger inspiration oscillator, which paces whisking, can selectively lock with the θ-rhythm to traffic sensorimotor information between the rat's neocortex and hippocampus.
Collapse
Affiliation(s)
- David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
- Section of Neurobiology, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, Canada
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination. PLoS Biol 2016; 14:e1002384. [PMID: 26890254 PMCID: PMC4758608 DOI: 10.1371/journal.pbio.1002384] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 01/15/2016] [Indexed: 12/25/2022] Open
Abstract
Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5–12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats—whisker motion, hippocampal local field potential (LFP), and barrel cortex unit firing—during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task). Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers. In rats, the rhythms of whisking and hippocampal theta become coherent precisely when rats approach and explore a texture; higher coherence enhances the identification of texture. Many regions of the mammalian brain exhibit oscillations in electrical activity. In rats, the 5–12 Hz theta rhythm is present in the hippocampus and in diverse areas of the cerebral cortex. What is the function of this rhythm? One proposal is that the exchange of information between two brain regions is facilitated whenever their respective oscillations are coherent. To test this idea, we ask whether theta oscillation in the hippocampus, a crucial memory structure located deep in the brain, is coherent with the rat’s rhythm of moving its whiskers and sensing the physical environment with them. We acquired hippocampal local field potentials (LFP)—extracellular voltage fluctuations within a small volume—while rats classified textures using cyclical whisker motion (“whisking”). At the moment of texture palpation, coherence between whisking and hippocampal theta oscillations increased by nearly 50%. At the same time, neuronal firing in sensory cortex became more phase-locked to the hippocampal theta oscillations. Rats identified the texture more rapidly and with lower error likelihood on trials characterized by an increase in hippocampal theta-whisking coherence during texture palpation. These results suggest that, as rats collect touch signals, enhanced coherence between the whisking rhythm, sensory cortex, and hippocampal LFP facilitates the integration of sensory information into memory and decision-making centers in the brain.
Collapse
|
15
|
Abstract
This review covers the spatial and temporal rules governing induction of hippocampal long-term potentiation (LTP) by theta-burst stimulation. Induction of LTP in field CA1 by high frequency stimulation bursts that resemble the burst discharges (complex-spikes) of hippocampal pyramidal neurons involves a multiple-step mechanism. A single burst is insufficient for LTP induction because it evokes both excitatory and inhibitory currents that partially cancel and limit postsynaptic depolarization. Bursts repeated at the frequency (~5 Hz) of the endogenous theta rhythm induce maximal LTP, primarily because this frequency disables feed-forward inhibition and allows sufficient postsynaptic depolarization to activate voltage-sensitive NMDA receptors. The disinhibitory process, referred to as "priming", involves presynaptic GABA autoreceptors that inhibit GABA release. Activation of NMDA receptors allows a calcium flux into dendritic spines that serves as the proximal trigger for LTP. We include new data showing that theta-burst stimulation is more efficient than other forms of stimulation for LTP induction. In addition, we demonstrate that associative interactions between synapses activated during theta-bursts are limited to major dendritic domains since such interactions occur within apical or basal dendritic trees but not between them. We review evidence that recordings of electrophysiological responses during theta burst stimulation can help to determine if experimental manipulations that affect LTP do so by affecting events antecedent to the induction process, such as NMDA receptor activation, or downstream signaling cascades that result from postsynaptic calcium fluxes. Finally, we argue that theta-burst LTP represents a minimal model for stable, non-decremental LTP that is more sensitive to a variety of experimental manipulations than is LTP induced by other stimulation paradigms. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- John Larson
- Psychiatric Institute, Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL 60612, United States.
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, Department of Cell and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, United States
| |
Collapse
|
16
|
Carey RM, Sherwood WE, Shipley MT, Borisyuk A, Wachowiak M. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb. J Neurophysiol 2015; 113:3112-29. [PMID: 25717156 DOI: 10.1152/jn.00394.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/20/2015] [Indexed: 11/22/2022] Open
Abstract
Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Michael T Shipley
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Alla Borisyuk
- Department of Mathematics, University of Utah, Salt Lake City, Utah
| | - Matt Wachowiak
- Department of Neurobiology and Anatomy and Brain Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Sirotin YB, Costa ME, Laplagne DA. Rodent ultrasonic vocalizations are bound to active sniffing behavior. Front Behav Neurosci 2014; 8:399. [PMID: 25477796 PMCID: PMC4235378 DOI: 10.3389/fnbeh.2014.00399] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/30/2014] [Indexed: 11/13/2022] Open
Abstract
During rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5-10 Hz). During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings. We used automated analysis to examine the relationship between breathing patterns and vocalization over long time periods. Rat ultrasonic vocalizations (USVs, "50 kHz") were emitted within stretches of active sniffing (5-10 Hz) and were largely absent during periods of passive breathing (1-4 Hz). Because ultrasound was tightly linked to the exhalation phase, the sniffing cycle segmented vocal production into discrete calls and imposed its theta rhythmicity on their timing. In turn, calls briefly prolonged exhalations, causing an immediate drop in sniffing rate. Similar results were obtained in mice. Our results show that ultrasonic vocalizations are an integral part of the rhythmic orofacial behavioral ensemble. This complex behavioral program is thus involved not only in active sensing but also in the temporal structuring of social communication signals. Many other social signals of mammals, including monkey calls and human speech, show structure in the theta range. Our work points to a mechanism for such structuring in rodent ultrasonic vocalizations.
