1
|
He T, Qin L, Chen S, Huo S, Li J, Zhang F, Yi W, Mei Y, Xiao G. Bone-derived factors mediate crosstalk between skeletal and extra-skeletal organs. Bone Res 2025; 13:49. [PMID: 40307216 PMCID: PMC12044029 DOI: 10.1038/s41413-025-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Bone has long been acknowledged as a fundamental structural entity that provides support and protection to the body's organs. However, emerging research indicates that bone plays a crucial role in the regulation of systemic metabolism. This is achieved through the secretion of a variety of hormones, cytokines, metal ions, extracellular vesicles, and other proteins/peptides, collectively referred to as bone-derived factors (BDFs). BDFs act as a medium through which bones can exert targeted regulatory functions upon various organs, thereby underscoring the profound and concrete implications of bone in human physiology. Nevertheless, there remains a pressing need for further investigations to elucidate the underlying mechanisms that inform the effects of bone on other body systems. This review aims to summarize the current findings related to the roles of these significant modulators across different organs and metabolic contexts by regulating critical genes and signaling pathways in vivo. It also addresses their involvement in the pathogenesis of various diseases affecting the musculoskeletal system, circulatory system, glucose and lipid metabolism, central nervous system, urinary system, and reproductive system. The insights gained from this review may contribute to the development of innovative therapeutic strategies through a focused approach to bone secretomes. Continued research into BDFs is expected to enhance our understanding of bone as a multifunctional organ with diverse regulatory roles in human health.
Collapse
Affiliation(s)
- Tailin He
- Department of Rheumatology and Immunology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), 100101, Beijing, China
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Qin
- Department of Orthopedics, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China, Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen, 518000, China
| | - Jie Li
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), 100101, Beijing, China
| | - Weihong Yi
- Department of Orthopedics, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yifang Mei
- Department of Rheumatology and Immunology, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Guozhi Xiao
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Anzai M, Watanabe-Takahashi M, Kawabata H, Masuda Y, Ikegami A, Okuda Y, Waku T, Sakurai H, Nishikawa K, Inoue JI, Nishikawa K. Clustered peptide regulating the multivalent interaction between RANK and TRAF6 inhibits osteoclastogenesis by fine-tuning signals. Commun Biol 2025; 8:643. [PMID: 40263556 PMCID: PMC12015293 DOI: 10.1038/s42003-025-08047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Bone-destructive diseases are caused by dysregulated osteoclastogenesis. Osteoclast differentiation is positively regulated by the ligand for receptor activator of nuclear factor kappa B (RANKL) binding to the RANK on progenitor cells. RANK then forms a multivalent interaction with an adapter molecule, tumor necrosis factor receptor-associated factor 6 (TRAF6), to transduce various downstream signals. We used affinity-based screening of a multivalent random-peptide library to identify a tetravalent peptide, WHD-tet, that binds to the RANK-binding region of TRAF6 through a multivalent interaction. CR4-WHD-tet, a cell-permeable form of WHD-tet, efficiently inhibited the RANKL-induced differentiation of bone-marrow cells to osteoclasts and osteoclastogenesis in a mouse model. CR4-WHD-tet specifically inhibited the recruitment of MAPK kinase 3 to TRAF6 without affecting other signal transducers in a late stage of differentiation, inhibiting the activation of p38-MAPK, which promotes the final stage. Thus, the interaction modulator CR4-WHD-tet fine-tunes the formation of a critical signaling complex to inhibit osteoclastogenesis.
Collapse
Affiliation(s)
- Masataka Anzai
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hiroshi Kawabata
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yuri Masuda
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Aoi Ikegami
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yuta Okuda
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Tsuyoshi Waku
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Keizo Nishikawa
- Laboratory of Cell Biology and Metabolic Biochemistry, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
3
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
4
|
Elgohary HH, Kamal MM, Rizk SM, Maurice NW. The Expression Profile of the RANK/RANKL/OPG Pathway in Breast Cancer Stem Cells Isolated From Breast Cancer Cell Lines. J Cell Biochem 2025; 126:e70028. [PMID: 40159409 DOI: 10.1002/jcb.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
The RANK/RANKL/OPG signaling pathway plays a crucial role in breast cancer progression and metastasis. However, its expression patterns and potential implications in breast cancer stem cells remain poorly understood. This study aimed to characterize the expression profile of this pathway in breast cancer stem cells isolated from two distinct breast cancer cell lines: MDA-MB-231 and MCF-7. Mammospheres (MS), representing breast cancer stem cells, were generated using agar-coated 6 well tissue culture plates in suitable mammospheres culture conditions. Flow cytometric analysis showed enrichment of the CD44+/CD24- subpopulations in the mammospheres cultures, with MDA-MB-231 exhibiting a higher percentage compared to MCF-7. The isolated MS from both cell lines showed upregulation of stemness markers OCT4 and SOX2, with MS. MDA-MB-231 demonstrating higher expression levels. Analysis of the RANK/RANKL/OPG axis revealed differential expression patterns between the two cell lines. RANK expression was significantly upregulated in MS. MDA-MB-231 but not in MS. MCF-7. Interestingly, while OPG mRNA levels were elevated in mammospheres from both cell lines, secreted OPG protein levels were paradoxically reduced in the mammospheres conditioned media. Additionally, RUNX2, an osteoblastic marker, and a downstream target of RANK signaling, showed a decreased expression in both mammospheres compared to adherent cells. These findings suggest a complex, context-dependent regulation of the RANK/RANKL/OPG pathway in breast cancer stem cells, potentially contributing to the aggressive nature and metastatic propensity of triple-negative breast cancer. This study provides novel insights into the molecular characteristics of breast cancer stem cells and underscores the complexity of OPG/RANK/RANKL axis expression in them; a role yet to be fully elucidated.
Collapse
Affiliation(s)
- Hassnaa H Elgohary
- Health Research Centre of Excellence, Drug Research and Development Group, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Health Research Centre of Excellence, Drug Research and Development Group, The British University in Egypt, Cairo, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sherine Maher Rizk
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nadine W Maurice
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Celebi Torabfam G, Porsuk MH. The Role of the Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Vascular Diseases: A Therapeutic Approach. Angiology 2025; 76:309-322. [PMID: 38171493 DOI: 10.1177/00033197231226275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cardiovascular and bone diseases contribute independently to mortality and global health. The exact mechanisms involved in the pathophysiology shared between bone and vascular diseases are not well defined. Endothelial cells and osteoblasts communicate during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. One shared mechanism may involve osteoprotegerin (OPG) and its ligand Receptor Activator of NF-κB Ligand (RANKL). The RANKL/OPG ratio is an important modulator for the skeletal, immunological, and vascular systems. OPG levels are elevated due to either osteogenic causes or inflammatory responses in the vasculature. The data obtained from clinical and in vitro studies support the role of the RANKL/OPG ratio as a potential marker for the progression of endothelial damage. Therefore, determining the therapeutic approaches for the targeting RANKL/OPG ratio and evaluating its usage as a biomarker in cardiovascular and bone pathophysiology are needed. By integrating the protective and disease-causing role of OPG with its ligand, this review outlines the role of the RANKL/OPG ratio at the molecular level. We also consider targeted therapeutic approaches.
Collapse
Affiliation(s)
- Gizem Celebi Torabfam
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Melis Hazal Porsuk
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, Turkey
| |
Collapse
|
6
|
Pilard C, Roncarati P, Ancion M, Luyckx M, Renard M, Reynders C, Lerho T, Poulain F, Bruyere D, Lebeau A, Hendrick E, Crake R, Peiffer R, Nokin MJ, Peulen O, Delvenne P, Hubert P, Herfs M. RANKL blockade inhibits cancer growth through reversing the tolerogenic profile of tumor-infiltrating (plasmacytoid) dendritic cells. J Immunother Cancer 2025; 13:e010753. [PMID: 40081943 PMCID: PMC11907081 DOI: 10.1136/jitc-2024-010753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Originally identified for its involvement in bone remodeling, accumulating data emerged in the past years indicating that receptor activator of nuclear factor κB ligand (RANKL) actually acts as a multifunctional soluble molecule that influences various physiological and pathological processes. Regarding its role in carcinogenesis, while direct effects on tumor cell behavior have been precisely characterized, the impact of the RANKL/RANK system (and its inhibition) on the intratumoral immune landscape remains unclear. METHODS After various in silico/in situ/in vitro analyses, the immunotherapeutic efficacy of RANKL blockade (alone and in combination with immune checkpoint inhibitors (anti-programmed cell death protein-1 (PD-1)) or doxorubicin/paclitaxel-based chemotherapy) was investigated using different syngeneic mouse models of triple-negative breast cancer (4T1, 67NR and E0771). Isolated from retrieved tumors, 14 immune cell (sub)populations, along with the activation status of antigen-presenting cells, were thoroughly analyzed in each condition. Finally, the impact of RANKL on the functionality of both dendritic cells (DC) and plasmacytoid dendritic cells (pDC) was determined. RESULTS A drastic tumor growth inhibition was reproductively observed following RANKL inhibition. Strikingly, this antitumor activity was not detected in immunocompromised mice, demonstrating its dependence on the adaptive immune responses and justifying the diverse enriched signatures linked to immune cell regulation/differentiation detected in RANKLhigh-expressing human neoplasms. Interestingly, neoadjuvant chemotherapy (but not PD-1 checkpoint inhibition) potentiated the anticancer effects of RANKL blockade by priming effector T cells and increasing their infiltration within the tumor microenvironment. Mechanistically, we highlighted that RANKL indirectly promotes regulatory T cell differentiation and suppressive function by inhibiting the mTOR signaling pathway on antigen-presenting cells. CONCLUSIONS Taken together, this study provides insight into the role of RANKL/RANK axis in immune tolerance, demonstrates the significant impact of RANKL-dependent impairment of T cell-DC/pDC crosstalk on tumor development and, ultimately, supports that this ligand could be an interesting actionable target for cancer immunotherapy.
Collapse
Affiliation(s)
- Charlotte Pilard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Margaux Luyckx
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Michael Renard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Celia Reynders
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Thomas Lerho
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Florian Poulain
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Diane Bruyere
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Alizee Lebeau
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Elodie Hendrick
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Rebekah Crake
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Raphael Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marie-Julie Nokin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
- Department of Pathology, University Hospital Center of Liege, Liege, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| |
Collapse
|
7
|
Chen S, Shi Z, Jules J, Li Y, Kesterson RA, Elbahoty MH, Zhang P, Feng X. RANK IVVY motif plays crucial roles in osteoclastogenesis. Bone 2025; 192:117367. [PMID: 39667419 PMCID: PMC11761383 DOI: 10.1016/j.bone.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
RANKL and its receptor RANK play a vital role in osteoclastogenesis. RANK primarily recruits TRAFs to promote osteoclastogenesis but also contains an TRAF-independent motif (IVVY535-538), which mediates osteoclast lineage commitment in vitro. Here, we have developed knockin mice in which inactivating mutations are introduced in the IVVY motif (IVVY to IVAF). Homozygous knockin (RANKAF/AF) mice are viable and born at the expected Mendelian ratio. Micro-computed tomography (μCT) and histomorphometric analyses of femurs of wild type (RANK+/+) and RANKAF/AF mice reveal significant increases in trabecular bone mass in RANKAF/AF compared to age and sex matched RANK+/+ mice due to impaired osteoclastogenesis in vivo. Bone marrow macrophages (BMMs) from RANKAF/AF mice do not form osteoclasts in vitro upon M-CSF and RANKL treatment. RANKL-induced activation of NF-ĸB, ERK, p38 and JNK pathways in RANKAF/AF BMMs remains intact, but RANKL-induced expression of c-Fos and NFATc1 is impaired in RANKAF/AF BMMs. Consistent with the crucial role of the IVVY motif in priming BMMs into the osteoclast lineage, RANKL-primed RANKAF/AF BMMs do not form osteoclasts in response to subsequent Porphyromonas gingivalis (Pg)-stimulation, indicating that the IVVY Motif plays a role in Pg-induced osteoclastogenesis. Mechanistically, RANK IVVY motif mediates Pg-induced osteoclast gene expression by rendering NFATc1 and c-Fos genes responsive to Pg stimulation. Consistently, cell penetrating peptides fused to RANK segments containing the IVVY motif impair Pg-induced osteoclastogenesis by impairing RANKL-activated c-Fos and NFATc1 expression. In conclusion, the RANK IVVY motif plays crucial roles in osteoclastogenesis in vivo and modulates Pg-mediated osteoclast formation in vitro.
