1
|
Bremers EK, Butler JH, Do Amaral LS, Merino EF, Almolhim H, Zhou B, Baptista RP, Totrov M, Carlier PR, Cassera MB. Stereospecific Resistance to N2-Acyl Tetrahydro-β-carboline Antimalarials Is Mediated by a PfMDR1 Mutation That Confers Collateral Drug Sensitivity. ACS Infect Dis 2025. [PMID: 39808111 DOI: 10.1021/acsinfecdis.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus Plasmodium. Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite. To better understand its mechanism of action, we selected for and characterized resistance to PRC1590 in Plasmodium falciparum. Through in vitro selection of resistance to PRC1590, we have identified that a single-nucleotide polymorphism on the parasite's multidrug resistance protein 1 (PfMDR1 G293V) mediates resistance to PRC1590. This mutation results in stereospecific resistance and sensitizes parasites to other antimalarials, such as mefloquine, quinine, and MMV019017. Intraerythrocytic asexual stage specificity assays have revealed that PRC1590 is most potent during the trophozoite stage when the parasite forms a single digestive vacuole (DV) and actively digests hemoglobin. Moreover, fluorescence microscopy revealed that PRC1590 disrupts the function of the DV, indicating a potential molecular target associated with this organelle. Our findings mark a significant step in understanding the mechanism of resistance and the mode of action of this emerging class of antimalarials. In addition, our results suggest a potential link between resistance mediated by PfMDR1 and PRC1590's molecular target. This research underscores the pressing need for future research aimed at investigating the intricate relationship between a compound's chemical scaffold, molecular target, and resistance mutations associated with PfMDR1.
Collapse
Affiliation(s)
- Emily K Bremers
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Joshua H Butler
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Leticia S Do Amaral
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Emilio F Merino
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Hanan Almolhim
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bo Zhou
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Rodrigo P Baptista
- Department of Medicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Maxim Totrov
- MolSoft LLC, San Diego, California 92121, United States
| | - Paul R Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Bansal A, Sharma M, Choudhury H. Generation of a new DiCre expressing parasite strain for functional characterization of Plasmodium falciparum genes in blood stages. Sci Rep 2024; 14:24076. [PMID: 39402380 PMCID: PMC11473785 DOI: 10.1038/s41598-024-75657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Conditional regulation is a highly beneficial system for studying the function of essential genes in Plasmodium falciparum and dimerizable Cre recombinase (DiCre) is a recently adapted conditional regulation system suitable for this purpose. In the DiCre system, two inactive fragments of Cre are reconstituted to form a functionally active enzyme in the presence of rapamycin. Different loci have been targeted to generate parasite lines that express the DiCre enzyme. Here, we have used marker-free CRISPR-Cas9 gene editing to integrate the DiCre cassette in a redundant cg6 locus. We have shown the utility of the newly generated ∆cg6DC4 parasites in mediating robust, rapid, and highly specific excision of exogenously encoded gfp sequence. The ∆cg6DC4 parasites are also capable of conditional excision of an endogenous parasite gene, PF3D7_1246000. Conditional deletion of PF3D7_1246000 did not cause any inhibition in the asexual proliferation of the parasites. Furthermore, the health and morphology of the mutant parasites were comparable to that of the control parasites in Giemsa smears. The availability of another stable DiCre parasite strain competent for conditional excision of target genes will expedite functional characterization and validation of novel drug and vaccine targets against malaria.
Collapse
Affiliation(s)
- Abhisheka Bansal
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manish Sharma
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Himashree Choudhury
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
3
|
Kanai M, Mok S, Yeo T, Shears MJ, Ross LS, Jeon JH, Narwal S, Haile MT, Tripathi AK, Mlambo G, Kim J, Gil-Iturbe E, Okombo J, Fairhurst KJ, Bloxham T, Bridgford JL, Sheth T, Ward KE, Park H, Rozenberg FD, Quick M, Mancia F, Lee MC, Small-Saunders JL, Uhlemann AC, Sinnis P, Fidock DA. Identification of the drug/metabolite transporter 1 as a marker of quinine resistance in a NF54×Cam3.II P. falciparum genetic cross. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615529. [PMID: 39386571 PMCID: PMC11463348 DOI: 10.1101/2024.09.27.615529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The genetic basis of Plasmodium falciparum resistance to quinine (QN), a drug used to treat severe malaria, has long been enigmatic. To gain further insight, we used FRG-NOD human liver-chimeric mice to conduct a P. falciparum genetic cross between QN-sensitive and QN-resistant parasites, which also differ in their susceptibility to chloroquine (CQ). By applying different selective conditions to progeny pools prior to cloning, we recovered 120 unique recombinant progeny. These progeny were subjected to drug profiling and QTL analyses with QN, CQ, and monodesethyl-CQ (md-CQ, the active metabolite of CQ), which revealed predominant peaks on chromosomes 7 and 12, consistent with a multifactorial mechanism of resistance. A shared chromosome 12 region mapped to resistance to all three antimalarials and was preferentially co-inherited with pfcrt. We identified an ATP-dependent zinc metalloprotease (FtsH1) as one of the top candidates and observed using CRISPR/Cas9 SNP-edited lines that ftsh1 is a potential mediator of QN resistance and a modulator of md-CQ resistance. As expected, CQ and md-CQ resistance mapped to a chromosome 7 region harboring pfcrt. However, for QN, high-grade resistance mapped to a chromosome 7 peak centered 295kb downstream of pfcrt. We identified the drug/metabolite transporter 1 (DMT1) as the top candidate due to its structural similarity to PfCRT and proximity to the peak. Deleting DMT1 in QN-resistant Cam3.II parasites significantly sensitized the parasite to QN but not to the other drugs tested, suggesting that DMT1 mediates QN response specifically. We localized DMT1 to structures associated with vesicular trafficking, as well as the parasitophorous vacuolar membrane, lipid bodies, and the digestive vacuole. We also observed that mutant DMT1 transports more QN than the wild-type isoform in vitro. Our study demonstrates that DMT1 is a novel marker of QN resistance and a new chromosome 12 locus associates with CQ and QN response, with ftsh1 is a potential candidate, suggesting these genes should be genotyped in surveillance and clinical settings.
Collapse
Affiliation(s)
- Mariko Kanai
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Leila S. Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Jin H. Jeon
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sunil Narwal
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Meseret T. Haile
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
| | - John Okombo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kate J. Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Talia Bloxham
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Tanaya Sheth
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kurt E. Ward
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Matthias Quick
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Marcus C.S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Jennifer L. Small-Saunders
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - David A. Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| |
Collapse
|
4
|
Benedetto N, Mangieri C, De Biasio F, Carvalho RF, Milella L, Russo D. Malus pumila Mill. cv Annurca apple extract might be therapeutically useful against oxidative stress and patterned hair loss. FEBS Open Bio 2024; 14:955-967. [PMID: 38711215 PMCID: PMC11148120 DOI: 10.1002/2211-5463.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Patterned hair loss (PHL) or androgenetic alopecia is a condition affecting about 50% of people worldwide. Several pharmacological medications have been developed over the years, but few studies have investigated their effectiveness. Therefore, new, safer and more effective strategies are required. Recent investigations showed that Annurca apple extract application could induce keratin production and promote hair growth thanks to the high amount of procyanidin B2 contained in. Hence, this study aimed to investigate the role of an Annurca apple extract in preventing PHL by testing it on human follicle dermal papilla cells (HFDPCs) for the first time. Treatment of HFDPCs with Annurca apple extract counteracted intracellular reactive oxygen species accumulation by increasing the activity of antioxidant enzymes such as superoxide dismutase 2 and catalase. Furthermore, treatment with Annurca apple extract increased β-catenin and fibroblast growth factor 2, which are involved in hair growth stimulation. These data suggest that Annurca apple extract may be a potential therapeutically useful nutraceutical product for preventing or treating hair loss by reducing oxidative stress and inducing the expression of hair growth-related factors.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Milella
- Department of ScienceUniversity of BasilicataPotenzaItaly
| | - Daniela Russo
- Department of ScienceUniversity of BasilicataPotenzaItaly
- Spinoff Bioactiplant S.r.l.PotenzaItaly
| |
Collapse
|
5
|
Kebede AM, Sutanto E, Trimarsanto H, Benavente ED, Barnes M, Pearson RD, Siegel SV, Erko B, Assefa A, Getachew S, Aseffa A, Petros B, Lo E, Mohammed R, Yilma D, Rumaseb A, Nosten F, Noviyanti R, Rayner JC, Kwiatkowski DP, Price RN, Golassa L, Auburn S. Genomic analysis of Plasmodium vivax describes patterns of connectivity and putative drivers of adaptation in Ethiopia. Sci Rep 2023; 13:20788. [PMID: 38012191 PMCID: PMC10682486 DOI: 10.1038/s41598-023-47889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission.