Collapse
Affiliation(s)
- Yevgeniy B Sirotin
- Shelby White and Leon Levy Center for Brain, Mind and Behavior, The Rockefeller University, New York NY, USA
| | - Martín Elias Costa
- Integrative Neuroscience Lab, Department of Physics, University of Buenos Aires Buenos Aires, Argentina
| | - Diego A Laplagne
- Shelby White and Leon Levy Center for Brain, Mind and Behavior, The Rockefeller University, New York NY, USA ; Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
18
|
Yanovsky Y, Ciatipis M, Draguhn A, Tort AB, Brankačk J. Slow oscillations in the mouse hippocampus entrained by nasal respiration. J Neurosci 2014; 34:5949-64. [PMID: 24760854 PMCID: PMC6608283 DOI: 10.1523/jneurosci.5287-13.2014] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 11/21/2022] Open
Abstract
Different types of network oscillations occur in different behavioral, cognitive, or vigilance states. The rodent hippocampus expresses prominent θ oscillations at frequencies between 4 and 12 Hz, which are superimposed by phase-coupled γ oscillations (30-100 Hz). These patterns entrain multineuronal activity over large distances and have been implicated in sensory information processing and memory formation. Here we report a new type of oscillation at near-θ frequencies (2-4 Hz) in the hippocampus of urethane-anesthetized mice. The rhythm is highly coherent with nasal respiration and with rhythmic field potentials in the olfactory bulb: hence, we called it hippocampal respiration-induced oscillations. Despite the similarity in frequency range, several features distinguish this pattern from locally generated θ oscillations: hippocampal respiration-induced oscillations have a unique laminar amplitude profile, are resistant to atropine, couple differently to γ oscillations, and are abolished when nasal airflow is bypassed by tracheotomy. Hippocampal neurons are entrained by both the respiration-induced rhythm and concurrent θ oscillations, suggesting a direct interaction between endogenous activity in the hippocampus and nasal respiratory inputs. Our results demonstrate that nasal respiration strongly modulates hippocampal network activity in mice, providing a long-range synchronizing signal between olfactory and hippocampal networks.
Collapse
Affiliation(s)
- Yevgenij Yanovsky
- Institute for Physiology and Pathophysiology, University Heidelberg, 69120 Heidelberg, Germany
| | - Mareva Ciatipis
- Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany, and
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, University Heidelberg, 69120 Heidelberg, Germany
| | - Adriano B.L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Rio Grande do Norte, Brazil
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, University Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
McCollum J, Larson J, Otto T, Schottler F, Granger R, Lynch G. Short-latency single unit processing in olfactory cortex. J Cogn Neurosci 2013; 3:293-9. [PMID: 23964843 DOI: 10.1162/jocn.1991.3.3.293] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract Single-unit recording of layer II-III cells in olfactory (piriform) cortex was performed on awake, unrestrained rats actively engaged in learning novel odors in an olfactory discrimination task. Five of the 67 cells tested had very brief monophasic action potentials and high spontaneous firing rates (30-80 Hz); it is suggested that these units were interneurons. The remainder of the neurons had broader spikes and did not discharge for prolonged periods. Thirty-nine percent of the broad spike cells responded to at least one and usually more of the odors presented to the rats during either of the first two trials on which that odor was present, but, in most cases, these responses occurred only very infrequently over the course of subsequent trials. Six percent of the broad-spike group, how ever, continued firing robustly to a single odor but not to others. From these results it appears that most cells in piriform cortex do not respond to most odors, i.e., coding is exceedingly sparse. A subgroup of the predominant broad-spike cell type does react to several odors but this response drops out with repeated exposure, perhaps because of training. However, a few members of this class (a small fraction of the total cell population) do go on responding to a particular odor, thus exhibiting a form of odor specificity. The results are discussed with regard to predictions from recently developed models of the olfactory cortex.
Collapse
|
20
|
Chang EH, Huerta PT. Neurophysiological correlates of object recognition in the dorsal subiculum. Front Behav Neurosci 2012; 6:46. [PMID: 22833721 PMCID: PMC3400129 DOI: 10.3389/fnbeh.2012.00046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/04/2012] [Indexed: 11/29/2022] Open
Abstract
The medial temporal lobe (MTL) encompasses a network of interconnected cortical areas that is considered the neural substrate for some types of memory, such as spatial, episodic, recognition, and associative memory. Within the MTL, the subiculum has been well characterized in terms of its connectivity and structure, but its functional role remains elusive. A long-held view is that the subiculum is mainly involved in spatial encoding because it exhibits spatially selective firing and receives prominent projections from the CA1 field, which is an essential substrate for spatial memory. However, the dorsal subiculum (DS) is also reciprocally connected to the perirhinal and postrhinal cortices, which are critically involved in recognition memory. This connectivity pattern suggests that DS might encode not only spatial signals but also recognition signals. Here, we examined this hypothesis by recording with multi-electrodes in DS and CA1 of freely behaving mice, as they performed the novel object recognition (NOR) task. Analysis of network oscillations revealed that theta power was significantly higher in DS when mice explored novel objects as compared to familiar objects and that this theta modulation was absent in CA1. We also found significant differences in coherence between DS and CA1, in the theta and gamma bands, depending on whether mice examined objects or engaged in spatial exploration. Furthermore, single-unit recordings revealed that DS cells did not exhibit phase-locked firing to theta and differed from CA1 place cells in that they had multiple peaks of spatially selective firing. We also detected DS units that were responsive specifically to novel object exploration, indicating that a subset of DS neurons were tuned to novelty during the NOR task. We have thus identified clear neurophysiological correlates for recognition within the DS, at the network and single-unit levels, strongly suggesting that it participates in encoding recognition-related signals.
