1
|
Zhang P, Jackson E, Li X, Zhang Y. Salicylic acid and jasmonic acid in plant immunity. HORTICULTURE RESEARCH 2025; 12:uhaf082. [PMID: 40343347 PMCID: PMC12058309 DOI: 10.1093/hr/uhaf082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Salicylic acid (SA) and jasmonic acid (JA) are the two most important phytohormones in plant immunity. While SA plays pivotal roles in local and systemic acquired resistance (SAR) against biotrophic pathogens, JA, on the other hand, contributes to defense against necrotrophic pathogens, herbivores, and induced systemic resistance (ISR). Over the past 30 years, extensive research has elucidated the biosynthesis, metabolism, physiological functions, and signaling of both SA and JA. Here, we present an overview of signaling pathways of SA and JA and how they interact with each other to fine-tune plant defense responses.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Zhao J, Xin Y, Cui W, Li P, Su J, Zhao L, Wang Q. The ankyrin repeat-containing protein OsANK3 affects grain size and quality in rice. PLANTA 2025; 262:21. [PMID: 40493206 DOI: 10.1007/s00425-025-04734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 05/27/2025] [Indexed: 06/12/2025]
Abstract
MAIN CONCLUSION Mutation of OsANK3 increases grain length, grain weight, and chalkiness. OsANK3 influences grain size and quality by regulating genes involved in the cell cycle and starch metabolism. Grain size and endosperm starch content are key determinants of rice yield and quality. In this study, we investigated the function of OsANK3, a gene encoding ankyrin repeats, in regulating grain development traits. This gene was initially identified through mass spectrometry analysis as a potential upstream regulator of rice chalkiness in our previous screening. Using CRISPR/Cas9 technology, we generated OsANK3 knockout mutants (cr-osank3-2, cr-osank3-6, and cr-osank3-7) and found that OsANK3 is predominantly expressed in stems and leaves, with subcellular localization in the cytoplasm and plasma membrane. Disruption of OsANK3 increased plant height, grain length, grain weight, and chalkiness while reducing total starch content, amylose content (AC), and gel consistency (GC). Cytological analysis revealed that the elongated grains in cr-osank3 mutants resulted from enhanced cell proliferation and elongation in the outer lemma. qRT-PCR data demonstrated that OsANK3 regulates cell cycle-related genes, thereby influencing cell division and expansion. In addition, starch biosynthesis genes (OsGBSSI, OsAGPL1) were down-regulated in mutants, whereas starch hydrolase genes (OsAmy1 A, OsAmy3B) were up-regulated. Our findings demonstrate that OsANK3 knockout enhances grain size but compromises grain quality by altering cell dynamics and starch metabolism. This study elucidates the molecular role of OsANK3 in grain development and provides a valuable target for rice breeding programs.
Collapse
Affiliation(s)
- Jinhui Zhao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, China.
| | - Yi Xin
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, China
| | - Weiwei Cui
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, China
| | - Pengxi Li
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, China
| | - Jia Su
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, China
| | - Lina Zhao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, China
| | - Quanxiu Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, China.
| |
Collapse
|
3
|
Lu H, Lu C, Huang S, Liu W, Wang L, Yang C, Wang E, Li L. Rhizosphere microbes mitigate the shade avoidance responses in Arabidopsis. Cell Host Microbe 2025:S1931-3128(25)00152-0. [PMID: 40403725 DOI: 10.1016/j.chom.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Shade avoidance responses are defined as the plastic responses of plants to neighboring shading signals through changes in the light spectrum, which limit planting density in modern agricultural practices. Here, we found that shade avoidance responses depend on soil microbes and identified a microbe-root-shoot circuit that bolsters aboveground shade tolerance in Arabidopsis thaliana. Rhizosphere microbes systemically regulate the expression of aboveground shade-responsive genes, which are associated with the altered homeostasis of jasmonic-acid- and salicylic-acid-related metabolites. We further found that the plasma-membrane-localized pattern recognition receptors FLS2/BAK1 and transcription factors MYC2/phytochrome-interacting factors (PIFs)/LONG HYPOCOTYL5 (HY5) are required for rhizosphere-microbe-alleviated shade avoidance. Our study characterized a signaling cascade (FLS2/BAK1-MYC2-PIF4/HY5) and provided a strategy for mitigating aboveground shade responses using rhizosphere microorganisms.
Collapse
Affiliation(s)
- Huanhuan Lu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Caiyi Lu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Sha Huang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenbo Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Like Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chuanwei Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Lin Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Raghuraman P, Park S. Exploring the modulation of phosphorylation and SUMOylation-dependent NPR1 conformational switching on immune regulators TGA3 and WRKY70 through molecular simulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109711. [PMID: 40056739 DOI: 10.1016/j.plaphy.2025.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
NPR1 (Nonexpressor pathogenesis-related genes 1) is regulated by multisite phosphorylation and SUMOylation, serving as a master switch for effector-triggered plant immunity through a transcriptional activator (TGA3) and repressor (WRKY70) are experimentally well studied. However, the conformational relationship between the various phosphorylation, un-phosphorylation states, and SUMOylation's role in the functional switch remains unclear. Using deep learning-based molecular modeling, docking, and multi-nanosecond simulations (totaling 2 μs) with end-state free energy calculations, we unveil how different phosphorylation states impact the dynamic stability of NPR1's four phospho-serine residues (Ser11, Ser15, Ser55, & Ser59) and binding of the TGA3-WRKY70 over SUMOylation. Results from our simulations show that the salicylic-acid induced P-Ser11/15NPR1-SUMO3 stabilizes helices and the flexible activation loop (α22Lys423 - α1Arg50 & L35Asp467-Arg51α51, and Gly27L3), thereby switching association with TGA3. The inter-helix salt-bridge formed (L10Arg99-Glu323α9 and α14Glu280-Pro264L6) between the phosphorylated NPR1-SUMO3-TGA3 engage in tight control of conformational regulation were disengaged in the unphosphorylated system. The P-Ser55/59NPR1-SUMO3-WRKY70 reorients itself and forms an electrostatic and hydrogen bond with Lys145α7 - L2Asp26, L6Arg99 - Leu293L18 and Lys262L15 - Glu241L15, α13Val239 (α310), & L17Leu267 keeps complex stable and quiescent compare to unphosphorylated NPR1-WRKY70. Subsequently, the essential dynamic and secondary structural analysis reveals that the phosphorylation inhibits the α516 (long helix) formation and reduces the communication space between the 460α25-βturn3-α30-L42590 (NPR1) and 90L9-L10107 (SUMO3), making the binding more suitable for TGA3 (260βturn-L6270) and WRKY70 (230L15-L16265) via activation loop. These findings, which reveal the atomic and structural details of the NPR1's post-translational modification, will illuminate future investigations into enhancing plant immunity.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
5
|
Wei J, Liu G, Sun M, Wang H, Yang P, Cheng S, Huang L, Wei S, Liu D. Comprehensive analysis of morphology, transcriptomics, and metabolomics of banana ( Musa spp.) molecular mechanisms related to plant height. FRONTIERS IN PLANT SCIENCE 2025; 16:1509193. [PMID: 40201783 PMCID: PMC11975952 DOI: 10.3389/fpls.2025.1509193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/03/2025] [Indexed: 04/10/2025]
Abstract
Introduction Plant height is an important agronomic trait that not only affects crop yield but is also related to crop resistance to abiotic and biotic stresses. Methods In this study, we analyzed the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) between Brazilian banana and local dwarf banana (Df19) through transcriptomics and metabolomics, and combined morphological differences and endogenous hormone content to analyze and discuss themolecular mechanisms controlling banana height. Results Sequencing data showed that a total of 2851 DEGs and 1037 DAMs were detected between Brazilian banana and local dwarf banana (Df19). The main differential biological pathways of DEGs involve plant hormone signaling transduction, Cutin, suberin and wax biosynthesis, phenylpropanoid biosynthesis, mitogen-activated protein kinase (MAPK) signaling pathway in plants, amino sugar and nucleotide sugar metabolism, etc. DAMs were mainly enriched in ATP binding cassette (ABC) transporters, amino and nucleotide sugar metabolism, glycerophospholipid metabolism, lysine degradation, and phenylalanine metabolism. Discussion Our analysis results indicate that banana plant height is the result of the synergistic effects of hormones such as abscisic acid (ABA), gibberellic acid (GA3), indole-3-acetic acid (IAA), jasmonic acid (JA), brassinosteroids (BR) and other plant hormones related to growth. In addition, transcription factors and ABC transporters may also play important regulatory roles in regulating the height of banana plants.
Collapse
Affiliation(s)
- Junya Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding/National Tropical Fruit Improvement Center/Key Laboratory of Crop Genetic Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Improvement and Innovation of Tropical Crop Resources of Hainan Province, Haikou, Hainan, China
| | - Guoyin Liu
- Tropical Agriculture and Forestry College, Hainan University, Haikou, Hainan, China
| | - Mingzhen Sun
- Tropical Agriculture and Forestry College, Hainan University, Haikou, Hainan, China
| | - Hao Wang
- Tropical Agriculture and Forestry College, Hainan University, Haikou, Hainan, China
| | - Ping Yang
- School of Design, Hainan Vocational University of Science and Technology, Haikou, Hainan, China
| | - Shimin Cheng
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding/National Tropical Fruit Improvement Center/Key Laboratory of Crop Genetic Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Improvement and Innovation of Tropical Crop Resources of Hainan Province, Haikou, Hainan, China
| | - Lina Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding/National Tropical Fruit Improvement Center/Key Laboratory of Crop Genetic Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Improvement and Innovation of Tropical Crop Resources of Hainan Province, Haikou, Hainan, China
| | - Shouxing Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding/National Tropical Fruit Improvement Center/Key Laboratory of Crop Genetic Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Improvement and Innovation of Tropical Crop Resources of Hainan Province, Haikou, Hainan, China
| | - Debing Liu
- Tropical Agriculture and Forestry College, Hainan University, Haikou, Hainan, China
| |
Collapse
|
6
|
Jing R, Liu X, Li R, Du L. Genome-Wide Identification, Characterization, and Expression Analysis of the BTB domain-Containing Protein Gene Family in Poplar. Biochem Genet 2025:10.1007/s10528-025-11083-6. [PMID: 40111703 DOI: 10.1007/s10528-025-11083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
In recent years, the BTB (Bric-a-brac/Tramtrack/Broad complex) gene family in plants has garnered widespread attention for its regulatory roles in plant growth and development. However, knowledge regarding BTBs in poplar trees remains limited. Here, we identified 94 BTB gene family members across the genome of Populus alba L. Through phylogenetic analysis, these members were classified into seven subfamilies and 16 branches, followed by comprehensive bioinformatics and biological analyses. Structural analysis revealed that poplar BTB gene family exhibits both high conservation and diversity, with distinct gene structures and protein features. Expression pattern analysis demonstrated differential expression of poplar BTB genes across various tissues, hormone treatments, and under drought stress, suggesting their potential roles in poplar growth and development and drought response. This study provides a vital foundation and reference for unraveling the BTB-involved regulatory mechanisms underlying poplar growth and development and drought response.
