1
|
Wu Y, Riehle A, Pollmeier B, Kadow S, Schumacher F, Drab M, Kleuser B, Gulbins E, Grassmé H. Caveolin-1 affects early mycobacterial infection and apoptosis in macrophages and mice. Tuberculosis (Edinb) 2024; 147:102493. [PMID: 38547568 DOI: 10.1016/j.tube.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 06/14/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.
Collapse
Affiliation(s)
- Yuqing Wu
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Andrea Riehle
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Pollmeier
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | - Marek Drab
- Unit of Nanostructural Biointeractions, Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114, Wroclaw, Poland
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Heike Grassmé
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
2
|
Alkafaas SS, Abdallah AM, Hassan MH, Hussien AM, Elkafas SS, Loutfy SA, Mikhail A, Murad OG, Elsalahaty MI, Hessien M, Elshazli RM, Alsaeed FA, Ahmed AE, Kamal HK, Hafez W, El-Saadony MT, El-Tarabily KA, Ghosh S. Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity. BMC Public Health 2024; 24:395. [PMID: 38321448 PMCID: PMC10848368 DOI: 10.1186/s12889-024-17747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Mai H Hassan
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Abanoub Mikhail
- Department of Physics, Faculty of Science, Minia University, Minia, Egypt
- Faculty of Physics, ITMO University, Saint Petersburg, Russia
| | - Omnia G Murad
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34517, Egypt
| | - Fatimah A Alsaeed
- Department of Biology, College of Science, King Khalid University, Muhayl, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16Th Street, 35233, Khalifa City, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, 12622, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
3
|
Fernández Requena B, Nadeem S, Reddy VP, Naidoo V, Glasgow JN, Steyn AJC, Barbas C, Gonzalez-Riano C. LiLA: lipid lung-based ATLAS built through a comprehensive workflow designed for an accurate lipid annotation. Commun Biol 2024; 7:45. [PMID: 38182666 PMCID: PMC10770321 DOI: 10.1038/s42003-023-05680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
Accurate lipid annotation is crucial for understanding the role of lipids in health and disease and identifying therapeutic targets. However, annotating the wide variety of lipid species in biological samples remains challenging in untargeted lipidomic studies. In this work, we present a lipid annotation workflow based on LC-MS and MS/MS strategies, the combination of four bioinformatic tools, and a decision tree to support the accurate annotation and semi-quantification of the lipid species present in lung tissue from control mice. The proposed workflow allowed us to generate a lipid lung-based ATLAS (LiLA), which was then employed to unveil the lipidomic signatures of the Mycobacterium tuberculosis infection at two different time points for a deeper understanding of the disease progression. This workflow, combined with manual inspection strategies of MS/MS data, can enhance the annotation process for lipidomic studies and guide the generation of sample-specific lipidome maps. LiLA serves as a freely available data resource that can be employed in future studies to address lipidomic alterations in mice lung tissue.
Collapse
Affiliation(s)
- Belén Fernández Requena
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, España
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Africa Health Research Institute, Durban, South Africa
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, España.
| | - Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, España.
| |
Collapse
|
4
|
Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med 2023; 55:1110-1130. [PMID: 37258585 PMCID: PMC10318102 DOI: 10.1038/s12276-023-01018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.
Collapse
Affiliation(s)
- Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Pauletto PJT, Delgado CP, da Rocha JBT. Acid sphingomyelinase (ASM) and COVID-19: A review of the potential use of ASM inhibitors against SARS-CoV-2. Cell Biochem Funct 2023; 41:284-295. [PMID: 36929117 DOI: 10.1002/cbf.3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
In the last 2 years, different pharmacological agents have been indicated as potential inhibitors of SARS-CoV-2 in vitro. Specifically, drugs termed as functional inhibitors of acid sphingomyelinase (FIASMAs) have proved to inhibit the SARS-CoV-2 replication using different types of cells. Those therapeutic agents share several chemical structure characteristics and some well-known representatives are fluoxetine, escitalopram, fluvoxamine, and others. Most of the FIASMAs are primarily used as effective therapeutic agents to treat different pathologies, therefore, they are natural drug candidates for repositioning strategy. In this review, we summarize the two main proposed mechanisms mediating acid sphingomyelinase (ASM) inhibition and how they can explain the inhibition of SARS-CoV-2 replication by FIASMAs. The first mechanism implies a disruption in the lysosomal pH fall as the endosome-lysosome moves toward the interior of the cell. In fact, changes in cholesterol levels in endosome-lysosome membranes, which are associated with ASM inhibition is thought to be mediated by lysosomal proton pump (ATP-ase) inactivation. The second mechanism involves the formation of an extracellular ceramide-rich domain, which is blocked by FIASMAs. The ceramide-rich domains are believed to facilitate the SARS-CoV-2 entrance into the host cells.
Collapse
Affiliation(s)
- Pedro José Tronco Pauletto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Cassia Pereira Delgado
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Wang R, Qin Z, Huang L, Luo H, Peng H, Zhou X, Zhao Z, Liu M, Yang P, Shi T. SMPD1 expression profile and mutation landscape help decipher genotype-phenotype association and precision diagnosis for acid sphingomyelinase deficiency. Hereditas 2023; 160:11. [PMID: 36907956 PMCID: PMC10009935 DOI: 10.1186/s41065-023-00272-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Acid sphingomyelinase deficiency (ASMD) disorder, also known as Niemann-Pick disease (NPD) is a rare genetic disease caused by mutations in SMPD1 gene, which encodes sphingomyelin phosphodiesterase (ASM). Except for liver and spleen enlargement and lung disease, two subtypes (Type A and B) of NDP have different onset times, survival times, ASM activities, and neurological abnormalities. To comprehensively explore NPD's genotype-phenotype association and pathophysiological characteristics, we collected 144 NPD cases with strict quality control through literature mining. RESULTS The difference in ASM activity can differentiate NPD type A from other subtypes, with the ratio of ASM activity to the reference values being lower in type A (threshold 0.045 (4.45%)). Severe variations, such as deletion and insertion, can cause complete loss of ASM function, leading to type A, whereas relatively mild missense mutations generally result in type B. Among reported mutations, the p.Arg3AlafsX76 mutation is highly prevalent in the Chinese population, and the p.R608del mutation is common in Mediterranean countries. The expression profiles of SMPD1 from GTEx and single-cell RNA sequencing data of multiple fetal tissues showed that high expressions of SMPD1 can be observed in the liver, spleen, and brain tissues of adults and hepatoblasts, hematopoietic stem cells, STC2_TLX1-positive cells, mesothelial cells of the spleen, vascular endothelial cells of the cerebellum and the cerebrum of fetuses, indicating that SMPD1 dysfunction is highly likely to have a significant effect on the function of those cell types during development and the clinicians need pay attention to these organs or tissues as well during diagnosis. In addition, we also predicted 21 new pathogenic mutations in the SMPD1 gene that potentially cause the NPD, signifying that more rare cases will be detected with those mutations in SMPD1. Finally, we also analysed the function of the NPD type A cells following the extracellular milieu. CONCLUSIONS Our study is the first to elucidate the effects of SMPD1 mutation on cell types and at the tissue level, which provides new insights into the genotype-phenotype association and can help in the precise diagnosis of NPD.
Collapse
Affiliation(s)
- Ruisong Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Medical college, 3150 Dongting Ave., Changde, Hunan Province, People's Republic of China, 415000
| | - Ziyi Qin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Long Huang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Huiling Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Han Peng
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Xinyu Zhou
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Zhixiang Zhao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Mingyao Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
- Changde Research Centre for Artificial Intelligence and Biomedicine, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China.
- Changde Research Centre for Artificial Intelligence and Biomedicine, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China.
| | - Tieliu Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China.
