1
|
Maeda N, Taylor LS, Nassar-Guifarro M, Monawar MYS, Dunn SM, Devanney NA, Li F, Johnson LA, Kayashima Y. Genomic and cellular context-dependent expression of the human ELMO1 gene transcript variants. Gene 2025; 954:149438. [PMID: 40147730 PMCID: PMC12147996 DOI: 10.1016/j.gene.2025.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Engulfment and cell motility protein 1 (Elmo1) forms a complex with Dedicator of cytokinesis (Dock) 1-5 and promotes GTP-loading of Rac1, the major agent of cell movement. While the pathophysiological roles of Elmo1 have expanded from apoptotic cell engulfment to cancer, inflammation, diabetic nephropathy and cardiomyopathy, little information is available on its transcriptional regulation. Genome databases indicate at least five transcript variants for human ELMO1: the variants V1, V4 and V5 encode a full-length 727 aa protein, whereas V2 and V3 encode a truncated Elmo1 of 247 aa that lacks N-terminal domains. A CpG island promoter drives the major V1 transcript, while an LTR12 drives V5 in intron 1, one of the three LTR12 family of retroviral elements in ELMO1. In contrast, the short-forms V2 and V3 contain CAT-TATA type promoters. Examination of various cell lines by RT-qPCR designed to detect individual transcripts showed that basal transcriptions of the variants were very low to undetectable in cultured cells. However, treatments with Trichostatin A, a histone deacetylase inhibitor, or with 5-Aza-2'-deoxycytidine, a DNA methyl transferase inhibitor, significantly upregulated V1, V4, V5 and V2 expression in a cell line-specific manner, indicating that these transcripts are epigenetically regulated. Another LTR12D transposon in intron 13 also drives an unannotated transcript stimulated by these inhibitors. Finally, we found the levels of V2 transcripts in the mouse and human brain exceed those of V1, suggesting a brain-specific regulation and role of V2 protein.
Collapse
Affiliation(s)
- Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren S Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melanie Nassar-Guifarro
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohamed-Yahia S Monawar
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sierra M Dunn
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas A Devanney
- Department of Physiology and Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40508, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lance A Johnson
- Department of Physiology and Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40508, USA
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Sharma S, Basak SK, Das S, Alone DP. Characterisation of the role played by ELMO1, GPR141 and the intergenic polymorphism rs918980 in Fuchs' dystrophy in the Indian population. FEBS Open Bio 2025; 15:822-835. [PMID: 39967558 PMCID: PMC12051025 DOI: 10.1002/2211-5463.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is the most common type of primary corneal dystrophy and can result in corneal transplantation. Here, we investigated the genetic association of SNP rs918980 (A>G) with FECD and the role of its surrounding genes ELMO1 and GPR141. First, 128 patients and 379 controls were genotyped by Sanger sequencing. Our results show that rs918980 is significantly associated with FECD in the Indian population. Furthermore, in silico analysis suggested that rs918980 and its surrounding 150 bp region could regulate the transcriptional activities of nearby genes. Thus, we assessed whether ELMO1 and GPR141 were differentially expressed in FECD patients and in the corneal tissue of a UVA-induced FECD mice model. Both genes were significantly upregulated and western blots studies concluded that protein levels of ELMO1 and GPR141 were also higher in the corneal endothelium of the UVA-exposed eye compared to the control eye. Taken together, our results suggest that ELMO1 and GPR141 might play a significant role in FECD progression. However, further studies are required to better characterize the possible role of rs918980 and its nearby region in the regulation of ELMO1 and GPR141.
Collapse
Affiliation(s)
- Susmita Sharma
- School of Biological SciencesNational Institute of Science Education and Research (NISER) BhubaneswarKhurdaIndia
- Homi Bhabha National Institute (HBNI)MumbaiIndia
| | | | | | - Debasmita Pankaj Alone
- School of Biological SciencesNational Institute of Science Education and Research (NISER) BhubaneswarKhurdaIndia
- Homi Bhabha National Institute (HBNI)MumbaiIndia
| |
Collapse
|
3
|
Farhadi P, Park T. The p130Cas-Crk/CrkL Axis: A Therapeutic Target for Invasive Cancers Unveiled by Collaboration Among p130Cas, Crk, and CrkL. Int J Mol Sci 2025; 26:4017. [PMID: 40362257 PMCID: PMC12071665 DOI: 10.3390/ijms26094017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Numerous studies have documented the involvement of p130Cas (Crk-associated substrate) in a wide range of cellular processes across different types of cells. These processes encompass cell transformation, the connection between the extracellular matrix and the actin cytoskeleton, cell migration and invasion, and cardiovascular development. Moreover, p130Cas has been associated with the regulation of various physiological processes, including mammary, bone, brain, muscle, and liver homeostasis. The diverse functions of p130Cas can be attributed to its possession of multiple protein-protein interaction domains, which sets it apart as a unique class of adaptor protein. It is well established that p130Cas interacts critically with the CT10 regulator of kinase (Crk) adaptor protein family members, including CrkII, CrkI, and Crk-like (CrkL), which is the basis for the naming of the Cas family. The Crk family proteins play a crucial role in integrating signals from various sources, such as growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. An increasing body of evidence suggests that the dysregulation of Crk family proteins is linked to various human diseases, including cancer and increased susceptibility to pathogen infections. This review focuses primarily on the structural and functional aspects of the interaction between p130Cas and the Crk family proteins, providing insights into how these proteins regulate specific signaling events. Furthermore, we delve into the functions of p130Cas and the Crk family proteins in both normal and tumor cells to gain a comprehensive understanding of their collaborative roles in cellular physiology and pathology. This review demonstrates that tumor cell migration and invasion are the two cellular functions that have been studied the most for the p130Cas-Crk/CrkL axis. Understanding the tumor cell migration and invasion that require both p130Cas and Crk/CrkL is necessary to further evaluate the role of the p130Cas-Crk/CrkL axis in cancer. Establishing the contribution of the p130Cas-Crk/CrkL axis to cancer will facilitate the development of cancer drugs targeting the axis to inhibit cancer cell dissemination and improve patient outcomes.
Collapse
Affiliation(s)
- Pegah Farhadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155, Iran
| | - Taeju Park
- Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
4
|
Wang ZS, Yu WJ, Ding XY, Lu ZP, Qin S, Sun X, Wang XY, Li MW. BmElmo is a factor for inhibiting Autographa Californica nucleopolyhedrovirus infection in silkworm, Bombyx mori. Front Immunol 2025; 16:1495672. [PMID: 40242758 PMCID: PMC11999931 DOI: 10.3389/fimmu.2025.1495672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Autographa californica nucleopolyhedrovirus (AcMNPV) is a DNA virus with multiple host domains, and elucidating the mechanisms of its interactions with silkworms is crucial for its widespread use. Identifying key antiviral genes and analyzing their functions is an urgent task currently. Therefore, the identification and study of host genes associated with AcMNPV invasion is of great significance in solving the issue. Engulfment and cell motility (Elmo) is an identified viral infection-associated gene primarily involved in the regulation of cell motility and essential for phagocytosis and immune responses. However, its function in the silkworm response to viruses is still unclear. In this study, the sequence of BmElmo was analyzed first. It has a CED-12 functional domain that has been highly conserved among different species. Its expression peaks during the silkworm pupal stage, followed by the moth stage. Among various tissues, BmElmo expression is highest in the gonads, followed by the silk glands. BmElmo exhibits differential expression between resistant and susceptible strains. AcMNPV replication increased significantly after BmElmo knockdown in BmN cells, and decreased significantly after BmElmo overexpression. Furthermore, the expression of Janus kinase (JNK) pathway-related genes downstream of BmElmo showed altered expression that correlated positively with the expression of BmElmo. Hence, BmElmo may inhibit AcMNPV replication in the silkworm by activating the JNK pathway. The results of this study bridge the gap in understanding the role of Elmo genes in insect immunity and provides a theoretical reference for studying the interaction between insects and baculoviruses.
Collapse
Affiliation(s)
- Zhi-sheng Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wen-jing Yu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xin-yi Ding
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhan-peng Lu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xue-yang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Mu-wang Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
5
|
Wang Q, Wu Y, Jia S, Zhao M. The impact of psoriasis on idiopathic pulmonary fibrosis: a two-sample Mendelian randomization study. Int J Dermatol 2025; 64:341-348. [PMID: 39118248 DOI: 10.1111/ijd.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The association between psoriasis and pulmonary fibrosis has been reported in observational studies. However, the association is vulnerable to bias from using immunosuppressants such as methotrexate, which can cause fibrosis in multiple organs. The present study is to investigate whether psoriasis could independently increase the risk of idiopathic pulmonary fibrosis (IPF). METHODS We conducted a two-sample Mendelian randomization (MR) study using summary statistics from genome-wide association studies. The random-effects inverse variance weighted analysis was used as the primary method. Some secondary analyses were further performed, including a sensitivity analysis using a genetic instrument that excluded extended single nucleotide polymorphisms (SNPs) in the major histocompatibility complex (MHC) gene region. RESULTS Our study included 9267 cases and 364,071 controls for psoriasis, 2018 cases, and 373,064 controls for IPF of European ancestry, respectively. Genetically predicted psoriasis was associated with a higher risk of IPF (odds ratio (OR), 1.14; 95% confidence interval (CI), 1.08-1.22; P < 0.001). Sensitivity analyses did not uncover any statistically significant evidence of bias resulting from pleiotropy or the genetic instruments, including SNPs in the MHC gene region. CONCLUSIONS These MR analyses support that genetically predicted psoriasis was associated with the risk of IPF, implying that pulmonary fibrosis in patients with psoriasis should not be neglected, even if they are not receiving immunosuppressant therapy.