Collapse
Affiliation(s)
- Shenyuan Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Zhenqi Shi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuyu Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Halaby Elbahoty
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Internal Medicine, Alexandria University, Alexandria, Egypt
| | - Ping Zhang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Xu Feng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Kitazawa S, Haraguchi R, Kitazawa R. Roles of osteoclasts in pathological conditions. Pathol Int 2025; 75:55-68. [PMID: 39704061 PMCID: PMC11849001 DOI: 10.1111/pin.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Bone is a unique organ crucial for locomotion, mineral metabolism, and hematopoiesis. It maintains homeostasis through a balance between bone formation by osteoblasts and bone resorption by osteoclasts, which is regulated by the basic multicellular unit (BMU). Abnormal bone metabolism arises from an imbalance in the BMU. Osteoclasts, derived from the monocyte-macrophage lineage, are regulated by the RANKL-RANK-OPG system, which is a key factor in osteoclast differentiation. RANKL activates osteoclasts through its receptor RANK, while OPG acts as a decoy receptor that inhibits RANKL. In trabecular bone, high turnover involves rapid bone formation and resorption, influenced by conditions such as malignancy and inflammatory cytokines that increase RANKL expression. Cortical bone remodeling, regulated by aged osteocytes expressing RANKL, is less understood, despite ongoing research into how Rett syndrome, characterized by MeCP2 abnormalities, affects RANKL expression. Balancing trabecular and cortical bone involves mechanisms that preserve cortical bone, despite overall bone mass reduction due to aging or oxidative stress. Research into genes like sFRP4, which modulates bone mass, highlights the complex regulation by BMUs. The roles of the RANKL-RANK-OPG system extend beyond bone, affecting processes such as aortic valve formation and temperature regulation, which highlight the interconnected nature of biological research.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Department of Molecular PathologyEhime University Graduate School of Medicine, ShitsukawaToon CityJapan
| | - Ryuma Haraguchi
- Department of Molecular PathologyEhime University Graduate School of Medicine, ShitsukawaToon CityJapan
| | - Riko Kitazawa
- Department of Molecular PathologyEhime University Graduate School of Medicine, ShitsukawaToon CityJapan
- Division of Diagnostic PathologyEhime University Hospital, ShitsukawaToon CityJapan
| |
Collapse
|
9
|
Marín I. Vertebrate TNF Superfamily: Evolution and Functional Insights. BIOLOGY 2025; 14:54. [PMID: 39857285 PMCID: PMC11762692 DOI: 10.3390/biology14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
This study characterizes the evolution of the tumor necrosis factor superfamily (TNFSF) across vertebrate lineages, both cyclostomes and gnathostomes, by combining sequence similarity and synteny data for the genes from 23 model species. The available evidence supports a simple model in which most of the diversity found in living species can be attributed to the expansion of four genes found in an ancestor of all vertebrates before the first of the genome duplications that occurred in the vertebrate lineages. It is inferred that the ancestor of all cyclostomes possessed only six TNFSF genes. A cyclostome-specific genome triplication had little effect on the total number of these genes. The ancestor of all gnathostomes, due to the effect of a second genome duplication plus additional single-gene duplications, already had 21 TNFSF genes. In several gnathostome lineages, particularly in some tetrapods, the TNF superfamily has significantly contracted due to numerous gene losses. This evolutionary model provides a framework for exploring functional data, showing that the descendants of different ancestral genes have acquired distinct roles, most prominently in the innate and adaptive immune systems, which led to a species-specific refinement of which TNFSF genes were conserved or lost. Several data hitherto difficult to interpret (the interactions of very different TNFSF ligands with the same receptors; the ability of the same ligands to bind alternative receptors, with or without death domains; and the cooperation of different ligands in specific functions) can be explained as consequences of the evolutionary history of the TNF superfamily.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), 46010 Valencia, Spain
| |
Collapse
|
10
|
Onji M, Sigl V, Lendl T, Novatchkova M, Ullate-Agote A, Andersson-Rolf A, Kozieradzki I, Koglgruber R, Pai TP, Lichtscheidl D, Nayak K, Zilbauer M, Carranza García NA, Sievers LK, Falk-Paulsen M, Cronin SJF, Hagelkruys A, Sawa S, Osborne LC, Rosenstiel P, Pasparakis M, Ruland J, Takayanagi H, Clevers H, Koo BK, Penninger JM. RANK drives structured intestinal epithelial expansion during pregnancy. Nature 2025; 637:156-166. [PMID: 39633049 PMCID: PMC11666467 DOI: 10.1038/s41586-024-08284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
During reproduction, multiple species such as insects and all mammals undergo extensive physiological and morphological adaptions to ensure health and survival of the mother and optimal development of the offspring. Here we report that the intestinal epithelium undergoes expansion during pregnancy and lactation in mammals. This enlargement of the intestinal surface area results in a novel geometry of expanded villi. Receptor activator of nuclear factor-κΒ (RANK, encoded by TNFRSF11A) and its ligand RANKL were identified as a molecular pathway involved in this villous expansion of the small intestine in vivo in mice and in intestinal mouse and human organoids. Mechanistically, RANK-RANKL protects gut epithelial cells from cell death and controls the intestinal stem cell niche through BMP receptor signalling, resulting in the elongation of villi and a prominent increase in the intestinal surface. As a transgenerational consequence, babies born to female mice that lack Rank in the intestinal epithelium show reduced weight and develop glucose intolerance after metabolic stress. Whereas gut epithelial remodelling in pregnancy/lactation is reversible, constitutive expression of an active form of RANK is sufficient to drive intestinal expansion followed by loss of villi and stem cells, and prevents the formation of Apcmin-driven small intestinal stem cell tumours. These data identify RANK-RANKL as a pathway that drives intestinal epithelial expansion in pregnancy/lactation, one of the most elusive and fundamental tissue remodelling events in mammalian life history and evolution.
Collapse
Affiliation(s)
- Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| | - Verena Sigl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Thomas Lendl
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Asier Ullate-Agote
- Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amanda Andersson-Rolf
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, The Netherlands
| | - Ivona Kozieradzki
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rubina Koglgruber
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Tsung-Pin Pai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dominic Lichtscheidl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Komal Nayak
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Matthias Zilbauer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke's, Cambridge, UK
| | - Natalia A Carranza García
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Katharina Sievers
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Shinichiro Sawa
- Division of Mucosal Immunology, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Lisa C Osborne
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Manolis Pasparakis
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, TUM University Hospital, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, The Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche innovation Centre, Basel, Switzerland
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
11
|
Gut lining in pregnant and lactating mice expands to ensure offspring health. Nature 2025:10.1038/d41586-024-04140-4. [PMID: 39743552 DOI: 10.1038/d41586-024-04140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Sobacchi C, Menale C, Crisafulli L, Ficara F. Role of RANKL Signaling in Bone Homeostasis. Physiology (Bethesda) 2025; 40:0. [PMID: 39255276 DOI: 10.1152/physiol.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
RANKL and its cognate receptor RANK are crucial regulators of bone metabolism in physiological as well as in pathological conditions. Here we go through the works that unveiled the paramount role of this signaling pathway. We focus on the RANKL cytokine, whose alterations are responsible for rare and common bone diseases. We describe recent insights on the regulation of RANKL expression, which provide new hints for the pharmacological regulation of this molecule. Based on the multiple functions exerted by RANKL (within and outside the bone tissue), we advise caution regarding the potential unintended consequences of its inhibition.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | - Ciro Menale
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," Naples, Italy
| | - Laura Crisafulli
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | - Francesca Ficara
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
13
|
Pérez-Chacón G, Santamaría PG, Redondo-Pedraza J, González-Suárez E. RANK/RANKL Signaling Pathway in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:309-345. [PMID: 39821032 DOI: 10.1007/978-3-031-70875-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis. Comprehensive analyses have demonstrated that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and estrogen receptor-negative breast cancer patients. RANK pathway also has multiple roles in immunity and inflammation, regulating innate and adaptive responses. In the tumor microenvironment, RANK and RANKL are expressed by different immune cell populations and contribute to the regulation of tumor immune surveillance, mainly driving immunosuppressive effects.Herein, we discuss the preventive and therapeutic potential of targeting RANK signaling in breast cancer given its tumor cell intrinsic and extrinsic effects. RANKL inhibition has been shown to induce mammary tumor cell differentiation and an antitumor immune response. Moreover, loss of RANK signaling increases sensitivity of breast cancer cells to chemotherapy, targeted therapies such as HER2 and CDK4/6 inhibitors, and immunotherapy. Finally, we describe clinical trials of denosumab for breast cancer prevention, such as those ongoing in women with high risk of developing breast cancer, large phase III clinical trials where the impact of adjuvant denosumab on disease-free survival has been assessed, and window trials to evaluate the immunomodulatory effects of denosumab in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Gema Pérez-Chacón
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Eva González-Suárez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
14
|