Collapse
Affiliation(s)
- Ruotong Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xuan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Zhang B, Huang S, Guo S, Meng Y, Tian Y, Zhou Y, Chen H, Li X, Zhou J, Chen W. ATG6 interacting with NPR1 increases Arabidopsis thaliana resistance to Pst DC3000/ avrRps4 by increasing its nuclear accumulation and stability. eLife 2025; 13:RP97206. [PMID: 40036061 PMCID: PMC11879114 DOI: 10.7554/elife.97206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Shuyu Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia UniversityHohhotChina
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia UniversityHohhotChina
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Yue Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Hang Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Xue Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| |
Collapse
|
8
|
Tian H, Xu L, Li X, Zhang Y. Salicylic acid: The roles in plant immunity and crosstalk with other hormones. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:773-785. [PMID: 39714102 PMCID: PMC11951402 DOI: 10.1111/jipb.13820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Land plants use diverse hormones to coordinate their growth, development and responses against biotic and abiotic stresses. Salicylic acid (SA) is an essential hormone in plant immunity, with its levels and signaling tightly regulated to ensure a balanced immune output. Over the past three decades, molecular genetic analyses performed primarily in Arabidopsis have elucidated the biosynthesis and signal transduction pathways of key plant hormones, including abscisic acid, jasmonic acid, ethylene, auxin, cytokinin, brassinosteroids, and gibberellin. Crosstalk between different hormones has become a major focus in plant biology with the goal of obtaining a full picture of the plant hormone signaling network. This review highlights the roles of SA in plant immunity and summarizes our current understanding of the pairwise interactions of SA with other major plant hormones. The complexity of these interactions is discussed, with the hope of stimulating research to address existing knowledge gaps in hormone crosstalk, particularly in the context of balancing plant growth and defense.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| | - Lu Xu
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Xin Li
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Yuelin Zhang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| |
Collapse
|
9
|
Zhang H, Xu G, Mubeen S, Wei R, Rehman M, Cao S, Wang C, Yue J, Pan J, Jin G, Li R, Chen T, Chen P. Physiological and Transcriptome Analysis Reveal the Underlying Mechanism of Salicylic Acid-Alleviated Drought Stress in Kenaf ( Hibiscus cannabinus L.). Life (Basel) 2025; 15:281. [PMID: 40003690 PMCID: PMC11856667 DOI: 10.3390/life15020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Salicylic acid (SA) plays a crucial role in alleviating drought stress in plants. However, little is known about the molecular mechanisms underlying exogenous SA on the drought tolerance of kenaf. In this study, the kenaf seedlings were subjected to physiological and transcriptomic analysis under control (CK), moderate drought stress (D), and moderate drought stress with 1 mM SA (D_SA). Under drought conditions, SA significantly improved the plant biomass, leaf area, antioxidant enzyme activities (SOD, POD, and CAT), soluble sugars, starch and proline contents, and photosynthesis, while the contents of MDA, H2O2, and O2- were significantly decreased. A total of 3430 (1118 up-regulated and 2312 down-regulated) genes were differentially expressed in group D, compared with group CK. At the same time, 92 (56 up-regulated and 36 down-regulated) genes were differentially expressed in group D_SA compared with group D. GO and KEGG analysis showed that the differentially expressed genes (DEGs) were enriched in various metabolic pathways, such as carbohydrate metabolism, lipid metabolism, and the metabolism of terpenoids and polyketides. Results showed that the genes related to the antioxidant system, sucrose and starch synthesis, osmoregulation, ABA signal regulation, and differentially expressed transcription factors, such as AP2/ERF4 and NF-Y1, were involved in the increased drought tolerance of kenaf under exogenous SA. Virus-induced gene silencing (VIGS)-mediated silencing of salicylate binding protein 2 gene (HcSABP2) decreased the drought resistance of kenaf seedlings. Thus, the present study provides valuable insights into the regulatory mechanism of exogenous SA in alleviating drought stress in kenaf.
Collapse
Affiliation(s)
- Hui Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Guofeng Xu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Rujian Wei
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Shan Cao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Caijin Wang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Jiao Yue
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China; (G.J.); (T.C.)
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China; (G.J.); (T.C.)
| | - Peng Chen
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| |
Collapse
|
10
|
Dutta S, Chattopadhyay S, Maurya JP. The concerted function of a novel class of transcription factors, ZBFs, in light, jasmonate, and abscisic acid signaling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:746-768. [PMID: 39115948 DOI: 10.1093/jxb/erae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Several classes of transcription factors have been investigated in light signaling pathways that bind to the light-responsive elements (LREs) present in the promoters of light regulatory genes for transcriptional regulation. Some of these transcription factors have been shown to bind to numerous promoters through genome-wide ChIP-on-chip (ChIP-chip) studies. Furthermore, through the integration of ChIP-seq and RNA-seq techniques, it has been demonstrated that a transcription factor modifies the expression of numerous genes with which it interacts. However, the mode of action of these transcription factors and their dependency on other regulators in the pathway has just started to be unraveled. In this review, we focus on a particular class of transcription factors, ZBFs (Z-box-binding factors), and their associated partners within the same or other classes of transcription factors and regulatory proteins during photomorphogenesis. Moreover, we have further made an attempt to summarize the crosstalk of these transcription factors with jasmonic acid-, abscisic acid-, and salicylic acid-mediated defense signaling pathways. This review offers an in-depth insight into the manner in which ZBFs and their interactors reshape cellular functions and plant behavior. The underlying principles not only contribute to a comprehensive understanding but also establish a framework for analyzing the interplay between early developmental events and hormone signaling, a regulation orchestrated by the ZBF family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biotechnology, School of Health Science and Translational Research, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
| | - Jay Prakash Maurya
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
11
|
Ma S, Xu S, Tao H, Huang Y, Feng C, Huang G, Lin S, Sun Y, Chen X, Fabrice Kabore MA, Tareke Woldegiorgis S, Ai Y, Zhang L, Liu W, He H. OsBRW1, a novel blast-resistant gene, coded a NBS-LRR protein to interact with OsSRFP1 to balance rice growth and resistance. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:250-267. [PMID: 39492591 DOI: 10.1111/pbi.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
It is urgent to mine novel blast-resistant genes in rice and develop new rice varieties with pyramiding blast-resistant genes. In this study, a new blast-resistant gene, OsBRW1, was screened from a set of rice near-isogenic lines (NILs) with different blast-resistant ability. Under the infection of Magnaporthe oryzae (M. oryzae), OsBRW1 in the resistant NIL Pi-4b was highly induced than that in the susceptible NIL Pi-1 and their parent line CO39, and the blast-resistant ability of OsBRW1 was further confirmed by using CRISPR/Cas9 knockout and over-expression methods. The protein encoded by OsBRW1 was a typical NBS-LRR with NB-ARC domain and localized in both cytoplasm and nucleus, and the transient expression of OsBRW1 was capable of triggering hypersensitive response in tobacco leaves. Protein interaction experiments showed that OsBRW1 protein directly interacted with OsSRFP1. At the early infection stage of M. oryzae, OsBRW1 gene induced OsSRFP1 to highly expression level and accumulated H2O2, up-regulated the defence responsive signalling transduction genes and the pathogenesis-related genes and increased JA and SA content in the resistant NIL Pi-4b. By contrary, lower content of endogenous JA and SA in osbrw1 mutants was found at the same stage. After that, OsSRFP1 was down-regulated to constitution abundance to balance the growth of the resistant NIL Pi-4b. In summary, OsBRW1 solicited OsSRFP1 to resist the infection of blast fungus in rice by inducing the synergism of induced systemic resistance (ISR) and system acquired resistance (SAR) and to balance the growth of rice plants.
Collapse
Affiliation(s)
- Shiwei Ma
- College of Environmental and Biological Engineering, Putian University, Putian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shichang Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huan Tao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunxia Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changqing Feng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guanpeng Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shoukai Lin
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Yiqiong Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuan Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | - Yufang Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lina Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaqin He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Zhou Y, Liu P, Tang Y, Liu J, Tang Y, Zhuang Y, Li X, Xu K, Zhou Z, Li J, He G, Deng XW, Yang L. NPR1 promotes blue light-induced plant photomorphogenesis by ubiquitinating and degrading PIF4. Proc Natl Acad Sci U S A 2024; 121:e2412755121. [PMID: 39700134 DOI: 10.1073/pnas.2412755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Light is a major determinant of plant growth and survival. NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) acts as a receptor for salicylic acid (SA) and serves as the key regulator of SA-mediated immune responses. However, the mechanisms by which plants integrate light and SA signals in response to environmental changes, as well as the role of NPR1 in regulating plant photomorphogenesis, remain poorly understood. This study shows that SA promotes plant photomorphogenesis by regulating PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Specifically, NPR1 promotes photomorphogenesis under blue light by facilitating the degradation of PIF4 through light-induced polyubiquitination. NPR1 acts as a substrate adaptor for the CULLIN3-based E3 ligase, which ubiquitinates PIF4 at Lys129, Lys252, and Lys428, and leading to PIF4 degradation via the 26S proteasome pathway. Genetically, PIF4 is epistatic to NPR1 in the regulation of blue light-induced photomorphogenesis, suggesting it acts downstream of NPR1. Furthermore, cryptochromes mediate the polyubiquitination of PIF4 by NPR1 in response to blue light by promoting the interaction and ubiquitination between NPR1 and PIF4. Transcriptome analysis revealed that under blue light, NPR1 and PIF4 coordinately regulate numerous downstream genes related to light and auxin signaling pathways. Overall, these findings unveil a role for NPR1 in photomorphogenesis, highlighting a mechanism for posttranslational regulation of PIF4 in response to blue light. This mechanism plays a pivotal role in the fine-tuning of plant development, enabling plants to adapt to complex environmental changes.