Collapse
Affiliation(s)
- Qiaolin Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yutong Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Cresca S, Parise A, Magistrato A. Assessing the Mechanism of Rac1b: An All-Atom Simulation Study of the Alternative Spliced Variant of Rac1 Small Rho GTPase. J Chem Inf Model 2024; 64:9474-9486. [PMID: 39632743 DOI: 10.1021/acs.jcim.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The Rho GTPase family plays a key role in cell migration, cytoskeletal dynamics, and intracellular signaling. Rac1 and its splice variant Rac1b, characterized by the insertion of an Extraloop, are frequently associated with cancer. These small GTPases switch between an active GTP-bound state and an inactive GDP-bound state, a process that is regulated by specific protein modulators. Among them, the Guanine nucleotide exchange factor (GEF) protein DOCK5 specifically targets Rho GTPases, promoting their activation by facilitating the exchange of GDP for GTP. In this study, we performed cumulative 10-μs-long all-atom molecular dynamics simulations of Rac1 and Rac1b, in isolation and in complex with DOCK5 and ELMO1, to investigate the impact of the Rac1b Extraloop. Our findings reveal that this Extraloop decreases the GDP residence time as compared to Rac1, mimicking the effect of accelerated GDP/GTP exchange induced by DOCK5. Furthermore, both Rac1b Extraloop and the ELMO1 protein stabilize the GTPase/DOCK5 complex, contributing to facilitate GDP dissociation. This shifts the balance between the GPT- and GDP-bound state of Rac1b toward the active GTP-bound state, sending a prooncogenic signal. Besides broadening our understanding of the biological functions of small Rho GTPases, this study provides key information to exploit a previously unexplored therapeutic niche to counter Rac1b-associated cancer.
Collapse
Affiliation(s)
- Sofia Cresca
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Angela Parise
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
7
|
Horowitz LB, Shaham S. Apoptotic and Nonapoptotic Cell Death in Caenorhabditis elegans Development. Annu Rev Genet 2024; 58:113-134. [PMID: 38955209 DOI: 10.1146/annurev-genet-111523-102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Programmed cell death (PCD) is an essential component of animal development, and aberrant cell death underlies many disorders. Understanding mechanisms that govern PCD during development can provide insight into cell death programs that are disrupted in disease. Key steps mediating apoptosis, a highly conserved cell death program employing caspase proteases, were first uncovered in the nematode Caenorhabditis elegans, a powerful model system for PCD research. Recent studies in C. elegans also unearthed conserved nonapoptotic caspase-independent cell death programs that function during development. Here, we discuss recent advances in understanding cell death during C. elegans development. We review insights expanding the molecular palette behind the execution of apoptotic and nonapoptotic cell death, as well as new discoveries revealing the mechanistic underpinnings of dying cell engulfment and clearance. A number of open questions are also discussed that will continue to propel the field over the coming years.
Collapse
Affiliation(s)
- Lauren Bayer Horowitz
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA; ,
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
8
|
Teran Pumar OY, Zanotelli MR, Lin MCJ, Schmitt RR, Green KS, Rojas KS, Hwang IY, Cerione RA, Wilson KF. A multiprotein signaling complex sustains AKT and mTOR/S6K activity necessary for the survival of cancer cells undergoing stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.03.522657. [PMID: 36711811 PMCID: PMC9881951 DOI: 10.1101/2023.01.03.522657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability of cancer cells to survive microenvironmental stresses is critical for tumor progression and metastasis; however, how they survive these challenges is not fully understood. Here, we describe a novel multiprotein complex (DockTOR) essential for the survival of cancer cells under stress, triggered by the GTPase Cdc42 and a signaling partner Dock7, which includes AKT, mTOR, and the mTOR regulators TSC1, TSC2, and Rheb. DockTOR enables cancer cells to maintain a low but critical mTORC2-dependent phosphorylation of AKT during serum deprivation by preventing AKT dephosphorylation through an interaction between phospho-AKT and the Dock7 DHR1 domain. This activity stimulates a Raptor-independent but Rapamycin-sensitive mTOR/S6K activity necessary for survival. These findings address long-standing questions of how Cdc42 signals result in mTOR activation and demonstrate how cancer cells survive conditions when growth factor-dependent activation of mTORC1 is off. Determining how cancer cells survive stress conditions could identify vulnerabilities that lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Oriana Y. Teran Pumar
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Matthew R. Zanotelli
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Miao-chong Joy Lin
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Rebecca R. Schmitt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Kai Su Green
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Katherine S. Rojas
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Irene Y. Hwang
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Richard A. Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry, Cornell University, Ithaca, NY 14853, USA
| | - Kristin F. Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Venkatachalam T, Mannimala S, Pulijala Y, Soto MC. CED-5/CED-12 (DOCK/ELMO) can promote and inhibit F-actin formation via distinct motifs that may target different GTPases. PLoS Genet 2024; 20:e1011330. [PMID: 39083711 PMCID: PMC11290852 DOI: 10.1371/journal.pgen.1011330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. We interfered with GEF function by interfering with CED-5's ability to bind Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies strongly support that the GAP function likely acts on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.
Collapse
Affiliation(s)
- Thejasvi Venkatachalam
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sushma Mannimala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yeshaswi Pulijala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
10
|
Singh N, Zhang P, Li KJ, Gordon KL. The Rac pathway prevents cell fragmentation in a nonprotrusively migrating leader cell during C. elegans gonad organogenesis. Curr Biol 2024; 34:2387-2402.e5. [PMID: 38776905 PMCID: PMC12013728 DOI: 10.1016/j.cub.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2 ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.
Collapse
Affiliation(s)
- Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pu Zhang
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Jian Li
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Li C, Yi J, Jie H, Liu Z, Li S, Zeng Z, Zhou Y. Acetylation of ELMO1 correlates with Rac1 activity and colorectal cancer progress. Exp Cell Res 2024; 439:114068. [PMID: 38750717 DOI: 10.1016/j.yexcr.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Acetylation, a critical regulator of diverse cellular processes, holds significant implications in various cancer contexts. Further understanding of the acetylation patterns of key cancer-driven proteins is crucial for advancing therapeutic strategies in cancer treatment. This study aimed to unravel the acetylation patterns of Engulfment and Cell Motility Protein 1 (ELMO1) and its relevance to the pathogenesis of colorectal cancer (CRC). Immunoprecipitation and mass spectrometry precisely identified lysine residue 505 (K505) as a central acetylation site in ELMO1. P300 emerged as the acetyltransferase for ELMO1 K505 acetylation, while SIRT2 was recognized as the deacetylase. Although K505 acetylation minimally affected ELMO1's localization and stability, it played a crucial role in mediating ELMO1-Dock180 interaction, thereby influencing Rac1 activation. Functionally, ELMO1 K505 acetylation proved to be a pivotal factor in CRC progression, exerting its influence on key cellular processes. Clinical analysis of CRC samples unveiled elevated ELMO1 acetylation in primary tumors, indicating a potential association with CRC pathologies. This work provides insights into ELMO1 acetylation and its significance in advancing potentially therapeutic interventions in CRC treatment.
Collapse
Affiliation(s)
- Chuangkun Li
- Department of General Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Jianmei Yi
- Department of General Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Haiqing Jie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihang Liu
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, China
| | - Shujuan Li
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhou
- Department of General Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
12
|
Kessler S, Burke B, Andrieux G, Schinköthe J, Hamberger L, Kacza J, Zhan S, Reasoner C, Dutt TS, Kaukab Osman M, Henao-Tamayo M, Staniek J, Villena Ossa JF, Frank DT, Ma W, Ulrich R, Cathomen T, Boerries M, Rizzi M, Beer M, Schwemmle M, Reuther P, Schountz T, Ciminski K. Deciphering bat influenza H18N11 infection dynamics in male Jamaican fruit bats on a single-cell level. Nat Commun 2024; 15:4500. [PMID: 38802391 PMCID: PMC11130286 DOI: 10.1038/s41467-024-48934-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected male Jamaican fruit bats with the bat-derived influenza A virus (IAV) H18N11. Using comparative single-cell RNA sequencing, we generated single-cell atlases of the Jamaican fruit bat intestine and mesentery. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was predominant in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this bat-derived IAV. Our study provides insight into a natural virus-host relationship and thus serves as a fundamental resource for future in-depth characterization of bat immunology.