Collapse
Affiliation(s)
| | | | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariana Barnes
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | | | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Getachew
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
- Addis Ababa University, Addis Ababa, Ethiopia
- Millipore Sigma (Bioreliance), Rockville, USA
| | - Abraham Aseffa
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
| | | | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | | | - Daniel Yilma
- Jimma University Clinical Trial Unit, Department of Internal Medicine, Jimma University, Jimma, Ethiopia
| | - Angela Rumaseb
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Su X, Stadler RV, Xu F, Wu J. Malaria Genomics, Vaccine Development, and Microbiome. Pathogens 2023; 12:1061. [PMID: 37624021 PMCID: PMC10459703 DOI: 10.3390/pathogens12081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.
Collapse
Affiliation(s)
- Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (R.V.S.); (F.X.); (J.W.)
| | | | | | | |
Collapse
|
7
|
Amambua-Ngwa A, Button-Simons KA, Li X, Kumar S, Brenneman KV, Ferrari M, Checkley LA, Haile MT, Shoue DA, McDew-White M, Tindall SM, Reyes A, Delgado E, Dalhoff H, Larbalestier JK, Amato R, Pearson RD, Taylor AB, Nosten FH, D'Alessandro U, Kwiatkowski D, Cheeseman IH, Kappe SHI, Avery SV, Conway DJ, Vaughan AM, Ferdig MT, Anderson TJC. Chloroquine resistance evolution in Plasmodium falciparum is mediated by the putative amino acid transporter AAT1. Nat Microbiol 2023; 8:1213-1226. [PMID: 37169919 PMCID: PMC10322710 DOI: 10.1038/s41564-023-01377-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear. Here we use a combination of population genomics, genetic crosses and gene editing to demonstrate that a second vacuolar transporter plays a key role in both resistance and compensatory evolution. Longitudinal genomic analyses of the Gambian parasites revealed temporal signatures of selection on a putative amino acid transporter (pfaat1) variant S258L, which increased from 0% to 97% in frequency between 1984 and 2014 in parallel with the pfcrt1 K76T variant. Parasite genetic crosses then identified a chromosome 6 quantitative trait locus containing pfaat1 that is selected by CQ treatment. Gene editing demonstrated that pfaat1 S258L potentiates CQ resistance but at a cost of reduced fitness, while pfaat1 F313S, a common southeast Asian polymorphism, reduces CQ resistance while restoring fitness. Our analyses reveal hidden complexity in CQ resistance evolution, suggesting that pfaat1 may underlie regional differences in the dynamics of resistance evolution, and modulate parasite resistance or fitness by manipulating the balance between both amino acid and drug transport.
Collapse
Affiliation(s)
- Alfred Amambua-Ngwa
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marco Ferrari
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sarah M Tindall
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elizabeth Delgado
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Haley Dalhoff
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - James K Larbalestier
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | - Alexander B Taylor
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, Antonio, TX, USA
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Umberto D'Alessandro
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Ian H Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David J Conway
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
8
|
Liu J, Shi F, Zhang Y, Tang X, Wang C, Gao Y, Suo J, Yu Y, Chen L, Zhang N, Sun P, Liu X, Suo X. Evidence of high-efficiency cross fertilization in Eimeria acervulina revealed using two lines of transgenic parasites. Int J Parasitol 2023; 53:81-89. [PMID: 36549444 DOI: 10.1016/j.ijpara.2022.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 12/23/2022]
Abstract
Eimeria species are apicomplexan parasites with a direct life cycle consisting of a replicative phase involving multiple rounds of asexual replication in the intestine or other organs including kidneys, liver, and gallbladder, depending on the species, followed by a sexual phase or gamogony involving the development and fertilization of gametes, an essential process for Eimeria transmission. Recent advances in the genetic manipulation of these parasites made it possible to conduct genetic crosses combined with genomic approaches to elucidate the genetic determinants of Eimeria development, virulence, drug resistance, and immune evasion. Here, we employed genetic techniques to generate two transgenic Eimeria acervulina lines, EaGAM56 and EaHAP2, each expressing two unique fluorescent proteins, with one controlled by a constitutive promotor for cross-efficiency analysis and the other by a male or female gametocyte stage-specific promoter to observe sexual development. The expression of fluorescent proteins in the transgenic lines was analyzed in different developmental stages of the E. acervulina life cycle by immunoblotting and by examination of frozen sections using fluorescence microscopy. The effect of infective doses on cross-fertilization was further investigated by conducting several genetic crosses between the two transgenic lines at different doses and ratios. Two transgenic lines expressing constitutive and gametocyte-specific fluorescence proteins were generated and characterized. These transgenic parasites display synchronous development in chickens, comparable with that of the wild type. Genetic crosses between the two transgenic parasites showed that a high rate of oocysts co-expressing the two reporters could be achieved following inoculation with high doses of infective oocysts. We further showed that the proportion of co-transfected oocysts can be modulated by altering the ratio of the transgenic parental lines. Higher infective doses and similar numbers of functional gametocytes from the parents increase the rate of cross-fertilization. Our data highlight the usefulness of genetic manipulation and fluorescently-labeled transgenic gametocytes as tools to study Eimeria development and to elucidate the factors that modulate sexual development. This work sets the stage for the implementation of novel approaches to investigate other aspects of Eimeria pathogenesis, virulence, and drug susceptibility and resistance.
Collapse
Affiliation(s)
- Jie Liu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Fangyun Shi
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193 China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaoyue Wang
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Gao
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingxia Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Linlin Chen
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ning Zhang
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Pei Sun
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Kamiya T, Paton DG, Catteruccia F, Reece SE. Targeting malaria parasites inside mosquitoes: ecoevolutionary consequences. Trends Parasitol 2022; 38:1031-1040. [PMID: 36209032 PMCID: PMC9815470 DOI: 10.1016/j.pt.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Proof-of-concept studies demonstrate that antimalarial drugs designed for human treatment can also be applied to mosquitoes to interrupt malaria transmission. Deploying a new control tool is ideally undertaken within a stewardship programme that maximises a drug's lifespan by minimising the risk of resistance evolution and slowing its spread once emerged. We ask: what are the epidemiological and evolutionary consequences of targeting parasites within mosquitoes? Our synthesis argues that targeting parasites inside mosquitoes (i) can be modelled by readily expanding existing epidemiological frameworks; (ii) provides a functionally novel control method that has potential to be more robust to resistance evolution than targeting parasites in humans; and (iii) could extend the lifespan and clinical benefit of antimalarials used exclusively to treat humans.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France; HRB Clinical Research Facility, National University of Ireland, Galway, Ireland; Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Douglas G Paton
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Sarah E Reece
- Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Li X, Kumar S, Brenneman KV, Anderson TJC. Bulk segregant linkage mapping for rodent and human malaria parasites. Parasitol Int 2022; 91:102653. [PMID: 36007706 DOI: 10.1016/j.parint.2022.102653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
In 2005 Richard Carter's group surprised the malaria genetics community with an elegant approach to rapidly mapping the genetic basis of phenotypic traits in rodent malaria parasites. This approach, which he termed "linkage group selection", utilized bulk pools of progeny, rather than individual clones, and exploited simple selection schemes to identify genome regions underlying resistance to drug treatment (or other phenotypes). This work was the first application of "bulk segregant" methodologies for genetic mapping in microbes: this approach is now widely used in yeast, and across multiple recombining pathogens ranging from Aspergillus fungi to Schistosome parasites. Genetic crosses of human malaria parasites (for which Richard Carter was also a pioneer) can now be conducted in humanized mice, providing new opportunities for exploiting bulk segregant approaches for a wide variety of malaria parasite traits. We review the application of bulk segregant approaches to mapping malaria parasite traits and suggest additional developments that may further expand the utility of this powerful approach.
Collapse
Affiliation(s)
- Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Tim J C Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
11
|
Identification of polymorphisms in genes associated with drug resistance in Plasmodium falciparum isolates from school-age children in Kinshasa, Democratic Republic of Congo. Parasitol Int 2022; 88:102541. [PMID: 35051550 DOI: 10.1016/j.parint.2022.102541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND The emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs constitutes an obstacle to malaria control and elimination. This study aimed to identify the prevalence of polymorphisms in pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt genes in isolates from asymptomatic and symptomatic school-age children in Kinshasa. METHODS Nested-PCR followed by sequencing was performed for the detection of pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt polymorphisms. RESULTS Two mutations in pfk13, C532S and Q613E were identified in the Democratic Republic of Congo for the first time. The prevalence of the drug-resistance associated mutations pfcrt K76T, pfdhps K540E and pfmdr1 N86Y was low, being 27%, 20% and 9%, respectively. CONCLUSION We found a low prevalence of genetic markers associated with chloroquine and sulfadoxine-pyrimethamine resistance in Kinshasa. Furthermore, no mutations previously associated with resistance against artemisinin and is derivatives were observed in the pfK13 gene. These findings support the continued use of ACTs and IPTp-SP. Continuous molecular monitoring of antimalarial resistance markers is recommended.