Zhang X, Miao J, Song Y, Zhang J, Miao M. Review on effects and mechanisms of plant-derived natural products against breast cancer bone metastasis. Heliyon 2024; 10:e37894. [PMID: 39318810 PMCID: PMC11420494 DOI: 10.1016/j.heliyon.2024.e37894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bone metastasis is the prevalent form of metastasis in breast cancer, resulting in severe pain, pathological fractures, nerve compression, hypercalcemia, and other complications that significantly impair patients' quality of life. The infiltration and colonization of breast cancer (BC) cells in bone tissue disrupt the delicate balance between osteoblasts and osteoclasts within the bone microenvironment, initiating a vicious cycle of bone metastasis. Once bone metastasis occurs, conventional medical therapy with bone-modifying agents is commonly used to alleviate bone-related complications and improve patients' quality of life. However, the utilization of bone-modifying agents may cause severe drug-related adverse effects. Plant-derived natural products such as terpenoids, alkaloids, coumarins, and phenols have anti-tumor, anti-inflammatory, and anti-angiogenic pharmacological properties with minimal side effects. Certain natural products that exhibit both anti-breast cancer and anti-bone metastasis effects are potential therapeutic agents for breast cancer bone metastasis (BCBM). This article reviewed the effects of plant-derived natural products against BCBM and their mechanisms to provide a reference for the research and development of drugs related to BCBM.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiawen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
15
|
Chen W, Guo L, Wei W, Cai C, Wu G. Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation is essential for maintenance of mammary stem cell activity. Cell Rep 2024; 43:114762. [PMID: 39321020 DOI: 10.1016/j.celrep.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Adult mammary stem cells (aMaSCs) are vital to tissue expansion and remodeling during the process of postnatal mammary development. The protein C receptor (Procr) is one of the well-identified surface markers of multipotent aMaSCs. However, an understanding of the regulatory mechanisms governing Procr's protein stability remains incomplete. In this study, we identified Glycoprotein m6a (Gpm6a) as a critical protein for aMaSC activity modulation by using the Gpm6a knockout mouse model. Interestingly, we determined that Gpm6a depletion results in a reduction of Procr protein stability. Mechanistically, Gpm6a regulates Procr protein stability by mediating the formation of lipid rafts, a process requiring Zdhhc1 and Zdhhc2 to palmitate Gpm6a at Cys17,18 and Cys246 sites. Our findings highlight an important mechanism involving Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation for the regulation of Procr stability, aMaSC activity, and postnatal mammary development.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Guo
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
16
|
Gowkielewicz M, Lipka A, Zdanowski W, Waśniewski T, Majewska M, Carlberg C. Anti-Müllerian hormone: biology and role in endocrinology and cancers. Front Endocrinol (Lausanne) 2024; 15:1468364. [PMID: 39351532 PMCID: PMC11439669 DOI: 10.3389/fendo.2024.1468364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is a peptide belonging to the transforming growth factor beta superfamily and acts exclusively through its receptor type 2 (AMHR2). From the 8th week of pregnancy, AMH is produced by Sertoli cells, and from the 23rd week of gestation, it is produced by granulosa cells of the ovary. AMH plays a critical role in regulating gonadotropin secretion, ovarian tissue responsiveness to pituitary hormones, and the pathogenesis of polycystic ovarian syndrome. It inhibits the transition from primordial to primary follicles and is considered the best marker of ovarian reserve. Therefore, measuring AMH concentration of the hormone is valuable in managing assisted reproductive technologies. AMH was initially discovered through its role in the degeneration of Müllerian ducts in male fetuses. However, due to its ability to inhibit the cell cycle and induce apoptosis, it has also garnered interest in oncology. For example, antibodies targeting AMHR2 are being investigated for their potential in diagnosing and treating various cancers. Additionally, AMH is present in motor neurons and functions as a protective and growth factor. Consequently, it is involved in learning and memory processes and may support the treatment of Alzheimer's disease. This review aims to provide a comprehensive overview of the biology of AMH and its role in both endocrinology and oncology.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Wojciech Zdanowski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Jiang C, Ruan Y, Li J, Huang J, Xiao M, Xu H. Tissue expression and promoter activity analysis of the porcine TNFSF11 gene. Theriogenology 2024; 226:277-285. [PMID: 38954996 DOI: 10.1016/j.theriogenology.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Tumour necrosis factor (TNF) superfamily member 11 (TNFSF11), also known as RANKL, plays a crucial role in regulating several physiological and pathological activities. Additionally, it is a vital factor in bone physiology, and the sex hormone progesterone regulates the expansion of stem cells and the proliferation of mammary epithelial cells. It is essential for animal growth and reproductive physiological processes. This study aimed to evaluate the tissue-specific expression characteristics and promoter activity of the TNFSF11 gene in pigs. As a result, the study examined the presence of TNFSF11 expression in the tissues of Xiangsu pigs at 0.6 and 12 months of age. Moreover, the core promoter region of TNFSF11 was also identified by utilizing a combination of bioinformatic prediction and dual-luciferase activity tests. Finally, the effect of transcription factors on the transcriptional activity of the core promoter region was determined using site-directed mutagenesis. TNFSF11 was uniformly expressed in all tissues; however, its expression in muscles was comparatively low. The core promoter region of TNFSF11 was located in the -555 to -1 region. The prediction of the transcription start site of TNFSF11 gene-2000 ∼ + 500bp showed that there was a CpG site in 17 ∼ + 487bp. Analysis of mutations in the transcription factor binding sites revealed that mutations in the Stat5b, Myog, Trl, and EN1 binding sites had significant effects on the transcriptional activity of the TNFSF11 gene, particularly following the EN1 binding site mutation (P < 0.001). This study provides insights into both the tissue-specific expression patterns of TNFSF11 in the tissues of Xiangsu pigs and the potential regulatory effects of transcription factors on its promoter activity. These results may be helpful for future research aimed at clarifying the expression and role of the porcine TNFSF11 gene.
Collapse
Affiliation(s)
- Chuanmei Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Jifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| |
Collapse
|
18
|
Cavalcanti de Araújo PH, Cezine MER, Vulczak A, Vieira LC, Matsuo FS, Remoto JM, Santos ADR, Miyabara EH, Alberici LC, Osako MK. RANKL signaling drives skeletal muscle into the oxidative profile. J Bone Miner Res 2024; 39:753-764. [PMID: 38619281 DOI: 10.1093/jbmr/zjae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The bone-muscle unit refers to the reciprocal regulation between bone and muscle by mechanical interaction and tissue communication via soluble factors. The RANKL stimulation induces mitochondrial biogenesis and increases the oxidative capacity in osteoclasts and adipocytes. RANKL may bind to the membrane bound RANK or to osteoprotegerin (OPG), a decoy receptor that inhibits RANK-RANKL activation. RANK is highly expressed in skeletal muscle, but the contribution of RANKL to healthy skeletal muscle fiber remains elusive. Here we show that RANKL stimulation in C2C12-derived myotubes induced activation of mitochondrial biogenesis pathways as detected by RNA-seq and western blot. RANKL expanded the mitochondrial reticulum, as shown by mitochondrial DNA quantification and MitoTracker staining, and boosted the spare respiratory capacity. Using MEK and MAPK inhibitors, we found that RANKL signals via ERK and p38 to induce mitochondrial biogenesis. The soleus from OPG-/- and OPG+/- mice showed higher respiratory rates compared to C57BL6/J WT mice, which correlates with high serum RANKL levels. RANKL infusion using a mini-osmotic pump in WT mice increased the number of mitochondria, boosted the respiratory rate, increased succinate dehydrogenase activity in skeletal muscle, and improved the fatigue resistance of gastrocnemius. Therefore, our findings reveal a new role of RANKL as an osteokine-like protein that impacts muscle fiber metabolism.
Collapse
Affiliation(s)
- Paulo Henrique Cavalcanti de Araújo
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Maria Eduarda Ramos Cezine
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Anderson Vulczak
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo 14040-903, Brazil
| | - Luiz Carlos Vieira
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Flávia Sayuri Matsuo
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Júlia Maranghetti Remoto
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Audrei Dos Reis Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Elen Haruka Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo 14040-903, Brazil
| | - Mariana Kiomy Osako
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
19
|
Yahyavi SK, Holt R, Knudsen NK, Andreassen CH, Sejling C, Meddis A, Kjaer SK, Schwarz P, Jensen JEB, Torp-Pedersen C, Juul A, Selmer C, Blomberg Jensen M. Cancer risk in patients treated with denosumab compared with alendronate: A population-based cohort study. Bone 2024; 182:117053. [PMID: 38395247 DOI: 10.1016/j.bone.2024.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Antiresorptive treatment is currently used in millions of patients with osteoporosis and cancer worldwide. Early studies of denosumab suggested a small signal in ovarian cancer incidence and emerging data suggest that denosumab stimulates germ cell proliferation in the gonads. This study aims to determine the association between the use of denosumab and the risk of reproductive cancers compared with the use of alendronate. RESEARCH DESIGN AND METHODS Using a cohort study design, we used the Danish nationwide registries to identify a population of subjects ≥50 years of age during 2010-2017 who started denosumab after being on alendronate treatment for at least six months. The cohort was matched 1:2 with patients who had been treated with alendronate alone for at least six months. The risk of reproductive cancers and the risk difference between groups were estimated using the Longitudinal Targeted Maximum Likelihood Estimation (L-TMLE) method. RESULTS We identified 6054 Danish individuals who underwent treatment with denosumab. These individuals were matched with 12,108 receiving alendronate. The absolute risk of reproductive cancer was 1.05 % (95 % CI 0.75-1.34) after three years for denosumab users and was not different 0.03 % (-0.34-0.39) than for alendronate users. In supplemental analyses, there was no increased risk of non-reproductive cancers associated with the use of denosumab (risk difference of 0.54 % (-0.41-1.19). Analysis comparing denosumab users with the general population gave similar results. CONCLUSION There was no difference in the risk of cancer following treatment with denosumab compared to treatment with alendronate assessed after a short follow-up of 3 years.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Rune Holt
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Nadia Krarup Knudsen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Christine Hjorth Andreassen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Christoffer Sejling
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra Meddis
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Susanne K Kjaer
- Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Cancer Institute, Unit of Virus, Lifestyle and Genes, Copenhagen, Denmark
| | - Peter Schwarz
- Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Erik Beck Jensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Department of Cardiology, Nordsjaellands Hospital, Denmark; Department of Public Health, University of Copenhagen, Denmark
| | - Anders Juul
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Christian Selmer
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark.