- Changde Research Centre for Artificial Intelligence and Biomedicine, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China.
| |
Collapse
|
7
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
8
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
9
|
Gulbins A, Görtz GE, Gulbins E, Eckstein A. Sphingolipids in thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1170884. [PMID: 37082124 PMCID: PMC10112667 DOI: 10.3389/fendo.2023.1170884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Graves' disease (GD) is caused by an autoimmune formation of autoantibodies and autoreactive T-cells against the thyroid stimulating hormone receptor (TSHR). The autoimmune reaction does not only lead to overstimulation of the thyroid gland, but very often also to an immune reaction against antigens within the orbital tissue leading to thyroid eye disease, which is characterized by activation of orbital fibroblasts, orbital generation of adipocytes and myofibroblasts and increased hyaluronan production in the orbit. Thyroid eye disease is the most common extra-thyroidal manifestation of the autoimmune Graves' disease. Several studies indicate an important role of sphingolipids, in particular the acid sphingomyelinase/ceramide system and sphingosine 1-phosphate in thyroid eye disease. Here, we discuss how the biophysical properties of sphingolipids contribute to cell signaling, in particular in the context of thyroid eye disease. We further review the role of the acid sphingomyelinase/ceramide system in autoimmune diseases and its function in T lymphocytes to provide some novel hypotheses for the pathogenesis of thyroid eye disease and potentially allowing the development of novel treatments.
Collapse
Affiliation(s)
- Anne Gulbins
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| |
Collapse
|
10
|
Guzman G, Creek C, Farley S, Tafesse FG. Genetic Tools for Studying the Roles of Sphingolipids in Viral Infections. Methods Mol Biol 2022; 2610:1-16. [PMID: 36534277 DOI: 10.1007/978-1-0716-2895-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingolipids are a critical family of membrane lipids with diverse functions in eukaryotic cells, and a growing body of literature supports that these lipids play essential roles during the lifecycles of viruses. While small molecule inhibitors of sphingolipid synthesis and metabolism are widely used, the advent of CRISPR-based genomic editing techniques allows for nuanced exploration into the manners in which sphingolipids influence various stages of viral infections. Here we describe some of these critical considerations needed in designing studies utilizing genomic editing techniques for manipulating the sphingolipid metabolic pathway, as well as the current body of literature regarding how viruses depend on the products of this pathway. Here, we highlight the ways in which sphingolipids affect viruses as these pathogens interact with and influence their host cell and describe some of the many open questions remaining in the field.
Collapse
Affiliation(s)
- Gaelen Guzman
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Cameron Creek
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Scotland Farley
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
11
|
Li L, Mac Aogáin M, Xu T, Jaggi TK, Chan LLY, Qu J, Wei L, Liao S, Cheng HS, Keir HR, Dicker AJ, Tan KS, De Yun W, Koh MS, Ong TH, Lim AYH, Abisheganaden JA, Low TB, Hassan TM, Long X, Wark PAB, Oliver B, Drautz-Moses DI, Schuster SC, Tan NS, Fang M, Chalmers JD, Chotirmall SH. Neisseria species as pathobionts in bronchiectasis. Cell Host Microbe 2022; 30:1311-1327.e8. [PMID: 36108613 DOI: 10.1016/j.chom.2022.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.
Collapse
Affiliation(s)
- Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland; Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Tengfei Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PRC
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Louisa L Y Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jing Qu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lan Wei
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shumin Liao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Holly R Keir
- University of Dundee, Ninewells Hospital, Medical School, Dundee, Scotland
| | - Alison J Dicker
- University of Dundee, Ninewells Hospital, Medical School, Dundee, Scotland
| | - Kai Sen Tan
- Department of Otolaryngology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wang De Yun
- Department of Otolaryngology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Thun How Ong
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Albert Yick Hou Lim
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - John A Abisheganaden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Teck Boon Low
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore, Singapore
| | | | - Xiang Long
- Department of Respiratory Medicine and Critical Care, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Brian Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - James D Chalmers
- University of Dundee, Ninewells Hospital, Medical School, Dundee, Scotland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore.
| |
Collapse
|
12
|
Onorini D, Borel N, Schoborg RV, Leonard CA. Neisseria gonorrhoeae Limits Chlamydia trachomatis Inclusion Development and Infectivity in a Novel In Vitro Co-Infection Model. Front Cell Infect Microbiol 2022; 12:911818. [PMID: 35873141 PMCID: PMC9300984 DOI: 10.3389/fcimb.2022.911818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) and Neisseria gonorrhoeae (Ng) are the most common bacterial sexually transmitted infections (STIs) worldwide. The primary site of infection for both bacteria is the epithelium of the endocervix in women and the urethra in men; both can also infect the rectum, pharynx and conjunctiva. Ct/Ng co-infections are more common than expected by chance, suggesting Ct/Ng interactions increase susceptibility and/or transmissibility. To date, studies have largely focused on each pathogen individually and models exploring co-infection are limited. We aimed to determine if Ng co-infection influences chlamydial infection and development and we hypothesized that Ng-infected cells are more susceptible to chlamydial infection than uninfected cells. To address this hypothesis, we established an in vitro model of Ct/Ng co-infection in cultured human cervical epithelial cells. Our data show that Ng co-infection elicits an anti-chlamydial effect by reducing chlamydial infection, inclusion size, and subsequent infectivity. Notably, the anti-chlamydial effect is dependent on Ng viability but not extracellular nutrient depletion or pH modulation. Though this finding is not consistent with our hypothesis, it provides evidence that interaction of these bacteria in vitro influences chlamydial infection and development. This Ct/Ng co-infection model, established in an epithelial cell line, will facilitate further exploration into the pathogenic interplay between Ct and Ng.
Collapse
Affiliation(s)
- Delia Onorini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Cory Ann Leonard,
| |
Collapse
|
13
|
Heydarian M, Rühl E, Rawal R, Kozjak-Pavlovic V. Tissue Models for Neisseria gonorrhoeae Research—From 2D to 3D. Front Cell Infect Microbiol 2022; 12:840122. [PMID: 35223556 PMCID: PMC8873371 DOI: 10.3389/fcimb.2022.840122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea, the second most common sexually transmitted infection worldwide. Disease progression, drug discovery, and basic host-pathogen interactions are studied using different approaches, which rely on models ranging from 2D cell culture to complex 3D tissues and animals. In this review, we discuss the models used in N. gonorrhoeae research. We address both in vivo (animal) and in vitro cell culture models, discussing the pros and cons of each and outlining the recent advancements in the field of three-dimensional tissue models. From simple 2D monoculture to complex advanced 3D tissue models, we provide an overview of the relevant methodology and its application. Finally, we discuss future directions in the exciting field of 3D tissue models and how they can be applied for studying the interaction of N. gonorrhoeae with host cells under conditions closely resembling those found at the native sites of infection.
Collapse
|
14
|
The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry 2022; 27:307-314. [PMID: 34608263 PMCID: PMC8488928 DOI: 10.1038/s41380-021-01309-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Acid sphingomyelinase (ASM) cleaves sphingomyelin into the highly lipophilic ceramide, which forms large gel-like rafts/platforms in the plasma membrane. We showed that SARS-CoV-2 uses these platforms for cell entry. Lowering the amount of ceramide or ceramide blockade due to inhibitors of ASM, genetic downregulation of ASM, anti-ceramide antibodies or degradation by neutral ceramidase protected against infection with SARS-CoV-2. The addition of ceramide restored infection with SARS-CoV-2. Many clinically approved medications functionally inhibit ASM and are called FIASMAs (functional inhibitors of acid sphingomyelinase). The FIASMA fluvoxamine showed beneficial effects on COVID-19 in a randomized prospective study and a prospective open-label real-world study. Retrospective and observational studies showed favorable effects of FIASMA antidepressants including fluoxetine, and the FIASMA hydroxyzine on the course of COVID-19. The ASM/ceramide system provides a framework for a better understanding of the infection of cells by SARS-CoV-2 and the clinical, antiviral, and anti-inflammatory effects of functional inhibitors of ASM. This framework also supports the development of new drugs or the repurposing of "old" drugs against COVID-19.
