1
|
Wingfield JL, Puthanveettil SV. Decoding the complex journeys of RNAs along neurons. Nucleic Acids Res 2025; 53:gkaf293. [PMID: 40243060 PMCID: PMC12004114 DOI: 10.1093/nar/gkaf293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Neurons are highly polarized, specialized cells that must overcome immense challenges to ensure the health and survival of the organism in which they reside. They can spread over meters and persist for decades yet communicate at sub-millisecond and millimeter scales. Thus, neurons require extreme levels of spatial-temporal control. Neurons employ molecular motors to transport coding and noncoding RNAs to distal synapses. Intracellular trafficking of RNAs enables neurons to locally regulate protein synthesis and synaptic activity. The way in which RNAs get loaded onto molecular motors and transported to their target locations, particularly following synaptic plasticity, is explored below.
Collapse
Affiliation(s)
- Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Sathyanarayanan V Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| |
Collapse
|
2
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Cheon YP, Ryou C, Svedružić ŽM. Roles of prion proteins in mammalian development. Anim Cells Syst (Seoul) 2024; 28:551-566. [PMID: 39664939 PMCID: PMC11633422 DOI: 10.1080/19768354.2024.2436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Prion protein (PrP) is highly conserved and is expressed in most tissues in a developmental stage-specific manner. Glycosylated cellular prion protein (PrPC) is found in most cells and subcellular areas as a physiological regulating molecule. On the other hand, the amyloid form of PrPC, scrapie PrP (PrPSC), causes transmissible pathogenesis in the central nervous system and induces degeneration of the nervous system. Although many amyloids are reversible and critical in determining the fate, differentiation, and physiological functions of cells, thus far, PrPSC originating from PrPC is not. Although many studies have focused on disorders involving PrPC and the deletion mammalian models for PrPC have no severe phenotype, it has been suggested that PrPC has a role in normal development. It is conserved and expressed from gametes to adult somatic cells. In addition, severe developmental phenotypes appear in PrP null zebrafish embryos and in various mammalian cell model systems. In addition, it has been well established that PrPC is strongly involved in the stemness and differentiation of embryonic stem cells and progenitors. Thus far, many studies on PrPC have focused mostly on disease-associated conditions with physiological roles as a complex platform but not on development. The known roles of PrPC depend on the interacting molecules through its flexible tail and domains. PrPC interacts with membrane, and various intracellular and extracellular molecules. In addition, PrPC and amyloid can stimulate signaling pathways differentially. In this review, we summarize the function of prion protein and discuss its role in development.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Department of Biotechnology, Institute for Basic Sciences, Sungshin University, Seoul, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy, Hanyang University, ekcho Ansan, Korea
| | | |
Collapse
|
4
|
Holt CE. Biological Roles of Local Protein Synthesis in Axons: A Journey of Discovery. Annu Rev Genet 2024; 58:1-18. [PMID: 39121543 DOI: 10.1146/annurev-genet-072220-030822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The remit of this review is to give an autobiographical account of our discovery of the role of local protein synthesis in axon guidance. The paper reporting our initial findings was published in 2001. Here, I describe some of the work that led to this publication, the skepticism our findings initially received, and the subsequent exciting years of follow-up work that helped gradually to convince the neuroscience community of the existence and functional importance of local protein synthesis in multiple aspects of axon biology-guidance, branching, synaptogenesis, and maintenance. The journey has been an exhilarating one, taking me into a new field of RNA biology, with many unexpected twists and turns. In retelling it here, I have tried to recall the major influences on my thinking at the time rather than give a comprehensive review, and I apologize for any omissions due to my own ignorance during that era.
Collapse
Affiliation(s)
- Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
5
|
Welle TM, Rajgor D, Kareemo DJ, Garcia JD, Zych SM, Wolfe SE, Gookin SE, Martinez TP, Dell'Acqua ML, Ford CP, Kennedy MJ, Smith KR. miRNA-mediated control of gephyrin synthesis drives sustained inhibitory synaptic plasticity. EMBO Rep 2024; 25:5141-5168. [PMID: 39294503 PMCID: PMC11549329 DOI: 10.1038/s44319-024-00253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Activity-dependent protein synthesis is crucial for long-lasting forms of synaptic plasticity. However, our understanding of translational mechanisms controlling GABAergic synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the mechanisms controlling plasticity-induced gephyrin translation remain unknown. We identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting inhibitory synaptic structure and function. iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and promoting de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Together, we delineate a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.
Collapse
Affiliation(s)
- Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Dean J Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sarah M Zych
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sarah E Wolfe
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Tyler P Martinez
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Onchan W, Attakitbancha C, Uttamapinant C. An expanded molecular and systems toolbox for imaging, mapping, and controlling local translation. Curr Opin Chem Biol 2024; 82:102523. [PMID: 39226865 DOI: 10.1016/j.cbpa.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Localized protein translation occurs through trafficking of mRNAs and protein translation machineries to different compartments of the cell, leading to rapid on-site synthesis of proteins in response to signaling cues. The spatiotemporally precise nature of the local translation process necessitates continual developments of technologies reviewed herein to visualize and map biomolecular components and the translation process with better spatial and temporal resolution and with fewer artifacts. We also discuss approaches to control local translation, which can serve as a design paradigm for subcellular genetic devices for eukaryotic synthetic biology.