Collapse
Affiliation(s)
- Eric H. Chang
- Laboratory of Immune and Neural Networks, Center for Biomedical Science, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, ManhassetNY, USA
| | - Patricio T. Huerta
- Laboratory of Immune and Neural Networks, Center for Biomedical Science, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, ManhassetNY, USA
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, ManhassetNY, USA
| |
Collapse
|
21
|
Abstract
Sensation is an active process involving the sampling and central processing of external stimuli selectively in space and time. Olfaction in particular depends strongly on active sensing due to the fact that-at least in mammals-inhalation of air into the nasal cavity is required for odor detection. This seemingly simple first step in odor sensation profoundly shapes nearly all aspects of olfactory system function, from the distribution of odorant receptors to the functional organization of central processing to the perception of odors. The dependence of olfaction on inhalation also allows for profound modulation of olfactory processing by changes in odor sampling strategies in coordination with attentional state and sensory demands. This review discusses the role of active sensing in shaping olfactory system function at multiple levels and draws parallels with other sensory modalities to highlight the importance of an active sensing perspective in understanding how sensory systems work in the behaving animal.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Physiology and Brain Institute, University of Utah, Salt Lake City, UT 84103, USA.
| |
Collapse
|
22
|
|
23
|
|
24
|
|
25
|
|
26
|
|
27
|
EEG desynchronization is associated with cellular events that are prerequisites for active behavioral states. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00010037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
|
29
|
Abstract
AbstractIt is traditionally believed that cerebral activation (the presence of low voltage fast electrical activity in the neocortex and rhythmical slow activity in the hippocampus) is correlated with arousal, while deactivation (the presence of large amplitude irregular slow waves or spindles in both the neocortex and the hippocampus) is correlated with sleep or coma. However, since there are many exceptions, these generalizations have only limited validity. Activated patterns occur in normal sleep (active or paradoxical sleep) and during states of anesthesia and coma. Deactivated patterns occur, at times, during normal waking, or during behavior in awake animals treated with atropinic drugs. Also, the fact that patterns characteristic of sleep, arousal, and waking behavior continue in decorticate animals indicates that reticulo-cortical mechanisms are not essential for these aspects of behavior.These puzzles have been largely resolved by recent research indicating that there are two different kinds of input from the reticular activating system to the hippocampus and neocortex. One input is probably cholinergic; it may play a role in stimulus control of behavior. The second input is noncholinergic and appears to be related to motor activity; movement-related input to the neocortex may be dependent on a trace amine.Reticulo-cortical systems are not related to arousal in the traditional sense, but may play a role in the control of adaptive behavior by influencing the activity of the cerebral cortex, which in turn exerts control over subcortical circuits that co-ordinate muscle activity to produce behavior.
Collapse
|
30
|
|
31
|
Carey RM, Verhagen JV, Wesson DW, Pírez N, Wachowiak M. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. J Neurophysiol 2008; 101:1073-88. [PMID: 19091924 DOI: 10.1152/jn.90902.2008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dynamics of sensory input to the nervous system play a critical role in shaping higher-level processing. In the olfactory system, the dynamics of input from olfactory receptor neurons (ORNs) are poorly characterized and depend on multiple factors, including respiration-driven airflow through the nasal cavity, odorant sorption kinetics, receptor-ligand interactions between odorant and receptor, and the electrophysiological properties of ORNs. Here, we provide a detailed characterization of the temporal organization of ORN input to the mammalian olfactory bulb (OB) during natural respiration, using calcium imaging to monitor ORN input to the OB in awake, head-fixed rats expressing odor-guided behaviors. We report several key findings. First, across a population of homotypic ORNs, each inhalation of odorant evokes a burst of action potentials having a rise time of about 80 ms and a duration of about 100 ms. This rise time indicates a relatively slow, progressive increase in ORN activation as odorant flows through the nasal cavity. Second, the dynamics of ORN input differ among glomeruli and for different odorants and concentrations, but remain reliable across successive inhalations. Third, inhalation alone (in the absence of odorant) evokes ORN input to a significant fraction of OB glomeruli. Finally, high-frequency sniffing of odorant strongly reduces the temporal coupling between ORN inputs and the respiratory cycle. These results suggest that the dynamics of sensory input to the olfactory system may play a role in coding odor information and that, in the awake animal, strategies for processing odor information may change as a function of sampling behavior.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
32
|
Wesson DW, Verhagen JV, Wachowiak M. Why sniff fast? The relationship between sniff frequency, odor discrimination, and receptor neuron activation in the rat. J Neurophysiol 2008; 101:1089-102. [PMID: 19052108 DOI: 10.1152/jn.90981.2008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many mammals display brief bouts of high-frequency (4-10 Hz) sniffing when sampling odors. Given this, high-frequency sniffing is thought to play an important role in odor information processing. Here, we asked what role rapid sampling behavior plays in odor coding and odor discrimination by monitoring sniffing during performance of discrimination tasks under different paradigms and across different levels of difficulty and by imaging olfactory receptor neuron (ORN) input to the olfactory bulb (OB) during behavior. To eliminate confounds of locomotion and object approach, all experiments were performed in head-fixed rats. Rats showed individual differences in sniffing strategies that emerged during discrimination learning, with some rats showing brief bouts of rapid sniffing on odorant onset and others showing little or no change in sniff frequency. All rats performed with high accuracy, indicating that rapid sniffing is not necessary for odor discrimination. Sniffing strategies remained unchanged even when task difficulty was increased. In the imaging experiments, rapid sniff bouts did not alter the magnitude of odorant-evoked inputs compared with trials in which rapid sniffing was not expressed. Furthermore, rapid sniff bouts typically began before detectable activation of ORNs and ended immediately afterward. Thus rapid sniffing did not enable multiple samples of an odorant before decision-making. These results suggest that the major functional contribution of rapid sniffing to odor discrimination performance is to enable the animal to acquire the stimulus more quickly once it is available rather than to directly influence the low-level neural processes underlying odor perception.