Collapse
|
15
|
Yu Q, Wang LC, Di Benigno S, Stein DC, Song W. Gonococcal invasion into epithelial cells depends on both cell polarity and ezrin. PLoS Pathog 2021; 17:e1009592. [PMID: 34852011 PMCID: PMC8668114 DOI: 10.1371/journal.ppat.1009592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/13/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae (GC) establishes infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli denudation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shedding from the cervix by immunofluorescence microscopy, but not significantly in the ectocervical and the endocervical regions. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Collectively, our results suggest that while GC invade non-polarized epithelial cells through ezrin-driven microvilli elongation, the apical polarization of ezrin and F-actin inhibits GC entry into polarized epithelial cells. Neisseria gonorrhoeae (GC) causes gonorrhea in women by infecting the female reproductive tract. GC entry of epithelial cells has long been observed in patients’ biopsies and studied in various types of epithelial cells. However, how GC invade into the heterogeneous epithelia of the human cervix is unknown. This study reveals that both the expression level of ezrin, an actin-membrane linker protein, and the polarization of ezrin-actin networks in epithelial cells regulate GC invasion. GC interactions with non-polarized squamous epithelial cells expressing ezrin induce ezrin activation, ezrin-actin accumulation, and microvilli elongation at GC adherent sites, leading to invasion. Low ezrin expression levels in the luminal ectocervical epithelial cells are associated with low levels of intraepithelial GC. In contrast, apical polarization of ezrin-actin networks in columnar endocervical epithelial cells reduces GC invasion. GC interactions induce myosin activation, which causes disassembly of ezrin-actin networks and microvilli modification at GC adherent sites, extending GC-epithelial contact. Expression of opacity-associated proteins on GC promotes GC invasion by enhancing ezrin-actin accumulation in squamous epithelial cells and inhibiting ezrin-actin disassembly in columnar endocervical epithelial cells. Thus, reduced ezrin expression and ezrin-actin polarization are potential ways for cervical epithelial cells to curtail GC invasion.
Collapse
Affiliation(s)
- Qian Yu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Liang-Chun Wang
- Marine & Pathogenic Microbiology Lab, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sofia Di Benigno
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Daniel C Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
16
|
Peters S, Fohmann I, Rudel T, Schubert-Unkmeir A. A Comprehensive Review on the Interplay between Neisseria spp. and Host Sphingolipid Metabolites. Cells 2021; 10:cells10113201. [PMID: 34831424 PMCID: PMC8623382 DOI: 10.3390/cells10113201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids represent a class of structural related lipids involved in membrane biology and various cellular processes including cell growth, apoptosis, inflammation and migration. Over the past decade, sphingolipids have become the focus of intensive studies regarding their involvement in infectious diseases. Pathogens can manipulate the sphingolipid metabolism resulting in cell membrane reorganization and receptor recruitment to facilitate their entry. They may recruit specific host sphingolipid metabolites to establish a favorable niche for intracellular survival and proliferation. In contrast, some sphingolipid metabolites can also act as a first line defense against bacteria based on their antimicrobial activity. In this review, we will focus on the strategies employed by pathogenic Neisseria spp. to modulate the sphingolipid metabolism and hijack the sphingolipid balance in the host to promote cellular colonization, invasion and intracellular survival. Novel techniques and innovative approaches will be highlighted that allow imaging of sphingolipid derivatives in the host cell as well as in the pathogen.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
| | - Thomas Rudel
- Chair of Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Alexandra Schubert-Unkmeir
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
- Correspondence: ; Tel.: +49-931-31-46721; Fax: +49-931-31-46445
| |
Collapse
|
17
|
Role of HSPGs in Systemic Bacterial Infections. Methods Mol Biol 2021. [PMID: 34626410 DOI: 10.1007/978-1-0716-1398-6_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are at the forefront of host-microbe interactions. Cell surface HSPGs are thought to promote infection as attachment and internalization receptors for many bacterial pathogens and as soluble inhibitors of host immunity when released from the cell surface by ectodomain shedding. However, the importance of HSPG-pathogen interactions in vivo has yet to be clearly established. Here we describe several representative methods to study the role of HSPGs in systemic bacterial infections, such as bacteremia and sepsis. The overall experimental strategy is to use mouse models to establish the physiological significance of HSPGs, to determine the identity of HSPGs that specifically promote infection, and to define key structural features of HSPGs that enhance bacterial virulence in systemic infections.
Collapse
|
18
|
Wang J, Chen YL, Li YK, Chen DK, He JF, Yao N. Functions of Sphingolipids in Pathogenesis During Host-Pathogen Interactions. Front Microbiol 2021; 12:701041. [PMID: 34408731 PMCID: PMC8366399 DOI: 10.3389/fmicb.2021.701041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are a class of membrane lipids that serve as vital structural and signaling bioactive molecules in organisms ranging from yeast to animals. Recent studies have emphasized the importance of sphingolipids as signaling molecules in the development and pathogenicity of microbial pathogens including bacteria, fungi, and viruses. In particular, sphingolipids play key roles in regulating the delicate balance between microbes and hosts during microbial pathogenesis. Some pathogens, such as bacteria and viruses, harness host sphingolipids to promote development and infection, whereas sphingolipids from both the host and pathogen are involved in fungus-host interactions. Moreover, a regulatory role for sphingolipids has been described, but their effects on host physiology and metabolism remain to be elucidated. Here, we summarize the current state of knowledge about the roles of sphingolipids in pathogenesis and interactions with host factors, including how sphingolipids modify pathogen and host metabolism with a focus on pathogenesis regulators and relevant metabolic enzymes. In addition, we discuss emerging perspectives on targeting sphingolipids that function in host-microbe interactions as new therapeutic strategies for infectious diseases.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Fan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Krones D, Rühling M, Becker KA, Kunz TC, Sehl C, Paprotka K, Gulbins E, Fraunholz M. Staphylococcus aureus α-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line. Front Microbiol 2021; 12:694489. [PMID: 34394034 PMCID: PMC8358437 DOI: 10.3389/fmicb.2021.694489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes. Since PFTs from several pathogens have been shown to recruit membrane repair components, we here investigated whether staphylococcal α-toxin is able to induce these mechanisms in endothelial cells. We show that S. aureus α-toxin induced increase in cytosolic Ca2+ in endothelial cells, which was accompanied by p38 MAPK phosphorylation. Toxin challenge led to increased endocytosis of an extracellular fluid phase marker as well as increased externalization of LAMP1-positive membranes suggesting that peripheral lysosomes are recruited to the insulted plasma membrane. We further observed that thereby the lysosomal protein acid sphingomyelinase (ASM) was released into the cell culture medium. Thus, our results show that staphylococcal α-toxin triggers mechanisms in endothelial cells, which have been implicated in membrane repair after damage of other cell types by different toxins.
Collapse
Affiliation(s)
- David Krones
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marcel Rühling
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Tobias C Kunz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Kerstin Paprotka
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Acid-Sphingomyelinase Triggered Fluorescently Labeled Sphingomyelin Containing Liposomes in Tumor Diagnosis after Radiation-Induced Stress. Int J Mol Sci 2021; 22:ijms22083864. [PMID: 33917976 PMCID: PMC8068344 DOI: 10.3390/ijms22083864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
In liposomal delivery, a big question is how to release the loaded material into the correct place. Here, we will test the targeting and release abilities of our sphingomyelin-consisting liposome. A change in release parameters can be observed when sphingomyelin-containing liposome is treated with sphingomyelinase enzyme. Sphingomyelinase is known to be endogenously released from the different cells in stress situations. We assume the effective enzyme treatment will weaken the liposome making it also leakier. To test the release abilities of the SM-liposome, we developed several fluorescence-based experiments. In in vitro studies, we used molecular quenching to study the sphingomyelinase enzyme-based release from the liposomes. We could show that the enzyme treatment releases loaded fluorescent markers from sphingomyelin-containing liposomes. Moreover, the release correlated with used enzymatic activities. We studied whether the stress-related enzyme expression is increased if the cells are treated with radiation as a stress inducer. It appeared that the radiation caused increased enzymatic activity. We studied our liposomes’ biodistribution in the animal tumor model when the tumor was under radiation stress. Increased targeting of the fluorescent marker loaded to our liposomes could be found on the site of cancer. The liposomal targeting in vivo could be improved by radiation. Based on our studies, we propose sphingomyelin-containing liposomes can be used as a controlled release system sensitive to cell stress.