Collapse
Affiliation(s)
- Susanne Kessler
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bradly Burke
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Geoffroy Andrieux
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jan Schinköthe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Lea Hamberger
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Shijun Zhan
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Clara Reasoner
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Taru S Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maria Kaukab Osman
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julian Staniek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Jose Francisco Villena Ossa
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dalit T Frank
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Toni Cathomen
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Ma Y, Jiang T, Zhu X, Xu Y, Wan K, Zhang T, Xie M. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15:1415573. [PMID: 38835772 PMCID: PMC11148234 DOI: 10.3389/fimmu.2024.1415573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Zhu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yizhou Xu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Wan
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxuan Zhang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Chen J, Li G, He X, Chen X, Chen Z, Liu D, Guo S, Huang T, Lin Y, Lan P, Lian L, He X. ELMO1 ameliorates intestinal epithelial cellular senescence via SIRT1/p65 signaling in inflammatory bowel disease-related fibrosis. Gastroenterol Rep (Oxf) 2024; 12:goae045. [PMID: 38756351 PMCID: PMC11096966 DOI: 10.1093/gastro/goae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Background Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD), which still lacks of reliable markers and therapeutic options. Cellular senescence has been considered an important mechanism of intestinal fibrosis, but the underlying molecular link remains elusive. Methods Tissues were stained using α-smooth muscle actin (α-SMA), fibronectin, and collagen I as markers of myofibroblastic differentiation. Cellular senescence was confirmed through Lamin B1 staining, senescence-associated β-galactosidase staining, and the expression of senescence-associated secretory phenotype (SASP) factors. We explored the relationship between senescence of intestinal epithelial cells (IECs) and intestinal fibrosis, as well as the molecular mechanism underlying this interaction. The effects of irisin on cellular senescence and fibrosis were determined. Results Here, we identify engulfment and cell motility protein 1 (ELMO1) as a novel biomarker for intestinal cellular senescence and fibrosis. In fibrostrictured tissues from patients and murine models with IBD, significantly high levels of cellular senescence score and factors were noted, which positively correlated with the fibrotic regulator fibronectin. Senescent IECs, not fibroblast itself, released SASP factors to regulate fibroblast activation. Prolonging exposure to severe and persistent injurious stimuli decreased ELMO1 expression, which dampened SIRT1 deacetylase activity, enhanced NF-κB (p65) acetylation, and thereby accelerated cellular senescence. Deletion of ELMO1 led to senescent IECs accumulation and triggered premature fibrosis in murine colitis. Furthermore, irisin, inhibiting the degradation of ELMO1, could downregulate p65 acetylation, reduce IECs senescence, and prevent incipient intestinal fibrosis in murine colitis models. Conclusions This study reveals ELMO1 downregulation is an early symbol of intestinal senescence and fibrosis, and the altered ELMO1-SIRT1-p65 pathway plays an important role in intestinal cellular senescence and IBD-related fibrosis.
Collapse
Affiliation(s)
- Junguo Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Guanman Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Xiaowen He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xijie Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zexian Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Danling Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shuang Guo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Tianze Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yanyun Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Lei Lian
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaosheng He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
15
|
Yarychkivska O, Sharmin R, Elkhalil A, Ghose P. Apoptosis and beyond: A new era for programmed cell death in Caenorhabditis elegans. Semin Cell Dev Biol 2024; 154:14-22. [PMID: 36792437 DOI: 10.1016/j.semcdb.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Programmed cell death (PCD) is crucial for normal development and homeostasis. Our first insights into the genetic regulation of apoptotic cell death came from in vivo studies in the powerful genetic model system of C. elegans. More recently, novel developmental cell death programs occurring both embryonically and post-embryonically, and sex-specifically, have been elucidated. Recent studies in the apoptotic setting have also shed new light on the intricacies of phagocytosis in particular. This review provides a brief historical perspective of the origins of PCD studies in C. elegans, followed by a more detailed description of non-canonical apoptotic and non-apoptotic death programs. We conclude by posing open questions and commenting on our outlook on the future of PCD studies in C. elegans, highlighting the importance of advanced imaging tools and the continued leveraging of C. elegans genetics both with classical and modern cutting-edge approaches.
Collapse
Affiliation(s)
| | | | | | - Piya Ghose
- The University of Texas at Arlington, USA.
| |
Collapse
|
16
|
Liu D, Dredge BK, Bert AG, Pillman KA, Toubia J, Guo W, Dyakov BA, Migault MM, Conn VM, Conn S, Gregory PA, Gingras AC, Patel D, Wu B, Goodall G. ESRP1 controls biogenesis and function of a large abundant multiexon circRNA. Nucleic Acids Res 2024; 52:1387-1403. [PMID: 38015468 PMCID: PMC10853802 DOI: 10.1093/nar/gkad1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
While the majority of circRNAs are formed from infrequent back-splicing of exons from protein coding genes, some can be produced at quite high level and in a regulated manner. We describe the regulation, biogenesis and function of circDOCK1(2-27), a large, abundant circular RNA that is highly regulated during epithelial-mesenchymal transition (EMT) and whose formation depends on the epithelial splicing regulator ESRP1. CircDOCK1(2-27) synthesis in epithelial cells represses cell motility both by diverting transcripts from DOCK1 mRNA production to circRNA formation and by direct inhibition of migration by the circRNA. HITS-CLIP analysis and CRISPR-mediated deletions indicate ESRP1 controls circDOCK1(2-27) biosynthesis by binding a GGU-containing repeat region in intron 1 and detaining its splicing until Pol II completes its 157 kb journey to exon 27. Proximity-dependent biotinylation (BioID) assay suggests ESRP1 may modify the RNP landscape of intron 1 in a way that disfavours communication of exon 1 with exon 2, rather than physically bridging exon 2 to exon 27. The X-ray crystal structure of RNA-bound ESRP1 qRRM2 domain reveals it binds to GGU motifs, with the guanines embedded in clamp-like aromatic pockets in the protein.
Collapse
Affiliation(s)
- Dawei Liu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, SA 5000, Australia
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Boris J A Dyakov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Melodie M Migault
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Vanessa M Conn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Simon J Conn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dinshaw Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Singh N, Jian Li K, Lynn Gordon K. Getting there in one piece: The Rac pathway prevents cell fragmentation in a nonprotrusively migrating leader cell during organogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569642. [PMID: 38106045 PMCID: PMC10723291 DOI: 10.1101/2023.12.01.569642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2/DSL ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long-term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.
Collapse
Affiliation(s)
- Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Karen Jian Li
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
18
|
Lee YJ, Choi YS, Kim S, Heo JY, Kim DS, Kim KD, Nam SM, Nam HS, Lee SH, Choi D, Cho MK. Overexpression of Dock180 and Elmo1 in Melanoma is Associated with Cell Survival and Migration. Ann Dermatol 2023; 35:439-450. [PMID: 38086358 PMCID: PMC10733078 DOI: 10.5021/ad.23.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Melanoma is one of the most aggressive and metastatic skin cancers. Although overexpression of Dock180 and Elmo1 has been identified in various cancers, including glioma, ovarian cancer, and breast cancer, their expression and functions in melanoma remain unknown. OBJECTIVE This study aims to confirm the expression of Dock180 and Elmo1, their underlying mechanisms, and roles in melanoma. METHODS Both immunohistochemical staining and Western blotting were used to confirm expression of Dock180 and Elmo1 in human melanoma. To identify roles of Dock180 and Elmo1 in cell survival, apoptosis and migration, downregulation of Dock180 or Elmo1 in melanoma cells with small interfering RNA (siRNA) was performed. RESULTS We identified overexpression of Dock180 and Elmo1 in human melanoma compared to normal skin ex vivo. Inhibition of Dock180 or Elmo1 following siRNA in melanoma cells reduced cell viability and increased apoptosis as supported by increased proportion of cells with Annexin V-PE (+) staining and sub-G0/G1 peak in cell cycle analysis. Moreover, inhibition of Dock180 or Elmo1 regulated apoptosis-related proteins, showing downregulation of Bcl-2, caspase-3, and PARP and upregulation of Bax, PUMA, cleaved caspase-3, and cleaved PARP. Furthermore, knockdown of Dock180 and Elmo1 in melanoma cells reduced cell migration and changed cellular signaling pathways including ERK and AKT. Vemurafenib decreased cell viability in concentration-dependent manner, while transfection with Dock180- or Elmo1-specific siRNA in melanoma cells significantly reduced cell viability. CONCLUSION Our results suggest that both Dock180 and Elmo1 may be associated with cancer progression, and can be potential targets for treatment of melanoma.
Collapse
Affiliation(s)
- Yoon Jin Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yu Sung Choi
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Sooyoung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jae Young Heo
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Dong Sung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Ki Dam Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Seung Min Nam
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hae Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Sang Han Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dongsic Choi
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Moon Kyun Cho
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea.
| |
Collapse
|
19
|
Alexander MS, Velinov M. DOCK3-Associated Neurodevelopmental Disorder-Clinical Features and Molecular Basis. Genes (Basel) 2023; 14:1940. [PMID: 37895289 PMCID: PMC10606569 DOI: 10.3390/genes14101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein product of DOCK3 is highly expressed in neurons and has a role in cell adhesion and neuronal outgrowth through its interaction with the actin cytoskeleton and key cell signaling molecules. The DOCK3 protein is essential for normal cell growth and migration. Biallelic variants in DOCK3 associated with complete or partial loss of function of the gene were recently reported in six patients with intellectual disability and muscle hypotonia. Only one of the reported patients had congenital malformations outside of the CNS. Further studies are necessary to better determine the prevalence of DOCK3-associated neurodevelopmental disorders and the frequency of non-CNS clinical manifestations in these patients. Since deficiency of the DOCK3 protein product is now an established pathway of this neurodevelopmental condition, supplementing the deficient gene product using a gene therapy approach may be an efficient treatment strategy.
Collapse
Affiliation(s)
- Matthew S. Alexander
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA;
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Civitan International Research Center (CIRC), University of Alabama at Birmingham, Birmingham, AL 35233, USA
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Milen Velinov
- Department of Pediatrics, Division of Genetics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
20
|
Venkatachalam T, Mannimala S, Soto MC. CED-5/CED-12 (DOCK/ELMO) can promote and inhibit F-actin formation via distinct motifs that target different GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560868. [PMID: 37873140 PMCID: PMC10592980 DOI: 10.1101/2023.10.04.560868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. A candidate GEF region on CED-5 faces towards Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies showed the GEF and GAP functions act on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.