Collapse
|
33
|
Abstract
To gain insight into which parameters of neural activity are important in shaping the perception of odors, we combined a behavioral measure of odor perception with optical imaging of odor representations at the level of receptor neuron input to the rat olfactory bulb. Instead of the typical test of an animal's ability to discriminate two familiar odorants by exhibiting an operant response, we used a spontaneously expressed response to a novel odorant-exploratory sniffing-as a measure of odor perception. This assay allowed us to measure the speed with which rats perform spontaneous odor discriminations. With this paradigm, rats discriminated and began responding to a novel odorant in as little as 140 ms. This time is comparable to that measured in earlier studies using operant behavioral readouts after extensive training. In a subset of these trials, we simultaneously imaged receptor neuron input to the dorsal olfactory bulb with near-millisecond temporal resolution as the animal sampled and then responded to the novel odorant. The imaging data revealed that the bulk of the discrimination time can be attributed to the peripheral events underlying odorant detection: receptor input arrives at the olfactory bulb 100-150 ms after inhalation begins, leaving only 50-100 ms for central processing and response initiation. In most trials, odor discrimination had occurred even before the initial barrage of receptor neuron firing had ceased and before spatial maps of activity across glomeruli had fully developed. These results suggest a coding strategy in which the earliest-activated glomeruli play a major role in the initial perception of odor quality, and place constraints on coding and processing schemes based on simple changes in spike rate.
Collapse
|
34
|
Wesson DW, Donahou TN, Johnson MO, Wachowiak M. Sniffing behavior of mice during performance in odor-guided tasks. Chem Senses 2008; 33:581-96. [PMID: 18534995 DOI: 10.1093/chemse/bjn029] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sniffing, a rhythmic inhalation and exhalation of air through the nose, is a behavior thought to play a critical role in shaping how odor information is represented and processed by the nervous system. Although the mouse has become a prominent model for studying olfaction, little is known about sniffing behavior in mice. Here, we characterized mouse sniffing behavior by measuring intranasal pressure transients in behaving mice. Sniffing was monitored during unstructured exploratory behavior and during performance of 3 commonly used olfactory paradigms: a habituation/dishabituation task, a sand digging-based discrimination task, and a nose poke-based discrimination task. We found that respiration frequencies in quiescent mice ranged from 3 to 5 Hz--higher than that reported for rats. During exploration, sniff frequency increased up to approximately 12 Hz and was highly dynamic, with rapid changes in frequency, amplitude, and waveform. Sniffing behavior varied strongly between tasks as well as for different behavioral epochs of each task. For example, mice performing the digging-based task showed little increase in sniff frequency prior to digging, whereas mice performing a nose poke-based task showed robust increases. Mice showed large increases in sniff frequency prior to reward delivery in all tasks. Mice also showed increases in sniff frequency when nose poking in a nonodor-guided task. These results show that mouse sniffing behavior is highly dynamic, varies with behavioral context, and is strongly modulated by olfactory as well as nonolfactory events.
Collapse
Affiliation(s)
- Daniel W Wesson
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
35
|
Simonyan K, Saad ZS, Loucks TMJ, Poletto CJ, Ludlow CL. Functional neuroanatomy of human voluntary cough and sniff production. Neuroimage 2007; 37:401-9. [PMID: 17574873 PMCID: PMC2018653 DOI: 10.1016/j.neuroimage.2007.05.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/06/2007] [Accepted: 05/11/2007] [Indexed: 02/06/2023] Open
Abstract
Cough and sniff are both spontaneous respiratory behaviors that can be initiated voluntarily in humans. Disturbances of cough may be life threatening, while inability to sniff impairs the sense of smell in neurological patients. Cortical mechanisms of voluntary cough and sniff production have been predicted to exist; however, the localization and function of supramedullary areas responsible for these behaviors are poorly understood. We used functional magnetic resonance imaging to identify the central control of voluntary cough and sniff compared with breathing. We determined that both voluntary cough and sniff require a widespread pattern of sensorimotor activation along the Sylvian fissure convergent with voluntary breathing. Task-specific activation occurred in a pontomesencephalic region during voluntary coughing and in the hippocampus and piriform cortex during voluntary sniffing. Identification of the localization of cortical activation for cough control in humans may help potential drug development to target these regions in patients with chronic cough. Understanding the sensorimotor sniff control mechanisms may provide a new view on the cerebral functional reorganization of olfactory control in patients with neurological disorders.