Collapse
Affiliation(s)
- Warunya Onchan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chadaporn Attakitbancha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
7
|
Hayden AN, Brandel KL, Pietryk EW, Merlau PR, Vijayakumar P, Leptich EJ, Gaytan ES, Williams MI, Ni CW, Chao HT, Rosenfeld JA, Arey RN. Behavioral screening reveals a conserved residue in Y-Box RNA-binding protein required for associative learning and memory in C. elegans. PLoS Genet 2024; 20:e1011443. [PMID: 39423228 PMCID: PMC11524487 DOI: 10.1371/journal.pgen.1011443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/30/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to promote memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Collapse
Affiliation(s)
- Ashley N. Hayden
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Katie L. Brandel
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Edward W. Pietryk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul R. Merlau
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Priyadharshini Vijayakumar
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Emily J. Leptich
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elizabeth S. Gaytan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Meredith I. Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie W. Ni
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Rice University, Houston, Texas, United States of America
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
| | - Rachel N. Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
8
|
Harris KM, Kuwajima M, Flores JC, Zito K. Synapse-specific structural plasticity that protects and refines local circuits during LTP and LTD. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230224. [PMID: 38853547 PMCID: PMC11529630 DOI: 10.1098/rstb.2023.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 06/11/2024] Open
Abstract
Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1-4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Kristen M. Harris
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Masaaki Kuwajima
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA95618, USA
| |
Collapse
|
9
|
Badal KK, Zhao Y, Raveendra BL, Lozano-Villada S, Miller KE, Puthanveettil SV. PKA Activity-Driven Modulation of Bidirectional Long-Distance transport of Lysosomal vesicles During Synapse Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601272. [PMID: 38979384 PMCID: PMC11230415 DOI: 10.1101/2024.06.28.601272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The bidirectional long-distance transport of organelles is crucial for cell body-synapse communication. However, the mechanisms by which this transport is modulated for synapse formation, maintenance, and plasticity are not fully understood. Here, we demonstrate through quantitative analyses that maintaining sensory neuron-motor neuron synapses in the Aplysia gill-siphon withdrawal reflex is linked to a sustained reduction in the retrograde transport of lysosomal vesicles in sensory neurons. Interestingly, while mitochondrial transport in the anterograde direction increases within 12 hours of synapse formation, the reduction in lysosomal vesicle retrograde transport appears three days after synapse formation. Moreover, we find that formation of new synapses during learning induced by neuromodulatory neurotransmitter serotonin further reduces lysosomal vesicle transport within 24 hours, whereas mitochondrial transport increases in the anterograde direction within one hour of exposure. Pharmacological inhibition of several signaling pathways pinpoints PKA as a key regulator of retrograde transport of lysosomal vesicles during synapse maintenance. These results demonstrate that synapse formation leads to organelle-specific and direction specific enduring changes in long-distance transport, offering insights into the mechanisms underlying synapse maintenance and plasticity.
Collapse
Affiliation(s)
- Kerriann. K. Badal
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
- Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Yibo. Zhao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Bindu L Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sebastian Lozano-Villada
- Harriet L. Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Kyle. E. Miller
- Harriet L. Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Sathyanarayanan V. Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
10
|
Hurwitz I, Tam S, Jing J, Chiel HJ, Gill J, Susswein AJ. Multiple changes in connectivity between buccal ganglia mechanoafferents and motor neurons with different functions after learning that food is inedible in Aplysia. Learn Mem 2024; 31:a053882. [PMID: 38950977 PMCID: PMC11261210 DOI: 10.1101/lm.053882.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/19/2024] [Indexed: 07/03/2024]
Abstract
Changes caused by learning that a food is inedible in Aplysia were examined for fast and slow synaptic connections from the buccal ganglia S1 cluster of mechanoafferents to five followers, in response to repeated stimulus trains. Learning affected only fast connections. For these, unique patterns of change were present in each follower, indicating that learning differentially affects the different branches of the mechanoafferents to their followers. In some followers, there were increases in either excitatory or inhibitory connections, and in others, there were decreases. Changes in connectivity resulted from changes in the amplitude of excitation or inhibition, or as a result of the number of connections, or of both. Some followers also exhibited changes in either within or between stimulus train plasticity as a result of learning. In one follower, changes differed from the different areas of the S1 cluster. The patterns of changes in connectivity were consistent with the behavioral changes produced by learning, in that they would produce an increase in the bias to reject or to release food, and a decrease in the likelihood to respond to food.
Collapse
Affiliation(s)
- Itay Hurwitz
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Shlomit Tam
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School Life Sciences, Nanjing University, Jiangsu 210023, China
| | - Hillel J Chiel
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
- Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Jeffrey Gill
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Abraham J Susswein
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
11
|
Ma Y, Luo Y, Li W, Wang D, Ning Z. White Isthmus Transcriptome Analysis Reveals the Mechanism of Translucent Eggshell Formation. Animals (Basel) 2024; 14:1477. [PMID: 38791694 PMCID: PMC11117225 DOI: 10.3390/ani14101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The presence of translucent eggshells is a type of egg quality issue that impacts egg sales. While many researchers have studied them, the exact mechanisms behind their formation remain unclear. In this study, we conducted a transcriptomic differential expression analysis of the isthmus region of the oviduct in both normal egg- and translucent egg-laying hens. The analysis revealed that differentially expressed gene pathways were predominantly concentrated in the synthesis, modification, and transport of eggshell membrane proteins, particularly collagen proteins, which provide structural support. These findings suggest that variations in the physical structure of the eggshell membrane, resulting from changes in its chemical composition, are the fundamental cause of translucent eggshell formation. This research provides a theoretical reference for reducing the occurrence of translucent eggs.
Collapse
Affiliation(s)
- Ying Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Yuxing Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Wen Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Dehe Wang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| |
Collapse
|
12
|
Hayden AN, Brandel KL, Merlau PR, Vijayakumar P, Leptich EJ, Pietryk EW, Gaytan ES, Ni CW, Chao HT, Rosenfeld JA, Arey RN. Behavioral screening of conserved RNA-binding proteins reveals CEY-1/YBX RNA-binding protein dysfunction leads to impairments in memory and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574402. [PMID: 38260399 PMCID: PMC10802296 DOI: 10.1101/2024.01.05.574402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to increase memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Collapse
Affiliation(s)
- Ashley N Hayden
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Katie L Brandel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Paul R Merlau
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | | | - Emily J Leptich
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Edward W Pietryk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
| | - Elizabeth S Gaytan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, TX, 77030
| | - Connie W Ni
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Neuroscience, Rice University, Houston, TX 77005
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
- Baylor Genetics Laboratories, Houston, TX 77021
| | - Rachel N Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
13
|
Desai M, Hemant, Deo A, Naik J, Dhamale P, Kshirsagar A, Bose T, Majumdar A. Mrj is a chaperone of the Hsp40 family that regulates Orb2 oligomerization and long-term memory in Drosophila. PLoS Biol 2024; 22:e3002585. [PMID: 38648719 PMCID: PMC11034981 DOI: 10.1371/journal.pbio.3002585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.