Collapse
|
12
|
Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Cells 2021; 10:2849. [PMID: 34831072 PMCID: PMC8616389 DOI: 10.3390/cells10112849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is still one of the major killer parasitic diseases in tropical settings, posing a public health threat. The development of antimalarial drug resistance is reversing the gains made in attempts to control the disease. The parasite leads a complex life cycle that has adapted to outwit almost all known antimalarial drugs to date, including the first line of treatment, artesunate. There is a high unmet need to develop new strategies and identify novel therapeutics to reverse antimalarial drug resistance development. Among the strategies, here we focus and discuss the merits of the development of antimalarials targeting the Heat shock protein 90 (Hsp90) due to the central role it plays in protein quality control.
Collapse
Affiliation(s)
| | | | | | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (M.L.S.); (C.C.); (M.d.V.)
| |
Collapse
|
13
|
Abstract
Although the last two decades have seen a substantial decline in malaria incidence and mortality due to the use of insecticide-treated bed nets and artemisinin combination therapy, the threat of drug resistance is a constant obstacle to sustainable malaria control. Given that patients can die quickly from this disease, public health officials and doctors need to understand whether drug resistance exists in the parasite population, as well as how prevalent it is so they can make informed decisions about treatment. As testing for drug efficacy before providing treatment to malaria patients is impractical, researchers need molecular markers of resistance that can be more readily tracked in parasite populations. To this end, much work has been done to unravel the genetic underpinnings of drug resistance in Plasmodium falciparum. The aim of this review is to provide a broad overview of common genomic approaches that have been used to discover the alleles that drive drug response phenotypes in the most lethal human malaria parasite.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
14
|
Boonyalai N, Thamnurak C, Sai-Ngam P, Ta-Aksorn W, Arsanok M, Uthaimongkol N, Sundrakes S, Chattrakarn S, Chaisatit C, Praditpol C, Fagnark W, Kirativanich K, Chaorattanakawee S, Vanachayangkul P, Lertsethtakarn P, Gosi P, Utainnam D, Rodkvamtook W, Kuntawunginn W, Vesely BA, Spring MD, Fukuda MM, Lanteri C, Walsh D, Saunders DL, Smith PL, Wojnarski M, Sirisopana N, Waters NC, Jongsakul K, Gaywee J. Plasmodium falciparum phenotypic and genotypic resistance profile during the emergence of Piperaquine resistance in Northeastern Thailand. Sci Rep 2021; 11:13419. [PMID: 34183715 PMCID: PMC8238947 DOI: 10.1038/s41598-021-92735-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Malaria remains a public health problem in Thailand, especially along its borders where highly mobile populations can contribute to persistent transmission. This study aimed to determine resistant genotypes and phenotypes of 112 Plasmodium falciparum isolates from patients along the Thai-Cambodia border during 2013-2015. The majority of parasites harbored a pfmdr1-Y184F mutation. A single pfmdr1 copy number had CVIET haplotype of amino acids 72-76 of pfcrt and no pfcytb mutations. All isolates had a single pfk13 point mutation (R539T, R539I, or C580Y), and increased % survival in the ring-stage survival assay (except for R539I). Multiple copies of pfpm2 and pfcrt-F145I were detected in 2014 (12.8%) and increased to 30.4% in 2015. Parasites containing either multiple pfpm2 copies with and without pfcrt-F145I or a single pfpm2 copy with pfcrt-F145I exhibited elevated IC90 values of piperaquine. Collectively, the emergence of these resistance patterns in Thailand near Cambodia border mirrored the reports of dihydroartemisinin-piperaquine treatment failures in the adjacent province of Cambodia, Oddar Meanchey, suggesting a migration of parasites across the border. As malaria elimination efforts ramp up in Southeast Asia, host nations militaries and other groups in border regions need to coordinate the proposed interventions.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Piyaporn Sai-Ngam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Winita Ta-Aksorn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Montri Arsanok
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nichapat Uthaimongkol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siratchana Sundrakes
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorayut Chattrakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chaiyaporn Chaisatit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Watcharintorn Fagnark
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Paphavee Lertsethtakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panita Gosi
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Darunee Utainnam
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wuttikon Rodkvamtook
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Michele D Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark M Fukuda
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Charlotte Lanteri
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Douglas Walsh
- Department of Dermatology, Syracuse VA medical center, Syracuse, USA
| | - David L Saunders
- U.S. Army Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Philip L Smith
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Narongrid Sirisopana
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Krisada Jongsakul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jariyanart Gaywee
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
15
|
Buyon LE, Elsworth B, Duraisingh MT. The molecular basis of antimalarial drug resistance in Plasmodium vivax. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:23-37. [PMID: 33957488 PMCID: PMC8113647 DOI: 10.1016/j.ijpddr.2021.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Plasmodium vivax is the most geographically widespread cause of human malaria and is responsible for the majority of cases outside of the African continent. While great progress has been made towards eliminating human malaria, drug resistant parasite strains pose a threat towards continued progress. Resistance has arisen to multiple antimalarials in P. vivax, including to chloroquine, which is currently the first line therapy for P. vivax in most regions. Despite its importance, an understanding of the molecular mechanisms of drug resistance in this species remains elusive, in large part due to the complex biology of P. vivax and the lack of in vitro culture. In this review, we will cover the extent and challenges of measuring clinical and in vitro drug resistance in P. vivax. We will consider the roles of candidate drug resistance genes. We will highlight the development of molecular approaches for studying P. vivax biology that provide the opportunity to validate the role of putative drug resistance mutations as well as identify novel mechanisms of drug resistance in this understudied parasite. Validated molecular determinants and markers of drug resistance are essential for the rapid and cost-effective monitoring of drug resistance in P. vivax, and will be useful for optimizing drug regimens and for informing drug policy in control and elimination settings. Drug resistance is emerging in Plasmodium vivax, an important cause of malaria. The complex biology of P. vivax and the limited range of research tools make it difficult to identify drug resistance. The molecular mechanisms of drug resistance in P. vivax remain elusive. This review highlights the extent of drug resistance, the putative mechanisms of resistance and new technologies for the study of P. vivax drug resistance.
Collapse
Affiliation(s)
- Lucas E Buyon
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
16
|
Vendrely KM, Kumar S, Li X, Vaughan AM. Humanized Mice and the Rebirth of Malaria Genetic Crosses. Trends Parasitol 2020; 36:850-863. [PMID: 32891493 DOI: 10.1016/j.pt.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
The first experimental crosses carried out with the human malaria parasite Plasmodium falciparum played a key role in determining the genetic loci responsible for drug resistance, virulence, invasion, growth rate, and transmission. These crosses relied on splenectomized chimpanzees to complete the liver stage of the parasite's life cycle and the subsequent transition to asexual blood stage culture followed by cloning of recombinant progeny in vitro. Crosses can now be routinely carried out using human-liver-chimeric mice infused with human erythrocytes to generate hundreds of unique recombinant progeny for genetic linkage mapping, bulk segregant analysis, and high-throughput 'omics readouts. The high number of recombinant progeny should allow for unprecedented power and efficiency in the execution of a systems genetics approach to study P. falciparum biology.
Collapse
Affiliation(s)
- Katelyn M Vendrely
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter. Sci Rep 2020; 10:4842. [PMID: 32179795 PMCID: PMC7076037 DOI: 10.1038/s41598-020-61181-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing <15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.