Collapse
Affiliation(s)
- Kristina Simonyan
- Laryngeal and Speech Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 5D38, Bethesda, MD 20814-1416, USA.
| | | | | | | | | |
Collapse
|
36
|
Verhagen JV, Wesson DW, Netoff TI, White JA, Wachowiak M. Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nat Neurosci 2007; 10:631-9. [PMID: 17450136 DOI: 10.1038/nn1892] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/14/2007] [Indexed: 11/09/2022]
Abstract
Most sensory stimuli are actively sampled, yet the role of sampling behavior in shaping sensory codes is poorly understood. Mammals sample odors by sniffing, a complex behavior that controls odorant access to receptor neurons. Whether sniffing shapes the neural code for odors remains unclear. We addressed this question by imaging receptor input to the olfactory bulb of awake rats performing odor discriminations that elicited different sniffing behaviors. High-frequency sniffing of an odorant attenuated inputs encoding that odorant, whereas lower sniff frequencies caused little attenuation. Odorants encountered later in a sniff bout were encoded as the combination of that odorant and the background odorant during low-frequency sniffing, but were encoded as the difference between the two odorants during high-frequency sniffing. Thus, sniffing controls an adaptive filter for detecting changes in the odor landscape. These data suggest an unexpected functional role for sniffing and show that sensory codes can be transformed by sampling behavior alone.
Collapse
Affiliation(s)
- Justus V Verhagen
- Department of Biology, Boston University, 24 Cummington Street, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
37
|
Berg RW, Whitmer D, Kleinfeld D. Exploratory whisking by rat is not phase locked to the hippocampal theta rhythm. J Neurosci 2006; 26:6518-22. [PMID: 16775139 PMCID: PMC6674030 DOI: 10.1523/jneurosci.0190-06.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rat has a strong 6-9 Hz rhythm of electrical activity in the hippocampus, known as the theta rhythm. Exploratory whisking, i.e., the rhythmic movement of the rat's vibrissas to acquire tactile information, occurs within the same frequency range as the theta rhythm and provides a model system to examine the relationship between theta rhythm and active sensory movements. In particular, it has been postulated that these two rhythms are phase locked as a means to synchronize sensory and hippocampal processing. We tested this hypothesis in rats trained to whisk in air. Theta activity was measured via field electrodes in the hippocampus, and whisking was measured via the mystacial electromyogram. We calculated the spectral coherence between these two signals as a means to quantify the extent of phase locking. First, we found that the fraction of epochs with high coherence is not significantly greater than that expected by chance (seven of eight animals and as a population average). Second, we found that the trial-averaged coherence is low (coherence, < 0.1) and, as an average across all animals, statistically insignificant. We further asked whether the strength of the theta rhythm correlated with that of whisking, independent of the lack of cycle-by-cycle coherence. We observe that the correlation is weak and insignificant (six of eight animals and as a population average). We conclude that there is no relationship between the whisking and theta rhythms, at least when animals whisk in air.
Collapse
Affiliation(s)
- Rune W Berg
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
38
|
Abstract
The act of sniffing increases the air velocity and changes the duration of airflow in the nose. It is not yet clear how these changes interact with the intrinsic timing within the olfactory bulb, but this is a matter of current research activity. An action of sniffing in generating a high velocity that alters the sorption of odorants onto the lining of the nasal cavity is expected from the established work on odorant properties and sorption in the frog nose. Recent work indicates that the receptor properties in the olfactory epithelium and olfactory bulb are correlated with the receptor gene expression zones. The responses in both the epithelium and the olfactory bulb are predictable to a considerable extent by the hydrophobicity of odorants. Furthermore, receptor expression in both rodent and salamander nose interacts with the shapes of the nasal cavity to place the receptor sensitivity to odorants in optimal places according to the aerodynamic properties of the nose.
Collapse
Affiliation(s)
- John W Scott
- Department of Cell Biology, Emory University, 405N Whitehead Biomedical Research Center, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Abstract
In this review, we use data obtained primarily from humans to argue that sniffs are not merely a stimulus carrier but are rather a central component of the olfactory percept. We argue that sniffs 1) are necessary for the olfactory percept, 2) affect odorant intensity perception and identity perception, 3) drive activity in olfactory cortex, 4) are rapidly modulated in an odorant-dependent fashion by a dedicated olfactomotor system, and 5) are sufficient to generate an olfactory percept of some sort even in the absence of odor.
