1
|
Forgione I, Sirangelo TM, Godino G, Vendramin E, Salimonti A, Sunseri F, Carbone F. Circadian- and Light-Driven Rhythmicity of Interconnected Gene Networks in Olive Tree. Int J Mol Sci 2025; 26:361. [PMID: 39796216 DOI: 10.3390/ijms26010361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
A circadian clock (CC) has evolved in plants that synchronizes their growth and development with daily and seasonal cycles. A properly functioning circadian clock contributes to increasing plant growth, reproduction, and competitiveness. In plants, continuous light treatment has been a successful approach for obtaining novel knowledge about the circadian clock. The olive tree (Olea europaea L.) is one of the most important crops in the Mediterranean area, and, so far, limited information is available on its CC gene network. Here, we studied the behavior of circadian rhythm genes under LD (light/darkness) and LL (light/light) conditions, the relationships in this network, and the ability of the treatments to modulate gene expression in the photoprotective pigment and lipid biosynthesis pathways. One month of LL conditions increased olive growth performance, but LL exposure also caused reductions in vegetative growth and chlorophyll accumulation. A panel was designed for a study of the transcription expression levels of the genes involved in light perception, the CC, and secondary metabolite and fatty acid biosynthesis. Our results revealed that the levels of 78% of the transcripts exhibited intraday differences under LD conditions, and most of them retained this rhythmicity after exposure to one and two months of LL conditions. Furthermore, co-regulation within a complex network among genes of photoreceptors, anthocyanidins, and fatty acids biosynthesis was orchestrated by the transcription factor HY5. This research enriches our knowledge on olive trees grown under prolonged irradiation, which may be attractive for the scientific community involved in breeding programs for the improvement of this species.
Collapse
Affiliation(s)
- Ivano Forgione
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| | - Tiziana Maria Sirangelo
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| | - Gianluca Godino
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| | - Elisa Vendramin
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via di Fioranello 52, 00134 Roma, Italy
| | - Amelia Salimonti
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| | - Francesco Sunseri
- Department Agraria, University Mediterranea of Reggio Calabria, Località Feo di Vito, 89124 Reggio Calabria, Italy
| | - Fabrizio Carbone
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| |
Collapse
|
2
|
Bian Y, Song Z, Liu C, Song Z, Dong J, Xu D. The BBX7/8-CCA1/LHY transcription factor cascade promotes shade avoidance by activating PIF4. THE NEW PHYTOLOGIST 2025; 245:637-652. [PMID: 39517111 DOI: 10.1111/nph.20256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Sun-loving plants undergo shade avoidance syndrome (SAS) to compete with their neighbors for sunlight in shade conditions. Phytochrome B (phyB) plays a dominant role in sensing the shading signals (low red to far-red ratios) and triggering SAS. Shade drives phyB conversion to inactive form, consequently leading to the accumulation of PHYTOCHROMEINTERACTING FACTOR 4 (PIF4) that promotes plant growth. Here, we show B-box PROTEIN 7 (BBX7)/BBX8 and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) positively regulate the low R : FR-induced PIF4 expression and promote the low R : FR-triggered hypocotyl growth in Arabidopsis. Shade interferes the interactions of phyB with BBX7 or BBX8 and triggers the accumulation of BBX7 and BBX8 independent of phyB. BBX7 and BBX8 associate with CCA1 and LHY to activate their transcription, the gene produces of which subsequently upregulate the expression of PIF4 in shade. Genetically, BBX7 and BBX8 act upstream of CCA1, LHY, and PIF4 with respect to hypocotyl growth in shade conditions. Our study reveals the BBX7/8-CCA1/LHY transcription factor cascade upregulates PIF4 expression and increases its abundance to promote plant growth and development in response to shade.
Collapse
Affiliation(s)
- Yeting Bian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuolong Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changseng Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoqing Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Chiso K, Yamashino T, Suzuki R, Gans T, Trogu S, Hughes J, Aoki S. Light responses during early day phases of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR (PRR) homologous genes in the moss Physcomitrium patens. Photochem Photobiol 2024. [PMID: 39727145 DOI: 10.1111/php.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/07/2024] [Accepted: 11/06/2024] [Indexed: 12/28/2024]
Abstract
Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light. Here we studied light responses of CCA1a/CCA1b and PRR2, homologous genes to CCA1/LHY and PRR9, respectively, in the moss Physcomitrium patens. We found that light of different wavelengths induced PRR2 while they repressed CCA1a/CCA1b. A disruption strain lacking all phytochrome genes lost PRR2 induction, but still maintained CCA1a/CCA1b repression. The remaining light repression of CCA1a/CCA1b was impaired by the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Probably therefore, a phytochrome signaling induces PRR2, whereas a photosynthesis-mediated signaling represses CCA1a/CCA1b. Conservation and divergence in the clock gene responses between P. patens and A. thaliana are discussed.
Collapse
Affiliation(s)
- Katsuhiro Chiso
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | | | - Ryo Suzuki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Tanja Gans
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Silvia Trogu
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Yu B, Hu Y, Hou X. More than flowering: CONSTANS plays multifaceted roles in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39466065 DOI: 10.1111/jipb.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Plants have evolved a remarkable ability to sense and respond to changes in photoperiod, allowing adjustments to their growth and development based on seasonal and environmental cues. The floral transition is a pivotal stage in plant growth and development, signifying a shift from vegetative to reproductive growth. CONSTANS (CO), a central photoperiodic response factor conserved in various plants, mediates day-length signals to control the floral transition, although its mechanisms of action vary among plants with different day-length requirements. In addition, recent studies have uncovered roles for CO in organ development and stress responses. These pleiotropic roles in model plants and crops make CO a potentially fruitful target for molecular breeding aimed at modifying crop agronomic traits. This review systematically traces research on CO, from its discovery and functional studies to the exploration of its regulatory mechanisms and newly discovered functions, providing important insight into the roles of CO and laying a foundation for future research.
Collapse
Affiliation(s)
- Bin Yu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100190, China
| | - Yilong Hu
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100190, China
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xingliang Hou
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100190, China
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
5
|
Zhang S, Ma J, Wang W, Zhang C, Sun F, Xi Y. The overexpression of the switchgrass (Panicum virgatum L.) genes PvTOC1-N or PvLHY-K affects circadian rhythm and hormone metabolism in transgenic Arabidopsis seedlings. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:126. [PMID: 39363306 PMCID: PMC11451149 DOI: 10.1186/s13068-024-02574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Switchgrass (Panicum virgatum L.) is a perennial C4 warm-season grass known for its high-biomass yield and wide environmental adaptability, making it an ideal bioenergy crop. Despite its potential, switchgrass seedlings grow slowly, often losing out to weeds in field conditions and producing limited biomass in the first year of planting. Furthermore, during the reproductive growth stage, the above-ground biomass rapidly increases in lignin content, creating a significant saccharification barrier. Previous studies have identified rhythm-related genes TOC1 and LHY as crucial to the slow seedling development in switchgrass, yet the precise regulatory functions of these genes remain largely unexplored. In this study, the genes TOC1 and LHY were characterized within the tetraploid genome of switchgrass. Gene expression analysis revealed that PvTOC1 and PvLHY exhibit circadian patterns under normal growth conditions, with opposing expression levels over time. PvTOC1 genes were predominantly expressed in florets, vascular bundles, and seeds, while PvLHY genes showed higher expression in stems, leaf sheaths, and nodes. Overexpression of PvTOC1 from the N chromosome group (PvTOC1-N) or PvLHY from the K chromosome group (PvLHY-K) in Arabidopsis thaliana led to alterations in circadian rhythm and hormone metabolism, resulting in shorter roots, delayed flowering, and decreased resistance to oxidative stress. These transgenic lines exhibited reduced sensitivity to hormones and hormone inhibitors, and displayed altered gene expression in the biosynthesis and signal transduction pathways of abscisic acid (ABA), gibberellin (GA), 3-indoleacetic acid (IAA), and strigolactone (SL). These findings highlight roles of PvTOC1-N and PvLHY-K in plant development and offer a theoretical foundation for genetic improvements in switchgrass and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiayang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Zhang J, Jin H, Chen Y, Jiang Y, Gu L, Lin G, Lin C, Wang Q. The eukaryotic translation initiation factor eIF4E regulates flowering and circadian rhythm in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:123-138. [PMID: 39145515 DOI: 10.1111/tpj.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Translation initiation is a critical, rate-limiting step in protein synthesis. The eukaryotic translation initiation factor 4E (eIF4E) plays an essential role in this process. However, the mechanisms by which eIF4E-dependent translation initiation regulates plant growth and development remain not fully understood. In this study, we found that Arabidopsis eIF4E proteins are distributed in both the nucleus and cytoplasm, with only the cytoplasmic eIF4E being involved in the control of photoperiodic flowering. Genome-wide translation profiling using Ribo-tag sequencing reveals that eIF4E may regulate plant flowering by maintaining the homeostatic translation of components in the photoperiodic flowering pathway. eIF4E not only regulates the translation of flowering genes such as FLOWERING LOCUS T (FT) and FLOWERING LOCUS D (FLD) but also influences the translation of circadian genes like CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9). Consistently, our results show that the eIF4E modulates the rhythmic oscillation of the circadian clock. Together, our study provides mechanistic insights into how the protein translation regulates multiple developmental processes in Arabidopsis, including the circadian clock and photoperiodic flowering.