Collapse
Affiliation(s)
- Meghal Desai
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hemant
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Ankita Deo
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Jagyanseni Naik
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Prathamesh Dhamale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Avinash Kshirsagar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Tania Bose
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
14
|
Wiseman S. In conversation with Kelsey Martin. Nat Neurosci 2024; 27:4-8. [PMID: 38052909 DOI: 10.1038/s41593-023-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
|
15
|
Welle TM, Rajgor D, Garcia JD, Kareemo D, Zych SM, Gookin SE, Martinez TP, Dell’Acqua ML, Ford CP, Kennedy MJ, Smith KR. miRNA-mediated control of gephyrin synthesis drives sustained inhibitory synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.570420. [PMID: 38168421 PMCID: PMC10760056 DOI: 10.1101/2023.12.12.570420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Activity-dependent protein synthesis is crucial for many long-lasting forms of synaptic plasticity. However, our understanding of the translational mechanisms controlling inhibitory synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the precise mechanisms controlling gephyrin translation during this process remain unknown. Here, we identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting GABAergic synaptic structure and function. We find that iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and allowing for increased de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Overall, this work delineates a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.
Collapse
Affiliation(s)
- Theresa M. Welle
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
- T.M.W and D.R. contributed equally to this work
| | - Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
- T.M.W and D.R. contributed equally to this work
| | - Joshua D. Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Dean Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Sarah M. Zych
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Sara E. Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Tyler P. Martinez
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Matthew J. Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Katharine R. Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| |
Collapse
|
16
|
Zou Z, Wei J, Chen Y, Kang Y, Shi H, Yang F, Shi Z, Chen S, Zhou Y, Sepich-Poore C, Zhuang X, Zhou X, Jiang H, Wen Z, Jin P, Luo C, He C. FMRP phosphorylation modulates neuronal translation through YTHDF1. Mol Cell 2023; 83:4304-4317.e8. [PMID: 37949069 PMCID: PMC10872974 DOI: 10.1016/j.molcel.2023.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.
Collapse
Affiliation(s)
- Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Yantao Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunhee Kang
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hailing Shi
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Fan Yang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zhuoyue Shi
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Caraline Sepich-Poore
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoming Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hualiang Jiang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Cheng Luo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
18
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 PMCID: PMC12024187 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
19
|
Huang YS, Mendez R, Fernandez M, Richter JD. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Mol Psychiatry 2023; 28:2728-2736. [PMID: 37131078 PMCID: PMC10620108 DOI: 10.1038/s41380-023-02088-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.
Collapse
Affiliation(s)
- Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | | | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
20
|
Kozlov EN, Deev RV, Tokmatcheva EV, Tvorogova A, Kachaev ZM, Gilmutdinov RA, Zhukova M, Savvateeva-Popova EV, Schedl P, Shidlovskii YV. 3'UTR of mRNA Encoding CPEB Protein Orb2 Plays an Essential Role in Intracellular Transport in Neurons. Cells 2023; 12:1717. [PMID: 37443751 PMCID: PMC10340461 DOI: 10.3390/cells12131717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular trafficking plays a critical role in the functioning of highly polarized cells, such as neurons. Transport of mRNAs, proteins, and other molecules to synaptic terminals maintains contact between neurons and ensures the transmission of nerve impulses. Cytoplasmic polyadenylation element binding (CPEB) proteins play an essential role in long-term memory (LTM) formation by regulating local translation in synapses. Here, we show that the 3'UTR of the Drosophila CPEB gene orb2 is required for targeting the orb2 mRNA and protein to synapses and that this localization is important for LTM formation. When the orb2 3'UTR is deleted, the orb2 mRNAs and proteins fail to localize in synaptic fractions, and pronounced LTM deficits arise. We found that the phenotypic effects of the orb2 3'UTR deletion were rescued by introducing the 3'UTR from the orb, another Drosophila CPEB gene. In contrast, the phenotypic effects of the 3'UTR deletion were not rescued by the 3'UTR from one of the Drosophila α-tubulin genes. Our results show that the orb2 mRNAs must be targeted to the correct locations in neurons and that proper targeting depends upon sequences in the 3'UTR.
Collapse
Affiliation(s)
- Eugene N. Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Roman V. Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Elena V. Tokmatcheva
- Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia; (E.V.T.); (E.V.S.-P.)
| | - Anna Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Rudolf A. Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Elena V. Savvateeva-Popova
- Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia; (E.V.T.); (E.V.S.-P.)
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
21
|
Andres-Alonso M, Grochowska KM, Gundelfinger ED, Karpova A, Kreutz MR. Protein transport from pre- and postsynapse to the nucleus: Mechanisms and functional implications. Mol Cell Neurosci 2023; 125:103854. [PMID: 37084990 DOI: 10.1016/j.mcn.2023.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The extreme length of neuronal processes poses a challenge for synapse-to-nucleus communication. In response to this challenge several different mechanisms have evolved in neurons to couple synaptic activity to the regulation of gene expression. One of these mechanisms concerns the long-distance transport of proteins from pre- and postsynaptic sites to the nucleus. In this review we summarize current evidence on mechanisms of transport and consequences of nuclear import of these proteins for gene transcription. In addition, we discuss how information from pre- and postsynaptic sites might be relayed to the nucleus by this type of long-distance signaling. When applicable, we highlight how long-distance protein transport from synapse-to-nucleus can provide insight into the pathophysiology of disease or reveal new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Maria Andres-Alonso
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Katarzyna M Grochowska
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eckart D Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.
| |
Collapse
|
22
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
23
|
Badal KK, Puthanveettil SV. Axonal transport deficits in neuropsychiatric disorders. Mol Cell Neurosci 2022; 123:103786. [PMID: 36252719 DOI: 10.1016/j.mcn.2022.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Axonal transport is a major cellular process that mediates bidirectional signaling between the soma and synapse, enabling both intracellular and intercellular communications. Cellular materials, such as proteins, RNAs, and organelles, are transported by molecular motor proteins along cytoskeletal highways in a highly regulated manner. Several studies have demonstrated that axonal transport is central to normal neuronal function, plasticity, and memory storage. Importantly, disruptions in axonal transport result in neuronal dysfunction and are associated with several neurodegenerative disorders. However, we do not know much about axonal transport deficits in neuropsychiatric disorders. Here, we briefly discuss our current understanding of the role of axonal transport in schizophrenia, bipolar and autism.