Collapse
Affiliation(s)
- Joel Mainland
- Helen Wills Neuroscience Institute and Department of Psychology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
40
|
Bensafi M, Pouliot S, Sobel N. Odorant-specific patterns of sniffing during imagery distinguish 'bad' and 'good' olfactory imagers. Chem Senses 2005; 30:521-9. [PMID: 16030076 DOI: 10.1093/chemse/bji045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are large individual differences in the self-reported ability to form vivid olfactory mental imagery. Based on such self-reports, subjects have been classified as 'bad' or 'good' imagers. The present study examined whether a differential strategy in re-enacting the olfactomotor response during imagery may explain the dissociation between 'bad' and 'good' olfactory imagers. As previously reported, odor imagery was accompanied by sniffing. Although 'bad' and 'good' olfactory imagers did not differ in their overall sniffing volume, they used different strategies when re-enacting the motor component of olfaction during imagery. Particularly, as in real perception, 'good' but not 'bad' imagers generated bigger sniffs when imagining a pleasant smell compared with an unpleasant smell (P<0.02). Furthermore, preventing sniffing significantly hampered mental imagery of pleasant odors in 'good' but not 'bad' imagers (P<0.03). Taken together, these results suggest (i) the validity of the dissociation between 'bad' and 'good' olfactory imagers as revealed by self-report; (ii) that sniffing may be a causal factor in the creation of olfactory imagery; and (iii) that sniff measurements may serve as a reliable non-verbal tool in exploring individual differences in odor imagery.
Collapse
Affiliation(s)
- M Bensafi
- Laboratoire de Neurosciences et Systèmes Sensoriels, CNRS UMR 5020, Université Claude Bernard Lyon 1, Lyon cedex 07, France.
| | | | | |
Collapse
|
41
|
Abstract
Performance and cognitive effort in humans have recently been related to amplitude and multisite coherence of alpha (7-12 Hz) and theta (4-7 Hz) band electroencephalogram oscillations. I examined this phenomenon in rats by using theta band oscillations of the local field potential to signify sniffing as a sensorimotor process. Olfactory bulb (OB) theta oscillations are coherent with those in the dorsal hippocampus (HPC) during odor sniffing in a two-odor olfactory discrimination task. Coherence is restricted to the high-frequency theta band (6-12 Hz) associated with directed sniffing in the OB and type 1 theta in the HPC. Coherence and performance fluctuate on a time scale of several minutes. Coherence magnitude is positively correlated with performance in the two-odor condition but not in extended runs of single odor conditional-stimulus-positive trials. Simultaneous with enhanced OB-HPC theta band coherence during odor sniffing is a significant decrease in lateral entorhinal cortex (EC)-HPC and OB-EC coherence, suggesting that linkage of the olfactory and hippocampal theta rhythms is not through the synaptic relay from OB to HPC in the lateral EC. OB-HPC coupling at the sniffing frequency is proposed as a mechanism underlying olfactory sensorimotor effort as a cognitive process.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, Institute for Mind and Biology, University of Chicago, 940 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Buzsáki G. Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 2005; 15:827-40. [PMID: 16149082 DOI: 10.1002/hipo.20113] [Citation(s) in RCA: 562] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Five key topics have been reverberating in hippocampal-entorhinal cortex (EC) research over the past five decades: episodic and semantic memory, path integration ("dead reckoning") and landmark ("map") navigation, and theta oscillation. We suggest that the systematic relations between single cell discharge and the activity of neuronal ensembles reflected in local field theta oscillations provide a useful insight into the relationship among these terms. In rats trained to run in direction-guided (1-dimensional) tasks, hippocampal cell assemblies discharge sequentially, with different assemblies active on opposite runs, i.e., place cells are unidirectional. Such tasks do not require map representation and are formally identical with learning sequentially occurring items in an episode. Hebbian plasticity, acting within the temporal window of the theta cycle, converts the travel distances into synaptic strengths between the sequentially activated and unidirectionally connected assemblies. In contrast, place representations by hippocampal neurons in 2-dimensional environments are typically omnidirectional, characteristic of a map. Generation of a map requires exploration, essentially a dead reckoning behavior. We suggest that omnidirectional navigation through the same places (junctions) during exploration gives rise to omnidirectional place cells and, consequently, maps free of temporal context. Analogously, multiple crossings of common junction(s) of episodes convert the common junction(s) into context-free or semantic memory. Theta oscillation can hence be conceived as the navigation rhythm through both physical and mnemonic space, facilitating the formation of maps and episodic/semantic memories.
Collapse
Affiliation(s)
- György Buzsáki
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, 07102, USA.
| |
Collapse
|
43
|
Johnson BN, Mainland JD, Sobel N. Rapid olfactory processing implicates subcortical control of an olfactomotor system. J Neurophysiol 2003; 90:1084-94. [PMID: 12711718 DOI: 10.1152/jn.00115.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sniffs are modulated in response to odor content. Higher concentrations of odor induce lesser-volume sniffs. This phenomenon implicates a neural feedback mechanism that measures sensory input (odor concentration) and modulates motor output (sniffing) accordingly. Here we used air-dilution olfactometry to probe the time course of this olfactomotor mechanism. A stainless-steel computer-controlled olfactometer, equipped with mass flow controllers, temperature and humidity control, and on-line photo-ionization detection, was coupled to a highly sensitive pneumatotachograph that measured nasal flow. The olfactometer was used to generate four ascending concentrations of the odorants propionic acid and phenethyl alcohol. Sniff volume was inversely related to odor concentration (P > 0.0001). Sniffs were uniform and concentration independent for the initial 150 ms but acquired a concentration-dependent flowrate as early as 160 ms following sniff onset for propionic acid (P > 0.05) and 260 ms for phenethyl alcohol (P > 0.05). Considering that odorant transduction takes around 150 ms and odorant-induced cortical evoked potentials have latencies of around 300 ms, the rapid motor adjustments measured here suggest that olfactomotor sniff feedback control is subcortical and may rely on neural mechanisms similar to those that modulate eye movements to accommodate vision and ear movements to accommodate audition.