Collapse
Affiliation(s)
- Jing Zhang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huanhuan Jin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yadi Chen
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yonghong Jiang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Cai K, Zhu S, Jiang Z, Xu K, Sun X, Li X. Biological macromolecules mediated by environmental signals affect flowering regulation in plants: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108931. [PMID: 39003975 DOI: 10.1016/j.plaphy.2024.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Flowering time is a crucial developmental stage in the life cycle of plants, as it determines the reproductive success and overall fitness of the organism. The precise regulation of flowering time is influenced by various internal and external factors, including genetic, environmental, and hormonal cues. This review provided a comprehensive overview of the molecular mechanisms and regulatory pathways of biological macromolecules (e.g. proteins and phytohormone) and environmental factors (e.g. light and temperature) involved in the control of flowering time in plants. We discussed the key proteins and signaling pathways that govern the transition from vegetative growth to reproductive development, highlighting the intricate interplay between genetic networks, environmental cues, and phytohormone signaling. Additionally, we explored the impact of flowering time regulation on plant adaptation, crop productivity, and agricultural practices. Moreover, we summarized the similarities and differences of flowering mechanisms between annual and perennial plants. Understanding the mechanisms underlying flowering time control is not only essential for fundamental plant biology research but also holds great potential for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Kefan Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
8
|
Nishio H, Cano-Ramirez DL, Muranaka T, de Barros Dantas LL, Honjo MN, Sugisaka J, Kudoh H, Dodd AN. Circadian and environmental signal integration in a natural population of Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2402697121. [PMID: 39172785 PMCID: PMC11363283 DOI: 10.1073/pnas.2402697121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Plants sense and respond to environmental cues during 24 h fluctuations in their environment. This requires the integration of internal cues such as circadian timing with environmental cues such as light and temperature to elicit cellular responses through signal transduction. However, the integration and transduction of circadian and environmental signals by plants growing in natural environments remains poorly understood. To gain insights into 24 h dynamics of environmental signaling in nature, we performed a field study of signal transduction from the nucleus to chloroplasts in a natural population of Arabidopsis halleri. Using several modeling approaches to interpret the data, we identified that the circadian clock and temperature are key regulators of this pathway under natural conditions. We identified potential time-delay steps between pathway components, and diel fluctuations in the response of the pathway to temperature cues that are reminiscent of the process of circadian gating. We found that our modeling framework can be extended to other signaling pathways that undergo diel oscillations and respond to environmental cues. This approach of combining studies of gene expression in the field with modeling allowed us to identify the dynamic integration and transduction of environmental cues, in plant cells, under naturally fluctuating diel cycles.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Data Science and AI Innovation Research Promotion Center, Shiga University, Hikone, Shiga522-8522, Japan
| | - Dora L. Cano-Ramirez
- The Sainsbury Laboratory, University of Cambridge, CambridgeCB2 1LR, United Kingdom
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi464-0814, Japan
| | | | - Mie N. Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Jiro Sugisaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7RU, United Kingdom
| |
Collapse
|
9
|
He Y, Xiao D, Jiang C, Li Y, Hou X. CIRCADIAN CLOCK-ASSOCIATED1 Delays Flowering by Directly Inhibiting the Transcription of BcSOC1 in Pak-choi. PLANTS (BASEL, SWITZERLAND) 2024; 13:2190. [PMID: 39204626 PMCID: PMC11359169 DOI: 10.3390/plants13162190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Flowering is critical to the success of plant propagation. The MYB family transcription factor CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) is an essential component of the core loop of the circadian clock and plays a crucial role in regulating plant flowering time. In this study, we found that photoperiod affects the expression pattern and expression level of BcCCA1, which is delayed flowering time under short-day conditions in Pak-choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. We detected overexpression and silencing of BcCCA1 in Pak-choi, resulting in delayed and promoted flowering time, respectively. Furthermore, we also discovered that FLOWERING LOCUS C (BcFLC) and SUPPRESSOR OF CONSTANS1 (BcSOC1) were expressed significantly differently in BcCCA1 overexpression and silencing plants compared with control plants. Therefore, we further investigated the interaction relationship between BcCCA1, BcFLC, and BcSOC1, and the results showed that BcCCA1 and BcFLC as a complex interacted with each other. Moreover, both BcCCA1 and BcFLC can directly bind to the promoter of BcSOC1 and repress its transcription, and BcCCA1 can form a complex with BcFLC to enhance the transcriptional inhibition of BcSOC1 by BcFLC. This study reveals a new mechanism by which the circadian clock regulates flowering time.
Collapse
Affiliation(s)
- Ying He
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Dong Xiao
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
| | - Cheng Jiang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Yiran Li
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| |
Collapse
|
10
|
de Los Reyes P, Serrano-Bueno G, Romero-Campero FJ, Gao H, Romero JM, Valverde F. CONSTANS alters the circadian clock in Arabidopsis thaliana. MOLECULAR PLANT 2024; 17:1204-1220. [PMID: 38894538 DOI: 10.1016/j.molp.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.
Collapse
Affiliation(s)
- Pedro de Los Reyes
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Francisco J Romero-Campero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - He Gao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
11
|
Song X, Zhao W, Cui S, Su X, Yu J, Guo L, Song K. Deciphering the dual role of persistent luminescence materials: Toxicity and photoreception effects on rice development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174542. [PMID: 38977096 DOI: 10.1016/j.scitotenv.2024.174542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Studies on the toxicity of micro- and nanomaterials in plants have primarily focused on their intrinsic effects. However, there is often oversight when considering the potential perceptual responses that plants may exhibit in response to these materials. In this investigation, we assessed the impact of three commercially available persistent luminescence materials (PLMs) that emit red, green, or blue light under various environmental conditions. We subjected rice (Oryza sativa L.), a short-day plant, to nine distinct treatments, including exposure to particles in isolation, their nocturnal afterglow, or a combination of both. We thoroughly examined rice seedling morphology, photosynthesis patterns, metabolite dynamics, and flowering gene expression to determine the biological responses of plants to these particles. These findings demonstrated that PLMs stably interact with rice, and their emitted afterglow precisely matches the perceptual bandwidth of rice photoreceptors. Notably, the nocturnal afterglow from the red and blue PLMs enhanced the vegetative growth of rice seedlings while inhibiting their reproductive development. The blue PLMs exhibited the most pronounced positive effects, while the red PLMs exhibited inhibitory effects. When exposed to a combination of red and blue PLMs, rice displays enhanced growth and development. The observed alterations in the expression patterns of genes responsible for flowering supported these effects. We concluded that PLMs influence rice growth and development due to their inherent properties and intermittent illumination during dark periods. Both factors collectively shape rice growth and development.
Collapse
Affiliation(s)
- Xiangwei Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Wei Zhao
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Shuyuan Cui
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Xiaomeng Su
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Jingbo Yu
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China; Research Institute for Scientific and Technological Innovation, Changchun Normal University.
| |
Collapse
|
12
|
Pérez-Llorca M, Müller M. Unlocking Nature's Rhythms: Insights into Secondary Metabolite Modulation by the Circadian Clock. Int J Mol Sci 2024; 25:7308. [PMID: 39000414 PMCID: PMC11241833 DOI: 10.3390/ijms25137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maren Müller
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Kulesza E, Thomas P, Prewitt SF, Shalit-Kaneh A, Wafula E, Knollenberg B, Winters N, Esteban E, Pasha A, Provart N, Praul C, Landherr L, dePamphilis C, Maximova SN, Guiltinan MJ. The cacao gene atlas: a transcriptome developmental atlas reveals highly tissue-specific and dynamically-regulated gene networks in Theobroma cacao L. BMC PLANT BIOLOGY 2024; 24:601. [PMID: 38926852 PMCID: PMC11201900 DOI: 10.1186/s12870-024-05171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Theobroma cacao, the cocoa tree, is a tropical crop grown for its highly valuable cocoa solids and fat which are the basis of a 200-billion-dollar annual chocolate industry. However, the long generation time and difficulties associated with breeding a tropical tree crop have limited the progress of breeders to develop high-yielding disease-resistant varieties. Development of marker-assisted breeding methods for cacao requires discovery of genomic regions and specific alleles of genes encoding important traits of interest. To accelerate gene discovery, we developed a gene atlas composed of a large dataset of replicated transcriptomes with the long-term goal of progressing breeding towards developing high-yielding elite varieties of cacao. RESULTS We describe the creation of the Cacao Transcriptome Atlas, its global characterization and define sets of genes co-regulated in highly organ- and temporally-specific manners. RNAs were extracted and transcriptomes sequenced from 123 different tissues and stages of development representing major organs and developmental stages of the cacao lifecycle. In addition, several experimental treatments and time courses were performed to measure gene expression in tissues responding to biotic and abiotic stressors. Samples were collected in replicates (3-5) to enable statistical analysis of gene expression levels for a total of 390 transcriptomes. To promote wide use of these data, all raw sequencing data, expression read mapping matrices, scripts, and other information used to create the resource are freely available online. We verified our atlas by analyzing the expression of genes with known functions and expression patterns in Arabidopsis (ACT7, LEA19, AGL16, TIP13, LHY, MYB2) and found their expression profiles to be generally similar between both species. We also successfully identified tissue-specific genes at two thresholds in many tissue types represented and a set of genes highly conserved across all tissues. CONCLUSION The Cacao Gene Atlas consists of a gene expression browser with graphical user interface and open access to raw sequencing data files as well as the unnormalized and CPM normalized read count data mapped to several cacao genomes. The gene atlas is a publicly available resource to allow rapid mining of cacao gene expression profiles. We hope this resource will be used to help accelerate the discovery of important genes for key cacao traits such as disease resistance and contribute to the breeding of elite varieties to help farmers increase yields.