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Coelingh Bennink HJT, Stanczyk FZ. Progesterone and not estrogens or androgens causes breast cancer. Climacteric 2024; 27:217-222. [PMID: 38197401 DOI: 10.1080/13697137.2023.2292073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Affiliation(s)
| | - F Z Stanczyk
- Department of Obstetrics and Gynecology, University of Southern CA, Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
21
|
Zhang Z, Ye S, Bernhardt SM, Nelson HD, Velie EM, Borges VF, Woodward ER, Evans DGR, Schedin PJ. Postpartum Breast Cancer and Survival in Women With Germline BRCA Pathogenic Variants. JAMA Netw Open 2024; 7:e247421. [PMID: 38639936 PMCID: PMC11031688 DOI: 10.1001/jamanetworkopen.2024.7421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 04/20/2024] Open
Abstract
Importance In young-onset breast cancer (YOBC), a diagnosis within 5 to 10 years of childbirth is associated with increased mortality. Women with germline BRCA1/2 pathogenic variants (PVs) are more likely to be diagnosed with BC at younger ages, but the impact of childbirth on mortality is unknown. Objective To determine whether time between most recent childbirth and BC diagnosis is associated with mortality among patients with YOBC and germline BRCA1/2 PVs. Design, Setting, and Participants This prospective cohort study included women with germline BRCA1/2 PVs diagnosed with stage I to III BC at age 45 years or younger between 1950 and 2021 in the United Kingdom, who were followed up until November 2021. Data were analyzed from December 3, 2021, to November 29, 2023. Exposure Time between most recent childbirth and subsequent BC diagnosis, with recent childbirth defined as 0 to less than 10 years, further delineated to 0 to less than 5 years and 5 to less than 10 years. Main Outcomes and Measures The primary outcome was all-cause mortality, censored at 20 years after YOBC diagnosis. Mortality of nulliparous women was compared with the recent post partum groups and the 10 or more years post partum group. Cox proportional hazards regression analyses were adjusted for age, tumor stage, and further stratified by tumor estrogen receptor (ER) and BRCA gene status. Results Among 903 women with BRCA PVs (mean [SD] age at diagnosis, 34.7 [6.1] years; mean [SD] follow-up, 10.8 [9.8] years), 419 received a BC diagnosis 0 to less than 10 years after childbirth, including 228 women diagnosed less than 5 years after childbirth and 191 women diagnosed 5 to less than 10 years after childbirth. Increased all-cause mortality was observed in women diagnosed within 5 to less than 10 years post partum (hazard ratio [HR], 1.56 [95% CI, 1.05-2.30]) compared with nulliparous women and women diagnosed 10 or more years after childbirth, suggesting a transient duration of postpartum risk. Risk of mortality was greater for women with ER-positive BC in the less than 5 years post partum group (HR, 2.35 [95% CI, 1.02-5.42]) and ER-negative BC in the 5 to less than 10 years post partum group (HR, 3.12 [95% CI, 1.22-7.97]) compared with the nulliparous group. Delineated by BRCA1 or BRCA2, mortality in the 5 to less than 10 years post partum group was significantly increased, but only for BRCA1 carriers (HR, 2.03 [95% CI, 1.15-3.58]). Conclusions and Relevance These findings suggest that YOBC with germline BRCA PVs was associated with increased risk for all-cause mortality if diagnosed within 10 years after last childbirth, with risk highest for ER-positive BC diagnosed less than 5 years post partum, and for ER-negative BC diagnosed 5 to less than 10 years post partum. BRCA1 carriers were at highest risk for poor prognosis when diagnosed at 5 to less than 10 years post partum. No such associations were observed for BRCA2 carriers. These results should inform genetic counseling, prevention, and treatment strategies for BRCA PV carriers.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Division of Oncological Sciences, Oregon Health & Science University, Portland
- Knight Cancer Institute, Oregon Health & Science University, Portland
| | - Shangyuan Ye
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland
| | - Sarah M. Bernhardt
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland
| | - Heidi D. Nelson
- Kaiser Permanente Bernard D. Tyson School of Medicine, Pasadena, California
| | - Ellen M. Velie
- Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee
- Departments of Medicine and Pathology, Medical College of Wisconsin, Milwaukee
| | - Virginia F. Borges
- Young Women’s Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora
| | - Emma R. Woodward
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Division of Evolution Infection and Genomic Science, St Mary’s Hospital, University of Manchester, Manchester, United Kingdom
- Prevent Breast Cancer Centre, University Hospital of South Manchester NHS Trust, Wythenshawe, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Manchester Breast Centre, University of Manchester, Manchester, United Kingdom
| | - D. Gareth R. Evans
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Division of Evolution Infection and Genomic Science, St Mary’s Hospital, University of Manchester, Manchester, United Kingdom
- Prevent Breast Cancer Centre, University Hospital of South Manchester NHS Trust, Wythenshawe, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Manchester Breast Centre, University of Manchester, Manchester, United Kingdom
| | - Pepper J. Schedin
- Knight Cancer Institute, Oregon Health & Science University, Portland
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland
| |
Collapse
|
22
|
Karadayi A, Sarsmaz H, Çigel A, Engiz B, Ünal N, Ürkmez S, Gürgen S. Does Microwave Exposure at Different Doses in the Pre/Postnatal Period Affect Growing Rat Bone Development? Physiol Res 2024; 73:157-172. [PMID: 38466013 PMCID: PMC11019611 DOI: 10.33549/physiolres.935148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/15/2024] [Indexed: 04/26/2024] Open
Abstract
Effects of pre/postnatal 2.45 GHz continuous wave (CW), Wireless-Fidelity (Wi-Fi) Microwave (MW) irradiation on bone have yet to be well defined. The present study used biochemical and histological methods to investigate effects on bone formation and resorption in the serum and the tibia bone tissues of growing rats exposed to MW irradiation during the pre/postnatal period. Six groups were created: one control group and five experimental groups subjected to low-level different electromagnetic fields (EMF) of growing male rats born from pregnant rats. During the experiment, the bodies of all five groups were exposed to 2.45 GHz CW-MW for one hour/day. EMF exposure started after fertilization in the experimental group. When the growing male rats were 45 days old in the postnatal period, the control and five experimental groups' growing male and maternal rats were sacrificed, and their tibia tissues were removed. Maternal rats were not included in the study. No differences were observed between the control and five experimental groups in Receptor Activator Nuclear factor-kB (RANK) biochemical results. In contrast, there was a statistically significant increase in soluble Receptor Activator of Nuclear factor-kB Ligand (sRANKL) and Osteoprotegerin (OPG) for 10 V/m and 15 V/m EMF values. Histologically, changes in the same groups supported biochemical results. These results indicate that pre/postnatal exposure to 2.45 GHz EMF at 10 and 15 V/m potentially affects bone development.
Collapse
Affiliation(s)
- A Karadayi
- Department of Biophysics, Medicine Faculty, Ondokuz Mayis University, Samsun, Republic of Türkiye.
| | | | | | | | | | | | | |
Collapse
|
23
|
Park SS, Zaman T, Kim SJ, Brooks JD, Wong AKO, Lubiński J, Narod SA, Salmena L, Kotsopoulos J. Correlates of Circulating Osteoprotegerin in Women with a Pathogenic or Likely Pathogenic Variant in the BRCA1 Gene. Cancer Epidemiol Biomarkers Prev 2024; 33:298-305. [PMID: 38015775 DOI: 10.1158/1055-9965.epi-23-0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/28/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Lower levels of osteoprotegerin (OPG), the decoy receptor for receptor activator of NFκB (RANK)-ligand, have been reported among women with a BRCA1 mutation, suggesting OPG may be marker of cancer risk. Whether various reproductive, hormonal, or lifestyle factors impact OPG levels in these women is unknown. METHODS BRCA1 mutation carriers enrolled in a longitudinal study, no history of cancer, and a serum sample for OPG quantification, were included. Exposure information was collected through self-reported questionnaire at study enrollment and every 2 years thereafter. Serum OPG levels (pg/mL) were measured using an ELISA, and generalized linear models were used to assess the associations between reproductive, hormonal, and lifestyle exposures at the time of blood collection with serum OPG. Adjusted means were estimated using the fully adjusted model. RESULTS A total of 701 women with a median age at blood collection of 39.0 years (18.0-82.0) were included. Older age (Spearman r = 0.24; P < 0.001) and current versus never smoking (98.82 vs. 86.24 pg/mL; Pcat < 0.001) were associated with significantly higher OPG, whereas ever versus never coffee consumption was associated with significantly lower OPG (85.92 vs. 94.05 pg/mL; Pcat = 0.03). There were no other significant associations for other exposures (P ≥ 0.06). The evaluated factors accounted for 7.5% of the variability in OPG. CONCLUSIONS OPG is minimally influenced by hormonal and lifestyle factors among BRCA1 mutation carriers. IMPACT These findings suggest that circulating OPG levels are not impacted by non-genetic factors in high-risk women.
Collapse
Affiliation(s)
- Sarah Sohyun Park
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
| | - Tasnim Zaman
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Shana J Kim
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Jennifer D Brooks
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Andy Kin On Wong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Joint Department of Medical Imaging, University Health Network, Toronto, Canada
- Osteoporosis Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Read-Gene S.A., Grzepnica, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Leonardo Salmena
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Behrens A, Wurmthaler L, Heindl F, Gass P, Häberle L, Volz B, Hack CC, Emons J, Erber R, Hartmann A, Beckmann MW, Ruebner M, Dougall WC, Press MF, Fasching PA, Huebner H. RANK and RANKL Expression in Tumors of Patients with Early Breast Cancer. Geburtshilfe Frauenheilkd 2024; 84:77-85. [PMID: 38178900 PMCID: PMC10764119 DOI: 10.1055/a-2192-2998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/15/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction The receptor activator of nuclear factor-κB (RANK) pathway was associated with the pathogenesis of breast cancer. Several studies attempted to link the RANK/RANKL pathway to prognosis; however, with inconsistent outcomes. We aimed to further contribute to the knowledge about RANK/RANKL as prognostic factors in breast cancer. Within this study, protein expression of RANK and its ligand, RANKL, in the tumor tissue was analyzed in association with disease-free survival (DFS) and overall survival (OS) in a study cohort of patients with early breast cancer. Patients and Methods 607 samples of female primary and early breast cancer patients from the Bavarian Breast Cancer Cases and Controls Study were analyzed to correlate the RANK and RANKL expression with DFS and OS. Therefore, expression was quantified using immunohistochemical staining of a tissue microarray. H-scores were determined with the cut-off value of 8.5 for RANK and 0 for RANKL expression, respectively. Results RANK and RANKL immunohistochemistry were assessed by H-score. Both biomarkers did not correlate (ρ = -0.04). According to molecular subtypes, triple-negative tumors and HER2-positive tumors showed a higher number of RANK-positive tumors (H-score ≥ 8.5), however, no subtype-specific expression of RANKL could be detected. Higher RANKL expression tended to correlate with a better prognosis. However, RANK and RANKL expression could not be identified as statistically significant prognostic factors within the study cohort. Conclusions Tumor-specific RANK and RANKL expressions are not applicable as prognostic factors for DFS and OS, but might be associated with subtype-specific breast cancer progression.
Collapse
Affiliation(s)
- Annika Behrens
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Lena Wurmthaler
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Felix Heindl
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Paul Gass
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
- Biostatistics Unit, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernhard Volz
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Ansbach University of Applied Sciences, Ansbach, Germany
| | - Carolin C. Hack
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Julius Emons
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Ramona Erber
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - William C. Dougall
- Hematology and Oncology Research, Amgen, Inc., Seattle, WA, USA
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michael F. Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| |
Collapse
|
25
|
Rocha AS, Collado-Solé A, Graña-Castro O, Redondo-Pedraza J, Soria-Alcaide G, Cordero A, Santamaría PG, González-Suárez E. Luminal Rank loss decreases cell fitness leading to basal cell bipotency in parous mammary glands. Nat Commun 2023; 14:6213. [PMID: 37813842 PMCID: PMC10562464 DOI: 10.1038/s41467-023-41741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
Rank signaling pathway regulates mammary gland homeostasis and epithelial cell differentiation. Although Rank receptor is expressed by basal cells and luminal progenitors, its role in each individual cell lineage remains unclear. By combining temporal/lineage specific Rank genetic deletion with lineage tracing techniques, we found that loss of luminal Rank reduces the luminal progenitor pool and leads to aberrant alveolar-like differentiation with high protein translation capacity in virgin mammary glands. These Rank-deleted luminal cells are unable to expand during the first pregnancy, leading to lactation failure and impairment of protein synthesis potential in the parous stage. The unfit parous Rank-deleted luminal cells in the alveoli are progressively replaced by Rank-proficient cells early during the second pregnancy, thereby restoring lactation. Transcriptomic analysis and functional assays point to the awakening of basal bipotency after pregnancy by the induction of Rank/NF-κB signaling in basal parous cell to restore lactation and tissue homeostasis.
Collapse
Affiliation(s)
- Ana Sofia Rocha
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.
| | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | | | | | - Alex Cordero
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | | | - Eva González-Suárez
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.
- Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
26
|
Lin S, Margueron R, Charafe-Jauffret E, Ginestier C. Disruption of lineage integrity as a precursor to breast tumor initiation. Trends Cell Biol 2023; 33:887-897. [PMID: 37061355 DOI: 10.1016/j.tcb.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Increase in lineage infidelity and/or imbalance is frequently observed around the earliest stage of breast tumor initiation. In response to disruption of homeostasis, differentiated cells can partially lose their identity and gain cellular plasticity, a process involving epigenome landscape remodeling. This increase of cellular plasticity may promote the malignant transformation of breast tumors and fuel their heterogeneity. Here, we review recent studies that have yield insights into important regulators of lineage integrity and mechanisms that trigger mammary epithelial lineage derail, and evaluate their impacts on breast tumor development.