Collapse
Affiliation(s)
- Kerriann K Badal
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | | |
Collapse
|
24
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
26
|
Momohara Y, Neveu CL, Chen HM, Baxter DA, Byrne JH. Specific Plasticity Loci and Their Synergism Mediate Operant Conditioning. J Neurosci 2022; 42:1211-1223. [PMID: 34992131 PMCID: PMC8883845 DOI: 10.1523/jneurosci.1722-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Despite numerous studies examining the mechanisms of operant conditioning (OC), the diversity of OC plasticity loci and their synergism have not been examined sufficiently. In the well-characterized feeding neural circuit of Aplysia, in vivo and in vitro appetitive OC increases neuronal excitability and electrical coupling among several neurons leading to an increase in expression of ingestive behavior. Here, we used the in vitro analog of OC to investigate whether OC reduces the excitability of a neuron, B4, whose inhibitory connections decrease expression of ingestive behavior. We found OC decreased the excitability of B4. This change appeared intrinsic to B4 because it could be replicated with an analog of OC in isolated cultures of B4 neurons. In addition to changes in B4 excitability, OC decreased the strength of B4's inhibitory connection to a key decision-making neuron, B51. The OC-induced changes were specific without affecting the excitability of another neuron critical for feeding behavior, B8, or the B4-to-B8 inhibitory connection. A conductance-based circuit model indicated that reducing the B4-to-B51 synapse, or increasing B51 excitability, mediated the OC phenotype more effectively than did decreasing B4 excitability. We combined these modifications to examine whether they could act synergistically. Combinations including B51 synergistically enhanced feeding. Taken together, these results suggest modifications of diverse loci work synergistically to mediate OC and that some neurons are well suited to work synergistically with plasticity in other loci.SIGNIFICANCE STATEMENT The ways in which synergism of diverse plasticity loci mediate the change in motor patterns in operant conditioning (OC) are poorly understood. Here, we found that OC was in part mediated by decreasing the intrinsic excitability of a critical neuron of Aplysia feeding behavior, and specifically reducing the strength of one of its inhibitory connections that targets a key decision-making neuron. A conductance-based computational model indicated that the known plasticity loci showed a surprising level of synergism to mediate the behavioral changes associated with OC. These results highlight the importance of understanding the diversity, specificity and synergy among different types of plasticity that encode memory. Also, because OC in Aplysia is mediated by dopamine (DA), the present study provides insights into specific and synergistic mechanisms of DA-mediated reinforcement of behaviors.
Collapse
Affiliation(s)
- Yuto Momohara
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the, University of Texas Health Science Center, Houston, Texas 77030
| | - Curtis L Neveu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the, University of Texas Health Science Center, Houston, Texas 77030
| | - Hsin-Mei Chen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the, University of Texas Health Science Center, Houston, Texas 77030
- Center for Nursing Research, Education and Practice, Houston Methodist Academic Institute, Houston, Texas 77030
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the, University of Texas Health Science Center, Houston, Texas 77030
- Engineering Medicine (ENMED), Texas A&M University College of Medicine, Houston, Texas 77030
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the, University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
27
|
Yildiz CB, Zimmer-Bensch G. Role of DNMTs in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:363-394. [DOI: 10.1007/978-3-031-11454-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Kourosh-Arami M, Hosseini N, Komaki A. Brain is modulated by neuronal plasticity during postnatal development. J Physiol Sci 2021; 71:34. [PMID: 34789147 PMCID: PMC10716960 DOI: 10.1186/s12576-021-00819-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022]
Abstract
Neuroplasticity is referred to the ability of the nervous system to change its structure or functions as a result of former stimuli. It is a plausible mechanism underlying a dynamic brain through adaptation processes of neural structure and activity patterns. Nevertheless, it is still unclear how the plastic neural systems achieve and maintain their equilibrium. Additionally, the alterations of balanced brain dynamics under different plasticity rules have not been explored either. Therefore, the present article primarily aims to review recent research studies regarding homosynaptic and heterosynaptic neuroplasticity characterized by the manipulation of excitatory and inhibitory synaptic inputs. Moreover, it attempts to understand different mechanisms related to the main forms of synaptic plasticity at the excitatory and inhibitory synapses during the brain development processes. Hence, this study comprised surveying those articles published since 1988 and available through PubMed, Google Scholar and science direct databases on a keyword-based search paradigm. All in all, the study results presented extensive and corroborative pieces of evidence for the main types of plasticity, including the long-term potentiation (LTP) and long-term depression (LTD) of the excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs).
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
29
|
Sensitized by a sea slug: site-specific short-term and general long-term sensitization in Aplysia following Navanax attack. Neurobiol Learn Mem 2021; 187:107542. [PMID: 34748927 DOI: 10.1016/j.nlm.2021.107542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022]
Abstract
Neurobiological studies of the model species, Aplysia californica (Mollusca, Gastropoda, Euopisthobranchia), have helped advance our knowledge of the neural bases of different forms of learning, including sensitization, a non-associative increase in withdrawal behaviors in response to mild innocuous stimuli However, our understanding of the natural context for this learning has lagged behind the mechanistic studies. Because previous studies of sensitization used electric shock, or other artificial stimulus to produce sensitization, they left unaddressed the question of what stimuli in nature might cause sensitization, until our laboratory demonstrated short and long-term sensitization after predatory attack by spiny lobsters. In the present study, we tested for sensitization after attack by a very different predator, the predacious sea-slug, Navanax inermis (Mollusca, Gastropoda, Euopisthobranchia). Unlike the biting and prodding action of lobster attack, Navanax uses a rapid strike that sucks and squeezes its prey in an attempt to swallow it whole. We found that Navanax attack to the head of Aplysia caused strong immediate sensitization of head withdrawal, and weaker, delayed, sensitization of tail-mantle withdrawal. By contrast, attack to the tail of Aplysia resulted in no sensitization of either reflex. We also developed an artificial attack stimulus that allowed us to mimick a more consistently strong attack. This artificial attack produced stronger but qualitatively similar sensitization: Strong immediate sensitization of head withdrawal and weaker sensitization of tail-mantle withdrawal after head attack, immediate sensitization in tail-mantle withdrawal, but no sensitization of head withdrawal after tail attack. We conclude that Navanax attack causes robust site-specific sensitization (enhanced sensitization near the site of attack), and weaker general sensitization (sensitization of responses to stimuli distal to the attack site). We also tested for long-term sensitization (lasting longer than 24 hours) after temporally-spaced delivery of four natural Navanax attacks to the head of subject Aplysia. Surprisingly, these head attacks, any one of which strongly sensitizes head withdrawal in the short term, failed to sensitize head-withdrawal in the long term. Paradoxically, these repeated head attacks produced long-term sensitization in tail-mantle withdrawal. These experiments and observations confirm that Navanax attack causes short, and long-term sensitization of withdrawal reflexes of Aplysia. Together with the observation of sensitization after lobster attack, they strongly support the premise that sensitization in Aplysia is an adaptive response to sub-lethal predator attack. They also add site-specific sensitization to the list of naturally induced learning phenotypes, as well as paradoxical long-term sensitization of tail-mantle withdrawal (but not head withdrawal) after multiple head attacks.