Collapse
Affiliation(s)
- Evelyn Kulesza
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick Thomas
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah F Prewitt
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- USDA Animal and Plant Health Inspection Service (APHIS), Riverdale, MD, 20737, USA
| | - Akiva Shalit-Kaneh
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Plant Sciences, Volcani-ARO (Agricultural and Rural Organization), Gilat, Israel
| | - Eric Wafula
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Benjamin Knollenberg
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Mars Inc, Davis, CA, 95616, USA
| | - Noah Winters
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Eddi Esteban
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Nicholas Provart
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Craig Praul
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lena Landherr
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Claude dePamphilis
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Siela N Maximova
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark J Guiltinan
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Edet OU, Ubi BE, Ishii T. Genomic analysis of a spontaneous unifoliate mutant reveals gene candidates associated with compound leaf development in Vigna unguiculata [L] Walp. Sci Rep 2024; 14:10654. [PMID: 38724579 PMCID: PMC11082238 DOI: 10.1038/s41598-024-61062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Molecular mechanisms which underpin compound leaf development in some legumes have been reported, but there is no previous study on the molecular genetic control of compound leaf formation in Vigna unguiculata (cowpea), an important dryland legume of African origin. In most studied species with compound leaves, class 1 KNOTTED-LIKE HOMEOBOX genes expressed in developing leaf primordia sustain morphogenetic activity, allowing leaf dissection and the development of leaflets. Other genes, such as, SINGLE LEAFLET1 in Medicago truncatula and Trifoliate in Solanum lycopersicum, are also implicated in regulating compound leaf patterning. To set the pace for an in-depth understanding of the genetics of compound leaf development in cowpea, we applied RNA-seq and whole genome shotgun sequence datasets of a spontaneous cowpea unifoliate mutant and its trifoliate wild-type cultivar to conduct comparative reference-based gene expression, de novo genome-wide isoform switch, and genome variant analyses between the two genotypes. Our results suggest that genomic variants upstream of LATE ELONGATED HYPOCOTYL and down-stream of REVEILLE4, BRASSINOSTERIOD INSENSITIVE1 and LATERAL ORGAN BOUNDARIES result in down-regulation of key components of cowpea circadian rhythm central oscillator and brassinosteroid signaling, resulting in unifoliate leaves and brassinosteroid-deficient-like phenotypes. We have stated hypotheses that will guide follow-up studies expected to provide more insights.
Collapse
Affiliation(s)
- Offiong Ukpong Edet
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
- Department of Crop Science, University of Calabar, PMB 1115, Calabar, Cross River State, Nigeria.
| | - Benjamin Ewa Ubi
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
16
|
Pei S, Tao Q, Li W, Qi G, Wang B, Wang Y, Dai S, Shen Q, Wang X, Wu X, Xu S, Theprungsirikul L, Zhang J, Liang L, Liu Y, Chen K, Shen Y, Crawford BM, Cheng M, Zhang Q, Wang Y, Liu H, Yang B, Krichilsky B, Pei J, Song K, Johnson DM, Jiang Z, Wu F, Swift GB, Yang H, Liu Z, Zou X, Vo-Dinh T, Liu F, Pei ZM, Yuan F. Osmosensor-mediated control of Ca 2+ spiking in pollen germination. Nature 2024; 629:1118-1125. [PMID: 38778102 PMCID: PMC11136663 DOI: 10.1038/s41586-024-07445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.
Collapse
Affiliation(s)
- Songyu Pei
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
- Department of Biology, Duke University, Durham, NC, USA
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA
- College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qi Tao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wenke Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guoning Qi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Borong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Wang
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Shiwen Dai
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Qiujing Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xi Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaomei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shijian Xu
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Liang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuantao Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Kena Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yang Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Mengjia Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qi Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yiqi Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hongli Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Benguang Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Jessica Pei
- Department of Biology, Duke University, Durham, NC, USA
- Fuqua School of Business, Duke University, Durham, NC, USA
| | - Karen Song
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Feihua Wu
- Department of Biology, Duke University, Durham, NC, USA
| | - Gary B Swift
- Department of Physics, Duke University, Durham, NC, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Zhonghua Liu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Xuexiao Zou
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA
| | - Feng Liu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China.
- Department of Biology, Duke University, Durham, NC, USA.
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC, USA.
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA.
| | - Fang Yuan
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China.
- Department of Biology, Duke University, Durham, NC, USA.
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
17
|
Liu Y, Luo C, Lan M, Guo Y, Li R, Liang R, Chen S, Zhong J, Li B, Xie F, Chen C, He X. MiCOL6, MiCOL7A and MiCOL7B isolated from mango regulate flowering and stress response in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14242. [PMID: 38439528 DOI: 10.1111/ppl.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Moying Lan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Yihang Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
- College of Agronomy and Horticulture, Huaihua Polytechnic College, Huaihua, Hunan
| | - Ruoyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Rongzhen Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Shuquan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Junjie Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Baijun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Canbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi
| |
Collapse
|
18
|
Liang T, Yu S, Pan Y, Wang J, Kay SA. The interplay between the circadian clock and abiotic stress responses mediated by ABF3 and CCA1/LHY. Proc Natl Acad Sci U S A 2024; 121:e2316825121. [PMID: 38319968 PMCID: PMC10873597 DOI: 10.1073/pnas.2316825121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Climate change is a global concern for all life on our planet, including humans and plants. Plants' growth and development are significantly affected by abiotic stresses, including adverse temperature, inadequate or excess water availability, nutrient deficiency, and salinity. The circadian clock is a master regulator of numerous developmental and metabolic processes in plants. In an effort to identify new clock-related genes and outputs through bioinformatic analysis, we have revealed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) play a crucial role in regulating a wide range of abiotic stress responses and target ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR3 (ABF3), a key transcription factor in the plant hormone Abscisic acid (ABA)-signaling pathway. Specifically, we found that CCA1 and LHY regulate the expression of ABF3 under diel conditions, as well as seed germination under salinity. Conversely, ABF3 controls the expression of core clock genes and orchestrates the circadian period in a stress-responsive manner. ABF3 delivers the stress signal to the central oscillator by binding to the promoter of CCA1 and LHY. Overall, our study uncovers the reciprocal regulation between ABF3 and CCA1/LHY and molecular mechanisms underlying the interaction between the circadian clock and abiotic stress. This finding may aid in developing molecular and genetic solutions for plants to survive and thrive in the face of climate change.
Collapse
Affiliation(s)
- Tong Liang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Shi Yu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Jiarui Wang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
19
|
Yan Y, Luo H, Qin Y, Yan T, Jia J, Hou Y, Liu Z, Zhai J, Long Y, Deng X, Cao X. Light controls mesophyll-specific post-transcriptional splicing of photoregulatory genes by AtPRMT5. Proc Natl Acad Sci U S A 2024; 121:e2317408121. [PMID: 38285953 PMCID: PMC10861865 DOI: 10.1073/pnas.2317408121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Haofei Luo
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yuwei Qin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Tingting Yan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou571100, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yifeng Hou
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Xian Deng
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofeng Cao
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
20
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
21
|
Hu Z, Zhang N, Qin Z, Li J, Yang N, Chen Y, Kong J, Luo W, Xiong A, Zhuang J. Differential Response of MYB Transcription Factor Gene Transcripts to Circadian Rhythm in Tea Plants ( Camellia sinensis). Int J Mol Sci 2024; 25:657. [PMID: 38203827 PMCID: PMC10780195 DOI: 10.3390/ijms25010657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The circadian clock refers to the formation of a certain rule in the long-term evolution of an organism, which is an invisible 'clock' in the body of an organism. As one of the largest TF families in higher plants, the MYB transcription factor is involved in plant growth and development. MYB is also inextricably correlated with the circadian rhythm. In this study, the transcriptome data of the tea plant 'Baiyeyihao' were measured at a photoperiod interval of 4 h (24 h). A total of 25,306 unigenes were obtained, including 14,615 unigenes that were annotated across 20 functional categories within the GO classification. Additionally, 10,443 single-gene clusters were annotated to 11 sublevels of metabolic pathways using KEGG. Based on the results of gene annotation and differential gene transcript analysis, 22 genes encoding MYB transcription factors were identified. The G10 group in the phylogenetic tree had 13 members, of which 5 were related to the circadian rhythm, accounting for 39%. The G1, G2, G8, G9, G15, G16, G18, G19, G20, G21 and G23 groups had no members associated with the circadian rhythm. Among the 22 differentially expressed MYB transcription factors, 3 members of LHY, RVE1 and RVE8 were core circadian rhythm genes belonging to the G10, G12 and G10 groups, respectively. Real-time fluorescence quantitative PCR was used to detect and validate the expression of the gene transcripts encoding MYB transcription factors associated with the circadian rhythm.