Collapse
Affiliation(s)
- Shuheng Lin
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - Raphaël Margueron
- Institut Curie, PSL Research University, Sorbonne University, Paris, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| |
Collapse
|
27
|
De Leon-Oliva D, Barrena-Blázquez S, Jiménez-Álvarez L, Fraile-Martinez O, García-Montero C, López-González L, Torres-Carranza D, García-Puente LM, Carranza ST, Álvarez-Mon MÁ, Álvarez-Mon M, Diaz R, Ortega MA. The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1752. [PMID: 37893470 PMCID: PMC10608105 DOI: 10.3390/medicina59101752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
The RANK-RANKL-OPG system is a complex signaling pathway that plays a critical role in bone metabolism, mammary epithelial cell development, immune function, and cancer. RANKL is a ligand that binds to RANK, a receptor expressed on osteoclasts, dendritic cells, T cells, and other cells. RANKL signaling promotes osteoclast differentiation and activation, which leads to bone resorption. OPG is a decoy receptor that binds to RANKL and inhibits its signaling. In cancer cells, RANKL expression is often increased, which can lead to increased bone resorption and the development of bone metastases. RANKL-neutralizing antibodies, such as denosumab, have been shown to be effective in the treatment of skeletal-related events, including osteoporosis or bone metastases, and cancer. This review will provide a comprehensive overview of the functions of the RANK-RANKL-OPG system in bone metabolism, mammary epithelial cells, immune function, and cancer, together with the potential therapeutic implications of the RANK-RANKL pathway for cancer management.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Surgery Service, University Hospital Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura López-González
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
| | - Luis M. García-Puente
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sara T. Carranza
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Immune System Diseases-Rheumatology Service, University Hospital Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Surgery Service, University Hospital Principe de Asturias, 28801 Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
28
|
Tufail M, Wu C. RANK pathway in cancer: underlying resistance and therapeutic approaches. J Chemother 2023; 35:369-382. [PMID: 36200617 DOI: 10.1080/1120009x.2022.2129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 10/10/2022]
Abstract
Cancer remains one of the deadliest diseases despite advances in treatment. Metastatic cancers are the leading cause of death for advanced cancer patients. Those with advanced cancer with osteolytic-type bone metastases have a significantly lower quality of life. A novel treatment plan is needed now more than ever for breast cancer patients with bone metastases. There are shreds of evidence that cancer cells in the bloodstream interact with the bone microenvironment and that this interaction is a contributing component to breast cancer progression. Preventing any stage of this cycle can result in anti-metastasis effects. Since RANKL interacts with its receptor RANK and plays an important role in the vicious cycle, it has proven to be a successful therapeutic target in cancer treatment. As a result, we have presented a complete overview of the RANK pathway in cancer and discussed RANK signaling and tumor microenvironment, and potential therapeutic approaches in this review.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
29
|
Meng XH, Liu Z, Chen XD, Deng AM, Mao ZH. Functional Enrichment Analysis Identifying Regulatory Information Associated with Human Fracture. Calcif Tissue Int 2023; 113:286-294. [PMID: 37477662 DOI: 10.1007/s00223-023-01108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
Dozens of loci associated with fracture have been identified by genome-wide association studies (GWASs). However, most of these variants are located in the noncoding regions including introns, long terminal repeats, and intergenic regions. Although combining regulation information helps to identify the causal SNPs and interpret the involvement of these variants in the etiology of human fracture, regulation information which was truly associated with fracture was unknown. A novel functional enrichment method GARFIELD (GWAS Analysis of Regulatory of Functional Information Enrichment with LD correction) was applied to identify fracture-associated regulation information, including transcript factor binding sites, expression quantitative trait loci (eQTLs), chromatin states, enhancer, promoter, dyadic, super enhancer and Epigenome marks. Fracture SNPs were significantly enriched in exon (Bonferroni correction, p value < 7.14 × 10-3) at two GWAS p value thresholds through GARFIELD. High level of fold-enrichment was observed in super enhancer of monocyte and the enhancer of chondrocyte (Bonferroni correction, p value < 4.45 × 10-3). eQTLs of 44 tissues/cells and 10 transcription factors (TFs) were identified to be associated with human fracture. These results provide new insight into the etiology of human fracture, which might increase the identification of the causal SNPs through the fine-mapping study combined with functional annotation, as well as polygenic risk score.
Collapse
Affiliation(s)
- Xiang-He Meng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, People's Republic of China.
| | - Zhen Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Ai-Min Deng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, People's Republic of China.
| | - Zeng-Hui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, People's Republic of China.
| |
Collapse
|
30
|
Kolokotroni A, Gkikopoulou E, Rinotas V, Ntari L, Zareifi D, Rouchota M, Sarpaki S, Lymperopoulos I, Alexopoulos LG, Loudos G, Denis MC, Karagianni N, Douni E. Α Humanized RANKL Transgenic Mouse Model of Progestin-Induced Mammary Carcinogenesis for Evaluation of Novel Therapeutics. Cancers (Basel) 2023; 15:4006. [PMID: 37568820 PMCID: PMC10417415 DOI: 10.3390/cancers15154006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) is critically involved in mammary gland pathophysiology, while its pharmaceutical inhibition is being currently investigated in breast cancer. Herein, we investigated whether the overexpression of human RANKL in transgenic mice affects hormone-induced mammary carcinogenesis, and evaluated the efficacy of anti-RANKL treatments, such as OPG-Fc targeting both human and mouse RANKL or Denosumab against human RANKL. We established novel MPA/DMBA-driven mammary carcinogenesis models in TgRANKL mice that express both human and mouse RANKL, as well as in humanized humTgRANKL mice expressing only human RANKL, and compared them to MPA/DMBA-treated wild-type (WT) mice. Our results show that TgRANKL and WT mice have similar levels of susceptibility to mammary carcinogenesis, while OPG-Fc treatment restored mammary ductal density, and prevented ductal branching and the formation of neoplastic foci in both genotypes. humTgRANKL mice also developed MPA/DMBA-induced tumors with similar incidence and burden to those of WT and TgRANKL mice. The prophylactic treatment of humTgRANKL mice with Denosumab significantly prevented the rate of appearance of mammary tumors from 86.7% to 15.4% and the early stages of carcinogenesis, whereas therapeutic treatment did not lead to any significant attenuation of tumor incidence or tumor burden compared to control mice, suggesting the importance of RANKL primarily in the initial stages of tumorigenesis. Overall, we provide unique genetic tools for investigating the involvement of RANKL in breast carcinogenesis, and allow the preclinical evaluation of novel therapeutics that target hormone-related breast cancers.
Collapse
Affiliation(s)
- Anthi Kolokotroni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672 Vari, Greece
| | - Evi Gkikopoulou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672 Vari, Greece
| | - Vagelis Rinotas
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672 Vari, Greece
| | - Lydia Ntari
- Biomedcode Hellas SA, Fleming 34, 16672 Vari, Greece (M.C.D.)
| | - Danae Zareifi
- Department of Mechanical Engineering, National Technical University of Athens, 10682 Athens, Greece
| | - Maritina Rouchota
- BIOEMTECH, Lefkippos Attica Technology Park, NCSR “Demokritos”, Ag. Paraskevi, 15343 Athens, Greece (G.L.)
| | - Sophia Sarpaki
- BIOEMTECH, Lefkippos Attica Technology Park, NCSR “Demokritos”, Ag. Paraskevi, 15343 Athens, Greece (G.L.)
| | | | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 10682 Athens, Greece
| | - George Loudos
- BIOEMTECH, Lefkippos Attica Technology Park, NCSR “Demokritos”, Ag. Paraskevi, 15343 Athens, Greece (G.L.)
| | - Maria C. Denis
- Biomedcode Hellas SA, Fleming 34, 16672 Vari, Greece (M.C.D.)
| | - Niki Karagianni
- Biomedcode Hellas SA, Fleming 34, 16672 Vari, Greece (M.C.D.)
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672 Vari, Greece
| |
Collapse
|
31
|
Rinotas V, Liepouri F, Ouzouni MD, Chalkidi N, Papaneophytou C, Lampropoulou M, Vidali VP, Kontopidis G, Couladouros E, Eliopoulos E, Papakyriakou A, Douni E. Structure-Based Discovery of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-Induced Osteoclastogenesis Inhibitors. Int J Mol Sci 2023; 24:11290. [PMID: 37511048 PMCID: PMC10379842 DOI: 10.3390/ijms241411290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) has been actively pursued as a therapeutic target for osteoporosis, given that RANKL is the master mediator of bone resorption as it promotes osteoclast differentiation, activity and survival. We employed a structure-based virtual screening approach comprising two stages of experimental evaluation and identified 11 commercially available compounds that displayed dose-dependent inhibition of osteoclastogenesis. Their inhibitory effects were quantified through TRAP activity at the low micromolar range (IC50 < 5 μΜ), but more importantly, 3 compounds displayed very low toxicity (LC50 > 100 μΜ). We also assessed the potential of an N-(1-aryl-1H-indol-5-yl)aryl-sulfonamide scaffold that was based on the structure of a hit compound, through synthesis of 30 derivatives. Their evaluation revealed 4 additional hits that inhibited osteoclastogenesis at low micromolar concentrations; however, cellular toxicity concerns preclude their further development. Taken together with the structure-activity relationships provided by the hit compounds, our study revealed potent inhibitors of RANKL-induced osteoclastogenesis of high therapeutic index, which bear diverse scaffolds that can be employed in hit-to-lead optimization for the development of therapeutics against osteolytic diseases.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | | | - Maria-Dimitra Ouzouni
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Niki Chalkidi
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - Christos Papaneophytou
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus
| | | | - Veroniki P Vidali
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patr. Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece
| | - George Kontopidis
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece
| | - Elias Couladouros
- proACTINA SA, 20 Delfon Street, 15125 Athens, Greece
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patr. Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
32
|
Onji M, Penninger JM. RANKL and RANK in Cancer Therapy. Physiology (Bethesda) 2023; 38:0. [PMID: 36473204 DOI: 10.1152/physiol.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of nuclear factor-κB (RANK) and its ligand (RANKL) are key regulators of mammalian physiology such as bone metabolism, immune tolerance and antitumor immunity, and mammary gland biology. Here, we explore the multiple functions of RANKL/RANK in physiology and pathophysiology and discuss underlying principles and strategies to modulate the RANKL/RANK pathway as a therapeutic target in immune-mediated cancer treatment.
Collapse
Affiliation(s)
- Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Brook N, Dharmarajan A, Chan A, Dass CR. Potential therapeutic role for pigment epithelium-derived factor in post-menopausal breast cancer bone metastasis. J Pharm Pharmacol 2023:7146711. [PMID: 37116213 DOI: 10.1093/jpp/rgad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVES This review discusses key oestrogens associated with the circulating pre- and post-menopausal milieu and how they may impact intratumoral oestrogen levels and breast cancer (BC) metastasis. It also identifies critical steps in BC metastasis to bone from the viewpoint of pigment epithelium-derived factor (PEDF) function, and discusses the role of several associated pro-metastatic biomarkers in BC bone metastasis. KEY FINDINGS PEDF is regulated by oestrogen in a number of oestrogen-sensitive tissues. Changes in circulating oestrogen levels associated with menopause may enhance the growth of BC bone metastases, leading to the establishment of a pre-metastatic niche. The establishment of such a pre-metastatic niche is driven by several key mediators, with pro-osteoclastic and pro-metastatic function which are upregulated by BC cells. These mediators appear to be regulated by oestrogen, as well as differentially affected by menopausal status. PEDF interacts with several pro-metastatic, pro-osteoclastic biomarkers, including C-X-C motif chemokine receptor 4 (CXCR4) and nuclear factor kappa B (NFκB) in BC bone metastasis. CONCLUSION Mediators such as CXCR4 and MT1-MMP underpin the ability of PEDF to function as an antimetastatic in other cancers such as osteosarcoma, highlighting the possibility that this serpin could be used as a therapeutic against BC metastasis in future.