Collapse
|
30
|
Chalkiadaki K, Statoulla E, Markou M, Bellou S, Bagli E, Fotsis T, Murphy C, Gkogkas CG. Translational control in neurovascular brain development. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211088. [PMID: 34659781 PMCID: PMC8511748 DOI: 10.1098/rsos.211088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The human brain carries out complex tasks and higher functions and is crucial for organismal survival, as it senses both intrinsic and extrinsic environments. Proper brain development relies on the orchestrated development of different precursor cells, which will give rise to the plethora of mature brain cell-types. Within this process, neuronal cells develop closely to and in coordination with vascular cells (endothelial cells (ECs), pericytes) in a bilateral communication process that relies on neuronal activity, attractive or repulsive guidance cues for both cell types and on tight-regulation of gene expression. Translational control is a master regulator of the gene-expression pathway and in particular for neuronal and ECs, it can be localized in developmentally relevant (axon growth cone, endothelial tip cell) and mature compartments (synapses, axons). Herein, we will review mechanisms of translational control relevant to brain development in neurons and ECs in health and disease.
Collapse
Affiliation(s)
- Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Elpida Statoulla
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Maria Markou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Sofia Bellou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Eleni Bagli
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Theodore Fotsis
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Carol Murphy
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Christos G. Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| |
Collapse
|
31
|
Rajgor D, Welle TM, Smith KR. The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons. Front Cell Dev Biol 2021; 9:711446. [PMID: 34336865 PMCID: PMC8317219 DOI: 10.3389/fcell.2021.711446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Neurons are highly complex polarized cells, displaying an extraordinary degree of spatial compartmentalization. At presynaptic and postsynaptic sites, far from the cell body, local protein synthesis is utilized to continually modify the synaptic proteome, enabling rapid changes in protein production to support synaptic function. Synapses undergo diverse forms of plasticity, resulting in long-term, persistent changes in synapse strength, which are paramount for learning, memory, and cognition. It is now well-established that local translation of numerous synaptic proteins is essential for many forms of synaptic plasticity, and much work has gone into deciphering the strategies that neurons use to regulate activity-dependent protein synthesis. Recent studies have pointed to a coordination of the local mRNA translation required for synaptic plasticity and the trafficking of membranous organelles in neurons. This includes the co-trafficking of RNAs to their site of action using endosome/lysosome “transports,” the regulation of activity-dependent translation at synapses, and the role of mitochondria in fueling synaptic translation. Here, we review our current understanding of these mechanisms that impact local translation during synaptic plasticity, providing an overview of these novel and nuanced regulatory processes involving membranous organelles in neurons.
Collapse
Affiliation(s)
- Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
32
|
Puthanveettil S. The emerging RNA-centric world of neurobiology. RNA Biol 2021; 18:933-935. [PMID: 34142924 DOI: 10.1080/15476286.2021.1930367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
33
|
Jin I, Kassabov S, Kandel ER, Hawkins RD. Possible novel features of synaptic regulation during long-term facilitation in Aplysia. ACTA ACUST UNITED AC 2021; 28:218-227. [PMID: 34131053 PMCID: PMC8212780 DOI: 10.1101/lm.053124.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/23/2021] [Indexed: 11/24/2022]
Abstract
Most studies of molecular mechanisms of synaptic plasticity have focused on the sequence of changes either at individual synapses or in the cell nucleus. However, studies of long-term facilitation at Aplysia sensory neuron–motor neuron synapses in isolated cell culture suggest two additional features of facilitation. First, that there is also regulation of the number of synaptic contacts between two neurons, which may occur at the level of cell pair-specific branch points in the neuronal arbor. Branch points contain many molecules that are involved in protein synthesis-dependent long-term facilitation including neurotrophins and the RNA binding protein CPEB. Second, the regulation involves homeostatic feedback and tends to keep the total number of contacts between two neurons at a fairly constant level both at rest and following facilitation. That raises the question of how facilitation and homeostasis can coexist. A possible answer is suggested by the findings that they both involve spontaneous transmission and postsynaptic Ca2+, which can have bidirectional effects similar to LTP and LTD in hippocampus. In addition, long-term facilitation can involve a change in the set point of homeostasis, which could be encoded by plasticity molecules such as CPEB and/or PKM. A computational model based on these ideas can qualitatively simulate the basic features of both facilitation and homeostasis of the number of contacts.
Collapse
Affiliation(s)
- Iksung Jin
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Stefan Kassabov
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,New York State Psychiatric Institute, New York, New York 10032, USA.,Howard Hughes Medical Institute, New York, New York 10032, USA
| | - Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,New York State Psychiatric Institute, New York, New York 10032, USA
| |
Collapse
|
34
|
Kharod SC, Hwang DW, Das S, Yoon YJ. Spatiotemporal Insights Into RNA-Organelle Interactions in Neurons. Front Cell Dev Biol 2021; 9:663367. [PMID: 34178987 PMCID: PMC8222803 DOI: 10.3389/fcell.2021.663367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Neurons exhibit spatial compartmentalization of gene expression where localization of messenger RNAs (mRNAs) to distal processes allows for site-specific distribution of proteins through local translation. Recently, there have been reports of coordination between mRNA transport with vesicular and organellar trafficking. In this review, we will highlight the latest literature on axonal and dendritic local protein synthesis with links to mRNA-organelle cotransport followed by emerging technologies necessary to study these phenomena. Recent high-resolution imaging studies have led to insights into the dynamics of RNA-organelle interactions, and we can now peer into these intricate interactions within subcellular compartments of neurons.