Collapse
Affiliation(s)
- Zhihang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.Q.); (J.L.); (N.Y.); (Y.C.); (J.K.); (W.L.)
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China;
| | - Nan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiyuan Qin
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.Q.); (J.L.); (N.Y.); (Y.C.); (J.K.); (W.L.)
| | - Jinwen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.Q.); (J.L.); (N.Y.); (Y.C.); (J.K.); (W.L.)
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.Q.); (J.L.); (N.Y.); (Y.C.); (J.K.); (W.L.)
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.Q.); (J.L.); (N.Y.); (Y.C.); (J.K.); (W.L.)
| | - Jieyu Kong
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.Q.); (J.L.); (N.Y.); (Y.C.); (J.K.); (W.L.)
| | - Wei Luo
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.Q.); (J.L.); (N.Y.); (Y.C.); (J.K.); (W.L.)
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.Q.); (J.L.); (N.Y.); (Y.C.); (J.K.); (W.L.)
| |
Collapse
|
22
|
Hong C, Han JH, Hwang GH, Bae S, Seo PJ. Genome-wide in-locus epitope tagging of Arabidopsis proteins using prime editors. BMB Rep 2024; 57:66-70. [PMID: 38053291 PMCID: PMC10828436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 12/07/2023] Open
Abstract
Prime editors (PEs), which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusion proteins programmed with prime editing guide RNAs (pegRNAs), can not only edit bases but also install transversions, insertions, or deletions without both donor DNA and double-strand breaks at the target DNA. As the demand for in-locus tagging is increasing, to reflect gene expression dynamics influenced by endogenous genomic contexts, we demonstrated that PEs can be used to introduce the hemagglutinin (HA) epitope tag to a target gene locus, enabling molecular and biochemical studies using in-locus tagged plants. To promote genome-wide in-locus tagging, we also implemented a publicly available database that designs pegRNAs for in-locus tagging of all the Arabidopsis genes. [BMB Reports 2024; 57(1): 66-70].
Collapse
Affiliation(s)
- Cheljong Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jun Hee Han
- Department of Chemistry, Hanyang University, Seoul 04673, Korea
| | - Gue-Ho Hwang
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sangsu Bae
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
James AB, Sharples C, Laird J, Armstrong EM, Guo W, Tzioutziou N, Zhang R, Brown JWS, Nimmo HG, Jones MA. REVEILLE2 thermosensitive splicing: a molecular basis for the integration of nocturnal temperature information by the Arabidopsis circadian clock. THE NEW PHYTOLOGIST 2024; 241:283-297. [PMID: 37897048 DOI: 10.1111/nph.19339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Cold stress is one of the major environmental factors that limit growth and yield of plants. However, it is still not fully understood how plants account for daily temperature fluctuations, nor how these temperature changes are integrated with other regulatory systems such as the circadian clock. We demonstrate that REVEILLE2 undergoes alternative splicing after chilling that increases accumulation of a transcript isoform encoding a MYB-like transcription factor. We explore the biological function of REVEILLE2 in Arabidopsis thaliana using a combination of molecular genetics, transcriptomics, and physiology. Disruption of REVEILLE2 alternative splicing alters regulatory gene expression, impairs circadian timing, and improves photosynthetic capacity. Changes in nuclear gene expression are particularly apparent in the initial hours following chilling, with chloroplast gene expression subsequently upregulated. The response of REVEILLE2 to chilling extends our understanding of plants immediate response to cooling. We propose that the circadian component REVEILLE2 restricts plants responses to nocturnal reductions in temperature, thereby enabling appropriate responses to daily environmental changes.
Collapse
Affiliation(s)
- Allan B James
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chantal Sharples
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Janet Laird
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Emily May Armstrong
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Nikoleta Tzioutziou
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John W S Brown
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Hugh G Nimmo
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew A Jones
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
24
|
Braslavsky SE. Outstanding women scientists who have broadened the knowledge on biological photoreceptors. Photochem Photobiol Sci 2023; 22:2799-2815. [PMID: 37864671 DOI: 10.1007/s43630-023-00487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/23/2023]
Abstract
Short biographical sketches are given of women born before 1955 who have contributed to our knowledge on the function, structure, and molecular basis of biological photoreceptors, both energy converters and photosensors.
Collapse
Affiliation(s)
- Silvia E Braslavsky
- Max Planck Institute for Chemical Energy Conversion, 45410, Mülheim an der Ruhr, Germany.
| |
Collapse
|
25
|
Liu F, Cai S, Ma Z, Yue H, Xing L, Wang Y, Feng S, Wang L, Dai L, Wan H, Gao J, Chen M, Rahman M, Zhou B. RVE2, a new regulatory factor in jasmonic acid pathway, orchestrates resistance to Verticillium wilt. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2507-2524. [PMID: 37553251 PMCID: PMC10651145 DOI: 10.1111/pbi.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Verticillium dahliae, one of the most destructive fungal pathogens of several crops, challenges the sustainability of cotton productivity worldwide because very few widely-cultivated Upland cotton varieties are resistant to Verticillium wilt (VW). Here, we report that REVEILLE2 (RVE2), the Myb-like transcription factor, confers the novel function in resistance to VW by regulating the jasmonic acid (JA) pathway in cotton. RVE2 expression was essentially required for the activation of JA-mediated disease-resistance response. RVE2 physically interacted with TPL/TPRs and disturbed JAZ proteins to recruit TPL and TPR1 in NINJA-dependent manner, which regulated JA response by relieving inhibited-MYC2 activity. The MYC2 then bound to RVE2 promoter for the activation of its transcription, forming feedback loop. Interestingly, a unique truncated RVE2 widely existing in D-subgenome (GhRVE2D) of natural Upland cotton represses the ability of the MYC2 to activate GhRVE2A promoter but not GausRVE2 or GbRVE2. The result could partially explain why Gossypium barbadense popularly shows higher resistance than Gossypium hirsutum. Furthermore, disturbing the JA-signalling pathway resulted into the loss of RVE2-mediated disease-resistance in various plants (Arabidopsis, tobacco and cotton). RVE2 overexpression significantly enhanced the resistance to VW. Collectively, we conclude that RVE2, a new regulatory factor, plays a pivotal role in fine-tuning JA-signalling, which would improve our understanding the mechanisms underlying the resistance to VW.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liangshuai Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Shouli Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mengfei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mehboob‐ur‐ Rahman
- Plant Genomics & Mol. Breeding LabNational Institute for Biotechnology & Genetic Engineering (NIBGE)FaisalabadPakistan
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
26
|
Wei Z, Zhang H, Fang M, Lin S, Zhu M, Li Y, Jiang L, Cui T, Cui Y, Kui H, Peng L, Gou X, Li J. The Dof transcription factor COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. MOLECULAR PLANT 2023; 16:1759-1772. [PMID: 37742075 DOI: 10.1016/j.molp.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Photosynthetic efficiency is the primary determinant of crop yield, including vegetative biomass and grain yield. Manipulation of key transcription factors known to directly control photosynthetic machinery can be an effective strategy to improve photosynthetic traits. In this study, we identified an Arabidopsis gain-of-function mutant, cogwheel1-3D, that shows a significantly enlarged rosette and increased biomass compared with wild-type plants. Overexpression of COG1, a Dof transcription factor, recapitulated the phenotype of cogwheel1-3D, whereas knocking out COG1 and its six paralogs resulted in a reduced rosette size and decreased biomass. Transcriptomic and quantitative reverse transcription polymerase chain reaction analyses demonstrated that COG1 and its paralogs were required for light-induced expression of genes involved in photosynthesis. Further chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that COG1 can directly bind to the promoter regions of multiple genes encoding light-harvesting antenna proteins. Physiological, biochemical, and microscopy analyses revealed that COG1 enhances photosynthetic capacity and starch accumulation in Arabidopsis rosette leaves. Furthermore, combined results of bioinformatic, genetic, and molecular experiments suggested that the functions of COG1 in increasing biomass are conserved in different plant species. These results collectively demonstrated that COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. Manipulating COG1 to optimize photosynthetic capacity would create new strategies for future crop yield improvement.
Collapse
Affiliation(s)
- Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haoyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuyuan Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxiu Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Limin Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianliang Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Gao G, Chen M, Mo R, Li N, Xu Y, Lu Y. Linking New Alleles at the Oscillator Loci to Flowering and Expansion of Asian Rice. Genes (Basel) 2023; 14:2027. [PMID: 38002970 PMCID: PMC10671530 DOI: 10.3390/genes14112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The central oscillator is believed to be the key mechanism by which plants adapt to new environments. However, impacts from hybridization, the natural environment, and human selection have rarely been assessed on the oscillator of a crop. Here, from clearly identified alleles at oscillator loci (OsCCA1/LHY, OsPRR95, OsPRR37, OsPRR59, and OsPRR1) in ten diverse genomes of Oryza sativa, additional accessions, and functional analysis, we show that rice's oscillator was rebuilt primarily by new alleles from recombining parental sequences and subsequent 5' or/and coding mutations. New alleles may exhibit altered transcript levels from that of a parental allele and are transcribed variably among genetic backgrounds and natural environments in RIL lines. Plants carrying more expressed OsCCA1_a and less transcribed OsPRR1_e flower early in the paddy field. 5' mutations are instrumental in varied transcription, as shown by EMSA tests on one deletion at the 5' region of highly transcribed OsPRR1_a. Compared to relatively balanced mutations at oscillator loci of Arabidopsis thaliana, 5' mutations of OsPRR37 (and OsCCA1 to a less degree) were under negative selection while those of OsPRR1 alleles were under strong positive selection. Together, range expansion of Asian rice can be elucidated by human selection on OsPRR1 alleles via local flowering time-yield relationships.