Collapse
Affiliation(s)
- Yangyang Zhou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pengtao Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yaqi Tang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yaru Tang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yumeng Zhuang
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoting Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Kaiqi Xu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhi Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Guangming He
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Li Yang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Foret J, Kim JG, Sattely ES, Mudgett MB. Transcriptome analysis reveals role of transcription factor WRKY70 in early N-hydroxy-pipecolic acid signaling. PLANT PHYSIOLOGY 2024; 197:kiae544. [PMID: 39404105 DOI: 10.1093/plphys/kiae544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/31/2024] [Indexed: 12/24/2024]
Abstract
N-Hydroxy-pipecolic acid (NHP) is a mobile metabolite essential for inducing and amplifying systemic acquired resistance (SAR) following a pathogen attack. Early phases of NHP signaling leading to immunity have remained elusive. Here, we report the early transcriptional changes mediated by NHP and the role salicylic acid (SA) plays during this response in Arabidopsis (Arabidopsis thaliana). We show that distinct waves of expression within minutes to hours of NHP treatment include increased expression of WRKY transcription factor genes as the primary transcriptional response, followed by the induction of WRKY-regulated defense genes as the secondary response. Most genes induced by NHP within minutes were SA dependent, whereas those induced within hours were SA independent. These data suggest that NHP induces the primary transcriptional response under basal levels of SA and that new SA biosynthesis via ISOCHORISMATE SYNTHASE 1/SA-INDUCTION DEFICIENT 2 is dispensable for inducing the secondary transcriptional response. We demonstrate that WRKY70 is required for the induced expression of a set of genes defining some of the secondary transcriptional response, SAR protection, and NHP-dependent enhancement of reactive oxygen species production in response to flagellin treatment. Our study highlights the key genes and pathways defining early NHP responses and the role of WRKY70 in regulating NHP-dependent transcription.
Collapse
Affiliation(s)
- Jessica Foret
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
14
|
Hirose S, Horiyama S, Morikami A, Fujiwara K, Tsukagoshi H. Eugenol and basil essential oil as priming agents for enhancing Arabidopsis immune response. Biosci Biotechnol Biochem 2024; 89:41-50. [PMID: 39500548 DOI: 10.1093/bbb/zbae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/28/2024] [Indexed: 12/24/2024]
Abstract
Plants, as sessile organisms, must adapt to environmental changes and defend themselves against biotic stress, including pathogen attack. Their immune responses entail recognition of pathogen patterns, activation of defense mechanisms, and accumulation of various antimicrobial compounds. Eugenol, abundant in basil, has antibacterial properties and enhances plant resistance to viruses. However, its priming effects on biotrophic pathogens remain unclear. Thus, we investigated whether eugenol and basil essential oils could prime Arabidopsis thaliana immunity against the hemi-biotroph Pseudomonas syringae pv. maculicola (Psm) MAFF302723. Our study revealed that both eugenol and basil essential oils functioned as priming agents, mitigating disease symptoms upon Psm infection. This priming effect occurred via NPR1-dependent but salicylic acid-independent signaling. Moreover, our gene expression analysis suggested that priming might influence jasmonic acid/ethylene signaling. These findings underscore the potential of employing natural compounds such as basil essential oil to bolster plant immune responses in sustainable agricultural practices.
Collapse
Affiliation(s)
- Shogo Hirose
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | - Soyoka Horiyama
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | | | - Kazuki Fujiwara
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | | |
Collapse
|
15
|
Wang Z, Li Z, Zhang Y, Liao J, Guan K, Zhai J, Meng P, Tang X, Dong T, Song Y. Root hair developmental regulators orchestrate drought triggered microbiome changes and the interaction with beneficial Rhizobiaceae. Nat Commun 2024; 15:10068. [PMID: 39567534 PMCID: PMC11579020 DOI: 10.1038/s41467-024-54417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Drought is one of the most serious abiotic stresses, and emerging evidence suggest plant microbiome affects plant drought tolerance. However, there is a lack of genetic evidence regarding whether and how plants orchestrate the dynamic assembly of the microbiome upon drought. By utilizing mutants with enhanced or decreased root hair densities, we find that root hair regulators also affect drought induced root microbiome changes. Rhizobiaceae is a key biomarker taxa affected by root hair related mutants. We isolated and sequenced 1479 root associated microbes, and confirmed that several Rhizobium strains presented stress-alleviating activities. Metagenome, root transcriptome and root metabolome studies further reveal the multi-omic changes upon drought stress. We knocked out an ornithine cyclodeaminase (ocd) gene in Rhizobium sp. 4F10, which significantly dampens its stress alleviating ability. Our genetic and integrated multi-omics studies confirm the involvement of host genetic effects in reshaping a stress-alleviating root microbiome during drought, and provide mechanistic insights into Rhizobiaceae mediated abiotic stress protection.
Collapse
Affiliation(s)
- Zhenghong Wang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Zewen Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingye Liao
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Kaixiang Guan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingxuan Zhai
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Pengfei Meng
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Xianli Tang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yi Song
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
de Araújo AC, Brasileiro ACM, Martins ADCQ, Grynberg P, Togawa RC, Saraiva MADP, Miller RNG, Guimaraes PM. Ectopic expression of a truncated NLR gene from wild Arachis enhances resistance to Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2024; 15:1486820. [PMID: 39606668 PMCID: PMC11598430 DOI: 10.3389/fpls.2024.1486820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Fusarium oxysporum causes devastating vascular wilt diseases in numerous crop species, resulting in substantial yield losses. The Arabidopsis thaliana-F. oxysporum f.sp. conglutinans (FOC) model system enables the identification of meaningful genotype-phenotype correlations and was applied in this study to evaluate the effects of overexpressing an NLR gene (AsTIR19) from Arachis stenosperma against pathogen infection. AsTIR19 overexpression (OE) lines exhibited enhanced resistance to FOC without any discernible phenotype penalties. To elucidate the underlying resistance mechanisms mediated by AsTIR19 overexpression, we conducted whole transcriptome sequencing of an AsTIR19-OE line and non-transgenic wild-type (WT) plants inoculated and non-inoculated with FOC using Illumina HiSeq4000. Comparative analysis revealed 778 differentially expressed genes (DEGs) attributed to transgene overexpression, while fungal inoculation induced 434 DEGs in the OE line, with many falling into defense-related Gene Ontology (GO) categories. GO and KEGG enrichment analysis showed that DEGs were enriched in the phenylpropanoid and flavonoid pathways in the OE plants. This comprehensive transcriptomic analysis underscores how AsTIR19 overexpression reprograms transcriptional networks, modulating the expression of stress-responsive genes across diverse metabolic pathways. These findings provide valuable insights into the molecular mechanisms underlying the role of this NLR gene under stress conditions, highlighting its potential to enhance resistance to Fusarium oxysporum.
Collapse
Affiliation(s)
| | - Ana Cristina Miranda Brasileiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
- National Institute of Science and Technology - INCT PlantStress Biotech, EMBRAPA, Brasilia, DF, Brazil
| | | | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
| | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
| | | | - Robert Neil Gerard Miller
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
- National Institute of Science and Technology - INCT PlantStress Biotech, EMBRAPA, Brasilia, DF, Brazil
| | - Patricia Messenberg Guimaraes
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
- National Institute of Science and Technology - INCT PlantStress Biotech, EMBRAPA, Brasilia, DF, Brazil
| |
Collapse
|
17
|
Caseys C, Muhich AJ, Vega J, Ahmed M, Hopper A, Kelly D, Kim S, Madrone M, Plaziak T, Wang M, Kliebenstein DJ. Leaf abaxial and adaxial surfaces differentially affect the interaction of Botrytis cinerea across several eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1377-1391. [PMID: 39367581 DOI: 10.1111/tpj.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested how Botrytis cinerea, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96 B. cinerea strains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf-Botrytis interactions are complex with host-specific, surface-specific, and strain-specific patterns.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Anna Jo Muhich
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| | - Josue Vega
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Maha Ahmed
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Aleshia Hopper
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - David Kelly
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Sydney Kim
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Matisse Madrone
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Taylor Plaziak
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Melissa Wang
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| |
Collapse
|
18
|
Sukaoun K, Tsuchiya T, Uchiyama H. Pathogen challenge in Arabidopsis cotyledons induces enhanced disease resistance at newly formed rosette leaves via sustained upregulation of WRKY70. Genes Cells 2024. [PMID: 39467643 DOI: 10.1111/gtc.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Pathogenic microorganisms often target seedlings shortly after germination. If plants exhibit resistance or resilience to pathogens, those exposed to pathogen challenge may grow further and form new unchallenged leaves. The purpose of this study was to examine disease resistance in the newly formed leaves of plants subjected to pathogen challenge. We used Arabidopsis thaliana and the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) as the model pathosystem. We found that Arabidopsis seedlings primarily challenged with the avirulent isolate Hpa exhibited enhanced disease resistance against the virulent isolate Hpa in newly formed rosette leaves (NFRLs). Our observations indicated that the transcript levels of the transcription factor gene WRKY70, which is essential for full resistance to the virulent isolate HpaNoco2, were elevated and maintained at high levels in the NFRLs. In contrast, the transcript levels of the salicylic acid marker gene PR1 and systemic acquired resistance-related genes did not exhibit sustained elevation. The maintenance of increased transcript levels of WRKY70 operated independently of non-expressor of pathogenesis-related gene 1. These findings suggest that prolonged upregulation of WRKY70 represents a defensive state synchronized with plant development to ensure survival against subsequent infections.