Collapse
Affiliation(s)
- Bradley N Johnson
- Joint Graduate Program in Bioengineering, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
44
|
Abstract
oscillations in the rat hippocampus have been implicated in sensorimotor integration (Bland, 1986), especially during exploratory and wayfinding behavior. We propose that human cortical activity coordinates sensory information with a motor plan to guide wayfinding behavior to known goal locations. To test this hypothesis, we analyzed invasive recordings from epileptic patients while they performed a spatially immersive, virtual taxi driver task. Consistent with this hypothesis, we found oscillations during both exploratory search and goal-seeking behavior and, in particular, during virtual movement, when sensory information and motor planning were both in flux, compared with periods of self-initiated stillness. oscillations had different topographic and spectral characteristics during searching than during goal-seeking, suggesting that different cortical networks exhibit depending on which cognitive functions are driving behavior (spatial learning during exploration vs orienting to a learned representation during goal-seeking). In contrast, oscillations in the beta band appeared to be related to simple motor planning, likely a variant of the Rolandic mu rhythm. These findings suggest that human cortical oscillations act to coordinate sensory and motor brain activity in various brain regions to facilitate exploratory learning and navigational planning.
Collapse
|
45
|
Caplan JB, Madsen JR, Raghavachari S, Kahana MJ. Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. J Neurophysiol 2001; 86:368-80. [PMID: 11431517 DOI: 10.1152/jn.2001.86.1.368] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examine how oscillations in the intracranial electroencephalogram (iEEG) relate to human maze learning. Theta- band activity (4-12 Hz in rodents; 4-8 Hz in humans) plays a significant role in memory function in rodents and in humans. Recording intracranially in humans, we have reported task-related, theta-band rhythmic activity in the raw trace during virtual maze learning and during a nonspatial working memory task. Here we analyze oscillations during virtual maze learning across a much broader range of frequencies and analyze their relationship to two task variables relevant to learning. We describe a new algorithm for detecting oscillatory episodes that takes advantage of the high signal-to-noise ratio and high temporal resolution of the iEEG. Accounting for the background power spectrum of the iEEG, the algorithm allows us to directly compare levels of oscillatory activity across frequencies within the 2- to 45-Hz band. We report that while episodes of oscillatory activity are found at various frequencies, most of the rhythmic activity during virtual maze learning occurs within the theta band. Theta oscillations are more prevalent when the task is made more difficult (manipulation of maze length). However, these oscillations do not tend to covary significantly with decision time, a good index of encoding and retrieval operations. In contrast, lower- and higher-frequency oscillations do covary with this variable. These results suggest that while human cortically recorded theta might play a role in encoding, the overall levels of theta oscillations tell us little about the immediate demands on encoding or retrieval. Finally, different patterns of oscillations may reflect distinct underlying aspects of memory function.
Collapse
Affiliation(s)
- J B Caplan
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02254-9110, USA
| | | | | | | |
Collapse
|
46
|
Tomori Z, Benacka R, Donic V. Mechanisms and clinicophysiological implications of the sniff- and gasp-like aspiration reflex. RESPIRATION PHYSIOLOGY 1998; 114:83-98. [PMID: 9858054 DOI: 10.1016/s0034-5687(98)00077-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanical stimulation of the pharyngeal mucosa in cats and some other mammals evokes the 'aspiration reflex' (AR) characterized by rapid and strong inspiratory efforts not followed by active expirations. It resembles other spasmodic inspiratory acts such as the sniff, the gasp, and the sigh in several aspects, e.g. reflex or semireflex triggering from the upper airways, the sudden onset and termination of such inspirations, the massive recruitment, steep rise and high-peak amplitude of inspiratory unit activity, analogous ventilatory pattern, and contribution to arousal. The similarity of these spasmodic acts is manifested mainly in enhanced speed and volume of inhalation, although of different intensity, which is determined by the varying degree of forced inspiratory activity and a concomitant inhibition of expiratory activity. The extent of the inspiratory dilation of the glottis and the timing and range of late-inspiratory and/or postinspiratory glottal narrowing modulate the depth of aspiration. Thus, the inhalation can be moderate as in sniffing, which provides a transfer of odorants to the olfactory mucosa. In AR the airstream is presumably strong enough to tear off the mechanical particles from the naso- and oropharynx and to convey them into the hypopharynx to allow their subsequent elimination by reflex swallowing or coughing. Prolonged glottal opening allows either the transfer of some additional air to the bronchi by sighing to prevent the development of atelectasis, or redistribution of a larger amount of fresh air into the lungs by gasping to support autoresuscitation. Should aspiration be a common effective component in these spasmodic processes, then the easily elicitable AR could be beneficial as a simple model for studying their properties in health and disease.