Collapse
Affiliation(s)
- Guangtong Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoxian Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Mo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Faehn C, Reichelt M, Mithöfer A, Hytönen T, Mølmann J, Jaakola L. Acclimation of circadian rhythms in woodland strawberries (Fragaria vesca L.) to Arctic and mid-latitude photoperiods. BMC PLANT BIOLOGY 2023; 23:483. [PMID: 37817085 PMCID: PMC10563271 DOI: 10.1186/s12870-023-04491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Though many abiotic factors are constantly changing, the photoperiod is a predictable factor that enables plants to time many physiological responses. This timing is regulated by the circadian clock, yet little is known about how the clock adapts to the differences in photoperiod between mid-latitudes and high latitudes. The primary objective of this study was to compare how clock gene expression is modified in four woodland strawberry (Fragaria vesca L.) accessions originating from two different populations in Italy (IT1: Tenno, Italy, 45°N, IT4: Salorno, Italy, 46°N) and two in Northern Norway (NOR2: Alta, Norway, 69°N, NOR13: Indre Nordnes, Norway 69°N) when grown under simulated daylength conditions of an Arctic or mid-latitude photoperiod. The second objective was to investigate whether population origin or the difference in photoperiod influenced phytohormone accumulation. RESULTS The Arctic photoperiod induced lower expression in IT4 and NOR13 for six clock genes (FvLHY, FvRVE8, FvPRR9, FvPRR7, FvPRR5, and FvLUX), in IT1 for three genes (FvLHY, FvPRR9, and FvPRR5) and in NOR2 for one gene (FvPRR9). Free-running rhythms for FvLHY in IT1 and IT4 were higher after the Arctic photoperiod, while the free-running rhythm for FvLUX in IT4 was higher after the mid-latitude photoperiod. IT1 showed significantly higher expression of FvLHY and FvPRR9 than all other accessions, as well as significantly higher expression of the circadian regulated phytohormone, abscisic acid (ABA), but low levels of salicylic acid (SA). NOR13 had significantly higher expression of FvRVE8, FvTOC1, and FvLUX than all other accessions. NOR2 had extremely low levels of auxin (IAA) and high levels of the jasmonate catabolite, hydroxyjasmonic acid (OH-JA). CONCLUSIONS Our study shows that circadian rhythms in Fragaria vesca are driven by both the experienced photoperiod and genetic factors, while phytohormone levels are primarily determined by specific accessions' genetic factors rather than the experienced photoperiod.
Collapse
Affiliation(s)
- Corine Faehn
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, 9037, Norway.
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790, Finland
| | - Jørgen Mølmann
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - Laura Jaakola
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, 9037, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| |
Collapse
|
29
|
Hughes CL, Harmer SL. Myb-like transcription factors have epistatic effects on circadian clock function but additive effects on plant growth. PLANT DIRECT 2023; 7:e533. [PMID: 37811362 PMCID: PMC10557472 DOI: 10.1002/pld3.533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The functions of closely related Myb-like repressor and Myb-like activator proteins within the plant circadian oscillator have been well-studied as separate groups, but the genetic interactions between them are less clear. We hypothesized that these repressors and activators would interact additively to regulate both circadian and growth phenotypes. We used CRISPR-Cas9 to generate new mutant alleles and performed physiological and molecular characterization of plant mutants for five of these core Myb-like clock factors compared with a repressor mutant and an activator mutant. We first examined circadian clock function in plants likely null for both the repressor proteins, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the activator proteins, REVEILLE 4 (RVE4), REVEILLE (RVE6), and REVEILLE (RVE8). The rve468 triple mutant has a long period and flowers late, while cca1 lhy rve468 quintuple mutants, similarly to cca1 lhy mutants, have poor circadian rhythms and flower early. This suggests that CCA1 and LHY are epistatic to RVE4, RVE6, and RVE8 for circadian clock and flowering time function. We next examined hypocotyl elongation and rosette leaf size in these mutants. The cca1 lhy rve468 mutants have growth phenotypes intermediate between cca1 lhy and rve468 mutants, suggesting that CCA1, LHY, RVE4, RVE6, and RVE8 interact additively to regulate growth. Together, our data suggest that these five Myb-like factors interact differently in regulation of the circadian clock versus growth. More generally, the near-norm al seedling phenotypes observed in the largely arrhythmic quintuple mutant demonstrate that circadian-regulated output processes, like control of hypocotyl elongation, do not always depend upon rhythmic oscillator function.
Collapse
Affiliation(s)
| | - Stacey L. Harmer
- Department of Plant BiologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
30
|
Wang X, Hu Y, Wang W. Comparative Analysis of Circadian Transcriptomes Reveals Circadian Characteristics between Arabidopsis and Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:3344. [PMID: 37836084 PMCID: PMC10574400 DOI: 10.3390/plants12193344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The circadian clock, an endogenous timing system, exists in nearly all organisms on Earth. The plant circadian clock has been found to be intricately linked with various essential biological activities. Extensive studies of the plant circadian clock have yielded valuable applications. However, the distinctions of circadian clocks in two important plant species, Arabidopsis thaliana and Glycine max (soybean), remain largely unexplored. This study endeavors to address this gap by conducting a comprehensive comparison of the circadian transcriptome profiles of Arabidopsis and soybean to uncover their distinct circadian characteristics. Utilizing non-linear regression fitting (COS) integrated with weights, we identified circadian rhythmic genes within both organisms. Through an in-depth exploration of circadian parameters, we unveiled notable differences between Arabidopsis and soybean. Furthermore, our analysis of core circadian clock genes shed light on the distinctions in central oscillators between these two species. Additionally, we observed that the homologous genes of Arabidopsis circadian clock genes in soybean exert a significant influence on the regulation of flowering and maturity of soybean. This phenomenon appears to stem from shifts in circadian parameters within soybean genes. These findings highlight contrasting biological activities under circadian regulation in Arabidopsis and soybean. This study not only underscores the distinctive attributes of these species, but also offers valuable insights for further scrutiny into the soybean circadian clock and its potential applications.
Collapse
Affiliation(s)
- Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (X.W.); (Y.H.)
- Center for Life Sciences, Beijing 100871, China
| | - Yanfei Hu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (X.W.); (Y.H.)
- Center for Life Sciences, Beijing 100871, China
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (X.W.); (Y.H.)
- Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
31
|
Cai Y, Liu Y, Fan Y, Li X, Yang M, Xu D, Wang H, Deng XW, Li J. MYB112 connects light and circadian clock signals to promote hypocotyl elongation in Arabidopsis. THE PLANT CELL 2023; 35:3485-3503. [PMID: 37335905 PMCID: PMC10473211 DOI: 10.1093/plcell/koad170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Ambient light and the endogenous circadian clock play key roles in regulating Arabidopsis (Arabidopsis thaliana) seedling photomorphogenesis. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) acts downstream of both light and the circadian clock to promote hypocotyl elongation. Several members of the R2R3-MYB transcription factor (TF) family, the most common type of MYB TF family in Arabidopsis, have been shown to be involved in regulating photomorphogenesis. Nonetheless, whether R2R3-MYB TFs are involved in connecting the light and clock signaling pathways during seedling photomorphogenesis remains unknown. Here, we report that MYB112, a member of the R2R3-MYB family, acts as a negative regulator of seedling photomorphogenesis in Arabidopsis. The light signal promotes the transcription and protein accumulation of MYB112. myb112 mutants exhibit short hypocotyls in both constant light and diurnal cycles. MYB112 physically interacts with PIF4 to enhance the transcription of PIF4 target genes involved in the auxin pathway, including YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19), and IAA29. Furthermore, MYB112 directly binds to the promoter of LUX ARRHYTHMO (LUX), the central component of clock oscillators, to repress its expression mainly in the afternoon and relieve LUX-inhibited expression of PIF4. Genetic evidence confirms that LUX acts downstream of MYB112 in regulating hypocotyl elongation. Thus, the enhanced transcript accumulation and transcriptional activation activity of PIF4 by MYB112 additively promotes the expression of auxin-related genes, thereby increasing auxin synthesis and signaling and fine-tuning hypocotyl growth under diurnal cycles.
Collapse
Affiliation(s)
- Yupeng Cai
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongting Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangyang Fan
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, Beijing 100097, China
| | - Xitao Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Maosheng Yang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking–Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
32
|
Field S, Jang GJ, Dean C, Strader LC, Rhee SY. Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development. THE PLANT CELL 2023; 35:3173-3186. [PMID: 36879427 PMCID: PMC10473230 DOI: 10.1093/plcell/koad062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This review highlights recent literature on biomolecular condensates in plant development and discusses challenges for fully dissecting their functional roles. Plant developmental biology has been inundated with descriptive examples of biomolecular condensate formation, but it is only recently that mechanistic understanding has been forthcoming. Here, we discuss recent examples of potential roles biomolecular condensates play at different stages of the plant life cycle. We group these examples based on putative molecular functions, including sequestering interacting components, enhancing dwell time, and interacting with cytoplasmic biophysical properties in response to environmental change. We explore how these mechanisms could modulate plant development in response to environmental inputs and discuss challenges and opportunities for further research into deciphering molecular mechanisms to better understand the diverse roles that biomolecular condensates exert on life.