Collapse
|
21
|
Sphingomyelin Biosynthesis Is Essential for Phagocytic Signaling during Mycobacterium tuberculosis Host Cell Entry. mBio 2021; 12:mBio.03141-20. [PMID: 33500344 PMCID: PMC7858061 DOI: 10.1128/mbio.03141-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) invades alveolar macrophages through phagocytosis to establish infection and cause disease. The molecular mechanisms underlying Mtb entry are still poorly understood. Phagocytosis by alveolar macrophages is the obligate first step in Mycobacterium tuberculosis (Mtb) infection, yet the mechanism underlying this process is incompletely understood. Here, we show that Mtb invasion relies on an intact sphingolipid biosynthetic pathway. Inhibition or knockout of early sphingolipid biosynthetic enzymes greatly reduces Mtb uptake across multiple phagocytic cell types without affecting other forms of endocytosis. While the phagocytic receptor dectin-1 undergoes normal clustering at the pathogen contact sites, sphingolipid biosynthetic mutant cells fail to segregate the regulatory phosphatase CD45 from the clustered receptors. Blocking sphingolipid production also impairs downstream activation of Rho GTPases, actin dynamics, and phosphoinositide turnover at the nascent phagocytic cup. Moreover, we found that production of sphingomyelin, not glycosphingolipids, is essential for Mtb uptake. Collectively, our data support a critical role of sphingomyelin biosynthesis in an early stage of Mtb infection and provide novel insights into the mechanism underlying phagocytic entry of this pathogen.
Collapse
|
22
|
Chung HY, Claus RA. Keep Your Friends Close, but Your Enemies Closer: Role of Acid Sphingomyelinase During Infection and Host Response. Front Med (Lausanne) 2021; 7:616500. [PMID: 33553211 PMCID: PMC7859284 DOI: 10.3389/fmed.2020.616500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Breakdown of the inert and constitutive membrane building block sphingomyelin to the highly active lipid mediator ceramide by extracellularly active acid sphingomyelinase is tightly regulated during stress response and opens the gate for invading pathogens, triggering the immune response, development of remote organ failure, and tissue repair following severe infection. How do one enzyme and one mediator manage all of these affairs? Under physiological conditions, the enzyme is located in the lysosomes and takes part in the noiseless metabolism of sphingolipids, but following stress the protein is secreted into circulation. When secreted, acid sphingomyelinase (ASM) is able to hydrolyze sphingomyelin present at the outer leaflet of membranes to ceramide. Its generation troubles the biophysical context of cellular membranes resulting in functional assembly and reorganization of proteins and receptors, also embedded in highly conserved response mechanisms. As a consequence of cellular signaling, not only induction of cell death but also proliferation, differentiation, and fibrogenesis are affected. Here, we discuss the current state of the art on both the impact and function of the enzyme during host response and damage control. Also, the potential role of lysosomotropic agents as functional inhibitors of this upstream alarming cascade is highlighted.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf A Claus
- Department for Anaesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
23
|
Syndecan-1 Promotes Streptococcus pneumoniae Corneal Infection by Facilitating the Assembly of Adhesive Fibronectin Fibrils. mBio 2020; 11:mBio.01907-20. [PMID: 33293379 PMCID: PMC7733941 DOI: 10.1128/mbio.01907-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Subversion of heparan sulfate proteoglycans (HSPGs) is thought to be a common virulence mechanism shared by many microbial pathogens. The prevailing assumption is that pathogens co-opt HSPGs as cell surface attachment receptors or as inhibitors of innate host defense. However, there are few data that clearly support this idea in vivo We found that deletion of syndecan-1 (Sdc1), a major cell surface HSPG of epithelial cells, causes a gain of function in a mouse model of scarified corneal infection, where Sdc1-/- corneas were significantly less susceptible to Streptococcus pneumoniae infection. Administration of excess Sdc1 ectodomains significantly inhibited S. pneumoniae corneal infection, suggesting that Sdc1 promotes infection as a cell surface attachment receptor. However, S. pneumoniae did not interact with Sdc1 and Sdc1 was shed upon S. pneumoniae infection, indicating that Sdc1 does not directly support S. pneumoniae adhesion. Instead, Sdc1 promoted S. pneumoniae adhesion by driving the assembly of fibronectin (FN) fibrils in the corneal basement membrane to which S. pneumoniae attaches when infecting injured corneas. S. pneumoniae specifically bound to corneal FN via PavA, and PavA deletion significantly attenuated S. pneumoniae virulence in the cornea. Excess Sdc1 ectodomains inhibited S. pneumoniae corneal infection by binding to the Hep II domain and interfering with S. pneumoniae PavA binding to FN. These findings reveal a previously unknown virulence mechanism of S. pneumoniae where key extracellular matrix (ECM) interactions and structures that are essential for host cell homeostasis are exploited for bacterial pathogenesis.IMPORTANCE Bacterial pathogens have evolved several ingenious mechanisms to subvert host cell biology for their pathogenesis. Bacterial attachment to the host ECM establishes a niche to grow and is considered one of the critical steps of infection. This pathogenic mechanism entails coordinated assembly of the ECM by the host to form the ECM structure and organization that are specifically recognized by bacteria for their adhesion. We serendipitously discovered that epithelial Sdc1 facilitates the assembly of FN fibrils in the corneal basement membrane and that this normal biological function of Sdc1 has detrimental consequences for the host in S. pneumoniae corneal infection. Our studies suggest that bacterial subversion of the host ECM is more complex than previously appreciated.
Collapse
|
24
|
Vitner EB. The role of brain innate immune response in lysosomal storage disorders: fundamental process or evolutionary side effect? FEBS Lett 2020; 594:3619-3631. [PMID: 33131047 DOI: 10.1002/1873-3468.13980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 01/14/2023]
Abstract
Sphingolipidoses are diseases caused by mutations in genes responsible for sphingolipid degradation and thereby lead to sphingolipid accumulation. Most sphingolipidoses have a neurodegenerative manifestation characterized by innate immune activation in the brain. However, the role of the immune response in disease progression is ill-understood. In contrast to infectious diseases, immune activation is unable to eliminate the offending agent in sphingolipidoses resulting in ineffective, chronic inflammation. This paradox begs two fundamental questions: Why has this immune response evolved in sphingolipidoses? What role does it play in disease progression? Here, starting from the observation that sphingolipids (SLs) are elevated also in infectious diseases, I discuss the possibility that the activation of the brain immune response by SLs has evolved as a part of the immune response against pathogens and plays no major role in sphingolipidoses.
Collapse
Affiliation(s)
- Einat B Vitner
- Department of Infectious Diseases, Israel institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
25
|
Mello-Vieira J, Enguita FJ, de Koning-Ward TF, Zuzarte-Luís V, Mota MM. Plasmodium translocon component EXP2 facilitates hepatocyte invasion. Nat Commun 2020; 11:5654. [PMID: 33159090 PMCID: PMC7648069 DOI: 10.1038/s41467-020-19492-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Plasmodium parasites possess a translocon that exports parasite proteins into the infected erythrocyte. Although the translocon components are also expressed during the mosquito and liver stage of infection, their function remains unexplored. Here, using a combination of genetic and chemical assays, we show that the translocon component Exported Protein 2 (EXP2) is critical for invasion of hepatocytes. EXP2 is a pore-forming protein that is secreted from the sporozoite upon contact with the host cell milieu. EXP2-deficient sporozoites are impaired in invasion, which can be rescued by the exogenous administration of recombinant EXP2 and alpha-hemolysin (an S. aureus pore-forming protein), as well as by acid sphingomyelinase. The latter, together with the negative impact of chemical and genetic inhibition of acid sphingomyelinase on invasion, reveals that EXP2 pore-forming activity induces hepatocyte membrane repair, which plays a key role in parasite invasion. Overall, our findings establish a novel and critical function for EXP2 that leads to an active participation of the host cell in Plasmodium sporozoite invasion, challenging the current view of the establishment of liver stage infection. While the role of Plasmodium EXP2 protein as translocon component of blood stage parasites is established, its functional role in liver stage parasites remains unclear. Here, Mello-Vieira et al. reveal that EXP2 pore-forming activity induces hepatocyte membrane repair and hence is critical for hepatocyte invasion.