Collapse
Affiliation(s)
- Kanoknipa Sukaoun
- Applied Life Sciences, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Tokuji Tsuchiya
- Applied Life Sciences, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hiroshi Uchiyama
- Applied Life Sciences, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
19
|
Soltaniband V, Barrada A, Delisle-Houde M, Dorais M, Tweddell RJ, Michaud D. Forest tree extracts induce resistance to Pseudomonas syringae pv. tomato in Arabidopsis. Sci Rep 2024; 14:24726. [PMID: 39433573 PMCID: PMC11494186 DOI: 10.1038/s41598-024-74576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
The widespread use of conventional pesticides for plant pathogen control poses significant risks to human health and the environment, and it is therefore crucial to develop environmentally friendly, human-safe alternatives to these products that offer a sustainable approach for crop protection. Here, we examined the potential of ethanolic extracts from four forest tree species for their antibacterial activity against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and their ability to trigger effective defense responses in the model plant Arabidopsis thaliana. The extracts exhibited direct toxic effects against Pst and triggered the expression of defense-related genes naturally induced by oxidative stress cues or the defense elicitor salicylic acid in leaf tissue. The direct antibacterial effects of the tree extracts, together with their defense gene-inducing effects in planta, resulted in a strong host plant-protecting effect against Pst. These findings suggest the eventual effectiveness of forest tree extracts as plant protectants against the bacterial pathogen Pst. They also suggest the potential of these extracts as a sustainable, eco-friendly alternative to conventional pesticides for the management of economically important plant pathogens.
Collapse
Affiliation(s)
- Veedaa Soltaniband
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Adam Barrada
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Maxime Delisle-Houde
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Martine Dorais
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Russell J Tweddell
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Dominique Michaud
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada.
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
20
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Fu X, Feng Y, Zhang Y, Bi H, Ai X. Salicylic acid improves chilling tolerance via CsNPR1-CsICE1 interaction in grafted cucumbers. HORTICULTURE RESEARCH 2024; 11:uhae231. [PMID: 39434831 PMCID: PMC11492142 DOI: 10.1093/hr/uhae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Salicylic acid (SA) plays a role in the regulation of grafting-induced cold tolerance. However, the molecular mechanism behind it is still unknown. Here, we established that the phenylalanine ammonia-lyase (PAL) pathway-dependent elevate in SA content in grafted cucumber leaves was not only synthesized in the leaves but also transported from the roots under chilling stress. RNAi-CsPAL with low SA content as rootstock reduced SA accumulation in grafted seedling leaves while decreasing rootstock-induced cold tolerance, as evidenced by higher electrolyte leakage (EL), hydrogen peroxide (H2O2), and superoxide anion (O2 ·-) contents and lower expression of cold-responsive genes (CsICE1, CsDREB1A, CsDREB1B, and CsCOR47), whereas OE-CsPAL with high SA content as rootstock improved the cold tolerance of grafted plants in comparison with the wild type (WT). In addition, CsNPR1 was significantly upregulated in grafted cucumber under chilling stress, with exogenous and endogenous overexpressed SA inducing its transcriptional expression and protein stability, which exhibited higher expression in grafted plants than in self-root plants. While CsNPR1-overexpression (OE-CsNPR1) seedlings as scions were more tolerant to chilling stress than WT seedlings, CsNPR1-suppression (Anti-CsNPR1) seedlings as scions were more vulnerable to chilling stress. Notably, CsNPR1-CsICE1 interactions alleviated ROS accumulation and activated the expression of CsDREB1A, CsDREB1B, CsCOR47, CsCOR15, CsCOR413, and CsKIN1 to enhance SA-mediated chilling tolerance in grafted cucumber. Overall, our findings reveal that SA enhances chilling tolerance in grafted cucumbers via the model of the CsNPR1-CsICE1 transcriptional regulatory cascade.
Collapse
Affiliation(s)
- Xin Fu
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yiqing Feng
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yanyan Zhang
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Institute of Peanut, Tai’an Academy of Agricultural Sciences, Tai’an, Shandong 271000, China
| | - Huangai Bi
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xizhen Ai
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
22
|
Raghuraman P, Park S. Molecular simulation reveals that pathogenic mutations in BTB/ANK domains of Arabidopsis thaliana NPR1 circumscribe the EDS1-mediated immune regulation. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154345. [PMID: 39353309 DOI: 10.1016/j.jplph.2024.154345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The NPR1 (nonexpressor of pathogenesis-related genes 1) is a key regulator of the salicylic-acid-mediated immune response caused by pathogens in Arabidopsis thaliana. Mutations C150Y and H334Y in the BTB/ANK domains of NPR1 inhibit the defense response, and transcriptional co-activity with enhanced disease susceptibility 1 (EDS1) has been revealed experimentally. This study examined the conformational changes and reduced NPR1-EDS1 interaction upon mutation using a molecular dynamics simulation. Initially, BTBC150YNPR1 and ANKH334YNPR1 were categorized as pathological mutations rather than others based on sequence conservation. A distant ortholog was used to map the common residues shared among the wild-type because the mutations were highly conserved. Overall, 179 of 373 residues were determining the secondary structures and fold versatility of conformations. In addition, the mutational hotspots Cys150, Asp152, Glu153, Cys155, His157, Cys160, His334, Arg339 and Lys370 were crucial for oligomer-to-monomer exchange. Subsequently, the atomistic simulations with free energy (MM/PB(GB)SA) calculations predicted structural displacements engaging in the N-termini α5133-178α7 linker connecting the central ANK regions (α13260-290α14 and α18320-390α22), where prominent long helices (α516) and short helices (α310) replaced with β-turns and loops disrupting hydrogen bonds and salt bridges in both mutants implicating functional regulation and activation. Furthermore, the mutation repositions the intact stability of multiple regions (L13C149-N356α20BTB/ANK-α17W301-E357α21N-ter/coiled-coil) compromising a dynamic interaction of NPR1-EDS1. By unveiling the transitions between the distinct functions of mutational perception, this study paves the way for future investigation to orchestrate additive host-adapted transcriptional reprogramming that controls defense-related regulatory mechanisms of NPR1s in plants.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
23
|
Zhang D, Yang X, Wen Z, Li Z, Zhang X, Zhong C, She J, Zhang Q, Zhang H, Li W, Zhao X, Xu M, Su Z, Li D, Dinesh-Kumar SP, Zhang Y. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. MOLECULAR PLANT 2024; 17:1369-1391. [PMID: 39066482 DOI: 10.1016/j.molp.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.
Collapse
Affiliation(s)
- Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiajie She
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianshen Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Soltani O, Jöst M, Hoffie I, Hensel G, Kappel C, Prag G, McKim S, Kumlehn J, Lenhard M. RING/U-box E3 protein BIR1 interacts with and ubiquitinates barley growth repressor BROAD LEAF1. PLANT PHYSIOLOGY 2024; 196:228-243. [PMID: 38829835 DOI: 10.1093/plphys/kiae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Establishment of final leaf size in plants relies on the precise regulation of 2 interconnected processes, cell division and cell expansion. The barley (Hordeum vulgare) protein BROAD LEAF1 (BLF1) limits cell proliferation and leaf growth in the width direction. However, how the levels of this potent repressor of leaf growth are controlled remains unclear. Here, we used a yeast 2-hybrid screen to identify the BLF1-INTERACTING RING/U-BOX 1 (BIR1) E3 ubiquitin ligase that interacts with BLF1 and confirmed the interaction of the 2 proteins in planta. Inhibiting the proteasome caused overaccumulation of a BLF1-eGFP fusion protein when co-expressed with BIR1, and an in vivo ubiquitination assay in bacteria confirmed that BIR1 can mediate ubiquitination of BLF1 protein. Consistent with regulation of endogenous BLF1 in barley by proteasomal degradation, inhibition of the proteasome in BLF1-vYFP-expressing barley plants caused an accumulation of the BLF1 protein. The BIR1 protein co-localized with BLF1 in nuclei and appeared to reduce BLF1 protein levels. Analysis of bir1-1 knockout mutants suggested the involvement of BIR1 in leaf growth control, although mainly on leaf length. Together, our results suggest that proteasomal degradation, in part mediated by BIR1, helps fine-tune BLF1 protein levels in barley.
Collapse
Affiliation(s)
- Ouad Soltani
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Moritz Jöst
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Iris Hoffie
- Department of Physiology and Cell Biology, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Götz Hensel
- Department of Physiology and Cell Biology, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Gali Prag
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarah McKim
- Division of Plant Sciences, The University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
25
|
Jeon HW, Iwakawa H, Naramoto S, Herrfurth C, Gutsche N, Schlüter T, Kyozuka J, Miyauchi S, Feussner I, Zachgo S, Nakagami H. Contrasting and conserved roles of NPR pathways in diverged land plant lineages. THE NEW PHYTOLOGIST 2024; 243:2295-2310. [PMID: 39056290 DOI: 10.1111/nph.19981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
The NPR proteins function as salicylic acid (SA) receptors in Arabidopsis thaliana. AtNPR1 plays a central role in SA-induced transcriptional reprogramming whereby positively regulates SA-mediated defense. NPRs are found in the genomes of nearly all land plants. However, we know little about the molecular functions and physiological roles of NPRs in most plant species. We conducted phylogenetic and alignment analyses of NPRs from 68 species covering the significant lineages of land plants. To investigate NPR functions in bryophyte lineages, we generated and characterized NPR loss-of-function mutants in the liverwort Marchantia polymorpha. Brassicaceae NPR1-like proteins have characteristically gained or lost functional residues identified in AtNPRs, pointing to the possibility of a unique evolutionary trajectory for the Brassicaceae NPR1-like proteins. We find that the only NPR in M. polymorpha, MpNPR, is not the master regulator of SA-induced transcriptional reprogramming and negatively regulates bacterial resistance in this species. The Mpnpr transcriptome suggested roles of MpNPR in heat and far-red light responses. We identify both Mpnpr and Atnpr1-1 display enhanced thermomorphogenesis. Interspecies complementation analysis indicated that the molecular properties of AtNPR1 and MpNPR are partially conserved. We further show that MpNPR has SA-binding activity. NPRs and NPR-associated pathways have evolved distinctively in diverged land plant lineages to cope with different terrestrial environments.