Collapse
Affiliation(s)
- Thejasvi Venkatachalam
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Sushma Mannimala
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
21
|
Schneider K, Arandjelovic S. Apoptotic cell clearance components in inflammatory arthritis. Immunol Rev 2023; 319:142-150. [PMID: 37507355 PMCID: PMC10615714 DOI: 10.1111/imr.13256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints that affects ~1% of the human population. Joint swelling and bone erosion, hallmarks of RA, contribute to disability and, sometimes, loss of life. Mechanistically, disease is driven by immune dysregulation characterized by circulating autoantibodies, inflammatory mediators, tissue degradative enzymes, and metabolic dysfunction of resident stromal and recruited immune cells. Cell death by apoptosis has been therapeutically explored in animal models of RA due to the comparisons drawn between synovial hyperplasia and paucity of apoptosis in RA with the malignant transformation of cancer cells. Several efforts to induce cell death have shown benefits in reducing the development and/or severity of the disease. Apoptotic cells are cleared by phagocytes in a process known as efferocytosis, which differs from microbial phagocytosis in its "immuno-silent," or anti-inflammatory, nature. Failures in efferocytosis have been linked to autoimmune disease, whereas administration of apoptotic cells in RA models effectively inhibits inflammatory indices, likely though efferocytosis-mediated resolution-promoting mechanisms. However, the nature of signaling pathways elicited and the molecular identity of clearance mediators in RA are understudied. Furthermore, canonical efferocytosis machinery elements also play important non-canonical functions in homeostasis and pathology. Here, we discuss the roles of efferocytosis machinery components in models of RA and discuss their potential involvement in disease pathophysiology.
Collapse
Affiliation(s)
- Kevin Schneider
- University of Virginia, Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Charlottesville, VA, USA
| | - Sanja Arandjelovic
- University of Virginia, Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Charlottesville, VA, USA
| |
Collapse
|
22
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
23
|
Liu X, Liu H, Deng Y. Efferocytosis: An Emerging Therapeutic Strategy for Type 2 Diabetes Mellitus and Diabetes Complications. J Inflamm Res 2023; 16:2801-2815. [PMID: 37440994 PMCID: PMC10335275 DOI: 10.2147/jir.s418334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that chronic, low-grade inflammation is a significant contributor to the fundamental pathogenesis of type 2 diabetes mellitus (T2DM). Efferocytosis, an effective way to eliminate apoptotic cells (ACs), plays a critical role in inflammation resolution. Massive accumulation of ACs and the proliferation of persistent inflammation caused by defective efferocytosis have been proven to be closely associated with pancreatic islet β cell destruction, adipose tissue inflammation, skeletal muscle dysfunction, and liver metabolism abnormalities, which together are considered the most fundamental pathological mechanism underlying T2DM. Therefore, here we outline the association between the molecular mechanisms of efferocytosis in glucose homeostasis, T2DM, and its complications, and we analyzed the present constraints and potential future prospects for therapeutic targets in T2DM and its complications.
Collapse
Affiliation(s)
- Xun Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hua Liu
- Southern Theater General Hospital of the Chinese People’s Liberation Army, Guangzhou, Guangdong, 510010, People’s Republic of China
| | - Yihui Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
24
|
Yang S, Min C, Moon H, Moon B, Lee J, Jeon J, Kwon H, Jang D, Park D. Internalization of apoptotic cells during efferocytosis requires Mertk-mediated calcium influx. Cell Death Dis 2023; 14:391. [PMID: 37391432 PMCID: PMC10313764 DOI: 10.1038/s41419-023-05925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Phagocytosis of apoptotic cells, called efferocytosis, requires calcium inside and outside of phagocytes. Due to its necessity, calcium flux is sophisticatedly modulated, and the level of intracellular calcium in phagocytes is ultimately elevated during efferocytosis. However, the role of elevated intracellular calcium in efferocytosis remains elusive. Here, we report that Mertk-mediated intracellular calcium elevation is necessary for internalization of apoptotic cells during efferocytosis. Drastic depletion of intracellular calcium abrogated the internalization step of efferocytosis by delaying phagocytic cup extension and closure. Especially, the defect of phagocytic cup closure for internalization of apoptotic cells was caused by impaired F-actin disassembly and the attenuated interaction of Calmodulin with myosin light chain kinase (MLCK), leading to diminished myosin light chain (MLC) phosphorylation. Genetic and pharmacological impairment of the Calmodulin-MLCK-MLC axis or Mertk-mediated calcium influx also resulted in inefficient efferocytosis due to a defect in internalization of the targets. Taken together, our observations imply that intracellular calcium elevation through Mertk-mediated calcium influx facilitates efferocytosis by inducing myosin II-mediated contraction and F-actin disassembly required for internalization of apoptotic cells.
Collapse
Affiliation(s)
- Susumin Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Chanhyuk Min
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Byeongjin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Juyeon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Jaeseon Jeon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hagyeong Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Deokyun Jang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
25
|
Kukimoto-Niino M, Ihara K, Mishima-Tsumagari C, Inoue M, Fukui Y, Yokoyama S, Shirouzu M. Structural basis for the dual GTPase specificity of the DOCK10 guanine nucleotide exchange factor. Biochem Biophys Res Commun 2023; 653:12-20. [PMID: 36848820 DOI: 10.1016/j.bbrc.2023.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Dedicator of cytokinesis 10 (DOCK10), an evolutionarily conserved guanine nucleotide exchange factor (GEF) for Rho GTPases, has the unique specificity within the DOCK-D subfamily to activate both Cdc42 and Rac, but the structural bases for these activities remained unknown. Here we present the crystal structures of the catalytic DHR2 domain of mouse DOCK10, complexed with either Cdc42 or Rac1. The structures revealed that DOCK10DHR2 binds to Cdc42 or Rac1 by slightly changing the arrangement of its two catalytic lobes. DOCK10 also has a flexible binding pocket for the 56th GTPase residue, allowing a novel interaction with Trp56Rac1. The conserved residues in switch 1 of Cdc42 and Rac1 showed common interactions with the unique Lys-His sequence in the β5/β6 loop of DOCK10DHR2. However, the interaction of switch 1 in Rac1 was less stable than that of switch 1 in Cdc42, due to amino acid differences at positions 27 and 30. Structure-based mutagenesis identified the DOCK10 residues that determine the Cdc42/Rac1 dual specificity.
Collapse
Affiliation(s)
- Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mio Inoue
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
26
|
Ma Y, Kemp SS, Yang X, Wu MH, Yuan SY. Cellular mechanisms underlying the impairment of macrophage efferocytosis. Immunol Lett 2023; 254:41-53. [PMID: 36740099 PMCID: PMC9992097 DOI: 10.1016/j.imlet.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The phagocytosis and clearance of dying cells by macrophages, a process termed efferocytosis, is essential for both maintaining homeostasis and promoting tissue repair after infection or sterile injury. If not removed in a timely manner, uncleared cells can undergo secondary necrosis, and necrotic cells lose membrane integrity, release toxic intracellular components, and potentially induce inflammation or autoimmune diseases. Efferocytosis also initiates the repair process by producing a wide range of pro-reparative factors. Accumulating evidence has revealed that macrophage efferocytosis defects are involved in the development and progression of a variety of inflammatory and autoimmune diseases. The underlying mechanisms of efferocytosis impairment are complex, disease-dependent, and incompletely understood. In this review, we will first summarize the current knowledge about the normal signaling and metabolic processes of macrophage efferocytosis and its importance in maintaining tissue homeostasis and repair. We then will focus on analyzing the molecular and cellular mechanisms underlying efferocytotic abnormality (impairment) in disease or injury conditions. Next, we will discuss the potential molecular targets for enhanced efferocytosis in animal models of disease. To provide a balanced view, we will also discuss some deleterious effects of efferocytosis.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
27
|
Fu X, Guo M, Liu J, Li C. circRNA432 enhances the coelomocyte phagocytosis via regulating the miR-2008-ELMO1 axis in Vibrio splendidus-challenged Apostichopus japonicus. Commun Biol 2023; 6:115. [PMID: 36709365 PMCID: PMC9884281 DOI: 10.1038/s42003-023-04516-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Circular RNAs (circRNAs) are a kind of extensive and diverse covalently closed circular endogenous RNA, which exert crucial functions in immune regulation in mammals. However, the functions and mechanisms of circRNAs in invertebrates are largely unclarified. In our previous work, 261 differentially expressed circRNAs including circRNA432 (circ432) were identified from skin ulcer syndrome (SUS) diseased sea cucumber Apostichopus japonicus by RNA-seq. To better address the functional role of sea cucumber circRNAs, circ432 was first found to be significantly induced by Vibrio splendidus challenge and LPS exposure in this study. Knock-down circ432 could depress the V. splendidus-induced coelomocytes phagocytosis. Moreover, circ432 is validated to serve as the sponge of miR-2008, a differential expressed miRNA in SUS-diseased sea cucumbers, by Argonaute 2-RNA immunoprecipitation (AGO2-RIP) assay, luciferase reporter assay and RNA fluorescence in situ hybridization (FISH) in vitro. Engulfment and cell motility protein 1 (AjELMO1) is further demonstrated to be the target of miR-2008, and silencing AjELMO1 inhibits the V. splendidus-induced coelomocytes phagocytosis, and this phenomenon could be further suppressed by supplementing with miR-2008 mimics, suggesting that circ432 might regulate coelomocytes phagocytosis via miR-2008-AjELMO1 axis. We further confirm that the depressed coelomocytes' phagocytosis by circ432 silencing is consistent with the decreased abundance of AjELMO1, and could be recovered by miR-2008 inhibitors transfection. All our results provide the evidence that circ432 is involved in regulating pathogen-induced coelomocyte phagocytosis via sponge miR-2008 and promotes the abundance of AjELMO1. These findings will enrich the regulatory mechanism of phagocytosis in echinoderm and provide theoretical data for SUS disease prevention and control in sea cucumbers.