Collapse
Affiliation(s)
- Naomi Brook
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Arun Dharmarajan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Breast Cancer Research Centre-Western Australia, Hollywood Private Hospital, Nedlands 6009, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| |
Collapse
|
34
|
Fricke HP, Hernandez LL. The Serotonergic System and Bone Metabolism During Pregnancy and Lactation and the Implications of SSRI Use on the Maternal-Offspring Dyad. J Mammary Gland Biol Neoplasia 2023; 28:7. [PMID: 37086330 PMCID: PMC10122632 DOI: 10.1007/s10911-023-09535-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Lactation is a physiological adaptation of the class Mammalia and is a product of over 200 million years of evolution. During lactation, the mammary gland orchestrates bone metabolism via serotonin signaling in order to provide sufficient calcium for the offspring in milk. The role of serotonin in bone remodeling was first discovered over two decades ago, and the interplay between serotonin, lactation, and bone metabolism has been explored in the years following. It is estimated that postpartum depression affects 10-15% of the population, and selective serotonin reuptake inhibitors (SSRI) are often used as the first-line treatment. Studies conducted in humans, nonhuman primates, sheep, and rodents have provided evidence that there are consequences on both parent and offspring when serotonin signaling is disrupted during the peripartal period; however, the long-term consequences of disruption of serotonin signaling via SSRIs during the peripartal period on the maternal and offspring skeleton are not fully known. This review will focus on the relationship between the mammary gland, serotonin, and bone remodeling during the peripartal period and the skeletal consequences of the dysregulation of the serotonergic system in both human and animal studies.
Collapse
Affiliation(s)
- Hannah P Fricke
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Hayashi Y, Nakayama J, Yamamoto M, Maekawa M, Watanabe S, Higashiyama S, Inoue JI, Yamamoto Y, Semba K. Aberrant accumulation of NIK promotes tumor growth by dysregulating translation and post-translational modifications in breast cancer. Cancer Cell Int 2023; 23:57. [PMID: 37005661 PMCID: PMC10067241 DOI: 10.1186/s12935-023-02904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND In vivo investigations with cancer cells have powerful tools to discover cancer progression mechanisms and preclinical candidate drugs. Among these in vivo experimental models, the establishment of highly malignancy cell lines with xenograft has been frequently used. However, few previous researches targeted malignancy-related genes whose protein levels translationally changed. Therefore, this study aimed to identify malignancy-related genes which contributed to cancer progression and changed at the protein level in the in vivo selected cancer cell lines. METHODS We established the high malignancy breast cancer cell line (LM05) by orthotopic xenograft as an in vivo selection method. To explore the altered genes by translational or post-translational regulation, we analyzed the protein production by western blotting in the highly malignant breast cancer cell line. Functional analyses of the altered genes were performed by in vitro and in vivo experiments. To reveal the molecular mechanisms of the regulation with protein level, we evaluated post-translational modification by immunoprecipitation. In addition, we evaluated translational production by click reaction-based purification of nascent protein. RESULTS As a result, NF-κB inducing kinase (NIK) increased at the protein level and promoted the nuclear localization of NF-κB2 (p52) and RelB in the highly malignant breast cancer cell line. The functional analyses indicated the NIK upregulation contributed to tumor malignancy via cancer-associated fibroblasts (CAFs) attraction and partially anti-apoptotic activities. Additionally, the immunoprecipitation experiment revealed that the ubiquitination of NIK decreased in LM05 cells. The decline in NIK ubiquitination was attributed to the translational downregulation of cIAP1. CONCLUSIONS Our study identified a dysregulated mechanism of NIK production by the suppression of NIK post-modification and cIAP1 translation. The aberrant NIK accumulation promoted tumor growth in the highly malignant breast cancer cell line.
Collapse
Affiliation(s)
- Yusuke Hayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-Ku, Tokyo, 105-8512, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
- Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-Ku, Osaka, 541-8567, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
36
|
Meier ME, Hagelstein-Rotman M, Majoor BCJ, Geels RES, Appelman-Dijkstra NM, Bravenboer N. Expression of RANKL in breast cancer tissue in patients with fibrous dysplasia/McCune-Albright syndrome. Bone 2023; 169:116679. [PMID: 36652988 DOI: 10.1016/j.bone.2023.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND In fibrous dysplasia/McCune-Albright syndrome (FD/MAS), mosaic mutations in the GNAS gene lead to locally abnormal bone turnover. Additionally, patients with FD/MAS, particularly with thoracic lesions, have an increased risk for breast cancer. Development and progression of breast cancer has been associated with expression of Receptor Activator of NF-κB ligand (RANKL) in mammary tissue, and due to the GNAS mutation, RANKL is systemically increased in patients with FD/MAS. Yet it is unknown whether breast cancer in FD/MAS is also dependent on RANKL. We hypothesized that the GNAS mutation might induce RANKL overproduction and an oncogenic niche in mammary tissue, and examined RANKL expression in breast cancer tissue of patients with FD/MAS compared to controls. METHODS Nine patients with FD/MAS and breast cancer were included and clinical data were retrieved. Patients were matched to controls with breast cancer without FD/MAS based on age and tumor type. Three pregnant breast cancer patients were included as positive controls. Immunohistochemical detection of RANKL was performed on formalin-fixed paraffin-embedded breast cancer specimens. Staining intensity was classified as weak, moderate or intense. The area of positive RANKL staining divided by the total ductal-lobular area was assessed (positive area percentage, PAP). Number of patients with RANKL expression was compared between FD/MAS and control group by chi-square (χ2) test, the PAP by Mann-Whitney U test (MWU). RESULTS RANKL expression was observed in 3 patients with FD/MAS (38 %), mainly in healthy tissue, and none of the control patients (χ2p = 0.055). The FD/MAS group demonstrated considerably more intense staining than the control group, comparable to positive controls. The median PAP was 0.64 % (range 0.14-2.04 %) in the 3 FD/MAS patients with RANKL expression, 0.01 % (Q1-Q3: 0.0003-0.514 %) in the entire FD/MAS group, 0.006 % (Q1-Q3: 0.001-0.012 %) in the control group (MWU = 0.574), and 0.19 % (0.08-0.32 %) in the pregnant patients. All patients with FD/MAS and RANKL expression had thoracic bone lesions, but no correlation was observed between RANKL expression and presence of the GNAS mutation or FD disease burden. CONCLUSIONS The triad of a higher number of patients, higher positive area percentage and stronger intensity in the FD/MAS compared to the control group indicates that RANKL may be upregulated in mammary tissue in a subset of patients with FD/MAS, which may explain the increased risk for breast cancer, although the clinical significance remains unclear. Further research is needed to establish risk profiles for the development of RANKL-positive breast cancer and to improve early screening and treatment.
Collapse
Affiliation(s)
- M E Meier
- Center for Bone Quality, Department of Orthopaedic Surgery, Leiden University Medical Center, Leiden, the Netherlands.
| | - M Hagelstein-Rotman
- Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands
| | - B C J Majoor
- Center for Bone Quality, Department of Orthopaedic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - R E S Geels
- Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands
| | - N M Appelman-Dijkstra
- Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands
| | - N Bravenboer
- Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Martiniakova M, Kovacova V, Mondockova V, Zemanova N, Babikova M, Biro R, Ciernikova S, Omelka R. Honey: A Promising Therapeutic Supplement for the Prevention and Management of Osteoporosis and Breast Cancer. Antioxidants (Basel) 2023; 12:567. [PMID: 36978815 PMCID: PMC10045300 DOI: 10.3390/antiox12030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Osteoporosis and breast cancer are serious diseases that have become a significant socioeconomic burden. There are biochemical associations between the two disorders in terms of the amended function of estrogen, receptor activator of nuclear factor kappa beta ligand, oxidative stress, inflammation, and lipid accumulation. Honey as a functional food with high antioxidant and anti-inflammatory properties can contribute to the prevention of various diseases. Its health benefits are mainly related to the content of polyphenols. This review aims to summarize the current knowledge from in vitro, animal, and human studies on the use of honey as a potential therapeutic agent for osteoporosis and breast cancer. Preclinical studies have revealed a beneficial impact of honey on both bone health (microstructure, strength, oxidative stress) and breast tissue health (breast cancer cell proliferation and apoptosis, tumor growth rate, and volume). The limited number of clinical trials, especially in osteoporosis, indicates the need for further research to evaluate the potential benefits of honey in the treatment. Clinical studies related to breast cancer have revealed that honey is effective in increasing blood cell counts, interleukin-3 levels, and quality of life. In summary, honey may serve as a prospective therapeutic supplement for bone and breast tissue health.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| |
Collapse
|
38
|
Cordero A, Santamaría PG, González-Suárez E. Rank ectopic expression in the presence of Neu and MMTV oncogenes alters mammary epithelial cell populations and their tumorigenic potential. J Mammary Gland Biol Neoplasia 2023; 28:2. [PMID: 36808257 PMCID: PMC9938814 DOI: 10.1007/s10911-023-09530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/24/2023] [Indexed: 02/21/2023] Open
Abstract
Determination of the mammary epithelial cell that serves as the cell of origin for breast cancer is key to understand tumor heterogeneity and clinical management. In this study, we aimed to decipher whether Rank expression in the presence of PyMT and Neu oncogenes might affect the cell of origin of mammary gland tumors. We observed that Rank expression in PyMT+/- and Neu+/- mammary glands alters the basal and luminal mammary cell populations already in preneoplasic tissue, which may interfere with the tumor cell of origin restricting their tumorigenesis ability upon transplantation assays. In spite of this, Rank expression eventually promotes tumor aggressiveness once tumorigenesis is established.
Collapse
Affiliation(s)
- Alex Cordero
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908, Barcelona, Spain
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Patricia G Santamaría
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Eva González-Suárez
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908, Barcelona, Spain.
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
39
|
Lai ZZ, Zhou WJ, Shi JW, Meng YH, Wu JN, Ye JF, Peng T, Xu CE, Li MQ. RANKL up-regulated by progesterone aggravates lipopolysaccharide-induced acute lung injury during pregnancy. J Reprod Immunol 2023; 155:103788. [PMID: 36580846 DOI: 10.1016/j.jri.2022.103788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Acute lung injury (ALI) is a common acute respiratory disease with high morbidity and mortality rate in pregnant women. Receptor activator of NF-κB ligand (TNFSF11, also known as RANKL) exerts either pro-inflammatory or anti-inflammatory effects on the immune response. LPS administration reduced the survival time (n = 10, p < 0.01), increased wet/dry ratio (n = 10, p < 0.001) and lung injury score (n = 10, p < 0.001), the elevated proportions of plasmacytoid dendritic cells (pDCs) (n = 10, p < 0.0001), tissue-resident DCs (resDCs) (n = 10, p < 0.0001), macrophages (n = 10, p < 0.0001), and neutrophils (n = 10, p < 0.0001), and the expressions of costimulatory molecules and inflammation cytokines (n = 10, p < 0.05) in lungs of pregnant mice, compared with non-pregnant mice. In vitro, progesterone up-regulated the expression of RANKL (n > 6, p < 0.05) on pulmonary fibroblasts. The results of cytokine arrays showed that the cytokines associated with inflammatory response and leukocyte differentiation were decreased in pulmonary fibroblasts after treatment with anti-RANKL neutralizing antibody, compared with control pulmonary fibroblasts. More notably, we found that Tnfsf11-/- pregnant mice had longer survival durations (n = 10, p < 0.01), lower lung injury scores (n = 10, p < 0.05), and lower immune cell infiltration (n = 10, p < 0.05). These data imply that the RANKL/RANK axis plays an essential role in LPS-induced ALI during pregnancy possibly through a variety of pathways.