Collapse
Affiliation(s)
- Hyung-Woo Jeon
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidekazu Iwakawa
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Cornelia Herrfurth
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Titus Schlüter
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Shingo Miyauchi
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ivo Feussner
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Hirofumi Nakagami
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| |
Collapse
|
26
|
Scholten N, Hartmann M, Abts S, Abts L, Reinartz E, Altavilla A, Müller TJJ, Zeier J. In-depth analysis of isochorismate synthase-derived metabolism in plant immunity: Identification of meta-substituted benzoates and salicyloyl-malate. J Biol Chem 2024; 300:107667. [PMID: 39128721 PMCID: PMC11416591 DOI: 10.1016/j.jbc.2024.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
Isochorismate-derived metabolism enables biosynthesis of the plant defense hormone salicylic acid (SA) and its derivatives. In Arabidopsis thaliana, the stress-induced accumulation of SA depends on ISOCHORISMATE SYNTHASE1 (ICS1) and also requires the presumed isochorismate transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5) and the GH3 enzyme avrPphB SUSCEPTIBLE3 (PBS3). By comparative metabolite and structural analyses, we identified several hitherto unreported ICS1- and EDS5-dependent, biotic stress-inducible Arabidopsis metabolites. These involve meta-substituted SA derivatives (5-formyl-SA, 5-carboxy-SA, 5-carboxymethyl-SA), their benzoic acid (BA) analogs (3-formyl-BA, 3-carboxy-BA, 3-carboxymethyl-BA), and besides the previously detected salicyloyl-aspartate (SA-Asp), the ester conjugate salicyloyl-malate (SA-Mal). SA functions as a biosynthetic precursor for SA-Mal and SA-Asp, but not for the meta-substituted SA- and BA-derivatives, which accumulate to moderate levels at later stages of bacterial infection. Interestingly, Arabidopsis leaves possess oxidizing activity to effectively convert meta-formyl- into meta-carboxy-SA/BAs. In contrast to SA, exogenously applied meta-substituted SA/BA-derivatives and SA-Mal exert a moderate impact on plant immunity and defence-related gene expression. While the isochorismate-derived metabolites are negatively regulated by the SA receptor NON-EXPRESSOR OF PR GENES1, SA conjugates (SA-Mal, SA-Asp, SA-glucose conjugates) and meta-substituted SA/BA-derivatives are oppositely affected by PBS3. Notably, our data indicate a PBS3-independent path to isochorismate-derived SA at later stages of bacterial infection, which does not considerably impact immune-related characteristics. Moreover, our results argue against a previously proposed role of EDS5 in the biosynthesis of the immune signal N-hydroxypipecolic acid and associated transport processes. We propose a significantly extended biochemical scheme of plant isochorismate metabolism that involves an alternative generation mode for benzoate- and salicylate-derivatives.
Collapse
Affiliation(s)
- Nicola Scholten
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Abts
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Laura Abts
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Elke Reinartz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Angelo Altavilla
- Department of Chemistry, Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas J J Müller
- Department of Chemistry, Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
27
|
Chen T, Greene GH, Motley J, Mwimba M, Luo GZ, Xu G, Karapetyan S, Xiang Y, Liu C, He C, Dong X. m 6A modification plays an integral role in mRNA stability and translation during pattern-triggered immunity. Proc Natl Acad Sci U S A 2024; 121:e2411100121. [PMID: 39116132 PMCID: PMC11331096 DOI: 10.1073/pnas.2411100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Plants employ distinct mechanisms to respond to environmental changes. Modification of mRNA by N 6-methyladenosine (m6A), known to affect the fate of mRNA, may be one such mechanism to reprogram mRNA processing and translatability upon stress. However, it is difficult to distinguish a direct role from a pleiotropic effect for this modification due to its prevalence in RNA. Through characterization of the transient knockdown-mutants of m6A writer components and mutants of specific m6A readers, we demonstrate the essential role that m6A plays in basal resistance and pattern-triggered immunity (PTI). A global m6A profiling of mock and PTI-induced Arabidopsis plants as well as formaldehyde fixation and cross-linking immunoprecipitation-sequencing of the m6A reader, EVOLUTIONARILY CONSERVED C-TERMINAL REGION2 (ECT2) showed that while dynamic changes in m6A modification and binding by ECT2 were detected upon PTI induction, most of the m6A sites and their association with ECT2 remained static. Interestingly, RNA degradation assay identified a dual role of m6A in stabilizing the overall transcriptome while facilitating rapid turnover of immune-induced mRNAs during PTI. Moreover, polysome profiling showed that m6A enhances immune-associated translation by binding to the ECT2/3/4 readers. We propose that m6A plays a positive role in plant immunity by destabilizing defense mRNAs while enhancing their translation efficiency to create a transient surge in the production of defense proteins.
Collapse
Affiliation(s)
- Tianyuan Chen
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - George H. Greene
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Jonathan Motley
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Musoki Mwimba
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Guan-Zheng Luo
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Guoyong Xu
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Sargis Karapetyan
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Yezi Xiang
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Chang Liu
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Chuan He
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Xinnian Dong
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| |
Collapse
|
28
|
Liu C, Liu Q, Mou Z. Redox signaling and oxidative stress in systemic acquired resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4535-4548. [PMID: 38693779 DOI: 10.1093/jxb/erae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Plants fully depend on their immune systems to defend against pathogens. Upon pathogen attack, plants not only activate immune responses at the infection site but also trigger a defense mechanism known as systemic acquired resistance (SAR) in distal systemic tissues to prevent subsequent infections by a broad-spectrum of pathogens. SAR is induced by mobile signals produced at the infection site. Accumulating evidence suggests that reactive oxygen species (ROS) play a central role in SAR signaling. ROS burst at the infection site is one of the earliest cellular responses following pathogen infection and can spread to systemic tissues through membrane-associated NADPH oxidase-dependent relay production of ROS. It is well known that ROS ignite redox signaling and, when in excess, cause oxidative stress, damaging cellular components. In this review, we summarize current knowledge on redox regulation of several SAR signaling components. We discuss the ROS amplification loop in systemic tissues involving multiple SAR mobile signals. Moreover, we highlight the essential role of oxidative stress in generating SAR signals including azelaic acid and extracellular NAD(P) [eNAD(P)]. Finally, we propose that eNAD(P) is a damage-associated molecular pattern serving as a converging point of SAR mobile signals in systemic tissues.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Qingcai Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
29
|
Li L, Yang J, Zhang Q, Xue Q, Li M, Xue Q, Liu W, Niu Z, Ding X. Genome-wide identification of Ankyrin (ANK) repeat gene families in three Dendrobium species and the expression of ANK genes in D. officinale under gibberellin and abscisic acid treatments. BMC PLANT BIOLOGY 2024; 24:762. [PMID: 39123107 PMCID: PMC11316315 DOI: 10.1186/s12870-024-05461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Dendrobium Sw. represents one of the most expansive genera within the Orchidaceae family, renowned for its species' high medicinal and ornamental value. In higher plants, the ankyrin (ANK) repeat protein family is characterized by a unique ANK repeat domain, integral to a plethora of biological functions and biochemical activities. The ANK gene family plays a pivotal role in various plant physiological processes, including stress responses, hormone signaling, and growth. Hence, investigating the ANK gene family and identifying disease-resistance genes in Dendrobium is of paramount importance. RESULTS This research identified 78 ANK genes in Dendrobium officinale Kimura et Migo, 77 in Dendrobium nobile Lindl., and 58 in Dendrobium chrysotoxum Lindl. Subsequently, we conducted comprehensive bioinformatics analyses on these ANK gene families, encompassing gene classification, chromosomal localization, phylogenetic relationships, gene structure and motif characterization, cis-acting regulatory element identification, collinearity assessment, protein-protein interaction network construction, and gene expression profiling. Concurrently, three DoANK genes (DoANK14, DoANK19, and DoANK47) in D. officinale were discerned to indirectly activate the NPR1 transcription factor in the ETI system via SA, thereby modulating the expression of the antibacterial PR gene. Hormonal treatments with GA3 and ABA revealed that 17 and 8 genes were significantly up-regulated, while 4 and 8 genes were significantly down-regulated, respectively. DoANK32 was found to localize to the ArfGAP gene in the endocytosis pathway, impacting vesicle transport and the polar movement of auxin. CONCLUSION Our findings provide a robust framework for the taxonomic classification, evolutionary analysis, and functional prediction of Dendrobium ANK genes. The three highlighted ANK genes (DoANK14, DoANK19, and DoANK47) from D. officinale may prove valuable in disease resistance and stress response research. DoANK32 is implicated in the morphogenesis and development of D. officinale through its role in vesicular transport and auxin polarity, with subcellular localization studies confirming its presence in the nucleus and cell membrane. ANK genes displaying significant expression changes in response to hormonal treatments could play a crucial role in the hormonal response of D. officinale, potentially inhibiting its growth and development through the modulation of plant hormones such as GA3 and ABA.