Collapse
Affiliation(s)
- Shivani C. Kharod
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Dong-Woo Hwang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Young J. Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
35
|
Reselammal DS, Pinhero F, Sharma R, Oliyantakath Hassan MS, Srinivasula SM, Vijayan V. Mapping the Fibril Core of the Prion Subdomain of the Mammalian CPEB3 that is Involved in Long Term Memory Retention. J Mol Biol 2021; 433:167084. [PMID: 34081983 DOI: 10.1016/j.jmb.2021.167084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
Long-term memory storage is modulated by the prion nature of CPEB3 forming the molecular basis for the maintenance of synaptic facilitation. Here we report that the first prion sub-domain PRD1 of mouse CPEB3 can autonomously form amyloid fibrils in vitro and punctate-like structures in vivo. A ninety-four amino acid sequence within the PRD1 domain, PRD1-core, displays high propensity towards aggregation and associated amyloid characteristics. PRD1-core is characterized using electron microscopy, X-ray diffraction, and solution-state NMR deuterium exchange experiments. Secondary structure elements deduced from solid-state NMR reveal a β-rich core comprising of forty amino acids at the N-terminus of PRD1-core. The synthesized twenty-three amino acid long peptide containing the longest rigid segment (E124-H145) of the PRD1-core rapidly self-aggregates and forms fibrils, indicating a limited aggregation-prone region that could potentially activate the aggregation of the full-length protein. This study provides the first step in identifying the structural trigger for the CPEB3 aggregation process.
Collapse
Affiliation(s)
- Dhanya S Reselammal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Faina Pinhero
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Rahul Sharma
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | | | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India.
| |
Collapse
|
36
|
RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat Neurosci 2021; 24:622-632. [PMID: 33510479 PMCID: PMC8860725 DOI: 10.1038/s41593-020-00785-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Neurons decentralize protein synthesis from the cell body to support the active metabolism of remote dendritic and axonal compartments. The neuronal RNA transport apparatus, composed of cis-acting RNA regulatory elements, neuronal transport granule proteins, and motor adaptor complexes, drives the long-distance RNA trafficking required for local protein synthesis. Over the past decade, advances in human genetics, subcellular biochemistry, and high-resolution imaging have implicated each member of the apparatus in several neurodegenerative diseases, establishing failed RNA transport and associated processes as a unifying pathomechanism. In this review, we deconstruct the RNA transport apparatus, exploring each constituent's role in RNA localization and illuminating their unique contributions to neurodegeneration.
Collapse
|
37
|
Kozlov E, Shidlovskii YV, Gilmutdinov R, Schedl P, Zhukova M. The role of CPEB family proteins in the nervous system function in the norm and pathology. Cell Biosci 2021; 11:64. [PMID: 33789753 PMCID: PMC8011179 DOI: 10.1186/s13578-021-00577-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Posttranscriptional gene regulation includes mRNA transport, localization, translation, and regulation of mRNA stability. CPEB (cytoplasmic polyadenylation element binding) family proteins bind to specific sites within the 3′-untranslated region and mediate poly- and deadenylation of transcripts, activating or repressing protein synthesis. As part of ribonucleoprotein complexes, the CPEB proteins participate in mRNA transport and localization to different sub-cellular compartments. The CPEB proteins are evolutionarily conserved and have similar functions in vertebrates and invertebrates. In the nervous system, the CPEB proteins are involved in cell division, neural development, learning, and memory. Here we consider the functional features of these proteins in the nervous system of phylogenetically distant organisms: Drosophila, a well-studied model, and mammals. Disruption of the CPEB proteins functioning is associated with various pathologies, such as autism spectrum disorder and brain cancer. At the same time, CPEB gene regulation can provide for a recovery of the brain function in patients with fragile X syndrome and Huntington's disease, making the CPEB genes promising targets for gene therapy.
Collapse
Affiliation(s)
- Eugene Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.,Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119992
| | - Rudolf Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544-1014, USA
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
38
|
Roselli C, Ramaswami M, Boto T, Cervantes-Sandoval I. The Making of Long-Lasting Memories: A Fruit Fly Perspective. Front Behav Neurosci 2021; 15:662129. [PMID: 33859556 PMCID: PMC8042140 DOI: 10.3389/fnbeh.2021.662129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding the nature of the molecular mechanisms underlying memory formation, consolidation, and forgetting are some of the fascinating questions in modern neuroscience. The encoding, stabilization and elimination of memories, rely on the structural reorganization of synapses. These changes will enable the facilitation or depression of neural activity in response to the acquisition of new information. In other words, these changes affect the weight of specific nodes within a neural network. We know that these plastic reorganizations require de novo protein synthesis in the context of Long-term memory (LTM). This process depends on neural activity triggered by the learned experience. The use of model organisms like Drosophila melanogaster has been proven essential for advancing our knowledge in the field of neuroscience. Flies offer an optimal combination of a more straightforward nervous system, composed of a limited number of cells, and while still displaying complex behaviors. Studies in Drosophila neuroscience, which expanded over several decades, have been critical for understanding the cellular and molecular mechanisms leading to the synaptic and behavioral plasticity occurring in the context of learning and memory. This is possible thanks to sophisticated technical approaches that enable precise control of gene expression in the fruit fly as well as neural manipulation, like chemogenetics, thermogenetics, or optogenetics. The search for the identity of genes expressed as a result of memory acquisition has been an active interest since the origins of behavioral genetics. From screenings of more or less specific candidates to broader studies based on transcriptome analysis, our understanding of the genetic control behind LTM has expanded exponentially in the past years. Here we review recent literature regarding how the formation of memories induces a rapid, extensive and, in many cases, transient wave of transcriptional activity. After a consolidation period, transcriptome changes seem more stable and likely represent the synthesis of new proteins. The complexity of the circuitry involved in memory formation and consolidation is such that there are localized changes in neural activity, both regarding temporal dynamics and the nature of neurons and subcellular locations affected, hence inducing specific temporal and localized changes in protein expression. Different types of neurons are recruited at different times into memory traces. In LTM, the synthesis of new proteins is required in specific subsets of cells. This de novo translation can take place in the somatic cytoplasm and/or locally in distinct zones of compartmentalized synaptic activity, depending on the nature of the proteins and the plasticity-inducing processes that occur. We will also review recent advances in understanding how localized changes are confined to the relevant synapse. These recent studies have led to exciting discoveries regarding proteins that were not previously involved in learning and memory processes. This invaluable information will lead to future functional studies on the roles that hundreds of new molecular actors play in modulating neural activity.