Collapse
Affiliation(s)
- Xianmu Fu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Ming Guo
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Jiqing Liu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Chenghua Li
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266071 Qingdao, P. R. China
| |
Collapse
|
28
|
Gao Y, Jiao Y, Gong X, Liu J, Xiao H, Zheng Q. Role of transcription factors in apoptotic cells clearance. Front Cell Dev Biol 2023; 11:1110225. [PMID: 36743409 PMCID: PMC9892555 DOI: 10.3389/fcell.2023.1110225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis. The genetically controlled, autonomously ordered cell death mainly proceeds by apoptosis. Apoptosis is an important way of programmed cell death in multicellular organisms, timely and effective elimination of apoptotic cells plays a key role in the growth and development of organisms and the maintenance of homeostasis. During the clearance of apoptotic cells, transcription factors bind to specific target promoters and act as activators or repressors to regulate multiple genes expression, how transcription factors regulate apoptosis is an important and poorly understood aspect of normal development. This paper summarizes the regulatory mechanisms of transcription factors in the clearance of apoptotic cells to date.
Collapse
Affiliation(s)
| | | | | | | | - Hui Xiao
- *Correspondence: Hui Xiao, ; Qian Zheng,
| | - Qian Zheng
- *Correspondence: Hui Xiao, ; Qian Zheng,
| |
Collapse
|
29
|
Morioka S, Kajioka D, Yamaoka Y, Ellison RM, Tufan T, Werkman IL, Tanaka S, Barron B, Ito ST, Kucenas S, Okusa MD, Ravichandran KS. Chimeric efferocytic receptors improve apoptotic cell clearance and alleviate inflammation. Cell 2022; 185:4887-4903.e17. [PMID: 36563662 PMCID: PMC9930200 DOI: 10.1016/j.cell.2022.11.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.
Collapse
Affiliation(s)
- Sho Morioka
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Daiki Kajioka
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA
| | - Yusuke Yamaoka
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA; Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Rochelle M Ellison
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Turan Tufan
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Tokyo, Japan
| | - Inge L Werkman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Shinji Tanaka
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA
| | - Brady Barron
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Satoshi T Ito
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA; Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Tokyo, Japan
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; VIB/UGent Inflammation Research Centre, Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
30
|
Wen B, Li S, Ruan L, Yang Y, Chen Z, Zhang B, Yang X, Jie H, Li S, Zeng Z, Liu S. Engulfment and cell motility protein 1 fosters reprogramming of tumor-associated macrophages in colorectal cancer. Cancer Sci 2022; 114:410-422. [PMID: 36310143 PMCID: PMC9899619 DOI: 10.1111/cas.15628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Functional reprogramming of tumor-associated macrophages (TAMs) is crucial to their potent tumor-supportive capacity. However, the molecular mechanism behind the reprogramming process remains poorly understood. Here, we identify engulfment and cell motility protein 1 (ELMO1) as a crucial player for TAM reprogramming in colorectal cancer (CRC). The expression of ELMO1 in stromal but not epithelial tumor cells was positively associated with advanced clinical stage and poor disease-free survival in CRC. An increase in ELMO1 expression was specifically found in TAMs, but not in other multiple nonmalignant stromal cells. Gain- and loss-of-function assays indicated ELMO1 reprogrammed macrophages to a TAM-like phenotype through Rac1 activation. In turn, ELMO1-reprogrammed macrophages were shown to not only facilitate the malignant behaviors of CRC cells but exhibited potent phagocytosis of tumor cells. Taken together, our work underscores the importance of ELMO1 in determining functional reprogramming of TAMs and could provide new insights on potential therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Bo Wen
- Department of Gastrointestinal SurgeryCentral Hospital of ShaoyangShaoyangChina
| | - Sheng Li
- Department of Gastrointestinal SurgeryCentral Hospital of ShaoyangShaoyangChina
| | - Lei Ruan
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yanping Yang
- Department of PathologyCentral Hospital of ShaoyangShaoyangChina
| | - Zilin Chen
- Department of Medical OncologyCentral Hospital of ShaoyangShaoyangChina
| | - Bin Zhang
- Department of Gastrointestinal SurgeryCentral Hospital of ShaoyangShaoyangChina
| | - Xin Yang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Haiqing Jie
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Shujuan Li
- Department of PharmacyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhou, HenanChina
| | - Ziwei Zeng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,University Clinic MannheimMedical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Sisi Liu
- Department of PathologyCentral Hospital of ShaoyangShaoyangChina
| |
Collapse
|
31
|
Song JH, Mascarenhas JB, Sammani S, Kempf CL, Cai H, Camp SM, Bermudez T, Zhang DD, Natarajan V, Garcia JGN. TLR4 activation induces inflammatory vascular permeability via Dock1 targeting and NOX4 upregulation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166562. [PMID: 36179995 DOI: 10.1016/j.bbadis.2022.166562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.
Collapse
Affiliation(s)
- Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Joseph B Mascarenhas
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Hua Cai
- Department of Anesthesiology. University of California Los Angeles, Los Angeles, CA, United States of America
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America.
| |
Collapse
|
32
|
Tran V, Nahlé S, Robert A, Desanlis I, Killoran R, Ehresmann S, Thibault MP, Barford D, Ravichandran KS, Sauvageau M, Smith MJ, Kmita M, Côté JF. Biasing the conformation of ELMO2 reveals that myoblast fusion can be exploited to improve muscle regeneration. Nat Commun 2022; 13:7077. [PMID: 36400788 PMCID: PMC9674853 DOI: 10.1038/s41467-022-34806-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Myoblast fusion is fundamental for the development of multinucleated myofibers. Evolutionarily conserved proteins required for myoblast fusion include RAC1 and its activator DOCK1. In the current study we analyzed the contribution of the DOCK1-interacting ELMO scaffold proteins to myoblast fusion. When Elmo1-/- mice underwent muscle-specific Elmo2 genetic ablation, they exhibited severe myoblast fusion defects. A mutation in the Elmo2 gene that reduced signaling resulted in a decrease in myoblast fusion. Conversely, a mutation in Elmo2 coding for a protein with an open conformation increased myoblast fusion during development and in muscle regeneration. Finally, we showed that the dystrophic features of the Dysferlin-null mice, a model of limb-girdle muscular dystrophy type 2B, were reversed when expressing ELMO2 in an open conformation. These data provide direct evidence that the myoblast fusion process could be exploited for regenerative purposes and improve the outcome of muscle diseases.
Collapse
Affiliation(s)
- Viviane Tran
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Sarah Nahlé
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Inès Desanlis
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Ryan Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Sophie Ehresmann
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | | | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 OQH, UK
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, 22908, VA, USA
- VIB/UGent Inflammation Research Centre, Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Martin Sauvageau
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3T 1J4, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Marie Kmita
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, H3G 2M1, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.
| |
Collapse
|
33
|
Actin Up: An Overview of the Rac GEF Dock1/Dock180 and Its Role in Cytoskeleton Rearrangement. Cells 2022; 11:cells11223565. [PMID: 36428994 PMCID: PMC9688060 DOI: 10.3390/cells11223565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Dock1, originally Dock180, was the first identified member of the Dock family of GTPase Exchange Factors. Early biochemical and genetic studies of Dock180 elucidated the functions and regulation of Dock180 and informed our understanding of all Dock family members. Dock180 activates Rac to stimulate actin polymerization in response to signals initiated by a variety of receptors. Dock180 dependent Rac activation is essential for processes such as apoptotic cell engulfment, myoblast fusion, and cell migration during development and homeostasis. Inappropriate Dock180 activity has been implicated in cancer invasion and metastasis and in the uptake of bacterial pathogens. Here, we give an overview of the history and current understanding of the activity, regulation, and impacts of Dock180.
Collapse
|
34
|
Lebouvier M, Miramón-Puértolas P, Steinmetz PRH. Evolutionarily conserved aspects of animal nutrient uptake and transport in sea anemone vitellogenesis. Curr Biol 2022; 32:4620-4630.e5. [PMID: 36084649 DOI: 10.1016/j.cub.2022.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
The emergence of systemic nutrient transport was a key challenge during animal evolution, yet it is poorly understood. Circulatory systems distribute nutrients in many bilaterians (e.g., vertebrates and arthropods) but are absent in non-bilaterians (e.g., cnidarians and sponges), where nutrient absorption and transport remain little explored at molecular and cellular levels. Vitellogenesis, the accumulation of egg yolk, necessitates high nutrient influx into oocytes and is present throughout animal phyla and therefore represents a well-suited paradigm to study nutrient transport evolution. With that aim, we investigated dietary nutrient transport to the oocytes in the cnidarian Nematostella vectensis (Anthozoa). Using a combination of fluorescent bead labeling and marker gene expression, we found that phagocytosis, micropinocytosis, and intracellular digestion of food components occur within the gonad epithelium. Pulse-chase experiments further show that labelled fatty acids rapidly translocate from the gonad epithelium through the extracellular matrix (ECM) into oocytes. Expression of conserved lipid transport proteins vitellogenin (vtg) and apolipoprotein-B (apoB) and colocalization of labeled fatty acids with a fluorescently tagged ApoB protein further support the lipid-shuttling role of the gonad epithelium. Complementary oocyte expression of very low-density lipoprotein receptor (vldlr) orthologs, which mediate endocytosis of bilaterian ApoB- and Vtg-lipoproteins, supports that this evolutionarily conserved ligand/receptor pair underlies lipid transport during sea anemone vitellogenesis. In addition, we identified lipid- and ApoB-rich cells with potential lipid transport roles in the ECM. Altogether, our work supports a long-standing hypothesis that an ECM-based lipid transport system predated the cnidarian-bilaterian split and provided a basis for the evolution of bilaterian circulatory systems.