Collapse
Affiliation(s)
- Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Qian Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Qiqian Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Meiqian Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China.
| |
Collapse
|
30
|
Laureano G, Matos AR, Figueiredo A. Eicosapentaenoic acid: New insights into an oomycete-driven elicitor to enhance grapevine immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108799. [PMID: 38857564 DOI: 10.1016/j.plaphy.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The widespread use of pesticides in agriculture remains a matter of major concern, prompting a critical need for alternative and sustainable practices. To address this, the use of lipid-derived molecules as elicitors to induce defence responses in grapevine plants was accessed. A Plasmopara viticola fatty acid (FA), eicosapentaenoic acid (EPA) naturally present in oomycetes, but absent in plants, was applied by foliar spraying to the leaves of the susceptible grapevine cultivar (Vitis vinifera cv. Trincadeira), while a host lipid derived phytohormone, jasmonic acid (JA) was used as a molecule known to trigger host defence. Their potential as defence triggers was assessed by analysing the expression of a set of genes related to grapevine defence and evaluating the FA modulation upon elicitation. JA prompted grapevine immunity, altering lipid metabolism and up-regulating the expression of several defence genes. EPA also induced a myriad of responses to the levels typically observed in tolerant plants. Its application activated the transcription of defence gene's regulators, pathogen-related genes and genes involved in phytoalexins biosynthesis. Moreover, EPA application resulted in the alteration of the leaf FA profile, likely by impacting biosynthetic, unsaturation and turnover processes. Although both molecules were able to trigger grapevine defence mechanisms, EPA induced a more robust and prolonged response. This finding establishes EPA as a promising elicitor for an effectively managing grapevine downy mildew diseases.
Collapse
Affiliation(s)
- Gonçalo Laureano
- Grapevine Pathogen Systems lab, BioISI, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal.
| | - Ana Rita Matos
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems lab, BioISI, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| |
Collapse
|
31
|
Li ZY, Ma N, Sun P, Zhang FJ, Li L, Li H, Zhang S, Wang XF, You CX, Zhang Z. Fungal invasion-induced accumulation of salicylic acid promotes anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1859-1879. [PMID: 38923625 DOI: 10.1111/tpj.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
In the field, necrosis area induced by pathogens is usually surrounded by a red circle in apple fruits. However, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we demonstrated that accumulated salicylic acid (SA) induced by fungal infection promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple (Malus domestica). Inoculating apple fruits with Valsa mali or Botryosphaeria dothidea induced a red circle surrounding the necrosis area, which mimicked the phenotype observed in the field. The red circle accumulated a high level of anthocyanins, which was positively correlated with SA accumulation stimulated by fungal invasion. Further analysis showed that SA promoted anthocyanin biosynthesis in a dose-dependent manner in both apple calli and fruits. We next demonstrated that MdNPR1, a master regulator of SA signaling, positively regulated anthocyanin biosynthesis in both apple and Arabidopsis. Moreover, MdNPR1 functioned as a co-activator to interact with and enhance the transactivation activity of MdTGA2.2, which could directly bind to the promoters of anthocyanin biosynthetic and regulatory genes to promote their transcription. Suppressing expression of either MdNPR1 or MdTGA2.2 inhibited coloration of apple fruits, while overexpressing either of them significantly promoted fruit coloration. Finally, we revealed that silencing either MdNPR1 or MdTGA2.2 in apple fruits repressed SA-induced fruit coloration. Therefore, our data determined that fungal-induced SA promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module, resulting in a red circle surrounding the necrosis area in apple fruits.
Collapse
Affiliation(s)
- Zhao-Yang Li
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ning Ma
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ping Sun
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Lianzhen Li
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haojian Li
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shuai Zhang
- College of Chemistry and Material Science, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
32
|
Hu L, Mijatovic J, Kong F, Kvitko B, Yang L. Ontogenic stage-associated SA response contributes to leaf age-dependent resistance in Arabidopsis and cotton. FRONTIERS IN PLANT SCIENCE 2024; 15:1398770. [PMID: 39135651 PMCID: PMC11317444 DOI: 10.3389/fpls.2024.1398770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024]
Abstract
Introduction As leaves grow, they transition from a low-microbe environment embedded in shoot apex to a more complex one exposed to phyllosphere microbiomes. Such change requires a coordinated reprogramming of cellular responses to biotic stresses. It remains unclear how plants shift from fast growth to robust resistance during organ development. Results Here, we reported that salicylic acid (SA) accumulation and response were temporarily increased during leaf maturation in herbaceous annual Arabidopsis. Leaf primordia undergoing active cell division were insensitive to the elicitor-induced SA response. This age-dependent increase in SA response was not due to prolonged exposure to environmental microbes. Autoimmune mutants with elevated SA levels did not alter the temporal pattern dependent on ontogenic stage. Young Arabidopsis leaves were more susceptible than mature leaves to Pseudomonas syringae pv. tomato (Pto) DC3000 cor- infection. Finally, we showed a broadly similar pattern in cotton, a woody perennial, where young leaves with reduced SA signaling were preferentially invaded by a Xanthomonas pathogen after leaf surface infection. Discussion Through this work, we provided insights in the SA-mediated ontogenic resistance in Arabidopsis and tomato.
Collapse
Affiliation(s)
| | | | | | - Brian Kvitko
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
33
|
Li S, He L, Yang Y, Zhang Y, Han X, Hu Y, Jiang Y. INDUCER OF CBF EXPRESSION 1 promotes cold-enhanced immunity by directly activating salicylic acid signaling. THE PLANT CELL 2024; 36:2587-2606. [PMID: 38536743 PMCID: PMC11218786 DOI: 10.1093/plcell/koae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/01/2024] [Indexed: 07/04/2024]
Abstract
Cold stress affects plant immune responses, and this process may involve the salicylic acid (SA) signaling pathway. However, the underlying mechanism by which low-temperature signals coordinate with SA signaling to regulate plant immunity remains unclear. Here, we found that low temperatures enhanced the disease resistance of Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000. This process required INDUCER OF CBF EXPRESSION 1 (ICE1), the core transcription factor in cold-signal cascades. ICE1 physically interacted with NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the master regulator of the SA signaling pathway. Enrichment of ICE1 on the PATHOGENESIS-RELATED GENE 1 (PR1) promoter and its ability to transcriptionally activate PR1 were enhanced by NPR1. Further analyses revealed that cold stress signals cooperate with SA signals to facilitate plant immunity against pathogen attack in an ICE1-dependent manner. Cold treatment promoted interactions of NPR1 and TGACG-BINDING FACTOR 3 (TGA3) with ICE1 and increased the ability of the ICE1-TGA3 complex to transcriptionally activate PR1. Together, our results characterize a critical role of ICE1 as an indispensable regulatory node linking low-temperature-activated and SA-regulated immunity. Understanding this crucial role of ICE1 in coordinating multiple signals associated with immunity broadens our understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
- Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
34
|
Sommer A, Wenig M, Knappe C, Kublik S, Foesel BU, Schloter M, Vlot AC. A salicylic acid-associated plant-microbe interaction attracts beneficial Flavobacterium sp. to the Arabidopsis thaliana phyllosphere. PHYSIOLOGIA PLANTARUM 2024; 176:e14483. [PMID: 39169536 DOI: 10.1111/ppl.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
Both above- and below-ground parts of plants are constantly challenged with microbes and interact closely with them. Many plant-growth-promoting rhizobacteria, mostly interacting with the plant's root system, enhance the immunity of plants in a process described as induced systemic resistance (ISR). Here, we characterized local induced resistance (IR) triggered by the model PGPR Pseudomonas simiae WCS417r (WCS417) in Arabidopsis thaliana. Hydroponic application of WCS417 to Arabidopsis roots resulted in propagation of WCS417 in/on leaves and the establishment of local IR. WCS417-triggered local IR was dependent on salicylic acid (SA) biosynthesis and signalling and on functional biosynthesis of pipecolic acid and monoterpenes, which are classically associated with systemic acquired resistance (SAR). WCS417-triggered local IR was further associated with a priming of gene expression changes related to SA signalling and SAR. A metabarcoding approach applied to the leaf microbiome revealed a significant local IR-associated enrichment of Flavobacterium sp.. Co-inoculation experiments using WCS417 and At-LSPHERE Flavobacterium sp. Leaf82 suggest that the proliferation of these bacteria is influenced by both microbial and immunity-related, plant-derived factors. Furthermore, application of Flavobacterium Leaf82 to Arabidopsis leaves induced SAR in an NPR1-dependent manner, suggesting that recruitment of this bacterium to the phyllosphere resulted in propagation of IR. Together, the data highlight the importance of plant-microbe-microbe interactions in the phyllosphere and reveal Flavobacterium sp. Leaf82 as a new beneficial promoter of plant health.
Collapse
Affiliation(s)
- Anna Sommer
- Faculty of Life Sciences: Food, Nutrition and Health, Chair of Crop Plant Genetics, University of Bayreuth, Kulmbach, Germany
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Susanne Kublik
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
| | - Bärbel U Foesel
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
| | - Michael Schloter
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
- Chair for Environmental Microbiology, Technische Universität München, Freising, Germany
| | - A Corina Vlot
- Faculty of Life Sciences: Food, Nutrition and Health, Chair of Crop Plant Genetics, University of Bayreuth, Kulmbach, Germany
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| |
Collapse
|
35
|
Feng Y, Yang X, Cai G, Wang S, Liu P, Li Y, Chen W, Li W. Identification and Characterization of High-Molecular-Weight Proteins Secreted by Plasmodiophora brassicae That Suppress Plant Immunity. J Fungi (Basel) 2024; 10:462. [PMID: 39057347 PMCID: PMC11278463 DOI: 10.3390/jof10070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodiophora brassicae is an obligate intracellular parasitic protist that causes clubroot disease on cruciferous plants. So far, some low-molecular-weight secreted proteins from P. brassicae have been reported to play an important role in plant immunity regulation, but there are few reports on its high-molecular-weight secreted proteins. In this study, 35 putative high-molecular-weight secreted proteins (>300 amino acids) of P. brassicae (PbHMWSP) genes that are highly expressed during the infection stage were identified using transcriptome analysis and bioinformatics prediction. Then, the secretory activity of 30 putative PbHMWSPs was confirmed using the yeast signal sequence trap system. Furthermore, the genes encoding 24 PbHMWSPs were successfully cloned and their functions in plant immunity were studied. The results showed that ten PbHMWSPs could inhibit flg22-induced reactive oxygen burst, and ten PbHMWSPs significantly inhibited the expression of the SA signaling pathway marker gene PR1a. In addition, nine PbHMWSPs could inhibit the expression of a marker gene of the JA signaling pathway. Therefore, a total of 19 of the 24 tested PbHMWSPs played roles in suppressing the immune response of plants. Of these, it is worth noting that PbHMWSP34 can inhibit the expression of JA, ET, and several SA signaling pathway marker genes. The present study is the first to report the function of the high-molecular-weight secreted proteins of P. brassicae in plant immunity, which will enrich the theory of interaction mechanisms between the pathogens and plants.