Collapse
Affiliation(s)
- Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China; NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jia-Wei Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang 261035, People's Republic of China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Jiang-Feng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Ting Peng
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China.
| | - Chang-En Xu
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China; NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
40
|
Mao Y, Yang H, Ma X, Wang C, Zhang L, Cui Y. Prolactin regulates RANKL expression via signal transducer and activator of transcription 5a signaling in mammary epithelial cells of dairy cows. Cell Biol Int 2023; 47:920-928. [PMID: 36651326 DOI: 10.1002/cbin.11988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/17/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Receptor of activated nuclear factor kappa B ligand (RANKL) is regulated by prolactin in the mammary gland. However, the intrinsic molecular mechanism is not well understood. Herein, mammary epithelial cells (MECs) of dairy cows were isolated to characterize the molecular mechanism of prolactin in vitro. We demonstrated that prolactin stimulation increased the expression of RANKL in MECs. Moreover, the expression of RANKL induced by prolactin was inhibited by the prolactin receptor or signal transducer and activator of transcription 5A (STAT5a) knockdown. Furthermore, prolactin markedly increased RANKL-Luciferase reporter activity in MECs. We identified a putative gamma-interferon activated site (GAS) in the region between residues -883 to -239 bp of the RANKL promoter. Subsequently, we found that the mutated GAS sequence failed to respond to prolactin stimulation. In addition, STAT5a knockdown markedly decreased prolactin-stimulated RANKL promoter activity. Western blot results revealed that RANKL overexpression markedly decreased the STAT5a phosphorylation level in MECs. These findings indicate that prolactin could regulate RANKL promoter activity via STAT5a, contributing to increased RANKL expression in MECs. RANKL may have a negative regulatory effect on STAT5a activity.
Collapse
Affiliation(s)
- Yongjin Mao
- College of Life Science, Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Huilin Yang
- College of Life Science, Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xiaocong Ma
- College of Life Science, Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Chunmei Wang
- College of Life Science, Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Li Zhang
- College of Life Science, Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yingjun Cui
- College of Life Science, Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
41
|
Lu N, Shan C, Fu JR, Zhang Y, Wang YY, Zhu YC, Yu J, Cai J, Li SX, Tao T, Liu W. RANKL Is Independently Associated with Increased Risks of Non-Alcoholic Fatty Liver Disease in Chinese Women with PCOS: A Cross-Sectional Study. J Clin Med 2023; 12:jcm12020451. [PMID: 36675380 PMCID: PMC9864426 DOI: 10.3390/jcm12020451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Women with polycystic ovarian syndrome (PCOS) are more likely to have non-alcoholic fatty liver disease (NAFLD) than non-PCOS women; however, the exact mechanism underlying this trend is unknown. The receptor activator of NF-κB ligand (RANKL) is strongly involved in bone metabolism and has multiple functions. Recent studies suggest that RANKL is implicated in hepatic insulin resistance (IR), which is the highest risk factor for NAFLD. This study aimed to assess the role of RANKL in NAFLD in Chinese women with PCOS. A cross-sectional observational study was conducted on women newly diagnosed with PCOS, which included 146 patients with NAFLD and 142 patients without NAFLD. Sex hormones, glucose, insulin, and lipids were measured, and anthropometric data were collected. The concentration of serum total RANKL was measured using commercial ELISA kits. PCOS patients with NAFLD had a significantly higher mean age, body mass index (BMI), waist circumference (WC), and worsened metabolic profile than non-NAFLD subjects. The concentrations of high-sensitivity C-reactive protein, total cholesterol, and low-density lipoprotein cholesterol increased with the RANKL tertile (p for trend = 0.023, 0.026, and 0.035, respectively). A significantly positive association was found between RANKL (per SD change) and the risks of NAFLD (OR = 1.545, 95% CI = 1.086−2.199) after adjusting for confounders, including demographic factors, metabolic markers, and sex hormones. Subgroup multivariate logistic analyses stratified by age, BMI, and WC showed the same tendency. In addition, the positive association between RANKL and NAFLD seemed more prominent in lean patients with a BMI < 24 kg/m2 (OR = 1.70, 95% CI = 1.06−2.75) when compared to overweight/obesity subjects. Therefore, this study suggests that RANKL is positively associated with the increased risk of NAFLD in Chinese women with PCOS, independent of metabolic and reproductive factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Tao
- Correspondence: (T.T.); (W.L.)
| | - Wei Liu
- Correspondence: (T.T.); (W.L.)
| |
Collapse
|
42
|
Lončar SR, Halcrow SE, Swales D. Osteoimmunology: The effect of autoimmunity on fracture healing and skeletal analysis. Forensic Sci Int Synerg 2023; 6:100326. [PMID: 37091290 PMCID: PMC10120377 DOI: 10.1016/j.fsisyn.2023.100326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 04/25/2023]
Abstract
Understanding factors that affect bone response to trauma is integral to forensic skeletal analysis. It is essential in forensic anthropology to identify if impaired fracture healing impacts assessment of post-traumatic time intervals and whether a correction factor is required. This paper presents a synthetic review of the intersection of the literature on the immune system, bone biology, and osteoimmunological research to present a novel model of interactions that may affect fracture healing under autoimmune conditions. Results suggest that autoimmunity likely impacts fracture healing, the pathogenesis however, is under researched, but likely multifactorial. With autoimmune diseases being relatively common, significant clinical history should be incorporated when assessing skeletal remains. Future research includes the true natural healing rate of bone; effect of autoimmunity on this rate; variation of healing with different autoimmune diseases; and if necessary, development of a correction factor on the natural healing rate to account for impairment in autoimmunity.
Collapse
Affiliation(s)
- Stephie R. Lončar
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Scotland, United Kingdom
- Department of Anatomy, University of Otago, New Zealand
- Corresponding author. Centre for Anatomy and Human Identification School of Science and Engineering, MSI/WTB Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom.
| | - Siân E. Halcrow
- Department of Anatomy, University of Otago, New Zealand
- Corresponding author. Biological Anthropology Research Group, Department of Anatomy, 270 Great King Street, University of Otago, Dunedin, 9016, New Zealand.
| | - Diana Swales
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Scotland, United Kingdom
| |
Collapse
|
43
|
Peters S, Letovanec I, Mauer M, Dafni U, Ejedepang D, Biernat W, Bubendorf L, Warth A, Pokharel S, Reinmuth N, Majem Tarruella M, Casas-Martin J, Tsourti Z, Marti N, Kammler R, Danson S, O'Brien M, Stahel RA. Assessment of RANK/RANK-L prevalence and clinical significance in NSCLC European Thoracic Oncology Platform Lungscape cohort and SPLENDOUR randomized clinical trial. Lung Cancer 2023; 175:141-151. [PMID: 36535121 DOI: 10.1016/j.lungcan.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The primary objective of this study is to evaluate the clinical significance of RANK/L expression, in both a retrospective cohort of surgically resected stage I-III NSCLC (Lungscape) and a randomized clinical trial-cohort (SPLENDOUR) of advanced NSCLC treated with chemotherapy alone or in combination with denosumab. METHODS RANK-L expression was assessed on tissue microarrays (TMAs) in Lungscape and whole sections in SPLENDOUR, using immunohistochemistry, with H-scores values > 0 indicating positivity. Prevalence of RANK positivity and its association with clinicopathological characteristics, and patient outcome was explored in a subset of the ETOP Lungscape cohort and in SPLENDOUR. Also investigated were the prevalence of RANK overexpression (proportion of positive cancer cells ≥ 50%) in the Lungscape cohort, and RANK-L in the SPLENDOUR trial. RESULTS In the Lungscape cohort, RANK expression was assessed at a median follow-up of 46 months (N = 488 patients; 4 centers); 35% were female, 44/49/6% adenocarcinomas (AC)/squamous cell carcinomas (SCC)/other, 48/27/25% with stage I/II/III. Median RFS/TTR/OS were 58/Not reached/74 months. Prevalence of RANK expression was 31% (95%CI:27%-35%); significantly higher in AC: 50% (95%CI:43%-57%) vs SCC: 12% (95%CI:8%-16%) (p < 0.001); more frequent in females (42% vs 25%, p < 0.001) and tumors ≤ 4 cm (35.3% vs 23.3%, p = 0.0065). No association with outcome was found. In the SPLENDOUR trial (463 patients), the prevalence of membranous and cytoplasmic RANK positivity was 34% (95%CI:30%-38%) and 9% (95%CI:7%-12%), respectively, while prevalence for RANK-L was 5% (95%CI:3%-7%) and 36% (95%CI:31%-40%), respectively. Cytoplasmic RANK-L positivity was more common among females (47% vs 31%, p = 0.001) and in non-SCC histology (45% vs 10%, p < 0.0001). At the pre-specified 1% significance level, no prognostic or predictive effect was found. CONCLUSIONS Both cohorts indicate that RANK expression is more common in adenocarcinoma/non-squamous NSCLC and in female patients. No prognostic effect is found, and in the clinical trial involving addition of denosumab to chemotherapy no predictive effect is detected.
Collapse
Affiliation(s)
- Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Igor Letovanec
- Department of Pathology, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, Switzerland, Hôpital du Valais - Institut Central des Hôpitaux (ICH), Sion, Switzerland
| | - Murielle Mauer
- Headquarters, European Organisation for Research and Treatment of Cancer (EORTC), 83 Avenue E. Mounier, 1200 Brussels, Belgium
| | - Urania Dafni
- Frontier Science Foundation-Hellas & National and Kapodistrian University of Athens, Athens, Greece
| | - Dunson Ejedepang
- Headquarters, European Organisation for Research and Treatment of Cancer (EORTC), 83 Avenue E. Mounier, 1200 Brussels, Belgium
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Arne Warth
- Department of Pathology, Universitätsklinikum Heidelberg, Heidelberg, Germany, current address: Institute of Pathology, Cytopathology, and Molecular Pathology MVZ UEGP Giessen / Wetzlar / Limburg, Germany
| | - Saraswati Pokharel
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Niels Reinmuth
- Department of Oncology, Asklepios Kliniken GmbH - Asklepios Fachkliniken Muenchen-Gauting, Munich, Germany
| | | | - Jose Casas-Martin
- Headquarters, European Organisation for Research and Treatment of Cancer (EORTC), 83 Avenue E. Mounier, 1200 Brussels, Belgium
| | - Zoi Tsourti
- Frontier Science Foundation-Hellas, Athens, Greece
| | - Nesa Marti
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Roswitha Kammler
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Sarah Danson
- Department of Oncology and Metabolism & Sheffield Experimental Cancer Medicine Centre, University of Sheffield, Weston Park Hospital, Sheffield, United Kingdom
| | - Mary O'Brien
- Department of Medical Oncology, Royal Marsden Hospital Sutton, United Kingdom
| | - Rolf A Stahel
- President, ETOP IBCSG Partners Foundation, Coordinating Center, Bern, Switzerland.