Collapse
Affiliation(s)
- Camilla Roselli
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.,National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Tamara Boto
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Isaac Cervantes-Sandoval
- Department of Biology, Georgetown University, Washington, DC, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
39
|
Luboeinski J, Tetzlaff C. Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks. Commun Biol 2021; 4:275. [PMID: 33658641 PMCID: PMC7977149 DOI: 10.1038/s42003-021-01778-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/21/2021] [Indexed: 11/09/2022] Open
Abstract
The synaptic-tagging-and-capture (STC) hypothesis formulates that at each synapse the concurrence of a tag with protein synthesis yields the maintenance of changes induced by synaptic plasticity. This hypothesis provides a biological principle underlying the synaptic consolidation of memories that is not verified for recurrent neural circuits. We developed a theoretical model integrating the mechanisms underlying the STC hypothesis with calcium-based synaptic plasticity in a recurrent spiking neural network. In the model, calcium-based synaptic plasticity yields the formation of strongly interconnected cell assemblies encoding memories, followed by consolidation through the STC mechanisms. Furthermore, we show for the first time that STC mechanisms modify the storage of memories such that after several hours memory recall is significantly improved. We identify two contributing processes: a merely time-dependent passive improvement, and an active improvement during recall. The described characteristics can provide a new principle for storing information in biological and artificial neural circuits.
Collapse
Affiliation(s)
- Jannik Luboeinski
- Department of Computational Neuroscience, III. Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| | - Christian Tetzlaff
- Department of Computational Neuroscience, III. Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| |
Collapse
|
40
|
Chan MMY, Yau SSY, Han YMY. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neurosci Biobehav Rev 2021; 125:392-416. [PMID: 33662444 DOI: 10.1016/j.neubiorev.2021.02.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The neurobiological mechanisms underlying prefrontal transcranial direct current stimulation (tDCS) remain elusive. Randomized, sham-controlled trials in humans and rodents applying in vivo prefrontal tDCS were included to explore whether prefrontal tDCS modulates resting-state and event-related functional connectivity, neural oscillation and synaptic plasticity. Fifty studies were included in the systematic review and 32 in the meta-analyses. Neuroimaging meta-analysis indicated anodal prefrontal tDCS significantly enhanced bilateral median cingulate activity [familywise error (FWE)-corrected p < .005]; meta-regression revealed a positive relationship between changes in median cingulate activity after tDCS and current density (FWE-corrected p < .005) as well as electric current strength (FWE-corrected p < .05). Meta-analyses of electroencephalography and magnetoencephalography data revealed nonsignificant changes (ps > .1) in both resting-state and event-related oscillatory power across all frequency bands. Applying anodal tDCS over the rodent hippocampus/prefrontal cortex enhanced long-term potentiation and brain-derived neurotrophic factor expression in the stimulated brain regions (ps <.005). Evidence supporting prefrontal tDCS administration is preliminary; more methodologically consistent studies evaluating its effects on cognitive function that include brain activity measurements are needed.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
41
|
Goult BT. The Mechanical Basis of Memory - the MeshCODE Theory. Front Mol Neurosci 2021; 14:592951. [PMID: 33716664 PMCID: PMC7947202 DOI: 10.3389/fnmol.2021.592951] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
One of the major unsolved mysteries of biological science concerns the question of where and in what form information is stored in the brain. I propose that memory is stored in the brain in a mechanically encoded binary format written into the conformations of proteins found in the cell-extracellular matrix (ECM) adhesions that organise each and every synapse. The MeshCODE framework outlined here represents a unifying theory of data storage in animals, providing read-write storage of both dynamic and persistent information in a binary format. Mechanosensitive proteins that contain force-dependent switches can store information persistently, which can be written or updated using small changes in mechanical force. These mechanosensitive proteins, such as talin, scaffold each synapse, creating a meshwork of switches that together form a code, the so-called MeshCODE. Large signalling complexes assemble on these scaffolds as a function of the switch patterns and these complexes would both stabilise the patterns and coordinate synaptic regulators to dynamically tune synaptic activity. Synaptic transmission and action potential spike trains would operate the cytoskeletal machinery to write and update the synaptic MeshCODEs, thereby propagating this coding throughout the organism. Based on established biophysical principles, such a mechanical basis for memory would provide a physical location for data storage in the brain, with the binary patterns, encoded in the information-storing mechanosensitive molecules in the synaptic scaffolds, and the complexes that form on them, representing the physical location of engrams. Furthermore, the conversion and storage of sensory and temporal inputs into a binary format would constitute an addressable read-write memory system, supporting the view of the mind as an organic supercomputer.
Collapse
Affiliation(s)
- Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
42
|
Induction of Short-Term Sensitization by an Aversive Chemical Stimulus in Zebrafish Larvae. eNeuro 2020; 7:ENEURO.0336-19.2020. [PMID: 33004417 PMCID: PMC7729299 DOI: 10.1523/eneuro.0336-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 (Chen et al., 2013); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.
Collapse
|
43
|
Wu Y, Wang M, Wang Y, Yang H, Qi H, Seicol BJ, Xie R, Guo L. A neuronal wiring platform through microridges for rationally engineered neural circuits. APL Bioeng 2020; 4:046106. [PMID: 33344876 PMCID: PMC7725535 DOI: 10.1063/5.0025921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
Precisely engineered neuronal circuits are promising for both fundamental research and clinical applications. However, randomly plating thousands of cells during neural network fabrication remains a major technical obstacle, which often results in a loss of tracking in neurons' identities. In this work, we demonstrated an accurate and unique neural wiring technique, mimicking neurons' natural affinity to microfibers. SU-8 microridges, imitating lie-down microfibers, were photolithographically patterned and then selectively coated with poly-l-lysine. We accurately plated Aplysia californica neurons onto designated locations. Plated neurons were immobilized by circular microfences. Furthermore, neurites regrew effectively along the microridges in vitro and reached adjacent neurons without undesirable crosstalks. Functional chemical synapses also formed between accurately wired neurons, enabling two-way transmission of electrical signals. Finally, we fabricated microridges on a microelectrode array. Neuronal spikes, stimulation-evoked synaptic activity, and putative synaptic adaption between connected neurons were observed. This biomimetic platform is simple to fabricate and effective with neurite pathfinding. Therefore, it can serve as a powerful tool for fabricating neuronal circuits with rational design, organized cellular communications, and fast prototyping.