Collapse
Affiliation(s)
- Yanqun Feng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xiaoyue Yang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Gaolei Cai
- Institute of Plant Protection, Shiyan Academy of Agricultural Sciences, Shiyan 442000, China;
| | - Siting Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Pingu Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yan Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wang Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
36
|
Jing Y, Yang Z, Yang Z, Bai W, Yang R, Zhang Y, Zhang K, Zhang Y, Sun J. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence. THE NEW PHYTOLOGIST 2024; 242:2524-2540. [PMID: 38641854 DOI: 10.1111/nph.19760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
37
|
Spoel SH, Dong X. Salicylic acid in plant immunity and beyond. THE PLANT CELL 2024; 36:1451-1464. [PMID: 38163634 PMCID: PMC11062473 DOI: 10.1093/plcell/koad329] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used herbal medicine in human history and a major defence hormone in plants against a broad spectrum of pathogens and abiotic stresses, salicylic acid (SA) has attracted major research interest. With applications of modern technologies over the past 30 years, studies of the effects of SA on plant growth, development, and defence have revealed many new research frontiers and continue to deliver surprises. In this review, we provide an update on recent advances in our understanding of SA metabolism, perception, and signal transduction mechanisms in plant immunity. An overarching theme emerges that SA executes its many functions through intricate regulation at multiple steps: SA biosynthesis is regulated both locally and systemically, while its perception occurs through multiple cellular targets, including metabolic enzymes, redox regulators, transcription cofactors, and, most recently, an RNA-binding protein. Moreover, SA orchestrates a complex series of post-translational modifications of downstream signaling components and promotes the formation of biomolecular condensates that function as cellular signalling hubs. SA also impacts wider cellular functions through crosstalk with other plant hormones. Looking into the future, we propose new areas for exploration of SA functions, which will undoubtedly uncover more surprises for many years to come.
Collapse
Affiliation(s)
- Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Xinnian Dong
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
38
|
Henchiri H, Rayapuram N, Alhoraibi HM, Caïus J, Paysant-Le Roux C, Citerne S, Hirt H, Colcombet J, Sturbois B, Bigeard J. Integrated multi-omics and genetic analyses reveal molecular determinants underlying Arabidopsis snap33 mutant phenotype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1016-1035. [PMID: 38281242 DOI: 10.1111/tpj.16647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
The secretory pathway is essential for plant immunity, delivering diverse antimicrobial molecules into the extracellular space. Arabidopsis thaliana soluble N-ethylmaleimide-sensitive-factor attachment protein receptor SNAP33 is a key actor of this process. The snap33 mutant displays dwarfism and necrotic lesions, however the molecular determinants of its macroscopic phenotypes remain elusive. Here, we isolated several new snap33 mutants that exhibited constitutive cell death and H2O2 accumulation, further defining snap33 as an autoimmune mutant. We then carried out quantitative transcriptomic and proteomic analyses showing that numerous defense transcripts and proteins were up-regulated in the snap33 mutant, among which genes/proteins involved in defense hormone, pattern-triggered immunity, and nucleotide-binding domain leucine-rich-repeat receptor signaling. qRT-PCR analyses and hormone dosages supported these results. Furthermore, genetic analyses elucidated the diverse contributions of the main defense hormones and some nucleotide-binding domain leucine-rich-repeat receptor signaling actors in the establishment of the snap33 phenotype, emphasizing the preponderant role of salicylic acid over other defense phytohormones. Moreover, the accumulation of pattern-triggered immunity and nucleotide-binding domain leucine-rich-repeat receptor signaling proteins in the snap33 mutant was confirmed by immunoblotting analyses and further shown to be salicylic acid-dependent. Collectively, this study unveiled molecular determinants underlying the Arabidopsis snap33 mutant phenotype and brought new insights into autoimmunity signaling.
Collapse
Affiliation(s)
- Houda Henchiri
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Naganand Rayapuram
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Hanna M Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551, Jeddah, Saudi Arabia
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Bénédicte Sturbois
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Jean Bigeard
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| |
Collapse
|
39
|
Marathe S, Grotewold E, Otegui MS. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. THE PLANT CELL 2024; 36:1524-1539. [PMID: 38163635 PMCID: PMC11062434 DOI: 10.1093/plcell/koad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024]
Abstract
At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.
Collapse
Affiliation(s)
- Sarika Marathe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
40
|
Yun SH, Khan IU, Noh B, Noh YS. Genomic overview of INA-induced NPR1 targeting and transcriptional cascades in Arabidopsis. Nucleic Acids Res 2024; 52:3572-3588. [PMID: 38261978 DOI: 10.1093/nar/gkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
The phytohormone salicylic acid (SA) triggers transcriptional reprogramming that leads to SA-induced immunity in plants. NPR1 is an SA receptor and master transcriptional regulator in SA-triggered transcriptional reprogramming. Despite the indispensable role of NPR1, genome-wide direct targets of NPR1 specific to SA signaling have not been identified. Here, we report INA (functional SA analog)-specific genome-wide targets of Arabidopsis NPR1 in plants expressing GFP-fused NPR1 under its native promoter. Analyses of NPR1-dependently expressed direct NPR1 targets revealed that NPR1 primarily activates genes encoding transcription factors upon INA treatment, triggering transcriptional cascades required for INA-induced transcriptional reprogramming and immunity. We identified genome-wide targets of a histone acetyltransferase, HAC1, including hundreds of co-targets shared with NPR1, and showed that NPR1 and HAC1 regulate INA-induced histone acetylation and expression of a subset of the co-targets. Genomic NPR1 targeting was principally mediated by TGACG-motif binding protein (TGA) transcription factors. Furthermore, a group of NPR1 targets mostly encoding transcriptional regulators was already bound to NPR1 in the basal state and showed more rapid and robust induction than other NPR1 targets upon SA signaling. Thus, our study unveils genome-wide NPR1 targeting, its role in transcriptional reprogramming, and the cooperativity between NPR1, HAC1, and TGAs in INA-induced immunity.
Collapse
Affiliation(s)
- Se-Hun Yun
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Irfan Ullah Khan
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Bosl Noh
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Niño de Rivera A, Jawdy S, Chen JG, Feng K, Yates TB, Tuskan GA, Muchero W, Fuxin L, Strauss SH. GWAS supported by computer vision identifies large numbers of candidate regulators of in planta regeneration in Populus trichocarpa. G3 (BETHESDA, MD.) 2024; 14:jkae026. [PMID: 38325329 PMCID: PMC10989874 DOI: 10.1093/g3journal/jkae026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Plant regeneration is an important dimension of plant propagation and a key step in the production of transgenic plants. However, regeneration capacity varies widely among genotypes and species, the molecular basis of which is largely unknown. Association mapping methods such as genome-wide association studies (GWAS) have long demonstrated abilities to help uncover the genetic basis of trait variation in plants; however, the performance of these methods depends on the accuracy and scale of phenotyping. To enable a large-scale GWAS of in planta callus and shoot regeneration in the model tree Populus, we developed a phenomics workflow involving semantic segmentation to quantify regenerating plant tissues over time. We found that the resulting statistics were of highly non-normal distributions, and thus employed transformations or permutations to avoid violating assumptions of linear models used in GWAS. We report over 200 statistically supported quantitative trait loci (QTLs), with genes encompassing or near to top QTLs including regulators of cell adhesion, stress signaling, and hormone signaling pathways, as well as other diverse functions. Our results encourage models of hormonal signaling during plant regeneration to consider keystone roles of stress-related signaling (e.g. involving jasmonates and salicylic acid), in addition to the auxin and cytokinin pathways commonly considered. The putative regulatory genes and biological processes we identified provide new insights into the biological complexity of plant regeneration, and may serve as new reagents for improving regeneration and transformation of recalcitrant genotypes and species.
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Jialin Yuan
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Damanpreet Kaur
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, 239 Weniger Hall, Corvallis, OR 97331, USA
| | - Alexa Niño de Rivera
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Li Fuxin
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| |
Collapse
|
42
|
Ghosh D, Chakraborty S. Targeting NPR1: a strategy went viral. TRENDS IN PLANT SCIENCE 2024; 29:385-387. [PMID: 38135603 DOI: 10.1016/j.tplants.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Non-expressor of pathogenesis-related 1 (NPR1) acts as master regulator of plant immunity by promoting salicylic acid (SA) signalling. Some bacterial and fungal pathogens target NPR1 to inhibit SA-mediated immunity. Recently, Zhang et al. and Liu et al. demonstrated that a diverse spectrum of plant-infecting viruses have evolved distinct counter-defence strategies to weaken NPR1-mediated antiviral defence.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
43
|
Ali M, Shafiq M, Haider MZ, Sami A, Alam P, Albalawi T, Kamran Z, Sadiq S, Hussain M, Shahid MA, Jeridi M, Ashraf GA, Manzoor MA, Sabir IA. Genome-wide analysis of NPR1-like genes in citrus species and expression analysis in response to citrus canker ( Xanthomonas axonopodis pv. citri). FRONTIERS IN PLANT SCIENCE 2024; 15:1333286. [PMID: 38606070 PMCID: PMC11007782 DOI: 10.3389/fpls.2024.1333286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 04/13/2024]
Abstract
Citrus fruits, revered for their nutritional value, face significant threats from diseases like citrus canker, particularly impacting global citrus cultivation, notably in Pakistan. This study delves into the critical role of NPR1-like genes, the true receptors for salicylic acid (SA), in the defense mechanisms of citrus against Xanthomonas axonopodis pv. citri (Xcc). By conducting a comprehensive genome-wide analysis and phylogenetic study, the evolutionary dynamics of Citrus limon genes across diverse citrus cultivars are elucidated. Structural predictions unveil conserved domains, such as the BTB domain and ankyrin repeat domains, crucial for the defense mechanism. Motif analysis reveals essential conserved patterns, while cis-regulatory elements indicate their involvement in transcription, growth, response to phytohormones, and stress. The predominantly cytoplasmic and nuclear localization of NPR1-like genes underscores their pivotal role in conferring resistance to various citrus species. Analysis of the Ks/Ka ratio indicates a purifying selection of NPR1-like genes, emphasizing their importance in different species. Synteny and chromosomal mapping provide insights into duplication events and orthologous links among citrus species. Notably, Xac infection stimulates the expression of NPR1-like genes, revealing their responsiveness to pathogenic challenges. Interestingly, qRT-PCR profiling post-Xac infection reveals cultivar-specific alterations in expression within susceptible and resistant citrus varieties. Beyond genetic factors, physiological parameters like peroxidase, total soluble protein, and secondary metabolites respond to SA-dependent PR genes, influencing plant characteristics. Examining the impact of defense genes (NPR1) and plant characteristics on disease resistance in citrus, this study marks the inaugural investigation into the correlation between NPR1-associated genes and various plant traits in both susceptible and resistant citrus varieties to citrus bacterial canker.