Collapse
|
18
|
Zomuanpuii R, Hmar CL, Lallawmzuala K, Hlimpuia L, Balabaskaran Nina P, Senthil Kumar N. Epidemiology of malaria and chloroquine resistance in Mizoram, northeastern India, a malaria-endemic region bordering Myanmar. Malar J 2020; 19:95. [PMID: 32103751 PMCID: PMC7045395 DOI: 10.1186/s12936-020-03170-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background Mizoram, a northeastern state in India, shares international borders with Myanmar and Bangladesh and is considered to be one of the key routes through which drug-resistant parasites of Southeast Asia enter mainland India. Despite its strategic location and importance, malaria epidemiology and molecular status of chloroquine resistance had not been well documented, and since chloroquine (CQ), as the first-line treatment in Plasmodium falciparum infection was discontinued since 2008, it was expected that CQ-sensitive haplotype would be more abundant. Methods Malaria epidemiology data for the period 2010 to 2018 was collected from the office of State Vector Disease Control Programme. Plasmodium falciparum-positive blood samples were collected from government district hospitals, community health centres, primary health centres, sub-centres, and diagnostic centres from six malaria-prone districts. The samples were processed and analysed using genes–P. falciparum chloroquine-resistant transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) via sequencing of PCR amplicon from 2015 to 2017. Results Malaria occurred throughout the year and P. falciparum accounted for > 89% of total malaria cases. During 2010–2018, the highest number of malaria incidence was recorded in Lawngtlai (36% of total malaria cases; average API2010–2018 of 34.8) while Champhai remained consistently low (0.4%; average API2010–2018 of 0.04). Males of ≥ 15 years old contributed maximum (35.7%) among gender and age malarial distribution recorded during 2014–2018. Death due to malaria gradually decreased over the years. A higher abundance of mutated pfcrt (58.5% of the total sample analysed) and a lower prevalence of mutated pfmdr1 (48.7%) were observed. All mutations identified for pfcrt belong to the Southeast Asian CVIET haplotype. Only a single point mutation was observed at 86 (N → Y) position in pfmdr1 (48.7%). The key N86Y mutation in pfmdr1 that had been shown to modulate CQR was found in 67.1% of the samples positive for the CVIET haplotype. Conclusions This is the first report that details malaria epidemiology and also the molecular status of CQ-resistance in P. falciparum population of the region. The efforts of the State Vector Borne Disease Control Programme have proved to be quite effective in controlling the malaria burden in the state. Despite the discontinuation of CQ for a decade, local P. falciparum is observed with decreased CQ-sensitive haplotype. It is believed that the present findings will form a basis for further studies on genetic diversity in P. falciparum, which could confer better understanding of the complexity of the disease in Southeast Asia.
Collapse
Affiliation(s)
- Rita Zomuanpuii
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India.
| | - Christopher L Hmar
- Department of Orthopaedics, District Hospital, Government of Mizoram, Serchhip, Aizawl, Mizoram, India
| | - Khawlhring Lallawmzuala
- Department of Medicine, District Hospital, Government of Mizoram, Serchhip, Aizawl, Mizoram, India
| | - Lal Hlimpuia
- State Vector Disease Control Programme, Department of Health and Family Welfare, Government of Mizoram, Aizawl, Mizoram, India
| | - Praveen Balabaskaran Nina
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Tiruvarur, Tamil Nadu, India
| | | |
Collapse
|
19
|
Abstract
Intensified treatment and control efforts since the early 2000s have dramatically reduced the burden of Plasmodium falciparum malaria. However, drug resistance threatens to derail this progress. In this review, we present four antimalarial resistance case studies that differ in timeline, technical approaches, mechanisms of action, and categories of resistance: chloroquine, sulfadoxine-pyrimethamine, artemisinin, and piperaquine. Lessons learned from prior losses of treatment efficacy, drug combinations, and control strategies will help advance mechanistic research into how P. falciparum parasites acquire resistance to current first-line artemisinin-based combination therapies. Understanding resistance in the clinic and laboratory is essential to prolong the effectiveness of current antimalarial drugs and to optimize the pipeline of future medicines.
Collapse
Affiliation(s)
- Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
20
|
Ikegbunam MN, Nkonganyi CN, Thomas BN, Esimone CO, Velavan TP, Ojurongbe O. Analysis of Plasmodium falciparum Pfcrt and Pfmdr1 genes in parasite isolates from asymptomatic individuals in Southeast Nigeria 11 years after withdrawal of chloroquine. Malar J 2019; 18:343. [PMID: 31590670 PMCID: PMC6781387 DOI: 10.1186/s12936-019-2977-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A reversal of chloroquine (CQ) resistance following a period of withdrawal has raised the possibility of its re-introduction. This study evaluated the current prevalence of Pfcrt and Pfmdr1 alleles in Plasmodium falciparum isolates, 11 years after CQ withdrawal in Southeast Nigeria. METHODS Filter-paper blood samples were collected from 725 non-febrile individuals, comprising 250 children (≤ 12 years), 250 pregnant women and 225 other adults, between October 2014 and February 2015 in Nnewi town, Southeast Nigeria. Nested PCR followed by direct sequencing was employed for the genotyping of Pfcrt and Pfmdr1 genes. RESULTS A total of 103 parasites-positive samples were recovered, comprising of 48 (19.20%) among children, 20 (20.00%) among pregnant women and 35 (15.50%) among other adults cohort. The frequency of the mutant genotype of Pfcrt 76T, 75E and 74I was 94.50% each. Parasite isolates from children had a frequency of 100% for mutant alleles in all Pfcrt codons while isolates from pregnant women and other adults had a frequency of 91% each in all codons. Haplotype distribution of pfcrt gene were 5.45, 0.00 and 76.37% for CVMNK, SVMNT and CVIET, respectively. For Pfmdr1 gene, the frequency of 86Y, 184F and 1246Y mutant alleles were 8.54, 29.27 and 3.66%, respectively. Amongst the Pfmdr1 haplotypes analysed, NFD had the highest frequency of 24.4%, followed by YFD at 6.10%. NYF and NYY occurred the least (1.20%). CONCLUSION The high level of Pfcrt mutations is suggestive of a sustained CQ pressure on P. falciparum isolates in the study area, despite the change of first line treatment from CQ to artemisinin combination therapy for 11 years. A new strategy to ensure the complete withdrawal of CQ from the country is recommended.
Collapse
Affiliation(s)
- Moses N Ikegbunam
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria.
- Molecular Research Foundation for Students and Scientists, Nnamdi Azikiwe University, Awka, Nigeria.
| | | | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
- Molecular Research Foundation for Students and Scientists, Nnamdi Azikiwe University, Awka, Nigeria
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
21
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
22
|
Reis PA, Pais KC, Pereira MF, Douradinha B, Costa NF, Kaiser CR, Bozza PT, Areas ALL, Zalis MG, de Lima Ferreira M, de Souza MVN, da Silva Frutuoso V, de Castro-Faria-Neto HC. In vivo and in vitro antimalarial effect and toxicological evaluation of the chloroquine analogue PQUI08001/06. Parasitol Res 2018; 117:3585-3590. [PMID: 30145706 DOI: 10.1007/s00436-018-6057-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/15/2018] [Indexed: 11/28/2022]
Abstract
Antimalarial interventions mostly rely upon drugs, as chloroquine. However, plasmodial strains resistant to many drugs are constantly reported, leading to an expansion of malaria cases. Novel approaches are required to circumvent the drug resistance issue. Here, we describe the antimalarial potential of the chloroquine analogue 2-[[2-[(7-chloro-4-quinolinyl)amino]ethyl]amino] ethanol (PQUI08001/06). We observed that PQUI08001/06 treatment reduces parasitemia of both chloroquine-resistant and -sensitive strains of Plasmodium falciparum in vitro and P. berghei in vivo. Our data suggests that PQUI08001/06 is a potential antimalarial therapeutic alternative approach that could also target chloroquine-resistant plasmodial strains.
Collapse
Affiliation(s)
- Patricia Alves Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, Brazil
| | - Karla Ceodaro Pais
- Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, 21040-360, Brazil.,Instituto de Química, Laboratório de Ressonância Magnética Nuclear, Avenida Athos da Silveira Ramos, nº 149 Bloco A Cidade Universitària, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Monica Farah Pereira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, Brazil
| | - Bruno Douradinha
- Unità di Medicina Rigenerativa e Immunologia, Fondazione Ri.MED c/o IRCCS-ISMETT, Via Ernesto Tricomi 5, 90127, Palermo, PA, Italy.