Collapse
Affiliation(s)
- Sterling Field
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Geng-Jen Jang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Cheng Y, Chi Y, Sun L, Wang GZ. Dominant constraints on the evolution of rhythmic gene expression. Comput Struct Biotechnol J 2023; 21:4301-4311. [PMID: 37692081 PMCID: PMC10492206 DOI: 10.1016/j.csbj.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Although the individual transcriptional regulators of the core circadian clock are distinct among different organisms, the autoregulatory feedback loops they form are conserved. This unified design principle explains how daily physiological activities oscillate across species. However, it is unknown whether analogous design principles govern the gene expression output of circadian clocks. In this study, we performed a comparative analysis of rhythmic gene expression in eight diverse species and identified four common distribution patterns of cycling gene expression across these species. We hypothesized that the maintenance of reduced energetic costs constrains the evolution of rhythmic gene expression. Our large-scale computational simulations support this hypothesis by showing that selection against high-energy expenditure completely regenerates all cycling gene patterns. Moreover, we find that the peaks of rhythmic expression have been subjected to this type of selective pressure. The results suggest that selective pressure from circadian regulation efficiently removes unnecessary gene products from the transcriptome, thereby significantly impacting its evolutionary path.
Collapse
Affiliation(s)
| | | | | | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
34
|
Barbier F, Fichtner F, Beveridge C. The strigolactone pathway plays a crucial role in integrating metabolic and nutritional signals in plants. NATURE PLANTS 2023; 9:1191-1200. [PMID: 37488268 DOI: 10.1038/s41477-023-01453-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 07/26/2023]
Abstract
Strigolactones are rhizosphere signals and phytohormones that play crucial roles in plant development. They are also well known for their role in integrating nitrate and phosphate signals to regulate shoot and root development. More recently, sugars and citrate (an intermediate of the tricarboxylic acid cycle) were reported to inhibit the strigolactone response, with dramatic effects on shoot architecture. This Review summarizes the discoveries recently made concerning the mechanisms through which the strigolactone pathway integrates sugar, metabolite and nutrient signals. We highlight here that strigolactones and MAX2-dependent signalling play crucial roles in mediating the impacts of nutritional and metabolic cues on plant development and metabolism. We also discuss and speculate concerning the role of these interactions in plant evolution and adaptation to their environment.
Collapse
Affiliation(s)
- Francois Barbier
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia.
| | - Franziska Fichtner
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine Beveridge
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
35
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
36
|
Wang H, Tu R, Ruan Z, Chen C, Peng Z, Zhou X, Sun L, Hong Y, Chen D, Liu Q, Wu W, Zhan X, Shen X, Zhou Z, Cao L, Zhang Y, Cheng S. Photoperiod and gravistimulation-associated Tiller Angle Control 1 modulates dynamic changes in rice plant architecture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:160. [PMID: 37347301 DOI: 10.1007/s00122-023-04404-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
KEY MESSAGE TAC1 is involved in photoperiodic and gravitropic responses to modulate rice dynamic plant architecture likely by affecting endogenous auxin distribution, which could explain TAC1 widespread distribution in indica rice. Plants experience a changing environment throughout their growth, which requires dynamic adjustments of plant architecture in response to these environmental cues. Our previous study demonstrated that Tiller Angle Control 1 (TAC1) modulates dynamic changes in plant architecture in rice; however, the underlying regulatory mechanisms remain largely unknown. In this study, we show that TAC1 regulates plant architecture in an expression dose-dependent manner, is highly expressed in stems, and exhibits dynamic expression in tiller bases during the growth period. Photoperiodic treatments revealed that TAC1 expression shows circadian rhythm and is more abundant during the dark period than during the light period and under short-day conditions than under long-day conditions. Therefore, it contributes to dynamic plant architecture under long-day conditions and loose plant architecture under short-day conditions. Gravity treatments showed that TAC1 is induced by gravistimulation and negatively regulates shoot gravitropism, likely by affecting auxin distribution. Notably, the tested indica rice containing TAC1 displayed dynamic plant architecture under natural long-day conditions, likely explaining the widespread distribution of TAC1 in indica rice. Our results provide new insights into TAC1-mediated regulatory mechanisms for dynamic changes in rice plant architecture.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Ranran Tu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zheyan Ruan
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Chi Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Zequn Peng
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Lianping Sun
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Yongbo Hong
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xihong Shen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Zhengping Zhou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| |
Collapse
|
37
|
Huang T, Liu H, Tao JP, Zhang JQ, Zhao TM, Hou XL, Xiong AS, You X. Low light intensity elongates period and defers peak time of photosynthesis: a computational approach to circadian-clock-controlled photosynthesis in tomato. HORTICULTURE RESEARCH 2023; 10:uhad077. [PMID: 37323229 PMCID: PMC10261901 DOI: 10.1093/hr/uhad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/09/2023] [Indexed: 06/17/2023]
Abstract
Photosynthesis is involved in the essential process of transforming light energy into chemical energy. Although the interaction between photosynthesis and the circadian clock has been confirmed, the mechanism of how light intensity affects photosynthesis through the circadian clock remains unclear. Here, we propose a first computational model for circadian-clock-controlled photosynthesis, which consists of the light-sensitive protein P, the core oscillator, photosynthetic genes, and parameters involved in the process of photosynthesis. The model parameters were determined by minimizing the cost function ( [Formula: see text]), which is defined by the errors of expression levels, periods, and phases of the clock genes (CCA1, PRR9, TOC1, ELF4, GI, and RVE8). The model recapitulates the expression pattern of the core oscillator under moderate light intensity (100 μmol m -2 s-1). Further simulation validated the dynamic behaviors of the circadian clock and photosynthetic outputs under low (62.5 μmol m-2 s-1) and normal (187.5 μmol m-2 s-1) intensities. When exposed to low light intensity, the peak times of clock and photosynthetic genes were shifted backward by 1-2 hours, the period was elongated by approximately the same length, and the photosynthetic parameters attained low values and showed delayed peak times, which confirmed our model predictions. Our study reveals a potential mechanism underlying the circadian regulation of photosynthesis by the clock under different light intensities in tomato.
Collapse
Affiliation(s)
- Ting Huang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Jian-Ping Tao
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
- The Institute of Agricultural Information, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jia-Qi Zhang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Tong-Min Zhao
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xi-Lin Hou
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu China
| |
Collapse
|
38
|
Abstract
Photoperiod-measuring mechanisms allow organisms to anticipate seasonal changes to align reproduction and growth with appropriate times of the year. This review provides historical and modern context to studies of plant photoperiodism. We describe how studies of photoperiodic flowering in plants led to the first theoretical models of photoperiod-measuring mechanisms in any organism. We discuss how more recent molecular genetic studies in Arabidopsis and rice have revisited these concepts. We then discuss how photoperiod transcriptomics provides new lessons about photoperiodic gene regulatory networks and the discovery of noncanonical photoperiod-measuring systems housed in metabolic networks of plants. This leads to an examination of nonflowering developmental processes controlled by photoperiod, including metabolism and growth. Finally, we highlight the importance of understanding photoperiodism in the context of climate change, delving into the rapid latitudinal migration of plant species and the potential role of photoperiod-measuring systems in generating photic barriers during migration.
Collapse
Affiliation(s)
- Joshua M Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany;
| |
Collapse
|
39
|
Karapetyan S, Mwimba M, Dong X. Circadian redox rhythm gates immune-induced cell death distinctly from the genetic clock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.535069. [PMID: 37131835 PMCID: PMC10153234 DOI: 10.1101/2023.04.21.535069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth’s day-night cycles and regulate responses to environmental stresses to gain competitive advantage 1 . While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, a conserved circadian redox rhythm has only recently been reported and hypothesized to be a more ancient clock 2, 3 . However, it is controversial whether the redox rhythm serves as an independent clock and controls specific biological processes 4 . Here, we uncovered the coexistence of redox and genetic rhythms with distinct period lengths and transcriptional targets through concurrent metabolic and transcriptional time-course measurements in an Arabidopsis long-period clock mutant 5 . Analysis of the target genes indicated regulation of the immune-induced programmed cell death (PCD) by the redox rhythm. Moreover, this time-of-day-sensitive PCD was eliminated by redox perturbation and by blocking the signalling pathway of the plant defence hormones jasmonic acid/ethylene, while remaining intact in a genetic-clock-impaired line. We demonstrate that compared to robust genetic clocks, the more sensitive circadian redox rhythm serves as a signalling hub in regulating incidental energy-intensive processes, such as immune-induced PCD 6 , to provide organisms a flexible strategy to prevent metabolic overload caused by stress, a unique role for the redox oscillator.