Collapse
Affiliation(s)
- Marion Lebouvier
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Paula Miramón-Puértolas
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Patrick R H Steinmetz
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.
| |
Collapse
|
35
|
Szondy Z, Al‐Zaeed N, Tarban N, Fige É, Garabuczi É, Sarang Z. Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: therapeutic implications. J Cachexia Sarcopenia Muscle 2022; 13:1961-1973. [PMID: 35666022 PMCID: PMC9397555 DOI: 10.1002/jcsm.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a progressive loss of muscle mass and strength with a risk of adverse outcomes such as disability, poor quality of life, and death. Increasing evidence indicates that diminished ability of the muscle to activate satellite cell-dependent regeneration is one of the factors that might contribute to its development. Skeletal muscle regeneration following myogenic cell death results from the proliferation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibres. Satellite cell differentiation is not a satellite cell-autonomous process but depends on signals provided by the surrounding cells. Infiltrating macrophages play a key role in the process partly by clearing the necrotic cell debris, partly by producing cytokines and growth factors that guide myogenesis. At the beginning of the muscle regeneration process, macrophages are pro-inflammatory, and the cytokines produced by them trigger the proliferation and differentiation of satellite cells. Following the uptake of dead cells, however, a transcriptionally regulated phenotypic change (macrophage polarization) is induced in them resulting in their transformation into healing macrophages that guide resolution of inflammation, completion of myoblast differentiation, myoblast fusion and growth, and return to homeostasis. Impaired efferocytosis results in delayed cell death clearance, delayed macrophage polarization, prolonged inflammation, and impaired muscle regeneration. Thus, proper efferocytosis by macrophages is a determining factor during muscle repair. Here we review that both efferocytosis and myogenesis are dependent on the cell surface phosphatidylserine (PS), and surprisingly, these two processes share a number of common PS receptors and signalling pathways. Based on these findings, we propose that stimulating the function of PS receptors for facilitating muscle repair following injury could be a successful approach, as it would enhance efferocytosis and myogenesis simultaneously. Because increasing evidence indicates a pathophysiological role of impaired efferocytosis in the development of chronic inflammatory conditions, as well as in impaired muscle regeneration both contributing to the development of sarcopenia, improving efferocytosis should be considered also in its management. Again applying or combining those treatments that target PS receptors would be expected to be the most effective, because they would also promote myogenesis. A potential PS receptor-triggering candidate molecule is milk fat globule-EGF-factor 8 (MFG-E8), which not only stimulates PS-dependent efferocytosis and myoblast fusion but also promotes extracellular signal-regulated kinase (ERK) and Akt activation-mediated cell proliferation and cell cycle progression in myoblasts.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nour Al‐Zaeed
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nastaran Tarban
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Éva Fige
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
| | - Éva Garabuczi
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
36
|
Yuan L, Li P, Zheng Q, Wang H, Xiao H. The Ubiquitin-Proteasome System in Apoptosis and Apoptotic Cell Clearance. Front Cell Dev Biol 2022; 10:914288. [PMID: 35874820 PMCID: PMC9300945 DOI: 10.3389/fcell.2022.914288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitination, a critical post-translational modification of proteins, refers to the covalent attachment of ubiquitin to the substrate and is involved in various biological processes such as protein stability regulation, DNA damage repair, and apoptosis, among others. E3 ubiquitin ligases are essential enzymes of the ubiquitin pathway with high substrate specificity and precisely regulate specific proteins’ turnover. As one of the most well-studied forms of programmed cell death, apoptosis is substantially conserved across the evolutionary tree. The final critical stage in apoptosis is the removal of apoptotic cells by professional and non-professional phagocytes. Apoptosis and apoptotic cell clearance are crucial for the normal development, differentiation, and growth of multicellular organisms, as well as their association with a variety of inflammatory and immune diseases. In this review, we discuss the role of ubiquitination and deubiquitination in apoptosis and apoptotic cell clearance.
Collapse
Affiliation(s)
- Lei Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peiyao Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qian Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
37
|
Boger M, Bennewitz K, Wohlfart DP, Hausser I, Sticht C, Poschet G, Kroll J. Comparative Morphological, Metabolic and Transcriptome Analyses in elmo1−/−, elmo2−/−, and elmo3−/− Zebrafish Mutants Identified a Functional Non-Redundancy of the Elmo Proteins. Front Cell Dev Biol 2022; 10:918529. [PMID: 35874819 PMCID: PMC9304559 DOI: 10.3389/fcell.2022.918529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The ELMO protein family consists of the homologues ELMO1, ELMO2 and ELMO3. Several studies have shown that the individual ELMO proteins are involved in a variety of cellular and developmental processes. However, it has poorly been understood whether the Elmo proteins show similar functions and act redundantly. To address this question, elmo1−/−, elmo2−/− and elmo3−/− zebrafish were generated and a comprehensive comparison of the phenotypic changes in organ morphology, transcriptome and metabolome was performed in these mutants. The results showed decreased fasting and increased postprandial blood glucose levels in adult elmo1−/−, as well as a decreased vascular formation in the adult retina in elmo1−/−, but an increased vascular formation in the adult elmo3−/− retina. The phenotypical comparison provided few similarities, as increased Bowman space areas in adult elmo1−/− and elmo2−/− kidneys, an increased hyaloid vessel diameter in elmo1−/− and elmo3−/− and a transcriptional downregulation of the vascular development in elmo1−/−, elmo2−/−, and elmo3−/− zebrafish larvae. Besides this, elmo1−/−, elmo2−/−, and elmo3−/− zebrafish exhibited several distinct changes in the vascular and glomerular structure and in the metabolome and the transcriptome. Especially, elmo3−/− zebrafish showed extensive differences in the larval transcriptome and an impaired survivability. Together, the data demonstrated that the three zebrafish Elmo proteins regulate not only similar but also divergent biological processes and mechanisms and show a low functional redundancy.
Collapse
Affiliation(s)
- Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Philipp Wohlfart
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, EM Lab, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- *Correspondence: Jens Kroll,
| |
Collapse
|
38
|
Yazbeck P, Cullere X, Bennett P, Yajnik V, Wang H, Kawada K, Davis V, Parikh A, Kuo A, Mysore V, Hla T, Milstone D, Mayadas TN. DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arterioscler Thromb Vasc Biol 2022; 42:886-902. [PMID: 35477279 PMCID: PMC9233130 DOI: 10.1161/atvbaha.122.317565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability. Here, we evaluated the role of DOCK4 (dedicator of cytokinesis 4)-an unconventional Rho family GTPase GEF in vascular function. METHODS We generated mice deficient in DOCK4' used DOCK4 silencing and reconstitution approaches in human pulmonary artery endothelial cells' used assays to evaluate protein localization, endothelial cell permeability, and small GTPase activation. RESULTS Our data show that DOCK4-deficient mice are viable. However, these mice have hemorrhage selectively in the lung, incomplete smooth muscle cell coverage in pulmonary vessels, increased basal microvascular permeability, and impaired response to S1P (sphingosine-1-phosphate)-induced reversal of thrombin-induced permeability. Consistent with this, DOCK4 rapidly translocates to the cell periphery and associates with the detergent-insoluble fraction following S1P treatment, and its absence prevents S1P-induced Rac-1 activation and enhancement of barrier function. Moreover, DOCK4-silenced pulmonary artery endothelial cells exhibit enhanced basal permeability in vitro that is associated with enhanced Rho GTPase activation. CONCLUSIONS Our findings indicate that DOCK4 maintains AJs necessary for lung vascular barrier function by establishing the normal balance between RhoA (Ras homolog family member A) and Rac-1-mediated actin cytoskeleton remodeling, a previously unappreciated function for the atypical GEF family of molecules. Our studies also identify S1P as a potential upstream regulator of DOCK4 activity.