| | - Natália Ferreira Costa
- Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, 21040-360, Brazil
| | - Carlos Roland Kaiser
- Instituto de Química, Laboratório de Ressonância Magnética Nuclear, Avenida Athos da Silveira Ramos, nº 149 Bloco A Cidade Universitària, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Patricia Torres Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, Brazil
| | - André Luiz Lisboa Areas
- Laboratorio de Infectologia e Parasitologia Molecular, Serviço de Patologia Clínica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Mariano Gustavo Zalis
- Laboratorio de Infectologia e Parasitologia Molecular, Serviço de Patologia Clínica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Marcelle de Lima Ferreira
- Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, 21040-360, Brazil.,Instituto de Química, Laboratório de Ressonância Magnética Nuclear, Avenida Athos da Silveira Ramos, nº 149 Bloco A Cidade Universitària, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Marcos Vinícius Nora de Souza
- Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, 21040-360, Brazil
| | - Valber da Silva Frutuoso
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, Brazil
| | | |
Collapse
|
23
|
Casino AD, Lukinović V, Bhatt R, Randle LE, Dascombe MJ, Fennell DBJ, Drew MGB, Bell A, Fielding AJ, Ismail FMD. Synthesis, Structural Determination, and Pharmacology of Putative Dinitroaniline Antimalarials. ChemistrySelect 2018. [DOI: 10.1002/slct.201801723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alessio del Casino
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street, Liverpool L3 3AF United Kingdom
| | - Valentina Lukinović
- School of Chemistry and the Photon Science InstituteThe University of Manchester, Manchester M13 9PL United Kingdom
| | - Rakesh Bhatt
- Henkel Loctite Adhesives LtdKelsey House, Wood Lane End Hemel Hempstead, Herts HP2 4RQ United Kingdom
| | - Laura E. Randle
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street, Liverpool L3 3AF United Kingdom
| | - Michael J. Dascombe
- Faculty of BiologyMedicine and HealthStopford Building The University of Manchester Oxford Road, Manchester M13 9PT United Kingdom
| | - Dr Brian J. Fennell
- School of Genetics and MicrobiologyMoyne InstituteTrinity College, Dublin 2 Ireland
| | - Michael G. B. Drew
- Department of ChemistryUniversity of Reading, Reading, Berks, RG6 6AD United Kingdom
| | - Angus Bell
- School of Genetics and MicrobiologyMoyne InstituteTrinity College, Dublin 2 Ireland
| | - Alistair J. Fielding
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street, Liverpool L3 3AF United Kingdom
| | - Fyaz M. D. Ismail
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street, Liverpool L3 3AF United Kingdom
| |
Collapse
|
24
|
Abkallo HM, Martinelli A, Inoue M, Ramaprasad A, Xangsayarath P, Gitaka J, Tang J, Yahata K, Zoungrana A, Mitaka H, Acharjee A, Datta PP, Hunt P, Carter R, Kaneko O, Mustonen V, Illingworth CJR, Pain A, Culleton R. Rapid identification of genes controlling virulence and immunity in malaria parasites. PLoS Pathog 2017; 13:e1006447. [PMID: 28704525 PMCID: PMC5507557 DOI: 10.1371/journal.ppat.1006447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites. Developing a greater understanding of malaria genetics is a key step in combating the threat posed by the disease. Here we use a novel approach to study two important properties of the parasite; the rate at which parasites grow within a single host, and the means by which parasites are affected by the host immune system. Two malaria strains with different biological properties were crossed in mosquitoes to produce a hybrid population, which was then grown in naïve and vaccinated mice. Parasites with genes conveying increased growth or immune evasion are favoured under natural selection, leaving a signature on the genetic composition of the cross population. We describe a novel mathematical approach to interpret this signature, identifying selected genes within the parasite population. We discover new genetic variants conveying increased within-host growth and resistance to host immunity in a mouse malaria strain. Experimental validation highlights the ability of this rapid experimental process for generating insights into malaria biology.
Collapse
Affiliation(s)
- Hussein M. Abkallo
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Axel Martinelli
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Megumi Inoue
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Abhinay Ramaprasad
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Phonepadith Xangsayarath
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jesse Gitaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Centre for Malaria Elimination, School of Medicine, Mount Kenya University, Thika, Kenya
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Jiangsu, China
| | - Kazuhide Yahata
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Augustin Zoungrana
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hayato Mitaka
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Arita Acharjee
- Indian Institute of Science Education and Research Kolkata, Mohanpur - 741 246, West Bengal, India
| | - Partha P. Datta
- Indian Institute of Science Education and Research Kolkata, Mohanpur - 741 246, West Bengal, India
| | - Paul Hunt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Carter
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Osamu Kaneko
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Ville Mustonen
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (CJRI); (AP); (RC)
| | - Arnab Pain
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- * E-mail: (CJRI); (AP); (RC)
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- * E-mail: (CJRI); (AP); (RC)
| |
Collapse
|
25
|
Asante KP, Boamah EA, Abdulai MA, Buabeng KO, Mahama E, Dzabeng F, Gavor E, Annan EA, Owusu-Agyei S, Gyansa-Lutterodt M. Knowledge of antibiotic resistance and antibiotic prescription practices among prescribers in the Brong Ahafo Region of Ghana; a cross-sectional study. BMC Health Serv Res 2017. [PMID: 28633631 PMCID: PMC5477684 DOI: 10.1186/s12913-017-2365-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Antibiotic resistance (ABR) has become a major public health challenge in most parts of the world including Ghana and is a major threat to gain in bacterial disease control. The role of prescribers in the control of antibiotics is identified as crucial in developing interventions to control ABR. To guide policy recommendations on ABR, a study was carried out among prescribers to identify gaps in their knowledge of ABR and to document their prescription practices. Method A cross-sectional survey was conducted among prescribers from both public and private facilities in the Brong Ahafo Region of Ghana using both quantitative and qualitative methods in 2014. Results Three hundred and seventy nine prescribers participated in the quantitative study and a subset of 33 participated in in-depth interviews. Majority (50.0%) of the prescribers interviewed were nurses. Most (51.0%) of the prescribers were located in hospitals. Knowledge of ABR was high among all the prescribers. About 80.0% percent of all prescribers agreed that the antibiotics that are currently used could lose its efficacy in future. There is no singular formal source of information on antibiotic resistance. The prescribers held a strong perception that antibiotic resistance is imminent though their knowledge on various resistant bacterial strains was limited. Prescribers attributed ABR burden to factors such as poor prescription practices and limited ABR control measures. The prescription practices of the prescribers vary but were mostly inappropriate among the lower cadre. Conclusion The knowledge of ABR is high among prescribers. There is however a gap in the knowledge and perception of optimal antibiotic prescription practices among prescribers. There is the need for a formal source of information on ABR to support prescriber’s antibiotic prescription practices. Electronic supplementary material The online version of this article (doi:10.1186/s12913-017-2365-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kwaku Poku Asante
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Brong Ahafo Region, Ghana.
| | - Ellen Abrafi Boamah
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Brong Ahafo Region, Ghana
| | - Martha Ali Abdulai
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Brong Ahafo Region, Ghana
| | - Kwame Ohene Buabeng
- Faculty of Pharmacy & Pharmaceutical Services, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuel Mahama
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Brong Ahafo Region, Ghana
| | - Francis Dzabeng
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Brong Ahafo Region, Ghana
| | - Edith Gavor
- Ghana National Drugs Programme, Ministry of Health, Accra, Ghana
| | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Brong Ahafo Region, Ghana
| | | | | |
Collapse
|
26
|
Kateera F, Nsobya SL, Tukwasibwe S, Hakizimana E, Mutesa L, Mens PF, Grobusch MP, van Vugt M, Kumar N. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop 2016; 164:329-336. [PMID: 27647575 PMCID: PMC10600949 DOI: 10.1016/j.actatropica.2016.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
Abstract
Faced with intense levels of chloroquine (CQ) resistance in Plasmodium falciparum malaria, Rwanda replaced CQ with amodiaquine (AQ)+sulfadoxine-pyrimethamine (SP) in 2001, and subsequently with artemether-lumefantrine (AL) in 2006, as first-line treatments for uncomplicated malaria. Following years of discontinuation of CQ use, re-emergence of CQ-susceptible parasites has been reported in countries including Malawi, Kenya and Tanzania. In contrast, high levels of SP resistant mutant parasites continue to be reported even in countries of presumed reduced SP drug selection pressure. The prevalence and distributions of genetic polymorphisms linked with CQ and SP resistance at two sites of different malaria transmission intensities are described here to better understand drug-related genomic adaptations over time and exposure to varying drug pressures in Rwanda. Using filter paper blood isolates collected from P. falciparum infected patients, DNA was extracted and a nested PCR performed to identify resistance-mediating polymorphisms in the pfcrt, pfmdr1, pfdhps and pfdhfr genes. Amplicons from a total of 399 genotyped samples were analysed by ligase detection reaction fluorescent microsphere assay. CQ susceptible pfcrt 76K and pfmdr1 86N wild-type parasites were found in about 50% and 81% of isolates, respectively. Concurrently, SP susceptible pfdhps double (437G-540E), pfdhfr triple (108N-51I-59R), quintuple pfdhps 437G-540E/pfdhfr 51I-59R-108N and sextuple haplotypes were found in about 84%, 85%, 74% and 18% of isolates, respectively. High-level SP resistance associated pfdhfr 164L and pfdhps 581G mutant prevalences were noted to decline. Mutations pfcrt 76T, pfdhfr 59R and pfdhfr 164L were found differentially distributed between the two study sites with the pfdhfr 164L mutants found only at Ruhuha site, eastern Rwanda. Overall, sustained intense levels of SP resistance mutations and a recovery of CQ susceptible parasites were found in this study following 7 years and 14 years of drug withdrawal from use, respectively. Most likely, the sustained high prevalence of resistant parasites is due to the use of DHFR/DHPS inhibitors like trimethoprim-sulfamethoxazole (TS) for the treatment of and prophylaxis against bacterial infections among HIV infected individuals as well as the continued use of IPTp-SP within the East and Central African regions for malaria prevention among pregnant women. With regard to CQ, the slow recovery of CQ susceptible parasites may have been caused partly by the continued use of CQ and/or CQ mimicking antimalarial drugs like AQ in spite of policies to withdraw it from Rwanda and the neighbouring countries of Uganda and Tanzania. Continued surveillance of P. falciparum CQ and SP associated polymorphisms is recommended for guiding future rational drug policy-making and mitigation of future risk of anti-malaria drug resistance development.