Collapse
Affiliation(s)
- João Mello-Vieira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | | | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| |
Collapse
|
26
|
Acid Sphingomyelinase Contributes to the Control of Mycobacterial Infection via a Signaling Cascade Leading from Reactive Oxygen Species to Cathepsin D. Cells 2020; 9:cells9112406. [PMID: 33153072 PMCID: PMC7693114 DOI: 10.3390/cells9112406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is one of the most severe diseases worldwide. The initial pulmonary localization of the pathogen often develops into systemic infection with high lethality. The present work investigated the role of sphingolipids, specifically the function of acid sphingomyelinase (Asm) and ceramide, in infection of murine macrophages in vitro and mice in vivo with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In vitro, we investigated macrophages from wild-type (wt) and Asm deficient (Asm−/−) mice to define signaling events induced by BCG infection and mediated by Asm. We demonstrate that infection of wt macrophages results in activation of Asm, which increases reactive oxygen species (ROS) via stimulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. ROS promote BCG degradation by cathepsin D. Asm deficiency in macrophages abrogates these effects. In vivo studies reveal that wt mice rapidly control BCG infection, while Asm−/− mice fail to control the infection and kill the bacteria. Transplantation of wt macrophages into Asm−/− mice reversed their susceptibility to BCG, demonstrating the importance of Asm in macrophages for defense against BCG. These findings indicate that Asm is important for the control of BCG infection.
Collapse
|
27
|
Solger F, Kunz TC, Fink J, Paprotka K, Pfister P, Hagen F, Schumacher F, Kleuser B, Seibel J, Rudel T. A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae. Front Cell Infect Microbiol 2020; 10:215. [PMID: 32477967 PMCID: PMC7235507 DOI: 10.3389/fcimb.2020.00215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/20/2020] [Indexed: 11/29/2022] Open
Abstract
Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells.
Collapse
Affiliation(s)
- Franziska Solger
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Tobias C Kunz
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Julian Fink
- Department of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Kerstin Paprotka
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Pauline Pfister
- Department of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Franziska Hagen
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Jürgen Seibel
- Department of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| |
Collapse
|
28
|
Andreas NJ, Basu Roy R, Gomez-Romero M, Horneffer-van der Sluis V, Lewis MR, Camuzeaux SSM, Jiménez B, Posma JM, Tientcheu L, Egere U, Sillah A, Togun T, Holmes E, Kampmann B. Performance of metabonomic serum analysis for diagnostics in paediatric tuberculosis. Sci Rep 2020; 10:7302. [PMID: 32350385 PMCID: PMC7190829 DOI: 10.1038/s41598-020-64413-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
We applied a metabonomic strategy to identify host biomarkers in serum to diagnose paediatric tuberculosis (TB) disease. 112 symptomatic children with presumptive TB were recruited in The Gambia and classified as bacteriologically-confirmed TB, clinically diagnosed TB, or other diseases. Sera were analysed using 1H nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Multivariate data analysis was used to distinguish patients with TB from other diseases. Diagnostic accuracy was evaluated using Receiver Operating Characteristic (ROC) curves. Model performance was tested in a validation cohort of 36 children from the UK. Data acquired using 1H NMR demonstrated a sensitivity, specificity and Area Under the Curve (AUC) of 69% (95% confidence interval [CI], 56-73%), 83% (95% CI, 73-93%), and 0.78 respectively, and correctly classified 20% of the validation cohort from the UK. The most discriminatory MS data showed a sensitivity of 67% (95% CI, 60-71%), specificity of 86% (95% CI, 75-93%) and an AUC of 0.78, correctly classifying 83% of the validation cohort. Amongst children with presumptive TB, metabolic profiling of sera distinguished bacteriologically-confirmed and clinical TB from other diseases. This novel approach yielded a diagnostic performance for paediatric TB comparable to that of Xpert MTB/RIF and interferon gamma release assays.
Collapse
Affiliation(s)
- Nicholas J Andreas
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary's Hospital, Praed Street, London, W2 1NY, United Kingdom
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Robindra Basu Roy
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary's Hospital, Praed Street, London, W2 1NY, United Kingdom
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
- The Vaccine Centre, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Maria Gomez-Romero
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
- Clinical Phenotyping Centre, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Verena Horneffer-van der Sluis
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
| | - Matthew R Lewis
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
- Clinical Phenotyping Centre, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Stephane S M Camuzeaux
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
| | - Beatriz Jiménez
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
- Clinical Phenotyping Centre, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Joram M Posma
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Leopold Tientcheu
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
| | - Uzochukwu Egere
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
| | - Abdou Sillah
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
| | - Toyin Togun
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
- The Vaccine Centre, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Beate Kampmann
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary's Hospital, Praed Street, London, W2 1NY, United Kingdom.
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia.
- The Vaccine Centre, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
29
|
Kunz TC, Kozjak-Pavlovic V. Diverse Facets of Sphingolipid Involvement in Bacterial Infections. Front Cell Dev Biol 2019; 7:203. [PMID: 31608278 PMCID: PMC6761390 DOI: 10.3389/fcell.2019.00203] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.
Collapse
Affiliation(s)
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Andrade LO. Plasma membrane repair involvement in parasitic and other pathogen infections. CURRENT TOPICS IN MEMBRANES 2019; 84:217-238. [PMID: 31610864 DOI: 10.1016/bs.ctm.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular pathogens depend on specific mechanisms to be able to gain entry and survive into their host cells. For this, they subvert pathways involved in physiological cellular processes. Here we are going to focus on how two protozoan parasites, Trypanosoma cruzi and Leishmania sp, which may cause severe diseases in humans, use plasma membrane repair (PMR) mechanisms to gain entry in host intracellular environment. T. cruzi is the causative agent of Chagas disease, a disease originally endemic of central and South America, but that has become widespread around the globe. T. cruzi is able to invade any nucleated cell, but muscle cells are usually the main targets during chronic disease. During host cell contact, the parasite interacts with proteins at the host cell surface and may cause damage to their membrane, which has been shown to be responsible for inducing intracellular calcium increase and PMR-related events that culminate with parasite internalization. The same was recently observed for Leishmania sp, when infecting nonprofessional phagocytic cells, such as fibroblasts. Other pathogens, such as viruses or bacteria may also use PMR-related events for invasion and vacuole escape/maturation. In some cases, PMR may also be responsible to modulate pathogen intracellular development. These other PMR roles in pathogen infections will also be briefly discussed.