Collapse
|
40
|
Sorkin ML, Tzeng SC, King S, Romanowski A, Kahle N, Bindbeutel R, Hiltbrunner A, Yanovsky MJ, Evans BS, Nusinow DA. COLD REGULATED GENE 27 and 28 Antagonize the Transcriptional Activity of the RVE8/LNK1/LNK2 Circadian Complex. PLANT PHYSIOLOGY 2023:kiad210. [PMID: 37017001 DOI: 10.1093/plphys/kiad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Many molecular and physiological processes in plants occur at a specific time of day. These daily rhythms are coordinated in part by the circadian clock, a timekeeper that uses daylength and temperature to maintain rhythms of approximately 24 hours in various clock-regulated phenotypes. The circadian MYB-like transcription factor REVEILLE 8 (RVE8) interacts with its transcriptional coactivators NIGHT LIGHT INDUCIBLE AND CLOCK REGULATED 1 (LNK1) and LNK2 to promote the expression of evening-phased clock genes and cold tolerance factors. While genetic approaches have commonly been used to discover connections within the clock and between clock elements and other pathways, here we used affinity purification coupled with mass spectrometry to identify time-of-day-specific protein interactors of the RVE8-LNK1/LNK2 complex in Arabidopsis (Arabidopsis thaliana). Among the interactors of RVE8/LNK1/LNK2 were COLD REGULATED GENE 27 (COR27) and COR28, which coprecipitated in an evening-specific manner. In addition to COR27 and COR28, we found an enrichment of temperature-related interactors that led us to establish a previously uncharacterized role for LNK1 and LNK2 in temperature entrainment of the clock. We established that RVE8, LNK1, and either COR27 or COR28 form a tripartite complex in yeast (Saccharomyces cerevisiae) and that the effect of this interaction in planta serves to antagonize transcriptional activation of RVE8 target genes, potentially through mediating RVE8 protein degradation in the evening. Together, these results illustrate how a proteomic approach can be used to identify time-of-day-specific protein interactions. Discovery of the RVE8-LNK-COR protein complex indicates a previously unknown regulatory mechanism for circadian and temperature signaling pathways.
Collapse
Affiliation(s)
- Maria L Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Stefanie King
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrés Romanowski
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nikolai Kahle
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
41
|
Kim H, Kim J, Choi G. Epidermal phyB requires RRC1 to promote light responses by activating the circadian rhythm. THE NEW PHYTOLOGIST 2023; 238:705-723. [PMID: 36651061 DOI: 10.1111/nph.18746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Phytochrome B (phyB) expressed in the epidermis is sufficient to promote red light responses, including the inhibition of hypocotyl elongation and hypocotyl negative gravitropism. Nonetheless, the downstream mechanism of epidermal phyB in promoting light responses had been elusive. Here, we mutagenized the epidermis-specific phyB-expressing line (MLB) using ethyl methanesulfonate (EMS) and characterized a novel mutant allele of RRC1 (rrc1-689), which causes reduced epidermal phyB-mediated red light responses. The rrc1-689 mutation increases the alternative splicing of major clock gene transcripts, including PRR7 and TOC1, disrupting the rhythmic expression of the entire clock and clock-controlled genes. Combined with the result that MLB/prr7 exhibits the same red-hyposensitive phenotypes as MLB/rrc1-689, our data support that the circadian clock is required for the ability of epidermal phyB to promote light responses. We also found that, unlike phyB, RRC1 preferentially acts in the endodermis to maintain the circadian rhythm by suppressing the alternative splicing of core clock genes. Together, our results suggest that epidermal phyB requires RRC1 to promote light responses by activating the circadian rhythm in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hanim Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Jaewook Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
42
|
Liu Z, Liu W, Wang Z, Qi K, Xie Z, Zhang S, Wu J, Wang P. Diurnal transcriptome dynamics reveal the photoperiod response of Pyrus. PHYSIOLOGIA PLANTARUM 2023; 175:e13893. [PMID: 36929905 DOI: 10.1111/ppl.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Photoperiod provides a key environmental signal that controls plant growth. Plants have evolved an integrated mechanism for sensing photoperiods with internal clocks to orchestrate physiological events. This mechanism has been identified to enable timely plant growth and improve fitness. Although the components and pathways underlying photoperiod regulation have been described in many species, diurnal patterns of gene expression at the genome-wide level under different photoperiods are rarely reported in perennial fruit trees. To explore the global gene expression in response to photoperiod, pear plants were cultured under long-day (LD) and short-day (SD) conditions. A time-series transcriptomic study was implemented using LD and SD samples collected at 4 h intervals over 2 days. We identified 13,677 rhythmic genes, of which 7639 were identified under LD and 10,557 under SD conditions. Additionally, 4674 genes were differentially expressed in response to photoperiod change. We also characterized the candidate homologs of clock-associated genes in pear. Clock genes were involved in the regulation of many processes throughout the day, including photosynthesis, stress response, hormone dynamics, and secondary metabolism. Strikingly, genes within photosynthesis-related pathways were enriched in both the rhythmic and differential expression analyses. Several key candidate genes were identified to be associated with regulating photosynthesis and improving productivity under different photoperiods. The results suggest that temporal variation in gene expression should not be ignored in pear gene function research. Overall, our work expands the understanding of photoperiod regulation of plant growth, particularly by extending the research to non-model trees.
Collapse
Affiliation(s)
- Zhe Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| | - Weijuan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhangqing Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
43
|
Liu Z, Zhu X, Liu W, Qi K, Xie Z, Zhang S, Wu J, Wang P. Characterization of the REVEILLE family in Rosaceae and role of PbLHY in flowering time regulation. BMC Genomics 2023; 24:49. [PMID: 36707756 PMCID: PMC9883883 DOI: 10.1186/s12864-023-09144-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The circadian clock integrates endogenous and exogenous signals and regulates various physiological processes in plants. REVEILLE (RVE) proteins play critical roles in circadian clock system, especially CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL), which also participate in flowering regulation. However, little is known about the evolution and function of the RVE family in Rosaceae species, especially in Pyrus bretschneideri. RESULTS In this study, we performed a genome-wide analysis and identified 51 RVE genes in seven Rosaceae species. The RVE family members were classified into two groups based on phylogenetic analysis. Dispersed duplication events and purifying selection were the main drivers of evolution in the RVE family. Moreover, the expression patterns of ten PbRVE genes were diverse in P. bretschneideri tissues. All PbRVE genes showed diurnal rhythms under light/dark cycles in P. bretschneideri leaves. Four PbRVE genes also displayed robust rhythms under constant light conditions. PbLHY, the gene with the highest homology to AtCCA1 and AtLHY in P. bretschneideri, is localized in the nucleus. Ectopic overexpression of PbLHY in Arabidopsis delayed flowering time and repressed the expression of flowering time-related genes. CONCLUSION These results contribute to improving the understanding and functional research of RVE genes in P. bretschneideri.
Collapse
Affiliation(s)
- Zhe Liu
- grid.254020.10000 0004 1798 4253Department of Pharmacy, Changzhi Medical College, Changzhi, 046000 China ,grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China ,Shanxi Province Key Laboratory of Functional Food with Homologous of Medicine and Food, Changzhi, China
| | - Xiaoxuan Zhu
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weijuan Liu
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kaijie Qi
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhihua Xie
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Juyou Wu
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China ,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Peng Wang
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
44
|
Liu Z, Yuan Y, Wang L, Zhao X, Wang L, Wang L, Zhao Z, Zhao X, Chu Y, Gao Y, Yang F, Wang Y, Zhang Q, Zhao J, Liu M. Three Novel Adenylate Cyclase Genes Show Significant Biological Functions in Plant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1149-1161. [PMID: 36601683 DOI: 10.1021/acs.jafc.2c07683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adenylate cyclase is the key enzyme solely synthesizing cAMP which participates in cell metabolism regulations and functions as an intracellular second messenger. However, the biological functions of plant ACs have not been elucidated clearly for their poor conservative sequences and low detectable cAMP. We performed a systematic study of plant ACs by using Chinese jujube, whose fruit exhibits the highest cAMP content among plants. Three novel ACs were identified from Chinese jujube, and two types of methods including in vitro and in vivo were used to certificate ZjAC1-3 which can catalyze the conversion of ATP into cAMP. The biological functions of significant accelerations of seed germination, root growth, and flowering were found via overexpression of these AC genes in Arabidopsis, and these functions of ACs were further demonstrated by treating the AC-overexpressing transgenic lines and wild type Arabidopsis with bithionol and dibutyryl-cAMP. At last, transcriptome data revealed that the underlying mechanism of the biological functions of ACs might be regulation of the key genes involved in the circadian rhythm pathway and the hormone signal transduction pathway. This research established a foundation for further investigating plant AC genes and provided strong evidence for cAMP serving as a signaling molecule in plants.