Collapse
Affiliation(s)
- Fredrick Kateera
- Medical Research Centre Division, Rwanda Biomedical Centre, PO Box 7162, Kigali, Rwanda; Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Sam L Nsobya
- Molecular Research Laboratory, Infectious Disease Research Collaboration (IDRC), New Mulago Hospital Complex, PO Box 7051, Kampala, Uganda; School of Biomedical Science, College of Medicine, Makerere University, Uganda.
| | - Steven Tukwasibwe
- Molecular Research Laboratory, Infectious Disease Research Collaboration (IDRC), New Mulago Hospital Complex, PO Box 7051, Kampala, Uganda.
| | - Emmanuel Hakizimana
- Medical Research Centre Division, Rwanda Biomedical Centre, PO Box 7162, Kigali, Rwanda; Malaria & Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda.
| | - Leon Mutesa
- College of Medicine & Health Sciences, University of Rwanda, PO Box 3286, Kigali, Rwanda.
| | - Petra F Mens
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands; Royal Tropical Institute/Koninklijk Instituutvoor de Tropen, KIT Biomedical Research, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands.
| | - Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Michèle van Vugt
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Nirbhay Kumar
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne Infectious Disease Research Centre, Tulane University, 333S Liberty Street, Mail code 8317, New Orleans, LA 70112, United States.
| |
Collapse
|
27
|
Bhattacharya PR, Pillai CR. Strong association, but incomplete correlation, between chloroquine resistance and allelic variation in thepfmdr-1gene ofPlasmodium falciparumisolates from India. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Labbé AC, Bualombai P, Pillai DR, Zhong KJY, Vanisaveth V, Hongvanthong B, Looareesuwan S, Kain KC. Molecular markers for chloroquine-resistantPlasmodium falciparummalaria in Thailand and Laos. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2001.11813697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology. PLoS Pathog 2016; 12:e1005976. [PMID: 27832198 PMCID: PMC5104409 DOI: 10.1371/journal.ppat.1005976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022] Open
Abstract
Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt). Despite significant reductions in the deployment of the 4-aminoquinoline drug chloroquine (CQ), which selected for the mutant pfcrt alleles that halted CQ efficacy decades ago, the parasite pfcrt locus is continuously evolving. This is highlighted by the presence of a highly mutated allele, Cam734 pfcrt, which has acquired the singular ability to confer parasite CQ resistance without an associated fitness cost. Here, we used pfcrt-specific zinc-finger nucleases to genetically dissect this allele in the pathogenic setting of asexual blood-stage infection. Comparative analysis of drug resistance and growth profiles of recombinant parasites that express Cam734 or variants thereof, Dd2 (the most common Southeast Asian variant), or wild-type pfcrt, revealed previously unknown roles for PfCRT mutations in modulating parasite susceptibility to multiple antimalarial agents. These results were generated in the GC03 strain, used in multiple earlier pfcrt studies, and might differ in natural isolates harboring this allele. Results presented herein show that Cam734-mediated CQ resistance is dependent on the rare A144F mutation that has not been observed beyond Southeast Asia, and reveal distinct impacts of this and other Cam734-specific mutations on CQ resistance and parasite growth rates. Biochemical assays revealed a broad impact of mutant PfCRT isoforms on parasite metabolism, including nucleoside triphosphate levels, hemoglobin catabolism and disposition of heme, as well as digestive vacuole volume and pH. Results from our study provide new insights into the complex molecular basis and physiological impact of PfCRT-mediated antimalarial drug resistance, and inform ongoing efforts to characterize novel pfcrt alleles that can undermine the efficacy of first-line antimalarial drug regimens. Point mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) earlier thwarted the clinical efficacy of chloroquine, the former gold standard, and constitute a major determinant of parasite susceptibility to antimalarial drugs. Recently, we reported that the highly mutated Cambodian PfCRT isoform Cam734 is fitness-neutral in terms of parasite growth, unlike other less fit isoforms such as Dd2 that are outcompeted by wild-type parasites in the absence of CQ pressure. Using pfcrt-specific zinc-finger nucleases to genetically dissect the Cam734 allele, we report that its unique constituent mutations directly contribute to CQ resistance and collectively offset fitness costs associated with intermediate mutational steps. We also report that these mutations can contribute to resistance or increased sensitivity to multiple first-line partner drugs. Using isogenic parasite lines, we provide evidence of changes in parasite metabolism associated with the Cam734 allele compared to Dd2. We also observe a close correlation between CQ inhibition of hemozoin formation and parasite growth, and provide evidence that Cam734 PfCRT can modulate drug potency depending on its membrane electrochemical gradient. Our data highlight the capacity of PfCRT to evolve new states of antimalarial drug resistance and to offset associated fitness costs through its impact on parasite physiology and hemoglobin catabolism.
Collapse
|
30
|
Eastman RT, Khine P, Huang R, Thomas CJ, Su XZ. PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers. Sci Rep 2016; 6:25379. [PMID: 27147113 PMCID: PMC4857081 DOI: 10.1038/srep25379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023] Open
Abstract
Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca2+ and Na+ channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs.
Collapse
Affiliation(s)
- Richard T Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Pwint Khine
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ruili Huang
- Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Craig J Thomas
- Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Gabryszewski SJ, Modchang C, Musset L, Chookajorn T, Fidock DA. Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum. Mol Biol Evol 2016; 33:1554-70. [PMID: 26908582 PMCID: PMC4868112 DOI: 10.1093/molbev/msw037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum. A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field.
Collapse
Affiliation(s)
| | - Charin Modchang
- Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lise Musset
- Laboratoire de Parasitologie, WHO Collaborating Center for Surveillance of Anti-Malarial Drug Resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit, Center of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
32
|
|
33
|
Pulcini S, Staines HM, Lee AH, Shafik SH, Bouyer G, Moore CM, Daley DA, Hoke MJ, Altenhofen LM, Painter HJ, Mu J, Ferguson DJP, Llinás M, Martin RE, Fidock DA, Cooper RA, Krishna S. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities. Sci Rep 2015; 5:14552. [PMID: 26420308 PMCID: PMC4588581 DOI: 10.1038/srep14552] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/14/2015] [Indexed: 12/30/2022] Open
Abstract
Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs.
Collapse
Affiliation(s)
- Serena Pulcini
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Henry M Staines
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Andrew H Lee
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Guillaume Bouyer
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK.,Sorbonne Universités, UPMC Univ. Paris 06, UMR 8227, Integrative Biology of Marine Models, Comparative Physiology of Erythrocytes, Station Biologique de Roscoff, Roscoff, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Comparative Physiology of Erythrocytes, Station Biologique de Roscoff, Roscoff, France
| | - Catherine M Moore
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Daniel A Daley
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Matthew J Hoke
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Lindsey M Altenhofen
- Department of Biochemistry and Molecular Biology and Center for Malaria Research, Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Heather J Painter
- Department of Biochemistry and Molecular Biology and Center for Malaria Research, Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD 20852, USA
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Center for Malaria Research, Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Roland A Cooper
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.,Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | - Sanjeev Krishna
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| |
Collapse
|
34
|
Zininga T, Achilonu I, Hoppe H, Prinsloo E, Dirr HW, Shonhai A. Overexpression, Purification and Characterisation of the Plasmodium falciparum Hsp70-z (PfHsp70-z) Protein. PLoS One 2015; 10:e0129445. [PMID: 26083397 PMCID: PMC4471362 DOI: 10.1371/journal.pone.0129445] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/09/2015] [Indexed: 11/18/2022] Open
Abstract
Six Hsp70-like genes are represented on the genome of Plasmodium falciparum. Of these two occur in the cytosol: P. falciparum Hsp70-z (PfHsp70-z) and PfHsp70-1. PfHsp70-1 is a well characterised canonical Hsp70 that facilitates protein quality control and is crucial for the development of malaria parasites. There is very little known about PfHsp70-z. However, PfHsp70-z is known to be essential and is implicated in suppressing aggregation of asparagine-rich proteins of P. falciparum. In addition, its expression at the clinical stage of malaria correlates with disease prognosis. Based on structural evidence PfHsp70-z belongs to the Hsp110 family of proteins. Since Hsp110 proteins have been described as nucleotide exchange factors (NEFs) of their canonical Hsp70 counterparts, it has been speculated that PfHsp70-z may serve as a NEF of PfHsp70-1. In the current study, P. falciparum cells cultured in vitro were subjected to heat stress, triggering the enhanced expression of PfHsp70-z. Biochemical assays conducted using recombinant PfHsp70-z protein demonstrated that the protein is heat stable and possesses ATPase activity. Furthermore, we observed that PfHsp70-z is capable of self-association. The structural-functional features of PfHsp70-z provide further evidence for its role as a chaperone and possible nucleotide exchange factor of PfHsp70-1.