Collapse
Affiliation(s)
- Yu Wu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - Yong Wang
- Department of Otolaryngology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Huiran Yang
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hao Qi
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J. Seicol
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Liang Guo
- Author to whom correspondence should be addressed:
| |
Collapse
|
44
|
Abstract
It is increasingly recognized that local protein synthesis (LPS) contributes to fundamental aspects of axon biology, in both developing and mature neurons. Mutations in RNA-binding proteins (RBPs), as central players in LPS, and other proteins affecting RNA localization and translation are associated with a range of neurological disorders, suggesting disruption of LPS may be of pathological significance. In this review, we substantiate this hypothesis by examining the link between LPS and key axonal processes, and the implicated pathophysiological consequences of dysregulated LPS. First, we describe how the length and autonomy of axons result in an exceptional reliance on LPS. We next discuss the roles of LPS in maintaining axonal structural and functional polarity and axonal trafficking. We then consider how LPS facilitates the establishment of neuronal connectivity through regulation of axonal branching and pruning, how it mediates axonal survival into adulthood and its involvement in neuronal stress responses.
Collapse
Affiliation(s)
- Julie Qiaojin Lin
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Turner-Bridger B, Caterino C, Cioni JM. Molecular mechanisms behind mRNA localization in axons. Open Biol 2020; 10:200177. [PMID: 32961072 PMCID: PMC7536069 DOI: 10.1098/rsob.200177] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA) localization allows spatiotemporal regulation of the proteome at the subcellular level. This is observed in the axons of neurons, where mRNA localization is involved in regulating neuronal development and function by orchestrating rapid adaptive responses to extracellular cues and the maintenance of axonal homeostasis through local translation. Here, we provide an overview of the key findings that have broadened our knowledge regarding how specific mRNAs are trafficked and localize to axons. In particular, we review transcriptomic studies investigating mRNA content in axons and the molecular principles underpinning how these mRNAs arrived there, including cis-acting mRNA sequences and trans-acting proteins playing a role. Further, we discuss evidence that links defective axonal mRNA localization and pathological outcomes.
Collapse
Affiliation(s)
- Benita Turner-Bridger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Cinzia Caterino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Jean-Michel Cioni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
46
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020. [DOI: 10.3389/fnsyn.2020.00036
expr 823669561 + 872784217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
47
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
48
|
Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience 2020; 445:12-30. [PMID: 32730949 DOI: 10.1016/j.neuroscience.2020.07.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental disorders (NDDs) include a large number of conditions such as Fragile X syndrome, autism spectrum disorders and Down syndrome, among others. They are characterized by limitations in adaptive and social behaviors, as well as intellectual disability (ID). Whole-exome and whole-genome sequencing studies have highlighted a large number of NDD/ID risk genes. To dissect the genetic causes and underlying biological pathways, in vivo experimental validation of the effects of these mutations is needed. The fruit fly, Drosophila melanogaster, is an ideal model to study NDDs, with highly tractable genetics, combined with simple behavioral and circuit assays, permitting rapid medium-throughput screening of NDD/ID risk genes. Here, we review studies where the use of well-established assays to study mechanisms of learning and memory in Drosophila has permitted insights into molecular mechanisms underlying IDs. We discuss how technologies in the fly model, combined with a high degree of molecular and physiological conservation between flies and mammals, highlight the Drosophila system as an ideal model to study neurodevelopmental disorders, from genetics to behavior.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
49
|
Okuda K, Højgaard K, Privitera L, Bayraktar G, Takeuchi T. Initial memory consolidation and the synaptic tagging and capture hypothesis. Eur J Neurosci 2020; 54:6826-6849. [PMID: 32649022 DOI: 10.1111/ejn.14902] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/05/2023]
Abstract
Everyday memories are retained automatically in the hippocampus and then decay very rapidly. Memory retention can be boosted when novel experiences occur shortly before or shortly after the time of memory encoding via a memory stabilization process called "initial memory consolidation." The dopamine release and new protein synthesis in the hippocampus during a novel experience are crucial for this novelty-induced memory boost. The mechanisms underlying initial memory consolidation are not well-understood, but the synaptic tagging and capture (STC) hypothesis provides a conceptual basis of synaptic plasticity events occurring during initial memory consolidation. In this review, we provide an overview of the STC hypothesis and its relevance to dopaminergic signalling, in order to explore the cellular and molecular mechanisms underlying initial memory consolidation in the hippocampus. We summarize electrophysiological STC processes based on the evidence from two-pathway experiments and a behavioural tagging hypothesis, which translates the STC hypothesis into a related behavioural hypothesis. We also discuss the function of two types of molecules, "synaptic tags" and "plasticity-related proteins," which have a crucial role in the STC process and initial memory consolidation. We describe candidate molecules for the roles of synaptic tag and plasticity-related proteins and interpret their candidacy based on evidence from two-pathway experiments ex vivo, behavioural tagging experiments in vivo and recent cutting-edge optical imaging experiments. Lastly, we discuss the direction of future studies to advance our understanding of molecular mechanisms underlying the STC process, which are critical for initial memory consolidation in the hippocampus.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Kristoffer Højgaard
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Gülberk Bayraktar
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Institut für Klinische Neurobiologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Tomonori Takeuchi
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
50
|
Sasaki Y. Local Translation in Growth Cones and Presynapses, Two Axonal Compartments for Local Neuronal Functions. Biomolecules 2020; 10:biom10050668. [PMID: 32344905 PMCID: PMC7277458 DOI: 10.3390/biom10050668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 01/02/2023] Open
Abstract
During neural development, growth cones, very motile compartments of tips of axons, lead axonal extension to the correct targets. Subsequently, presynapses, another axonal compartment with vigorous trafficking of synaptic vesicles, emerge to form functional synapses with postsynapses. In response to extracellular stimuli, the immediate supply of proteins by local translation within these two axonal compartments far from cell bodies confers high motility of growth cones and active vesicle trafficking in presynapses. Although local translation in growth cones and presynapses occurs at a very low level compared with cell bodies and even dendrites, recent progress in omics and visualization techniques with subcellular fractionation of these compartments has revealed the actual situation of local translation within these two axonal compartments. Here, the increasing evidence for local protein synthesis in growth cones and presynapses for axonal and synaptic functions has been reviewed. Furthermore, the mechanisms regulating local translation in these two compartments and pathophysiological conditions caused by dysregulated local translation are highlighted.
Collapse
Affiliation(s)
- Yukio Sasaki
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|