Collapse
Affiliation(s)
- Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
32
|
Ramírez-Montiel F, Mendoza-Macías C, Andrade-Guillén S, Rangel-Serrano Á, Páramo-Pérez I, Rivera-Cuéllar PE, España-Sánchez BL, Luna-Bárcenas G, Anaya-Velázquez F, Franco B, Padilla-Vaca F. Plasma membrane damage repair is mediated by an acid sphingomyelinase in Entamoeba histolytica. PLoS Pathog 2019; 15:e1008016. [PMID: 31461501 PMCID: PMC6713333 DOI: 10.1371/journal.ppat.1008016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Entamoeba histolytica is a pathogen that during its infective process confronts the host defenses, which damages the amoebic plasma membrane (PM), resulting in the loss of viability. However, it is unknown whether amoebic trophozoites are able to repair their PM when it is damaged. Acid sphingomyelinases (aSMases) have been reported in mammalian cells to promote endocytosis and removal of PM lesions. In this work, six predicted amoebic genes encoding for aSMases were found to be transcribed in the HM1:IMSS strain, finding that the EhaSM6 gene is the most transcribed in basal growth conditions and rendered a functional protein. The secreted aSMase activity detected was stimulated by Mg+2 and inhibited by Co+2. Trophozoites that overexpress the EhaSM6 gene (HM1-SM6HA) exhibit an increase of 2-fold in the secreted aSMase activity. This transfectant trophozoites exposed to pore-forming molecules (SLO, Magainin, β-Defensin 2 and human complement) exhibited an increase from 6 to 25-fold in the secreted aSMase activity which correlated with higher amoebic viability in a Ca+2 dependent process. However, other agents that affect the PM such as hydrogen peroxide also induced an increase of secreted aSMase, but to a lesser extent. The aSMase6 enzyme is N- and C-terminal processed. Confocal and transmission electron microscopy showed that trophozoites treated with SLO presented a migration of lysosomes containing the aSMase towards the PM, inducing the formation of membrane patches and endosomes in the control strain. These cellular structures were increased in the overexpressing strain, indicating the involvement of the aSMase6 in the PM injury repair. The pore-forming molecules induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile, hydrogen peroxide induced an increase in all of them. In all the conditions evaluated, the EhaSM6 gene exhibited the highest levels of induction. Overall, these novel findings show that the aSMase6 enzyme from E. histolytica promotes the repair of the PM damaged with pore-forming molecules to prevent losing cell integrity. This novel system could act when encountered with the lytic defense systems of the host. The host-amoeba relationship is based on a series of interplays between host defense mechanisms and parasite survival strategies. While host cells elaborate diverse mechanisms for pathogen elimination, Entamoeba histolytica trophozoites have also developed complex strategies to counteract host immune response and facilitate its own survival while confronting host defenses. E. histolytica exposed to pore-forming proteins such as β-Defensin 2, human complement and Streptolysin O (SLO), increases the activity of secreted aSMase, which is related to greater amoebic viability. Other agents that affect plasma membrane (PM) may also increase secreted aSMase but to a lesser extent. SLO form pores in the PM of E. histolytica trophozoites that initiates the uncontrolled entry of Ca2+, recognized as the primary trigger for cell responses which favors the migration of the lysosomes to the periphery of the cell, fuses with the PM and release their content, including aSMase to the external side of the cell. The secreted aSMase favoring the internalization of the lesion for its degradation in phagolysosomes. During the early stages of PM damage, the pores are rapidly blocked by patch-like structures that prevent the lysis of the trophozoite and immediately begin internalizing the lesion. The aSMase6 overexpression favors the repair of the lesion and the survival of E. histolytica trophozoites. Pore-forming proteins induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile oxidative stress induced an increase in all of them. Here we report, for the first time, that E. histolytica possess a mechanism for PM damage repair mediated by aSMase similar to the system described in mammalian cells.
Collapse
Affiliation(s)
- Fátima Ramírez-Montiel
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Claudia Mendoza-Macías
- Departmento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Sairy Andrade-Guillén
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Ángeles Rangel-Serrano
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Itzel Páramo-Pérez
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Paris E. Rivera-Cuéllar
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - B. Liliana España-Sánchez
- CONACYT_Centro de Investigación y Desarrollo en Electroquímica (CIDETEQ) S.C. Parque Tecnológico, San Fandila, Querétaro, México
| | - Gabriel Luna-Bárcenas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Querétaro, Fracc. Real de Juriquilla, Querétaro, Querétaro, México
| | - Fernando Anaya-Velázquez
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
- * E-mail: (BF); (FPV)
| | - Felipe Padilla-Vaca
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
- * E-mail: (BF); (FPV)
| |
Collapse
|
33
|
Neisseria meningitidis Type IV Pili Trigger Ca 2+-Dependent Lysosomal Trafficking of the Acid Sphingomyelinase To Enhance Surface Ceramide Levels. Infect Immun 2019; 87:IAI.00410-19. [PMID: 31160362 DOI: 10.1128/iai.00410-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/26/2023] Open
Abstract
Acid sphingomyelinase (ASM) is a lipid hydrolase that converts sphingomyelin to ceramide and that can be activated by various cellular stress mechanisms, including bacterial pathogens. Vesicle transportation or trafficking of ASM from the lysosomal compartment to the cell membrane is a prerequisite for its activation in response to bacterial infections; however, the effectors and mechanisms of ASM translocation and activation are poorly defined. Our recent work documented the key importance of ASM for Neisseria meningitidis uptake into human brain microvascular endothelial cells (HBMEC). We clearly identified OpcA to be one bacterial effector promoting ASM translocation and activity, though it became clear that additional bacterial components were involved, as up to 80% of ASM activity and ceramide generation was retained in cells infected with an opcA-deficient mutant. We hypothesized that N. meningitidis might use pilus components to promote the translocation of ASM into HBMEC. Indeed, we found that both live, piliated N. meningitidis and pilus-enriched fractions trigger transient ASM surface display, followed by the formation of ceramide-rich platforms (CRPs). By using indirect immunocytochemistry and direct stochastic optical reconstruction microscopy, we show that the overall number of CRPs with a size of ∼80 nm in the plasma membrane is significantly increased after exposure to pilus-enriched fractions. Infection with live bacteria as well as exposure to pilus-enriched fractions transiently increased cytosolic Ca2+ levels in HBMEC, and this was found to be important for ASM surface display mediated by lysosomal exocytosis, as depletion of cytosolic Ca2+ resulted in a significant decrease in ASM surface levels, ASM activity, and CRP formation.
Collapse
|
34
|
Andrews NW. Solving the secretory acid sphingomyelinase puzzle: Insights from lysosome-mediated parasite invasion and plasma membrane repair. Cell Microbiol 2019; 21:e13065. [PMID: 31155842 DOI: 10.1111/cmi.13065] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Acid sphingomyelinase (ASM) is a lysosomal enzyme that cleaves the phosphorylcholine head group of sphingomyelin, generating ceramide. Recessive mutations in SMPD1, the gene encoding ASM, cause Niemann-Pick Disease Types A and B. These disorders are attributed not only to lipid accumulation inside lysosomes but also to changes on the outer leaflet of the plasma membrane, highlighting an extracellular role for ASM. Secretion of ASM occurs under physiological conditions, and earlier studies proposed two forms of the enzyme, one resident in lysosomes and another form that would be diverted to the secretory pathway. Such differential intracellular trafficking has been difficult to explain because there is only one SMPD1 transcript that generates an active enzyme, found primarily inside lysosomes. Unexpectedly, studies of cell invasion by the protozoan parasite Trypanosoma cruzi revealed that conventional lysosomes can fuse with the plasma membrane in response to elevations in intracellular Ca2+ , releasing their contents extracellularly. ASM exocytosed from lysosomes remodels the outer leaflet of the plasma membrane, promoting parasite invasion and wound repair. Here, we discuss the possibility that ASM release during lysosomal exocytosis, in response to various forms of stress, may represent a major source of the secretory form of this enzyme.
Collapse
Affiliation(s)
- Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
35
|
Simonis A, Schubert-Unkmeir A. The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection. Biol Chem 2019; 399:1135-1146. [PMID: 29924727 DOI: 10.1515/hsz-2018-0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023]
Abstract
Acid sphingomyelinase (ASM) is a key enzyme in sphingolipid metabolism that converts sphingomyelin to ceramide, thereby modulating membrane structures and signal transduction. Bacterial pathogens can manipulate ASM activity and function, and use host sphingolipids during multiple steps of their infection process. An increase in ceramides upon infection results in the formation of ceramide-enriched membrane platforms that serve to cluster receptor molecules and organize intracellular signaling molecules, thus facilitating bacterial uptake. In this review, we focus on how extracellular bacterial pathogens target ASM and modulate membrane properties and signaling pathways to gain entry into eukaryotic cells or induce cell death. We describe how intracellular pathogens interfere with the intralysosomal functions of ASM to favor replication and survival. In addition, bacteria utilize their own sphingomyelinases as virulence factors to modulate sphingolipid metabolism. The potential of ASM as a target for treating bacterial infections is also discussed.