Collapse
Affiliation(s)
- Tawanda Zininga
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou, 0950, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry, Microbiology & Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Heini W. Dirr
- Protein Structure-Function Research Unit, School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou, 0950, South Africa
- * E-mail:
| |
Collapse
|
35
|
Petersen I, Gabryszewski SJ, Johnston GL, Dhingra SK, Ecker A, Lewis RE, de Almeida MJ, Straimer J, Henrich PP, Palatulan E, Johnson DJ, Coburn-Flynn O, Sanchez C, Lehane AM, Lanzer M, Fidock DA. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter. Mol Microbiol 2015; 97:381-95. [PMID: 25898991 DOI: 10.1111/mmi.13035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.
Collapse
Affiliation(s)
- Ines Petersen
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.,Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, 69120, Heidelberg, Germany
| | - Stanislaw J Gabryszewski
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Geoffrey L Johnston
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.,School of International and Public Affairs, Columbia University, New York, NY, 10027, USA
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Andrea Ecker
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rebecca E Lewis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Philipp P Henrich
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Eugene Palatulan
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - David J Johnson
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Olivia Coburn-Flynn
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Cecilia Sanchez
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, 69120, Heidelberg, Germany
| | - Adele M Lehane
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael Lanzer
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, 69120, Heidelberg, Germany
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
36
|
Plasmodium falciparum chloroquine resistance transporter is a H+-coupled polyspecific nutrient and drug exporter. Proc Natl Acad Sci U S A 2015; 112:3356-61. [PMID: 25733858 DOI: 10.1073/pnas.1417102112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Extrusion of chloroquine (CQ) from digestive vacuoles through the Plasmodium falciparum CQ resistance transporter (PfCRT) is essential to establish CQ resistance of the malaria parasite. However, the physiological relevance of PfCRT and how CQ-resistant PfCRT gains the ability to transport CQ remain unknown. We prepared proteoliposomes containing purified CQ-sensitive and CQ-resistant PfCRTs and measured their transport activities. All PfCRTs tested actively took up tetraethylammonium, verapamil, CQ, basic amino acids, polypeptides, and polyamines at the expense of an electrochemical proton gradient. CQ-resistant PfCRT exhibited decreased affinity for CQ, resulting in increased CQ uptake. Furthermore, CQ competitively inhibited amino acid transport. Thus, PfCRT is a H(+)-coupled polyspecific nutrient and drug exporter.
Collapse
|
37
|
Awasthi G, Das A. Genetics of chloroquine-resistant malaria: a haplotypic view. Mem Inst Oswaldo Cruz 2015; 108:947-61. [PMID: 24402147 PMCID: PMC4005552 DOI: 10.1590/0074-0276130274] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/26/2013] [Indexed: 02/05/2023] Open
Abstract
The development and rapid spread of chloroquine resistance (CQR) in
Plasmodium falciparum have triggered the identification of
several genetic target(s) in the P. falciparum genome. In
particular, mutations in the Pfcrt gene, specifically, K76T and
mutations in three other amino acids in the region adjoining K76 (residues 72, 74, 75
and 76), are considered to be highly related to CQR. These various mutations form
several different haplotypes and Pfcrt gene polymorphisms and the
global distribution of the different CQR- Pfcrt haplotypes in
endemic and non-endemic regions of P. falciparum malaria have been
the subject of extensive study. Despite the fact that the Pfcrt gene
is considered to be the primary CQR gene in P. falciparum , several
studies have suggested that this may not be the case. Furthermore, there is a poor
correlation between the evolutionary implications of the Pfcrt
haplotypes and the inferred migration of CQR P. falciparum based on
CQR epidemiological surveillance data. The present paper aims to clarify the existing
knowledge on the genetic basis of the different CQR- Pfcrt
haplotypes that are prevalent in worldwide populations based on the published
literature and to analyse the data to generate hypotheses on the genetics and
evolution of CQR malaria.
Collapse
|
38
|
Ecotope-based entomological surveillance and molecular xenomonitoring of multidrug resistant malaria parasites in anopheles vectors. Interdiscip Perspect Infect Dis 2014; 2014:969531. [PMID: 25349605 PMCID: PMC4198816 DOI: 10.1155/2014/969531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/24/2014] [Indexed: 11/29/2022] Open
Abstract
The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria parasites in hotspots or suspected areas established in most endemic GMS countries implementing the National Malaria Control Programs, in addition to what is guided by the World Health Organization.
Collapse
|
39
|
A genome wide association study of Plasmodium falciparum susceptibility to 22 antimalarial drugs in Kenya. PLoS One 2014; 9:e96486. [PMID: 24809681 PMCID: PMC4014544 DOI: 10.1371/journal.pone.0096486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/08/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Drug resistance remains a chief concern for malaria control. In order to determine the genetic markers of drug resistant parasites, we tested the genome-wide associations (GWA) of sequence-based genotypes from 35 Kenyan P. falciparum parasites with the activities of 22 antimalarial drugs. METHODS AND PRINCIPAL FINDINGS Parasites isolated from children with acute febrile malaria were adapted to culture, and sensitivity was determined by in vitro growth in the presence of anti-malarial drugs. Parasites were genotyped using whole genome sequencing techniques. Associations between 6250 single nucleotide polymorphisms (SNPs) and resistance to individual anti-malarial agents were determined, with false discovery rate adjustment for multiple hypothesis testing. We identified expected associations in the pfcrt region with chloroquine (CQ) activity, and other novel loci associated with amodiaquine, quinazoline, and quinine activities. Signals for CQ and primaquine (PQ) overlap in and around pfcrt, and interestingly the phenotypes are inversely related for these two drugs. We catalog the variation in dhfr, dhps, mdr1, nhe, and crt, including novel SNPs, and confirm the presence of a dhfr-164L quadruple mutant in coastal Kenya. Mutations implicated in sulfadoxine-pyrimethamine resistance are at or near fixation in this sample set. CONCLUSIONS/SIGNIFICANCE Sequence-based GWA studies are powerful tools for phenotypic association tests. Using this approach on falciparum parasites from coastal Kenya we identified known and previously unreported genes associated with phenotypic resistance to anti-malarial drugs, and observe in high-resolution haplotype visualizations a possible signature of an inverse selective relationship between CQ and PQ.
Collapse
|
40
|
Kaushansky A, Mikolajczak SA, Vignali M, Kappe SHI. Of men in mice: the success and promise of humanized mouse models for human malaria parasite infections. Cell Microbiol 2014; 16:602-11. [PMID: 24506682 DOI: 10.1111/cmi.12277] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 01/17/2023]
Abstract
Forty percent of people worldwide are at risk of malaria infection, and despite control efforts it remains the most deadly parasitic disease. Unfortunately, rapid discovery and development of new interventions for malaria are hindered by the lack of small animal models that support the complex life cycles of the main parasite species infecting humans. Such tools must accommodate human parasite tropism for human tissue. Mouse models with human tissue developed to date have already enhanced our knowledge of human parasites, and are useful tools for assessing anti-parasitic interventions. Although these systems are imperfect, their continued refinement will likely broaden their utility. Some of the malaria parasite's interactions with human hepatocytes and human erythrocytes can already be modelled with available humanized mouse systems. However, interactions with other relevant human tissues such as the skin and immune system, as well as most transitions between life cycle stages in vivo will require refinement of existing humanized mouse models. Here, we review the recent successes achieved in modelling human malaria parasite biology in humanized mice, and discuss how these models have potential to become a valuable part of the toolbox used for understanding the biology of, and development of interventions to, malaria.
Collapse
|
41
|
Mallick PK, Singh R, Singh OP, Singh AK, Bhasin VK, Valecha N. Reduced heterozygosity at intragenic and flanking microsatellites of pfcrt gene establishes natural selection based molecular evolution of chloroquine-resistant Plasmodium falciparum in India. INFECTION GENETICS AND EVOLUTION 2013; 20:407-12. [DOI: 10.1016/j.meegid.2013.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/24/2013] [Accepted: 10/01/2013] [Indexed: 11/26/2022]
|
42
|
Fujioka H, Phelix CF, Friedland RP, Zhu X, Perry EA, Castellani RJ, Perry G. Apolipoprotein E4 prevents growth of malaria at the intraerythrocyte stage: implications for differences in racial susceptibility to Alzheimer's disease. J Health Care Poor Underserved 2013; 24:70-8. [PMID: 24241262 PMCID: PMC4909051 DOI: 10.1353/hpu.2014.0009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apolipoprotein E 4 (ApoE 4) has been linked to pathogenesis of Alzheimer's disease and has been suggested to be maintained through evolutionary pressure via a protective role in malaria infection. We evaluated Plasmodium falciparum viability at the intraerythrocyte stage by exposure to plasma from human subjects with ApoE 4/4 or ApoE 3/3. Plasma samples from ApoE 4/4 but not ApoE 3/3 donors inhibited growth and disrupted morphology of P. falciparum. Evolutionary history is characterized by war between pathogenic microorganisms and defense mechanisms countering their pathogenicities. ApoE 4 frequency is highest in sub-Saharan Africa and other isolated populations (e.g., Papua New Guinea) that exhibit endemic malaria. High ApoE frequency may offer selective advantage protecting against some infectious diseases (e.g., Plasmodium falciparum). These results implicate evolutionary pressure by malaria selecting humans with ApoE 4/4, even considering lower survival in late life. These selective advantages may be relevant in the exploration of possible disparities between Black and Whites in the incidence of Alzheimer's Disease.