Collapse
Affiliation(s)
- Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
- Jujube Industry Technology Research Institute of Hebei, Baoding, Hebei 071001, China
| | - Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xuan Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
- "Dongzao" Research Institute of Zhanhua District, Binzhou, Shandong 256800, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhihui Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xin Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yuetong Chu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yaning Gao
- Beijing Pharma and Biotech Center, Beijing 100176, China
| | - Fangyuan Yang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yulu Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Qiong Zhang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
- Jujube Industry Technology Research Institute of Hebei, Baoding, Hebei 071001, China
| |
Collapse
|
45
|
Li W, Tian YY, Li JY, Yuan L, Zhang LL, Wang ZY, Xu X, Davis SJ, Liu JX. A competition-attenuation mechanism modulates thermoresponsive growth at warm temperatures in plants. THE NEW PHYTOLOGIST 2023; 237:177-191. [PMID: 36028981 DOI: 10.1111/nph.18442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Global warming has profound impact on growth and development, and plants constantly adjust their internal circadian clock to cope with external environment. However, how clock-associated genes fine-tune thermoresponsive growth in plants is little understood. We found that loss-of-function mutation of REVEILLE5 (RVE5) reduces the expression of circadian gene EARLY FLOWERING 4 (ELF4) in Arabidopsis, and confers accelerated hypocotyl growth under warm-temperature conditions. Both RVE5 and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) accumulate at warm temperatures and bind to the same EE cis-element presented on ELF4 promoter, but the transcriptional repression activity of RVE5 is weaker than that of CCA1. The binding of CCA1 to ELF4 promoter is enhanced in the rve5-2 mutant at warm temperatures, and overexpression of ELF4 in the rve5-2 mutant background suppresses the rve5-2 mutant phenotype at warm temperatures. Therefore, the transcriptional repressor RVE5 finetunes ELF4 expression via competing at a cis-element with the stronger transcriptional repressor CCA1 at warm temperatures. Such a competition-attenuation mechanism provides a balancing system for modulating the level of ELF4 and thermoresponsive hypocotyl growth under warm-temperature conditions.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Ying-Ying Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lin-Lin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Ye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Seth Jon Davis
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
46
|
Kim K, Shin J, Kang TA, Kim B, Kim WC. CRISPR/Cas9-mediated AtGATA25 mutant represents a novel model for regulating hypocotyl elongation in Arabidopsis thaliana. Mol Biol Rep 2023; 50:31-41. [PMID: 36301462 PMCID: PMC9884261 DOI: 10.1007/s11033-022-07926-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Plants have evolved to adapt to the ever-changing environments through various morphological changes. An organism anticipates and responds to changes in its environment via the circadian clock, an endogenous oscillator lasting approximately 24 h. The circadian clock regulates various physiological processes, such as hypocotyl elongation in Arabidopsis thaliana. Phytochrome interacting factor 4 (PIF4), a member of the bHLH protein family, plays a vital hub role in light signaling pathways and temperature-mediated growth response mechanisms. PIF4 is controlled by the circadian clock and interacts with several factors. However, the components that regulate PIF4 transcription and activity are not clearly understood. METHODS AND RESULTS Here, we showed that the Arabidopsis thaliana GATA25 (AtGATA25) transcription factor plays a fundamental role in promoting hypocotyl elongation by positively regulating the expression of PIF4. This was confirmed to in the loss-of-function mutant of AtGATA25 via CRISPR/Cas9-mediated gene editing, which inhibits hypocotyl elongation and decreases the expression of PIF4. In contrast, the overexpression of AtGATA25 in transgenic plants resulted in increased expression of PIF4 and enhanced hypocotyl elongation. To better understand AtGATA25-mediated PIF4 transcriptional regulation, we analyzed the promoter region of the target gene PIF4 and characterized the role of GATA25 through transcriptional activation analysis. CONCLUSION Our findings suggest a novel role of the AtGATA25 transcription factor in hypocotyl elongation.
Collapse
Affiliation(s)
- Kihwan Kim
- Department of Applied Biosciences, Kyungpook National University, 41566 Daegu, Republic of Korea
| | - Juhyung Shin
- Department of Integrative Biology, Kyungpook National University, 41566 Daegu, Republic of Korea
| | - Tae-An Kang
- Department of Applied Biosciences, Kyungpook National University, 41566 Daegu, Republic of Korea
| | - Byeonggyu Kim
- Department of Integrative Biology, Kyungpook National University, 41566 Daegu, Republic of Korea
| | - Won-Chan Kim
- Department of Applied Biosciences, Kyungpook National University, 41566 Daegu, Republic of Korea ,Department of Integrative Biology, Kyungpook National University, 41566 Daegu, Republic of Korea
| |
Collapse
|
47
|
Michael TP. Time of Day Analysis over a Field Grown Developmental Time Course in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 12:166. [PMID: 36616295 PMCID: PMC9823482 DOI: 10.3390/plants12010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plants integrate time of day (TOD) information over an entire season to ensure optimal growth, flowering time, and grain fill. However, most TOD expression studies have focused on a limited number of combinations of daylength and temperature under laboratory conditions. Here, an Oryza sativa (rice) expression study that followed TOD expression in the field over an entire growing season was re-analyzed. Similar to Arabidopsis thaliana, almost all rice genes have a TOD-specific expression over the developmental time course. As has been suggested in other grasses, thermocycles were a stronger cue for TOD expression than the photocycles over the growing season. All the core circadian clock genes display consistent TOD expression over the season with the interesting exception that the two grass paralogs of EARLY FLOWERING 3 (ELF3) display a distinct phasing based on the interaction between thermo- and photo-cycles. The dataset also revealed how specific pathways are modulated to distinct TOD over the season consistent with the changing biology. The data presented here provide a resource for researchers to study how TOD expression changes under natural conditions over a developmental time course, which will guide approaches to engineer more resilient and prolific crops.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Yeh CW, Zhong HQ, Ho YF, Tian ZH, Yeh KW. The diurnal emission of floral scent in Oncidium hybrid orchid is controlled by CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) through the direct regulation on terpene synthase. BMC PLANT BIOLOGY 2022; 22:472. [PMID: 36195835 PMCID: PMC9531428 DOI: 10.1186/s12870-022-03850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND To adapt the periodic fluctuation of environmental factors, plants are subtle to monitor the natural variation for the growth and development. The daily activities and physiological functions in coordination with the natural variation are regulated by circadian clock genes. The circadian emission of floral scents is one of the rhythmic physiological activities controlled by circadian clock genes. Here, we study the molecular mechanism of circadian emission pattern of ocimene and linalool compounds in Oncidium Sharry Baby (Onc. SB) orchid. RESULTS GC-Mass analysis revealed that Onc. SB periodically emitted ocimene and linalool during 6 to 14 o'clock daily. Terpene synthase, one of the key gene in the terpenoid biosynthetic pathway is expressed in coordination with scent emission. The promoter structure of terpene synthase revealed a circadian binding sequence (CBS), 5'-AGATTTTT-3' for CIRCADIAN CLOCK ASSOCIATED1 (CCA1) transcription factor. EMSA data confirms the binding affinity of CCA1. Transactivation assay further verified that TPS expression is regulated by CCA1. It suggests that the emission of floral scents is controlled by CCA1. CONCLUSIONS The work validates that the mechanism of circadian emission of floral scents in Onc. Sharry Baby is controlled by the oscillator gene, CCA1(CIRCADIAN CLOCK ASSOCIATED 1) under light condition. CCA1 transcription factor up-regulates terpene synthase (TPS) by binding on CBS motif, 5'-AGATTTTT-3' of promoter region to affect the circadian emission of floral scents in Onc. SB.
Collapse
Affiliation(s)
- Chao-Wei Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, No 1, Sect. 4, Roosevelt Road, 106, Taipei, Taiwan
| | - Hui-Qin Zhong
- Fujian Engineering Research Center for Characteristic Floriculture, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Yung-Feng Ho
- Institute of Plant Biology, College of Life Science, National Taiwan University, No 1, Sect. 4, Roosevelt Road, 106, Taipei, Taiwan
| | - Zhi-Hong Tian
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Kai-Wun Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, No 1, Sect. 4, Roosevelt Road, 106, Taipei, Taiwan.
- Center for Weather Climate and Disaster Research, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
49
|
Rees H, Rusholme-Pilcher R, Bailey P, Colmer J, White B, Reynolds C, Ward SJ, Coombes B, Graham CA, de Barros Dantas LL, Dodd AN, Hall A. Circadian regulation of the transcriptome in a complex polyploid crop. PLoS Biol 2022; 20:e3001802. [PMID: 36227835 PMCID: PMC9560141 DOI: 10.1371/journal.pbio.3001802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
The circadian clock is a finely balanced timekeeping mechanism that coordinates programmes of gene expression. It is currently unknown how the clock regulates expression of homoeologous genes in polyploids. Here, we generate a high-resolution time-course dataset to investigate the circadian balance between sets of 3 homoeologous genes (triads) from hexaploid bread wheat. We find a large proportion of circadian triads exhibit imbalanced rhythmic expression patterns, with no specific subgenome favoured. In wheat, period lengths of rhythmic transcripts are found to be longer and have a higher level of variance than in other plant species. Expression of transcripts associated with circadian controlled biological processes is largely conserved between wheat and Arabidopsis; however, striking differences are seen in agriculturally critical processes such as starch metabolism. Together, this work highlights the ongoing selection for balance versus diversification in circadian homoeologs and identifies clock-controlled pathways that might provide important targets for future wheat breeding.
Collapse
Affiliation(s)
- Hannah Rees
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Paul Bailey
- Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
| | - Joshua Colmer
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Benjamen White
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Connor Reynolds
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Benedict Coombes
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Calum A. Graham
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Antony N. Dodd
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|