Collapse
Affiliation(s)
- Alexander Simonis
- Division of Hematology, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Alexandra Schubert-Unkmeir
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| |
Collapse
|
36
|
Wu Y, Gulbins E, Grassmé H. The function of sphingomyelinases in mycobacterial infections. Biol Chem 2019; 399:1125-1133. [PMID: 29924725 DOI: 10.1515/hsz-2018-0179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the deadliest and most important infectious diseases worldwide. The sphingomyelinase/ceramide system, which has been shown several times to be a crucial factor in the internalization, processing and killing of diverse pathogens, also modulates the pro-inflammatory response and the state of mycobacteria in macrophages. Both acid and neutral sphingomyelinases are important in this activity. However, studies of the role of sphingomyelinases in TB are still at an early stage.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany.,Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| |
Collapse
|
37
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
38
|
Vázquez L, Corzo-Martínez M, Arranz-Martínez P, Barroso E, Reglero G, Torres C. Bioactive Lipids. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_58] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Baker JE, Boudreau RM, Seitz AP, Caldwell CC, Gulbins E, Edwards MJ. Sphingolipids and Innate Immunity: A New Approach to Infection in the Post-Antibiotic Era? Surg Infect (Larchmt) 2018; 19:792-803. [DOI: 10.1089/sur.2018.187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jennifer E. Baker
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Ryan M. Boudreau
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Aaron P. Seitz
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Charles C. Caldwell
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
- Division of Research, Shriners Hospital for Children, Cincinnati, Ohio
| | - Erich Gulbins
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael J. Edwards
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
40
|
Tawk C, Nigro G, Rodrigues Lopes I, Aguilar C, Lisowski C, Mano M, Sansonetti P, Vogel J, Eulalio A. Stress-induced host membrane remodeling protects from infection by non-motile bacterial pathogens. EMBO J 2018; 37:embj.201798529. [PMID: 30389666 PMCID: PMC6276891 DOI: 10.15252/embj.201798529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023] Open
Abstract
While mucosal inflammation is a major source of stress during enteropathogen infection, it remains to be fully elucidated how the host benefits from this environment to clear the pathogen. Here, we show that host stress induced by different stimuli mimicking inflammatory conditions strongly reduces the binding of Shigella flexneri to epithelial cells. Mechanistically, stress activates acid sphingomyelinase leading to host membrane remodeling. Consequently, knockdown or pharmacological inhibition of the acid sphingomyelinase blunts the stress-dependent inhibition of Shigella binding to host cells. Interestingly, stress caused by intracellular Shigella replication also results in remodeling of the host cell membrane, in vitro and in vivo, which precludes re-infection by this and other non-motile pathogens. In contrast, Salmonella Typhimurium overcomes the shortage of permissive entry sites by gathering effectively at the remaining platforms through its flagellar motility. Overall, our findings reveal host membrane remodeling as a novel stress-responsive cell-autonomous defense mechanism that protects epithelial cells from infection by non-motile bacterial pathogens.
Collapse
Affiliation(s)
- Caroline Tawk
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Giulia Nigro
- Molecular Microbial Pathogenesis Laboratory, Institut Pasteur, Paris, France
| | - Ines Rodrigues Lopes
- Functional Genomics and RNA-based Therapeutics, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,RNA & Infection Group, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Clivia Lisowski
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Philippe Sansonetti
- Molecular Microbial Pathogenesis Laboratory, Institut Pasteur, Paris, France
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany .,RNA & Infection Group, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
41
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
42
|
Wang LC, Litwin M, Sahiholnasab Z, Song W, Stein DC. Neisseria gonorrhoeae Aggregation Reduces Its Ceftriaxone Susceptibility. Antibiotics (Basel) 2018; 7:E48. [PMID: 29914058 PMCID: PMC6022932 DOI: 10.3390/antibiotics7020048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/25/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance in Neisseria gonorrhoeae (GC) has become an emerging threat worldwide and heightens the need for monitoring treatment failures. N. gonorrhoeae, a gram-negative bacterium responsible for gonorrhea, infects humans exclusively and can form aggregates during infection. While minimal inhibitory concentration (MIC) tests are often used for determining antibiotic resistance development and treatment, the knowledge of the true MIC in individual patients and how it relates to this laboratory measure is not known. We examined the effect of aggregation on GC antibiotic susceptibility and the relationship between bacterial aggregate size and their antibiotic susceptibility. Aggregated GC have a higher survival rate when treated with ceftriaxone than non-aggregated GC, with bacteria in the core of the aggregates surviving the treatment. GC lacking opacity-associated protein or pili, or expressing a truncated lipooligosaccharide, three surface molecules that mediate GC-GC interactions, reduce both aggregation and ceftriaxone survival. This study demonstrates that the aggregation of N. gonorrhoeae can reduce the susceptibility to antibiotics, and suggests that antibiotic utilization can select for GC surface molecules that promote aggregation which in turn drive pathogen evolution. Inhibiting aggregation may be a potential way of increasing the efficacy of ceftriaxone treatment, consequently reducing treatment failure.
Collapse
Affiliation(s)
- Liang-Chun Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Madeline Litwin
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Zahraossadat Sahiholnasab
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Daniel C Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| |
Collapse
|
43
|
Nagahama M, Takehara M, Miyamoto K, Ishidoh K, Kobayashi K. Acid Sphingomyelinase Promotes Cellular Internalization of Clostridium perfringens Iota-Toxin. Toxins (Basel) 2018; 10:toxins10050209. [PMID: 29783772 PMCID: PMC5983265 DOI: 10.3390/toxins10050209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens iota-toxin is a binary actin-ADP-ribosylating toxin composed of the enzymatic component Ia and receptor binding component Ib. Ib binds to a cell surface receptor, forms Ib oligomer in lipid rafts, and associates with Ia. The Ia-Ib complex then internalizes by endocytosis. Here, we showed that acid sphingomyelinase (ASMase) facilitates the cellular uptake of iota-toxin. Inhibitions of ASMase and lysosomal exocytosis by respective blockers depressed cell rounding induced by iota-toxin. The cytotoxicity of the toxin increased in the presence of Ca2+ in extracellular fluids. Ib entered target cells in the presence but not the absence of Ca2+. Ib induced the extracellular release of ASMase in the presence of Ca2+. ASMase siRNA prevented the cell rounding induced by iota-toxin. Furthermore, treatment of the cells with Ib resulted in the production of ceramide in cytoplasmic vesicles. These observations showed that ASMase promotes the internalization of iota-toxin into target cells.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Kazumi Ishidoh
- Division of Molecular Biology, Institute for Health Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
44
|
Newcomb B, Rhein C, Mileva I, Ahmad R, Clarke CJ, Snider J, Obeid LM, Hannun YA. Identification of an acid sphingomyelinase ceramide kinase pathway in the regulation of the chemokine CCL5. J Lipid Res 2018; 59:1219-1229. [PMID: 29724781 DOI: 10.1194/jlr.m084202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/25/2018] [Indexed: 02/01/2023] Open
Abstract
Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to produce the biologically active lipid ceramide. Previous studies have implicated ASM in the induction of the chemokine CCL5 in response to TNF-α however, the lipid mediator of this effect was not established. In the present study, we identified a novel pathway connecting ASM and ceramide kinase (CERK). The results show that TNF-α induces the formation of ceramide 1-phosphate (C-1-P) in a CERK-dependent manner. Silencing of CERK blocks CCL5 production in response to TNF-α. Interestingly, cells lacking ASM have decreased C-1-P production following TNF-α treatment, suggesting that ASM may be acting upstream of CERK. Functionally, ASM and CERK induce a highly concordant program of cytokine production and both are required for migration of breast cancer cells. Taken together, these data suggest ASM can produce ceramide which is then converted to C-1-P by CERK, and that C-1-P is required for production of CCL5 and several cytokines and chemokines, with roles in cell migration. These results highlight the diversity in action of ASM through more than one bioactive sphingolipid.