Collapse
|
43
|
Wongsrichanalai C, Sibley C. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance. Clin Microbiol Infect 2013; 19:908-16. [DOI: 10.1111/1469-0691.12316] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Abstract
Owing to the absence of antiparasitic vaccines and the constant threat of drug resistance, the development of novel antiparasitic chemotherapies remains of major importance for disease control. A better understanding of drug transport (uptake and efflux), drug metabolism and the identification of drug targets, and mechanisms of drug resistance would facilitate the development of more effective therapies. Here, we focus on malaria and African trypanosomiasis. We review existing drugs and drug development, emphasizing high-throughput genomic and genetic approaches, which hold great promise for elucidating antiparasitic mechanisms. We describe the approaches and technologies that have been influential for each parasite and develop new ideas for future research directions, including mode-of-action studies for drug target deconvolution.
Collapse
Affiliation(s)
- David Horn
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manoj T. Duraisingh
- Harvard School of Public Health, 665 Huntington Avenue, Building 1, Room 715, Boston, Massachusetts 02115, USA
| |
Collapse
|
45
|
Boddey JA, Cowman AF. PlasmodiumNesting: Remaking the Erythrocyte from the Inside Out. Annu Rev Microbiol 2013; 67:243-69. [DOI: 10.1146/annurev-micro-092412-155730] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Justin A. Boddey
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; ,
| | - Alan F. Cowman
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; ,
| |
Collapse
|
46
|
Genetic and genomic approaches for the discovery of parasite genes involved in antimalarial drug resistance. Parasitology 2013; 140:1455-67. [PMID: 23931581 DOI: 10.1017/s0031182013000954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The biggest threat to the war on malaria is the continued evolution of drug resistance by the parasite. Resistance to almost all currently available antimalarials now exists in Plasmodium falciparum which causes the most suffering among all human malaria parasites. Monitoring of antimalarial efficacy and the development and subsequent spread of resistance has become an important part in the treatment and control of malaria. With recent reports of reduced efficacy of artemisinin, the current recommended treatment for uncomplicated malaria, there is urgent need for better methods to recognize and monitor drug resistance for effective treatment. Molecular markers have become a welcome addition to complement the more laborious and costly in vitro and in vivo methods that have traditionally been used to monitor drug resistance. However, there are currently no molecular markers for resistance to some antimalarials. This review highlights the role of the various genetic and genomic approaches that have been used in identifying the molecular markers that underlie drug resistance in P. falciparum. These approaches include; candidate genes, genetic linkage and genome-wide association studies. We discuss the requirements and limitations of each approach and use various examples to illustrate their contributions in identifying genomic regions of the parasite associated with antimalarial drug responses.
Collapse
|
47
|
Lödige M, Lewis MD, Paulsen ES, Esch HL, Pradel G, Lehmann L, Brun R, Bringmann G, Mueller AK. A primaquine-chloroquine hybrid with dual activity against Plasmodium liver and blood stages. Int J Med Microbiol 2013; 303:539-47. [PMID: 23992634 DOI: 10.1016/j.ijmm.2013.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 07/01/2013] [Accepted: 07/14/2013] [Indexed: 10/26/2022] Open
Abstract
We present a new class of hybrid molecules consisting of the established antiplasmodial drugs primaquine and chloroquine. No drug is known to date that acts comparably against all stages of Plasmodium in its life cycle. Starting from available precursors, we designed and synthesized a new-generation compound consisting of both primaquine and chloroquine components, with the intent to produce agents that exhibit bioactivity against different stages of the parasite's life cycle. In vitro, the hybrid molecule 3 displays activity against both asexual and sexual P. falciparum blood stages as well as P. berghei sporozoites and liver stages. In vivo, the hybrid elicits activity against P. berghei liver and blood stages. Our results successfully validate the concept of utilizing one compound to combine different modes of action that attack different Plasmodium stages in the mammalian host. It is our hope that the novel design of such compounds will outwit the pathogen in the spread of drug resistance. Based on the optimized synthetic pathway, the compound is accessible in a smooth and versatile way and open for potential further molecular modification.
Collapse
Affiliation(s)
- Melanie Lödige
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guler JL, Freeman DL, Ahyong V, Patrapuvich R, White J, Gujjar R, Phillips MA, DeRisi J, Rathod PK. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications. PLoS Pathog 2013; 9:e1003375. [PMID: 23717205 PMCID: PMC3662640 DOI: 10.1371/journal.ppat.1003375] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH) inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes. Malaria parasites kill up to a million people around the world every year. Emergence of resistance to drugs remains a key obstacle against elimination of malaria. In the laboratory, parasites can efficiently acquire resistance to experimental antimalarials by changing DNA at the target locus. This happens efficiently even for an antimalarial that the parasite has never encountered in a clinical setting. In this study, we formally demonstrate how parasites achieve this feat: first, individual parasites in a population of millions randomly amplify large regions of DNA between short sequence repeats of adenines (A) or thymines (T) that are peppered throughout the malaria parasite genome. The rare lucky parasite that amplifies DNA coding for the target of the antimalarial, along with dozens of its neighboring genes, gains an evolutionary advantage and survives. In a second step, to withstand increasing drug pressure and to achieve higher levels of resistance, each parasite line makes additional copies of this region. This second expansion does not rely on the random A/T-based DNA rearrangements but, instead, a more precise amplification mechanism that retains the unique signature of co-amplified genes created earlier in each parasite. Generation of multiple copies of the target genes in the parasite genome may be the beginning of other beneficial changes for the parasite, including the future acquisition of mutations.
Collapse
Affiliation(s)
- Jennifer L. Guler
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Daniel L. Freeman
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Vida Ahyong
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Rapatbhorn Patrapuvich
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Ramesh Gujjar
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Joseph DeRisi
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Pradipsinh K. Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
49
|
Boddey JA, Carvalho TG, Hodder AN, Sargeant TJ, Sleebs BE, Marapana D, Lopaticki S, Nebl T, Cowman AF. Role of Plasmepsin V in Export of Diverse Protein Families from the
Plasmodium falciparum
Exportome. Traffic 2013; 14:532-50. [DOI: 10.1111/tra.12053] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/29/2013] [Accepted: 02/06/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Justin A. Boddey
- Division of Infection and Immunity The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3052 Australia
- Department of Medical Biology University of Melbourne Parkville Victoria 3052 Australia
| | - Teresa G. Carvalho
- Division of Infection and Immunity The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3052 Australia
| | - Anthony N. Hodder
- Division of Infection and Immunity The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3052 Australia
- Department of Medical Biology University of Melbourne Parkville Victoria 3052 Australia
| | - Tobias J. Sargeant
- Division of Infection and Immunity The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3052 Australia
| | - Brad E. Sleebs
- Division of Infection and Immunity The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3052 Australia
| | - Danushka Marapana
- Division of Infection and Immunity The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3052 Australia
| | - Sash Lopaticki
- Division of Infection and Immunity The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3052 Australia
| | - Thomas Nebl
- Division of Infection and Immunity The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3052 Australia
| | - Alan F. Cowman
- Division of Infection and Immunity The Walter and Eliza Hall Institute of Medical Research Parkville Victoria 3052 Australia
- Department of Medical Biology University of Melbourne Parkville Victoria 3052 Australia
| |
Collapse
|
50
|
Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. ACTA ACUST UNITED AC 2013; 198:961-71. [PMID: 22986493 PMCID: PMC3444787 DOI: 10.1083/jcb.201206112] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malaria is a major disease of humans caused by protozoan parasites from the genus Plasmodium. It has a complex life cycle; however, asexual parasite infection within the blood stream is responsible for all disease pathology. This stage is initiated when merozoites, the free invasive blood-stage form, invade circulating erythrocytes. Although invasion is rapid, it is the only time of the life cycle when the parasite is directly exposed to the host immune system. Significant effort has, therefore, focused on identifying the proteins involved and understanding the underlying mechanisms behind merozoite invasion into the protected niche inside the human erythrocyte.
Collapse
Affiliation(s)
- Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Victoria, 3052, Australia.
| | | | | |
Collapse
|