Collapse
Affiliation(s)
- Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul Bennett
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Vijay Yajnik
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Huan Wang
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kenji Kawada
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Vanessa Davis
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Asit Parikh
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - David Milstone
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
39
|
Mahmoud M, Evans I, Wisniewski L, Tam Y, Walsh C, Walker-Samuel S, Frankel P, Scambler P, Zachary I. Bcar1/p130Cas is essential for ventricular development and neural crest cell remodelling of the cardiac outflow tract. Cardiovasc Res 2022; 118:1993-2005. [PMID: 34270692 PMCID: PMC9239580 DOI: 10.1093/cvr/cvab242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/13/2021] [Indexed: 01/09/2023] Open
Abstract
AIMS The adapter protein p130Cas, encoded by the Bcar1 gene, is a key regulator of cell movement, adhesion, and cell cycle control in diverse cell types. Bcar1 constitutive knockout mice are embryonic lethal by embryonic days (E) 11.5-12.5, but the role of Bcar1 in embryonic development remains unclear. Here, we investigated the role of Bcar1 specifically in cardiovascular development and defined the cellular and molecular mechanisms disrupted following targeted Bcar1 deletions. METHODS AND RESULTS We crossed Bcar1 floxed mice with Cre transgenic lines allowing for cell-specific knockout either in smooth muscle and early cardiac tissues (SM22-Cre), mature smooth muscle cells (smMHC-Cre), endothelial cells (Tie2-Cre), second heart field cells (Mef2c-Cre), or neural crest cells (NCC) (Pax3-Cre) and characterized these conditional knock outs using a combination of histological and molecular biology techniques. Conditional knockout of Bcar1 in SM22-expressing smooth muscle cells and cardiac tissues (Bcar1SM22KO) was embryonically lethal from E14.5-15.5 due to severe cardiovascular defects, including abnormal ventricular development and failure of outflow tract (OFT) septation leading to a single outflow vessel reminiscent of persistent truncus arteriosus. SM22-restricted loss of Bcar1 was associated with failure of OFT cushion cells to undergo differentiation to septal mesenchymal cells positive for SMC-specific α-actin, and disrupted expression of proteins and transcription factors involved in epithelial-to-mesenchymal transformation (EMT). Furthermore, knockout of Bcar1 specifically in NCC (Bcar1PAX3KO) recapitulated part of the OFT septation and aortic sac defects seen in the Bcar1SM22KO mutants, indicating a cell-specific requirement for Bcar1 in NCC essential for OFT septation. In contrast, conditional knockouts of Bcar1 in differentiated smooth muscle, endothelial cells, and second heart field cells survived to term and were phenotypically normal at birth and postnatally. CONCLUSION Our work reveals a cell-specific requirement for Bcar1 in NCC, early myogenic and cardiac cells, essential for OFT septation, myocardialization and EMT/cell cycle regulation and differentiation to myogenic lineages.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Centre for Cardiometabolic and Vascular Science, BHF Laboratories, UCL Division of Medicine, 5 University Street, London WC1E 6JF, UK
| | - Ian Evans
- Centre for Cardiometabolic and Vascular Science, BHF Laboratories, UCL Division of Medicine, 5 University Street, London WC1E 6JF, UK
| | - Laura Wisniewski
- Centre for Cardiometabolic and Vascular Science, BHF Laboratories, UCL Division of Medicine, 5 University Street, London WC1E 6JF, UK
| | - Yuen Tam
- Centre for Cardiometabolic and Vascular Science, BHF Laboratories, UCL Division of Medicine, 5 University Street, London WC1E 6JF, UK
| | - Claire Walsh
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Paul Frankel
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, UK
| | - Peter Scambler
- Developmental Biology of Birth Defects Section, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Ian Zachary
- Centre for Cardiometabolic and Vascular Science, BHF Laboratories, UCL Division of Medicine, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
40
|
Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus. Vet Sci 2022; 9:vetsci9070312. [PMID: 35878329 PMCID: PMC9323928 DOI: 10.3390/vetsci9070312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Diabetes is a chronic metabolic disease characterized by high blood glucose levels (hyperglycemia). Type 2 diabetes mellitus (T2DM) and its complications are a worldwide public health problem, affecting people from all developed and developing countries. Hyperglycemia can cause damage to the vascular system and dysfunction of organs, such as the kidneys, heart, retina of the eyes, and nerves. Diabetic nephropathy (DN) is one of the most severe micro-vascular complications, which can lead to ESRD (end-stage renal disease). Zebrafish are ideal for wide-scale analysis or screening, due to their small size, quick growth, transparent embryos, vast number of offspring, and gene similarity with humans, which combine to make zebrafish an ideal model for diabetes. The readily available tools for gene editing using morpholinos or CRISPR/Cas9, as well as chemical/drug therapy by microinjection or skin absorption, enable zebrafish diabetes mellitus models to be established in a number of ways. In this review, we emphasize the physiological and pathological processes relating to micro-vascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish. This study specifies the benefits and drawbacks and future perspective of using zebrafish as a disease model. Abstract Diabetes mellitus (DM) is a complicated metabolic illness that has had a worldwide impact and placed an unsustainable load on both developed and developing countries’ health care systems. According to the International Diabetes Federation, roughly 537 million individuals had diabetes in 2021, with type 2 diabetes mellitus accounting for the majority of cases (T2DM). T2DM is a chronic illness defined by insufficient insulin production from pancreatic islet cells. T2DM generates various micro and macrovascular problems, with diabetic nephropathy (DN) being one of the most serious microvascular consequences, and which can lead to end-stage renal disease. The zebrafish (Danio rerio) has set the way for its future as a disease model organism. As numerous essential developmental processes, such as glucose metabolism and reactive metabolite production pathways, have been identified in zebrafish that are comparable to those seen in humans, it is a good model for studying diabetes and its consequences. It also has many benefits over other vertebrate models, including the permeability of its embryos to small compounds, disease-driven therapeutic target selection, in vivo validation, and deconstruction of biological networks. The organism can also be utilized to investigate and understand the genetic abnormalities linked to the onset of diabetes problems. Zebrafish may be used to examine and visualize the growth, morphology, and function of organs under normal physiological and diabetic settings. The zebrafish has become one of the most useful models for studying DN, especially when combined with genetic alterations and/or mutant or transgenic fish lines. The significant advancements of CRISPR and next-generation sequencing technology for disease modelling in zebrafish, as well as developments in molecular and nano technologies, have advanced the understanding of the molecular mechanisms of several human diseases, including DN. In this review, we emphasize the physiological and pathological processes relating to microvascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish.
Collapse
|
41
|
Tocci S, Ibeawuchi SR, Das S, Sayed IM. Role of ELMO1 in inflammation and cancer-clinical implications. Cell Oncol (Dordr) 2022; 45:505-525. [PMID: 35668246 DOI: 10.1007/s13402-022-00680-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Engulfment and cell motility protein 1 (ELMO1) is a key protein for innate immunity since it is required for the clearance of apoptotic cells and pathogenic bacteria as well as for the control of inflammatory responses. ELMO1, through binding with Dock180 and activation of the Rac1 signaling pathway, plays a significant role in cellular shaping and motility. Rac-mediated actin cytoskeletal rearrangement is essential for bacterial phagocytosis, but also plays a crucial role in processes such as cancer cell invasion and metastasis. While the role of ELMO1 in bacterial infection and inflammatory responses is well established, its implication in cancer is not widely explored yet. Molecular changes or epigenetic alterations such as DNA methylation, which ultimately leads to alterations in gene expression and deregulation of cellular signaling, has been reported for ELMO1 in different cancer types. CONCLUSIONS In this review, we provide an updated and comprehensive summary of the roles of ELMO1 in infection, inflammatory diseases and cancer. We highlight the possible mechanisms regulated by ELMO1 that are relevant for cancer development and progression and provide insight into the possible use of ELMO1 as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Stefania Tocci
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA. .,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
42
|
Barbaro JM, Sidoli S, Cuervo AM, Berman JW. Methamphetamine Dysregulates Macrophage Functions and Autophagy to Mediate HIV Neuropathogenesis. Biomedicines 2022; 10:1257. [PMID: 35740279 PMCID: PMC9220012 DOI: 10.3390/biomedicines10061257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/31/2023] Open
Abstract
HIV-neurocognitive impairment (HIV-NCI) can be a debilitating condition for people with HIV (PWH), despite the success of antiretroviral therapy (ART). Substance use disorder is often a comorbidity with HIV infection. The use of methamphetamine (meth) increases systemic inflammation and CNS damage in PWH. Meth may also increase neuropathogenesis through the functional dysregulation of cells that harbor HIV. Perivascular macrophages are long-lived reservoirs for HIV in the CNS. The impaired clearance of extracellular debris and increased release of reactive oxygen species (ROS) by HIV-infected macrophages cause neurotoxicity. Macroautophagy is a vital intracellular pathway that can regulate, in part, these deleterious processes. We found in HIV-infected primary human macrophages that meth inhibits phagocytosis of aggregated amyloid-β, increases total ROS, and dysregulates autophagic processes. Treatment with widely prescribed ART drugs had minimal effects, although there may be an improvement in phagocytosis when co-administered with meth. Pharmacologically inhibited lysosomal degradation, but not induction of autophagy, further increased ROS in response to meth. Using mass spectrometry, we identified the differentially expressed proteins in meth-treated, HIV-infected macrophages that participate in phagocytosis, mitochondrial function, redox metabolism, and autophagy. Significantly altered proteins may be novel targets for interventional strategies that restore functional homeostasis in HIV-infected macrophages to improve neurocognition in people with HIV-NCI using meth.