Collapse
Affiliation(s)
- Benjamin Newcomb
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794
| | - Cosima Rhein
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794.,Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Izolda Mileva
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794
| | - Rasheed Ahmad
- Immunology and Innovative Cell Therapy Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Justin Snider
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794
| | - Lina M Obeid
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794.,Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A Hannun
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794 .,Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
45
|
Wu Y, Gulbins E, Grassmé H. Crosstalk Between Sphingomyelinases and Reactive Oxygen Species in Mycobacterial Infection. Antioxid Redox Signal 2018; 28:935-948. [PMID: 28276697 DOI: 10.1089/ars.2017.7050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Tuberculosis (TB), which is caused by Mycobacterium tuberculosis, is one of the most important infections worldwide. The sphingomyelinase/ceramide system, which has been shown to be a crucial factor in internalizing and killing various pathogens, modulates both the proinflammatory response and the state of mycobacteria in macrophages. However, studies about the role of sphingomyelinases in TB are still at an early stage. Recent Advances: Recent studies elucidated several roles of sphingomyelinases in manipulating mycobacterial infections. On the one hand, acid sphingomyelinase (Asm) promotes the fusion of bacteria-containing phagosomes and lysosomes, whereas on the other hand, Asm-derived ceramide induces cell death. Neutral sphingomyelinase (Nsm) enhances the release of reactive oxygen species, which suppress autophagy in infected macrophages in vitro and in vivo, allowing the pathogen to survive within macrophages. These findings indicate that the sphingomyelinase/ceramide system plays an important role in the attack of mycobacteria against the host. Critical Issues: Autophagy is a main strategy of mycobacterial clearance in TB, but the relevant mechanisms are still unknown. Additionally, there are indications that both Asm and Nsm are crucially involved in the formation of granulomas, which are a hallmark and a special structure of TB. However, very few findings have yet been published. Future Directions: Additional studies of the Nsm/ceramide system, which contributes to the resistance or susceptibility, respectively, of the host to mycobacterial infections, will detect currently unknown molecular mechanisms. Because inhibitors of Nsm already exist, targeting Nsm may be a novel approach to developing treatment options for mycobacterial infections. Antioxid. Redox Signal. 28, 935-948.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
46
|
Won JH, Kim SK, Shin IC, Ha HC, Jang JM, Back MJ, Kim DK. Dopamine transporter trafficking is regulated by neutral sphingomyelinase 2/ceramide kinase. Cell Signal 2018; 44:171-187. [DOI: 10.1016/j.cellsig.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 12/13/2022]
|
47
|
Abstract
Syndecan-1 (Sdc1) is a major cell surface heparan sulfate (HS) proteoglycan of epithelial cells, a cell type targeted by many bacterial pathogens early in their pathogenesis. Loss of Sdc1 in mice is a gain-of-function mutation that significantly decreases the susceptibility to several bacterial infections, suggesting that subversion of Sdc1 is an important virulence strategy. HS glycosaminoglycan (GAG) chains of cell surface Sdc1 promote bacterial pathogenesis by facilitating the attachment of bacteria to host cells. Engagement of cell surface Sdc1 HS chains by bacterial adhesins transmits signal through the highly conserved Sdc1 cytoplasmic domain, which can lead to uptake of intracellular bacterial pathogens. On the other hand, several bacteria that do not require Sdc1 for their attachment and invasion stimulate Sdc1 shedding and exploit the capacity of Sdc1 ectodomain HS GAGs to disarm innate defense mechanisms to evade immune clearance. Recent data suggest that select HS sulfate motifs, and not the overall charge of HS, are important in the inhibition of innate immune mechanisms. Here, we discuss several examples of Sdc1 subversion in bacterial infections.
Collapse
|
48
|
Becker KA, Fahsel B, Kemper H, Mayeres J, Li C, Wilker B, Keitsch S, Soddemann M, Sehl C, Kohnen M, Edwards MJ, Grassmé H, Caldwell CC, Seitz A, Fraunholz M, Gulbins E. Staphylococcus aureus Alpha-Toxin Disrupts Endothelial-Cell Tight Junctions via Acid Sphingomyelinase and Ceramide. Infect Immun 2018; 86:e00606-17. [PMID: 29084896 PMCID: PMC5736828 DOI: 10.1128/iai.00606-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) infections are among the most common and severe infections, garnering notoriety in an era of increasing resistance to antibiotics. It is therefore important to define molecular mechanisms by which this pathogen attacks host cells. Here, we demonstrate that alpha-toxin, one of the major toxins of S. aureus, induces activation of acid sphingomyelinase and concomitant release of ceramide in endothelial cells treated with the toxin. Activation of acid sphingomyelinase by alpha-toxin is mediated via ADAM10. Infection experiments employing alpha-toxin-deficient S. aureus and the corresponding wild-type strain reveal that activation of acid sphingomyelinase in endothelial cells requires alpha-toxin expression by the pathogen. Activation of acid sphingomyelinase is linked to degradation of tight junctions in endothelial cells in vitro, which is blocked by pharmacological inhibition of acid sphingomyelinase. Most importantly, alpha-toxin induces severe degradation of tight junctions in the lung and causes lung edema in vivo, which is prevented by genetic deficiency of acid sphingomyelinase. These data indicate a novel and important role of the acid sphingomyelinase/ceramide system for the endothelial response to toxins and provide a molecular link between alpha-toxin and the degradation of tight junctions. The data also suggest that inhibition of acid sphingomyelinase may provide a novel treatment option to prevent lung edema caused by S. aureus alpha-toxin.
Collapse
Affiliation(s)
- Katrin Anne Becker
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Essen, Germany
| | | | | | | | - Cao Li
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Essen, Germany
| | - Carolin Sehl
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Essen, Germany
| | | | - Michael J Edwards
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Charles C Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Aaron Seitz
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Martin Fraunholz
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Erich Gulbins
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Essen, Germany
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
49
|
Real-Hohn A, Provance DW, Gonçalves RB, Denani CB, de Oliveira AC, Salerno VP, Oliveira Gomes AM. Impairing the function of MLCK, myosin Va or myosin Vb disrupts Rhinovirus B14 replication. Sci Rep 2017; 7:17153. [PMID: 29215055 PMCID: PMC5719429 DOI: 10.1038/s41598-017-17501-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
Together, the three human rhinovirus (RV) species are the most frequent cause of the common cold. Because of their high similarity with other viral species of the genus Enterovirus, within the large family Picornaviridae, studies on RV infectious activities often offer a less pathogenic model for more aggressive enteroviruses, e.g. poliovirus or EV71. Picornaviruses enter via receptor mediated endocytosis and replicate in the cytosol. Most of them depend on functional F-actin, Rab proteins, and probably motor proteins. To assess the latter, we evaluated the role of myosin light chain kinase (MLCK) and two myosin V isoforms (Va and Vb) in RV-B14 infection. We report that ML-9, a very specific MLCK inhibitor, dramatically reduced RV-B14 entry. We also demonstrate that RV-B14 infection in cells expressing dominant-negative forms of myosin Va and Vb was impaired after virus entry. Using immunofluorescent localization and immunoprecipitation, we show that myosin Va co-localized with RV-B14 exclusively after viral entry (15 min post infection) and that myosin Vb was present in the clusters of newly synthesized RNA in infected cells. These clusters, observed at 180 min post infection, are reminiscent of replication sites. Taken together, these results identify myosin light chain kinase, myosin Va and myosin Vb as new players in RV-B14 infection that participate directly or indirectly in different stages of the viral cycle.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Universidade Federal Rio do Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - D William Provance
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Diseases of Neglected Populations, Oswaldo Cruz Foundation/Fiocruz, Rio de Janeiro, Brazil
| | - Rafael Braga Gonçalves
- Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Caio Bidueira Denani
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Andréa Cheble de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Verônica P Salerno
- Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Universidade Federal Rio do Janeiro, Rio de Janeiro, Brazil
| | - Andre Marco Oliveira Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
50
|
Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017; 33:429-455. [PMID: 28275881 PMCID: PMC7088210 DOI: 10.1007/s10565-017-9386-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|