| |
Collapse
|
44
|
Zhang Y, Liang J, Liu P, Wang Q, Liu L, Zhao H. The RANK/RANKL/OPG system and tumor bone metastasis: Potential mechanisms and therapeutic strategies. Front Endocrinol (Lausanne) 2022; 13:1063815. [PMID: 36589815 PMCID: PMC9800780 DOI: 10.3389/fendo.2022.1063815] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
With the markedly increased diagnosis and incidence of cancer in the population, tumor bone metastasis has become a frequent event in tumor patients. Healthy bone integrity is maintained by a delicate balance between bone formation and bone resorption. Unfortunately, many tumors, such as prostate and breast, often metastasize to the bone, and the alterations to the bone homeostasis can particularly favor tumor homing and consequent osteolytic or osteoblastic lesions. Receptor activator of NF-κB ligand (RANKL), its receptor RANK, and osteoprotegerin (OPG) are involved in the regulation of the activation, differentiation, and survival of osteoclasts, which play critical roles in bone metastasis formation. High rates of osteoclastic bone resorption significantly increase fracture risk, cause severe bone pain, and contribute to homing tumor cells in bone and bone marrow. Consequently, suppression of the RANK/RANKL/OPG system and osteoclastic activity can not only ameliorate bone resorption but may also prevent tumor bone metastases. This review summarizes the important role of the RANK/RANKL/OPG system and osteoclasts in bone homeostasis and its effect on tumor bone metastasis and discusses therapeutic strategies based on RANKL inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
45
|
Huang D, Zhao C, Li R, Chen B, Zhang Y, Sun Z, Wei J, Zhou H, Gu Q, Xu J. Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble RANK-RANKL interactions and treat osteoporosis. Nat Commun 2022; 13:5338. [PMID: 36097003 PMCID: PMC9468151 DOI: 10.1038/s41467-022-33006-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major challenges for discovering protein-protein interaction inhibitors is identifying selective and druggable binding sites at the protein surface. Here, we report an approach to identify a small molecular binding site to selectively inhibit the interaction of soluble RANKL and RANK for designing anti-osteoporosis drugs without undesirable immunosuppressive effects. Through molecular dynamic simulations, we discovered a binding site that allows a small molecule to selectively interrupt soluble RANKL-RANK interaction and without interfering with the membrane RANKL-RANK interaction. We describe a highly potent inhibitor, S3-15, and demonstrate its specificity to inhibit the soluble RANKL-RANK interaction with in vitro and in vivo studies. S3-15 exhibits anti-osteoporotic effects without causing immunosuppression. Through in silico and in vitro experiments we further confirm the binding model of S3-15 and soluble RANKL. This work might inspire structure-based drug discovery for targeting protein-protein interactions.
Collapse
Affiliation(s)
- Dane Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China ,grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Chao Zhao
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Ruyue Li
- grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Bingyi Chen
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuting Zhang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhejun Sun
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Junkang Wei
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
46
|
Lee SH, Yap YHY, Lim CL, Woo ARE, Lin VCL. Activation function 1 of progesterone receptor is required for mammary development and regulation of RANKL during pregnancy. Sci Rep 2022; 12:12286. [PMID: 35854046 PMCID: PMC9296660 DOI: 10.1038/s41598-022-16289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Progesterone receptor (PGR) is a member of the nuclear receptor superfamily of transcription factors. It is critical for mammary stem cells expansion, mammary ductal branching and alveologenesis. The transcriptional activity of PGR is mainly mediated by activation functions AF1 and AF2. Although the discovery of AF1 and AF2 propelled the understanding of the mechanism of gene regulation by nuclear receptors, their physiological roles are still poorly understood. This is largely due to the lack of suitable genetic models. The present study reports gain or loss of AF1 function mutant mouse models in the study of mammary development. The gain of function mutant AF1_QQQ exhibits hyperactivity while the loss of function mutant AF1_FFF shows hypoactivity on mammary development. However, the involvement of AF1 is context dependent. Whereas the AF1_FFF mutation causes significant impairment in mammary development during pregnancy or in response to estrogen and progesterone, it has no effect on mammary development in nulliparous mice. Furthermore, Rankl, but not Wnt4 and Areg is a major target gene of AF1. In conclusion, PGR AF1 is a pivotal ligand-dependent activation domain critical for mammary development during pregnancy and it exerts gene specific effect on PGR regulated genes.
Collapse
Affiliation(s)
- Shi Hao Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yeannie H Y Yap
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.,Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Chew Leng Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Amanda Rui En Woo
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Valerie C L Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
47
|
Miller JL, Bartlett AP, Harman RM, Majhi PD, Jerry DJ, Van de Walle GR. Induced mammary cancer in rat models: pathogenesis, genetics, and relevance to female breast cancer. J Mammary Gland Biol Neoplasia 2022; 27:185-210. [PMID: 35904679 DOI: 10.1007/s10911-022-09522-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022] Open
Abstract
Mammary cancer, or breast cancer in women, is a polygenic disease with a complex etiopathogenesis. While much remains elusive regarding its origin, it is well established that chemical carcinogens and endogenous estrogens contribute significantly to the initiation and progression of this disease. Rats have been useful models to study induced mammary cancer. They develop mammary tumors with comparable histopathology to humans and exhibit differences in resistance or susceptibility to mammary cancer depending on strain. While some rat strains (e.g., Sprague-Dawley) readily form mammary tumors following treatment with the chemical carcinogen, 7,12-dimethylbenz[a]-anthracene (DMBA), other strains (e.g., Copenhagen) are resistant to DMBA-induced mammary carcinogenesis. Genetic linkage in inbred strains has identified strain-specific quantitative trait loci (QTLs) affecting mammary tumors, via mechanisms that act together to promote or attenuate, and include 24 QTLs controlling the outcome of chemical induction, 10 QTLs controlling the outcome of estrogen induction, and 4 QTLs controlling the outcome of irradiation induction. Moreover, and based on shared factors affecting mammary cancer etiopathogenesis between rats and humans, including orthologous risk regions between both species, rats have served as useful models for identifying methods for breast cancer prediction and treatment. These studies in rats, combined with alternative animal models that more closely mimic advanced stages of breast cancer and/or human lifestyles, will further improve our understanding of this complex disease.
Collapse
Affiliation(s)
- James L Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Prabin Dhangada Majhi
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
48
|
Gray GK, Li CMC, Rosenbluth JM, Selfors LM, Girnius N, Lin JR, Schackmann RCJ, Goh WL, Moore K, Shapiro HK, Mei S, D'Andrea K, Nathanson KL, Sorger PK, Santagata S, Regev A, Garber JE, Dillon DA, Brugge JS. A human breast atlas integrating single-cell proteomics and transcriptomics. Dev Cell 2022; 57:1400-1420.e7. [PMID: 35617956 DOI: 10.1016/j.devcel.2022.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
The breast is a dynamic organ whose response to physiological and pathophysiological conditions alters its disease susceptibility, yet the specific effects of these clinical variables on cell state remain poorly annotated. We present a unified, high-resolution breast atlas by integrating single-cell RNA-seq, mass cytometry, and cyclic immunofluorescence, encompassing a myriad of states. We define cell subtypes within the alveolar, hormone-sensing, and basal epithelial lineages, delineating associations of several subtypes with cancer risk factors, including age, parity, and BRCA2 germline mutation. Of particular interest is a subset of alveolar cells termed basal-luminal (BL) cells, which exhibit poor transcriptional lineage fidelity, accumulate with age, and carry a gene signature associated with basal-like breast cancer. We further utilize a medium-depletion approach to identify molecular factors regulating cell-subtype proportion in organoids. Together, these data are a rich resource to elucidate diverse mammary cell states.
Collapse
Affiliation(s)
- G Kenneth Gray
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Carman Man-Chung Li
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Jennifer M Rosenbluth
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA 02115, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA; The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Jia-Ren Lin
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Ron C J Schackmann
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Walter L Goh
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Kaitlin Moore
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Hana K Shapiro
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Shaolin Mei
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Kurt D'Andrea
- Department of Medicine, Division of Translation Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translation Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter K Sorger
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Sandro Santagata
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA 02115, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA.
| |
Collapse
|
49
|
Alveolar cells in the mammary gland: lineage commitment and cell death. Biochem J 2022; 479:995-1006. [PMID: 35551601 PMCID: PMC9162463 DOI: 10.1042/bcj20210734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
The mammary gland provides a spectacular example of physiological cell death whereby the cells that produce milk during lactation are removed swiftly, efficiently, and without inducing inflammation upon the cessation of lactation. The milk-producing cells arise primarily during pregnancy and comprise the alveolar lineage that is specified by signalling pathways and factors that are activated in response to pregnancy hormones. There are at least two alveolar sub-lineages, one of which is marked by the presence of binucleate cells that are especially susceptible to programmed cell death during involution. This process of post-lactational regression, or involution, is carefully orchestrated and occurs in two phases, the first results in a rapid switch in cell fate with the secretory epithelial cells becoming phagocytes whereupon they destroy dead and dying cells from milk. This reversible phase is followed by the second phase that is marked by an influx of immune cells and a remodelling of the gland to replace the alveolar cells with re-differentiated adipocytes, resulting in a return to the pre-pregnant state in preparation for any subsequent pregnancies. The mouse mammary gland provides an excellent experimental tool with which to investigate lineage commitment and the mechanisms of programmed cell death that occur in a normal physiological process. Importantly, involution has highlighted a role for lysoptosis, a mechanism of cell death that is mediated by lysosomal cathepsins and their endogenous inhibitors, serpins. In this review, I discuss alveolar lineage commitment during pregnancy and the programmed cell death pathways that destroy these cells during involution.
Collapse
|
50
|
Passaponti S, Ermini L, Acconci G, Severi FM, Romagnoli R, Cutrupi S, Clerico M, Guerrera G, Ietta F. Rank-Rankl-Opg Axis in Multiple Sclerosis: The Contribution of Placenta. Cells 2022; 11:cells11081357. [PMID: 35456036 PMCID: PMC9031903 DOI: 10.3390/cells11081357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Women with multiple sclerosis (MS) can safely become pregnant and give birth, with no side effects or impediments. Pregnancy is generally accepted as a period of well-being in which relapses have a softer evolution, particularly in the third trimester. Herein, we hypothesized that the placenta, via its “secretome”, could contribute to the recognized beneficial effects of pregnancy on MS activity. We focused on a well-known receptor/ligand/decoy receptor system, such as the one composed by the receptor activator of nuclear factor-kB (RANK), its ligand (RANKL), and the decoy receptor osteoprotegerin (OPG), which have never been investigated in an integrated way in MS, pregnancy, and placenta. We reported that pregnancy at the term of gestation influences the balance between circulating RANKL and its endogenous inhibitor OPG in MS women. We demonstrated that the placenta at term is an invaluable source of homodimeric OPG. By functional studies on astrocytes, we showed that placental OPG suppresses the mRNA expression of the CCL20, a chemokine responsible for Th17 cell recruitment. We propose placental OPG as a crucial molecule for the recognized beneficial effect of late pregnancy on MS and its potential utility for the development of new and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Sofia Passaponti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (S.P.); (L.E.); (R.R.)
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (S.P.); (L.E.); (R.R.)
| | - Giulia Acconci
- Department of Molecular and Developmental Medicine, Division of Prenatal Diagnosis and Obstetrics, University of Siena, 53100 Siena, Italy; (G.A.); (F.M.S.)
| | - Filiberto Maria Severi
- Department of Molecular and Developmental Medicine, Division of Prenatal Diagnosis and Obstetrics, University of Siena, 53100 Siena, Italy; (G.A.); (F.M.S.)
| | - Roberta Romagnoli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (S.P.); (L.E.); (R.R.)
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (S.C.); (M.C.)
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (S.C.); (M.C.)
| | - Gisella Guerrera
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (S.P.); (L.E.); (R.R.)
- Correspondence: ; Tel.: +39-05-7723-2370
| |
Collapse
|