Collapse
Affiliation(s)
- Z Tomori
- Department of Pathophysiology, Faculty of Medicine, Safárik University, Kosice, Slovakia.
| | | | | |
Collapse
|
47
|
Sobotka S, Ringo JL. Saccadic eye movements, even in darkness, generate event-related potentials recorded in medial sputum and medial temporal cortex. Brain Res 1997; 756:168-73. [PMID: 9187328 DOI: 10.1016/s0006-8993(97)00145-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Saccadic eye movements (saccades) in primates organize the visual information about the environment into a pulsatile course. Recent studies from our laboratory have found substantial single unit activity, of extra-retinal origin, in medial temporal and inferotemporal cortex with each saccade (even in the dark). In the current experiment we studied event-related potentials to spontaneous saccades from electrodes in medial temporal cortex as well as medial septum. Significant event-related potentials were recorded in both regions (again even in the dark). These data suggest that higher-level processing itself may synchronize with saccades.
Collapse
Affiliation(s)
- S Sobotka
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, NY 14642, USA
| | | |
Collapse
|
48
|
Sirvio J, Larson J, Quach CN, Rogers GA, Lynch G. Effects of pharmacologically facilitating glutamatergic transmission in the trisynaptic intrahippocampal circuit. Neuroscience 1996; 74:1025-35. [PMID: 8895871 DOI: 10.1016/0306-4522(96)00170-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of a recently synthesized benzoyl-piperidine drug that enhances currents mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors were tested on monosynaptic and polysynaptic responses in hippocampal slices of the rat. Stimulation of perforant path inputs to the dentate gyrus evoked extracellular responses in field CA1 that had latencies and laminar profiles indicating that they were relayed through the trisynaptic intrahippocampal circuit. Under control conditions, trisynaptic field excitatory postsynaptic potentials did not show larger paired-pulse facilitation than monosynaptic responses and failed to exhibit frequency facilitation. Low concentrations of picrotoxin greatly enhanced trisynaptic responses and, under these conditions, frequency facilitation was obtained. Benzoyl-piperidine-12 (250 microM) had a three-fold greater effect on the amplitude of trisynaptic responses than on monosynaptic field excitatory postsynaptic potentials, indicating that the drug's effect is amplified across the successive stages of a polysynaptic circuit. The AMPA receptor modulator did not change the frequency characteristics of monosynaptic potentials and had only a modest influence on those of the trisynaptic response. The effect of benzoyl-piperidine-12 on trisynaptic responses was significantly greater when GABAergic inhibition was partially blocked with picrotoxin; the GABA blocker did not alter the effects of benzoyl-piperidine-12 on monosynaptic responses. These results indicate that centrally active AMPA receptor modulators are likely to have a greater influence on brain operations involving long chains of connections than on those mediated by simple reflex-like circuits, and will vary markedly in their effects depending upon the excitability of local interneurons.
Collapse
Affiliation(s)
- J Sirvio
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717, USA
| | | | | | | | | |
Collapse
|
49
|
Kilborn K, Lynch G, Granger R. Effects of LTP on Response Selectivity of Simulated Cortical Neurons. J Cogn Neurosci 1996; 8:328-43. [DOI: 10.1162/jocn.1996.8.4.328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
We report here on specific ways in which synaptic long-term potentiation (LTP) affects the response selectivity of primary sensory cortical cells. LTP increases synaptic efficacy by incremental “steps,” up to a “ceiling” at which additional bursts of afferent stimulation cause no further potentiation. Endogenous and exogenous agents have been shown to modulate these two paramenters of LTP, raising the question of the functional implications associated with the sizes of steps and ceiling. We provide an analytical treatment of the effects of these two physiological LTP parameters on the behavior of simulated olfactory (piriform) cortex target cells in response to a range of inputs. A target cell's receptive field, i.e., the set of input patterns to which the cell responds, is broadened with potentiation of the cell's synapses, and is broadened more when the LTP step size is smaller, and when the LTP ceiling is higher. Moreover, the effects of step size and ceiling interact, and their joint relationship to receptive field breadth is nonlinear. Values of step size and ceiling are identified that balance the tradeoff between learning rate and receptive field breadth for particular sensory recognition tasks, and these model values are compared to corresponding known and inferred physiological values.
Collapse
|
50
|
Abstract
Our model of the spatial and temporal aspects of place cell firing and their role in rat navigation is reviewed. The model provides a candidate mechanism, at the level of individual cells, by which place cell information concerning self-localization could be used to guide navigation to previously visited reward sites. The model embodies specific predictions regarding the formation of place fields, the phase coding of place cell firing with respect to the hippocampal theta rhythm, and the formation of neuronal population vectors downstream from the place cells that code for the directions of goals during navigation. Recent experiments regarding the spatial distribution of place cell firing have confirmed our initial modeling hypothesis, that place fields are formed from Gaussian tuning curve inputs coding for the distances from environmental features, and enabled us to further specify the functional form of these inputs. Other recent experiments regarding the temporal distribution of place cell firing in two-dimensional environments have confirmed our predictions based on the temporal aspects of place cell firing on linear tracks. Directions for further experiments and refinements to the model are outlined for the future.
Collapse
Affiliation(s)
- N Burgess
- Department of Anatomy, University College London, England
| | | |
Collapse
|