Collapse
Affiliation(s)
- Mobeen Ali
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zeshan Haider
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamir Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Zuha Kamran
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Saleh Sadiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department University of Florida-Institute of Food and Agricultural Sciences (IFAS) North Florida Research and Education Center, Gainesville FL, United States
| | - Muhammad Adnan Shahid
- Horticultural Science Department University of Florida-Institute of Food and Agricultural Sciences (IFAS) North Florida Research and Education Center, Gainesville FL, United States
| | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
44
|
Cañizares E, Acién JM, Gumuş BÖ, Vives-Peris V, González-Guzmán M, Arbona V. Interplay between secondary metabolites and plant hormones in silver nitrate-elicited Arabidopsis thaliana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108483. [PMID: 38457948 DOI: 10.1016/j.plaphy.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Plants produce a myriad of specialized compounds in response to threats such as pathogens or pests and different abiotic factors. The stress-related induction of specialized metabolites can be mimicked using silver nitrate (AgNO3) as an elicitor, which application in conservation agriculture has gained interest. In Arabidopsis thaliana, AgNO3 triggers the accumulation of indole glucosinolates (IGs) and the phytoalexin camalexin as well as pheylpropanoid-derived defensive metabolites such as coumaroylagmatins and scopoletin through a yet unknown mechanism. In this work, the role of jasmonic (JA) and salicylic acid (SA) signaling in the AgNO3-triggered specialized metabolite production was investigated. To attain this objective, AgNO3, MeJA and SA were applied to A. thaliana lines impaired in JA or SA signaling, or affected in the endogenous levels of IGs and AGs. Metabolomics data indicated that AgNO3 elicitation required an intact JA and SA signaling to elicit the metabolic response, although mutants impaired in hormone signaling retained certain capacity to induce specialized metabolites. In turn, plants overproducing or abolishing IGs production had also an altered hormonal signaling response, both in the accumulation of signaling molecules and the molecular response mechanisms (ORA59, PDF1.2, VSP2 and PR1 gene expression), which pointed out to a crosstalk between defense hormones and specialized metabolites. The present work provides evidence of a crosstalk mechanism between JA and SA underlying AgNO3 defense metabolite elicitation in A. thaliana. In this mechanism, IGs would act as retrograde feedback signals dampening the hormonal response; hence, expanding the signaling molecule concept.
Collapse
Affiliation(s)
- Eva Cañizares
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain
| | - Juan Manuel Acién
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain
| | - Berivan Özlem Gumuş
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain
| | - Vicente Vives-Peris
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain
| | - Miguel González-Guzmán
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain.
| | - Vicent Arbona
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain.
| |
Collapse
|
45
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
46
|
Zhao S, Li M, Ren X, Wang C, Sun X, Sun M, Yu X, Wang X. Enhancement of broad-spectrum disease resistance in wheat through key genes involved in systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1355178. [PMID: 38463563 PMCID: PMC10921362 DOI: 10.3389/fpls.2024.1355178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024]
Abstract
Systemic acquired resistance (SAR) is an inducible disease resistance phenomenon in plant species, providing plants with broad-spectrum resistance to secondary pathogen infections beyond the initial infection site. In Arabidopsis, SAR can be triggered by direct pathogen infection or treatment with the phytohormone salicylic acid (SA), as well as its analogues 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH). The SA receptor non-expressor of pathogenesis-related protein gene 1 (NPR1) protein serves as a key regulator in controlling SAR signaling transduction. Similarly, in common wheat (Triticum aestivum), pathogen infection or treatment with the SA analogue BTH can induce broad-spectrum resistance to powdery mildew, leaf rust, Fusarium head blight, and other diseases. However, unlike SAR in the model plant Arabidopsis or rice, SAR-like responses in wheat exhibit unique features and regulatory pathways. The acquired resistance (AR) induced by the model pathogen Pseudomonas syringae pv. tomato strain DC3000 is regulated by NPR1, but its effects are limited to the adjacent region of the same leaf and not systemic. On the other hand, the systemic immunity (SI) triggered by Xanthomonas translucens pv. cerealis (Xtc) or Pseudomonas syringae pv. japonica (Psj) is not controlled by NPR1 or SA, but rather closely associated with jasmonate (JA), abscisic acid (ABA), and several transcription factors. Furthermore, the BTH-induced resistance (BIR) partially depends on NPR1 activation, leading to a broader and stronger plant defense response. This paper provides a systematic review of the research progress on SAR in wheat, emphasizes the key regulatory role of NPR1 in wheat SAR, and summarizes the potential of pathogenesis-related protein (PR) genes in genetically modifying wheat to enhance broad-spectrum disease resistance. This review lays an important foundation for further analyzing the molecular mechanism of SAR and genetically improving broad-spectrum disease resistance in wheat.
Collapse
Affiliation(s)
- Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaopeng Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Chuyuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
47
|
Gutsche N, Koczula J, Trupp M, Holtmannspötter M, Appelfeller M, Rupp O, Busch A, Zachgo S. MpTGA, together with MpNPR, regulates sexual reproduction and independently affects oil body formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1559-1573. [PMID: 38095258 DOI: 10.1111/nph.19472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies. Furthermore, we investigated MpTGA interactions with wild-type and mutagenized MpNPR and expanded our analyses including TGA TFs from two streptophyte algae. Mptga mutants fail to induce the switch from vegetative to reproductive development and lack gametangiophore formation. MpTGA and MpNPR proteins interact and Mpnpr mutant analysis reveals a novel coregulatory NPR role in sexual reproduction. Additionally, MpTGA acts independently of MpNPR as a repressor of oil body (OB) formation and can thereby affect herbivory. The single MpTGA TF exerts a dual role in sexual reproduction and OB formation in Marchantia. Common activities of MpTGA/MpNPR in sexual development suggest that coregulatory interactions were established after emergence of land-plant-specific NPR genes and contributed to the diversification of TGA TF functions during land-plant evolution.
Collapse
Affiliation(s)
- Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Jens Koczula
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Melanie Trupp
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | | | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Andrea Busch
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
48
|
Zheng X, Chen H, Deng Z, Wu Y, Zhong L, Wu C, Yu X, Chen Q, Yan S. The tRNA thiolation-mediated translational control is essential for plant immunity. eLife 2024; 13:e93517. [PMID: 38284752 PMCID: PMC10863982 DOI: 10.7554/elife.93517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024] Open
Abstract
Plants have evolved sophisticated mechanisms to regulate gene expression to activate immune responses against pathogen infections. However, how the translation system contributes to plant immunity is largely unknown. The evolutionarily conserved thiolation modification of transfer RNA (tRNA) ensures efficient decoding during translation. Here, we show that tRNA thiolation is required for plant immunity in Arabidopsis. We identify a cgb mutant that is hyper-susceptible to the pathogen Pseudomonas syringae. CGB encodes ROL5, a homolog of yeast NCS6 required for tRNA thiolation. ROL5 physically interacts with CTU2, a homolog of yeast NCS2. Mutations in either ROL5 or CTU2 result in loss of tRNA thiolation. Further analyses reveal that both transcriptome and proteome reprogramming during immune responses are compromised in cgb. Notably, the translation of salicylic acid receptor NPR1 is reduced in cgb, resulting in compromised salicylic acid signaling. Our study not only reveals a regulatory mechanism for plant immunity but also uncovers an additional biological function of tRNA thiolation.
Collapse
Affiliation(s)
- Xueao Zheng
- Hubei Hongshan LaboratoryWuhanChina
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Hanchen Chen
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yujing Wu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Linlin Zhong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhanChina
| | - Chong Wu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Xiaodan Yu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Shunping Yan
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| |
Collapse
|
49
|
Zavaliev R, Dong X. NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Mol Cell 2024; 84:131-141. [PMID: 38103555 PMCID: PMC10929286 DOI: 10.1016/j.molcel.2023.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Nonexpressor of pathogenesis-related genes 1 (NPR1) was discovered in Arabidopsis as an activator of salicylic acid (SA)-mediated immune responses nearly 30 years ago. How NPR1 confers resistance against a variety of pathogens and stresses has been extensively studied; however, only in recent years have the underlying molecular mechanisms been uncovered, particularly NPR1's role in SA-mediated transcriptional reprogramming, stress protein homeostasis, and cell survival. Structural analyses ultimately defined NPR1 and its paralogs as SA receptors. The SA-bound NPR1 dimer induces transcription by bridging two TGA transcription factor dimers, forming an enhanceosome. Moreover, NPR1 orchestrates its multiple functions through the formation of distinct nuclear and cytoplasmic biomolecular condensates. Furthermore, NPR1 plays a central role in plant health by regulating the crosstalk between SA and other defense and growth hormones. In this review, we focus on these recent advances and discuss how NPR1 can be utilized to engineer resistance against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
50
|
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics 2024; 51:16-34. [PMID: 37647984 DOI: 10.1016/j.jgg.2023.08.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
| |
Collapse
|