Collapse
Affiliation(s)
- John M. Barbaro
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
43
|
Baicalin clears inflammation by enhancing macrophage efferocytosis via inhibition of RhoA/ROCK signaling pathway and regulating macrophage polarization. Int Immunopharmacol 2022; 105:108532. [DOI: 10.1016/j.intimp.2022.108532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
|
44
|
Mao QY, He SY, Hu QY, Lu Y, Niu YX, Li XY, Zhang HM, Qin L, Su Q. Advanced Glycation End Products (AGEs) Inhibit Macrophage Efferocytosis of Apoptotic β Cells through Binding to the Receptor for AGEs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1204-1213. [PMID: 35173034 DOI: 10.4049/jimmunol.2100695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Pancreatic β cell apoptosis is important in the pathogenesis of type 2 diabetes mellitus (T2DM). Generally, apoptotic β cells are phagocytosed by macrophages in a process known as "efferocytosis." Efferocytosis is critical to the resolution of inflammation and is impaired in T2DM. Advanced glycation end products (AGEs), which are increased in T2DM, are known to suppress phagocytosis function in macrophages. In this study, we found that AGEs inhibited efferocytosis of apoptotic β cells by primary peritoneal macrophages in C57BL/6J mice or mouse macrophage cell line Raw264.7. Mechanistically, AGEs inhibit efferocytosis by blocking Ras-related C3 botulinum toxin substrate 1 activity and cytoskeletal rearrangement through receptor for advanced glycation end products/ras homolog family member A/Rho kinase signaling in macrophages. Furthermore, it was observed that AGEs decreased the secretion of anti-inflammatory factors and promoted the proinflammatory ones to modulate the inflammation function of efferocytosis. Taken together, our results indicate that AGEs inhibit efferocytosis through binding to receptor for advanced glycation end products and activating ras homolog family member A/Rho kinase signaling, thereby inhibiting the anti-inflammatory function of efferocytosis.
Collapse
Affiliation(s)
- Qian-Yun Mao
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Sun-Yue He
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Qiu-Yue Hu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Yao Lu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Yi-Xin Niu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Xiao-Yong Li
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Hong-Mei Zhang
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
- Department of Endocrinology, Xinhua Hospital Chongming Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| |
Collapse
|
45
|
Mallery EL, Yanagisawa M, Zhang C, Lee Y, Robles LM, Alonso JM, Szymanski DB. Tandem C2 domains mediate dynamic organelle targeting of a DOCK family guanine nucleotide exchange factor. J Cell Sci 2022; 135:275003. [PMID: 35194638 DOI: 10.1242/jcs.259825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Multicellular organisms use DOCK family guanine nucleotide exchange factors to activate Rac/Rho-of-Plants small GTPases and coordinate cell shape change. In developing tissues, DOCK signals integrate cell-cell interactions with cytoskeleton remodeling, and the GEFs cluster reversibly at specific organelle surfaces to orchestrate cytoskeletal reorganization. The domain organizations among DOCK orthologs are diverse, and the mechanisms of localization control are poorly understood. Here we use combinations of transgene complementation and live cell imaging assays to uncover an evolutionarily conserved and essential localization determinant in the DOCK-GEF named SPIKE1. The SPIKE1-DHR3 domain is sufficient for organelle association in vivo, and displays a complicated lipid binding selectivity for both phospholipid head groups and fatty acid chain saturation. SPIKE1-DHR3 is predicted to adopt a C2-domain structure and functions as part of tandem C2 array that enables reversible clustering at the cell apex. This work provides mechanistic insight into how DOCK GEFs sense compositional and biophysical membrane properties at the interface of two organelle systems.
Collapse
Affiliation(s)
- Eileen L Mallery
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Makoto Yanagisawa
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunhua Zhang
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Youngwoo Lee
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda M Robles
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jose M Alonso
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Daniel B Szymanski
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
46
|
Juanez K, Ghose P. Repurposing the Killing Machine: Non-canonical Roles of the Cell Death Apparatus in Caenorhabditis elegans Neurons. Front Cell Dev Biol 2022; 10:825124. [PMID: 35237604 PMCID: PMC8882910 DOI: 10.3389/fcell.2022.825124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Here we highlight the increasingly divergent functions of the Caenorhabditis elegans cell elimination genes in the nervous system, beyond their well-documented roles in cell dismantling and removal. We describe relevant background on the C. elegans nervous system together with the apoptotic cell death and engulfment pathways, highlighting pioneering work in C. elegans. We discuss in detail the unexpected, atypical roles of cell elimination genes in various aspects of neuronal development, response and function. This includes the regulation of cell division, pruning, axon regeneration, and behavioral outputs. We share our outlook on expanding our thinking as to what cell elimination genes can do and noting their versatility. We speculate on the existence of novel genes downstream and upstream of the canonical cell death pathways relevant to neuronal biology. We also propose future directions emphasizing the exploration of the roles of cell death genes in pruning and guidance during embryonic development.
Collapse
|
47
|
Xue R, Wang Y, Wang T, Lyu M, Mo G, Fan X, Li J, Yen K, Yu S, Liu Q, Xu J. Functional Verification of Novel ELMO1 Variants by Live Imaging in Zebrafish. Front Cell Dev Biol 2021; 9:723804. [PMID: 34993193 PMCID: PMC8724260 DOI: 10.3389/fcell.2021.723804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
ELMO1 (Engulfment and Cell Motility1) is a gene involved in regulating cell motility through the ELMO1-DOCK2-RAC complex. Contrary to DOCK2 (Dedicator of Cytokinesis 2) deficiency, which has been reported to be associated with immunodeficiency diseases, variants of ELMO1 have been associated with autoimmune diseases, such as diabetes and rheumatoid arthritis (RA). To explore the function of ELMO1 in immune cells and to verify the functions of novel ELMO1 variants in vivo, we established a zebrafish elmo1 mutant model. Live imaging revealed that, similar to mammals, the motility of neutrophils and T-cells was largely attenuated in zebrafish mutants. Consequently, the response of neutrophils to injury or bacterial infection was significantly reduced in the mutants. Furthermore, the reduced mobility of neutrophils could be rescued by the expression of constitutively activated Rac proteins, suggesting that zebrafish elmo1 mutant functions via a conserved mechanism. With this mutant, three novel human ELMO1 variants were transiently and specifically expressed in zebrafish neutrophils. Two variants, p.E90K (c.268G>A) and p.D194G (c.581A>G), could efficiently recover the motility defect of neutrophils in the elmo1 mutant; however, the p.R354X (c.1060C>T) variant failed to rescue the mutant. Based on those results, we identified that zebrafish elmo1 plays conserved roles in cell motility, similar to higher vertebrates. Using the transient-expression assay, zebrafish elmo1 mutants could serve as an effective model for human variant verification in vivo.
Collapse
Affiliation(s)
- Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | | | - Mei Lyu
- Laboratory of Immunology and Regeneration, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guiling Mo
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
| | - Xijie Fan
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
| | - Jianchao Li
- Laboratory of Molecular and Structural Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kuangyu Yen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Shihui Yu
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Jin Xu
- Laboratory of Immunology and Regeneration, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| |
Collapse
|
48
|
Mayorova TD, Hammar K, Jung JH, Aronova MA, Zhang G, Winters CA, Reese TS, Smith CL. Placozoan fiber cells: mediators of innate immunity and participants in wound healing. Sci Rep 2021; 11:23343. [PMID: 34857844 PMCID: PMC8639732 DOI: 10.1038/s41598-021-02735-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Placozoa is a phylum of non-bilaterian marine animals. These small, flat organisms adhere to the substrate via their densely ciliated ventral epithelium, which mediates mucociliary locomotion and nutrient uptake. They have only six morphological cell types, including one, fiber cells, for which functional data is lacking. Fiber cells are non-epithelial cells with multiple processes. We used electron and light microscopic approaches to unravel the roles of fiber cells in Trichoplax adhaerens, a representative member of the phylum. Three-dimensional reconstructions of serial sections of Trichoplax showed that each fiber cell is in contact with several other cells. Examination of fiber cells in thin sections and observations of live dissociated fiber cells demonstrated that they phagocytose cell debris and bacteria. In situ hybridization confirmed that fiber cells express genes involved in phagocytic activity. Fiber cells also are involved in wound healing as evidenced from microsurgery experiments. Based on these observations we conclude that fiber cells are multi-purpose macrophage-like cells. Macrophage-like cells have been described in Porifera, Ctenophora, and Cnidaria and are widespread among Bilateria, but our study is the first to show that Placozoa possesses this cell type. The phylogenetic distribution of macrophage-like cells suggests that they appeared early in metazoan evolution.
Collapse
Affiliation(s)
- Tatiana D Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD, 20892, USA.
| | - Katherine Hammar
- Central Microscopy Facility, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Jae H Jung
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD, 20892, USA
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Guofeng Zhang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Christine A Winters
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD, 20892, USA
| | - Thomas S Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD, 20892, USA
| | - Carolyn L Smith
- Light Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
49
|
Musser JM, Schippers KJ, Nickel M, Mizzon G, Kohn AB, Pape C, Ronchi P, Papadopoulos N, Tarashansky AJ, Hammel JU, Wolf F, Liang C, Hernández-Plaza A, Cantalapiedra CP, Achim K, Schieber NL, Pan L, Ruperti F, Francis WR, Vargas S, Kling S, Renkert M, Polikarpov M, Bourenkov G, Feuda R, Gaspar I, Burkhardt P, Wang B, Bork P, Beck M, Schneider TR, Kreshuk A, Wörheide G, Huerta-Cepas J, Schwab Y, Moroz LL, Arendt D. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science 2021; 374:717-723. [PMID: 34735222 DOI: 10.1126/science.abj2949] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jacob M Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske J Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Friedrich-Schiller-Universität Jena, Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, 07743 Jena, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 München, Germany
| | - Giulia Mizzon
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Constantin Pape
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nikolaos Papadopoulos
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Jörg U Hammel
- Friedrich-Schiller-Universität Jena, Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, 07743 Jena, Germany.,Institute for Materials Physics, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Florian Wolf
- Friedrich-Schiller-Universität Jena, Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, 07743 Jena, Germany
| | - Cong Liang
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
| | - Ana Hernández-Plaza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Madrid, Spain
| | - Carlos P Cantalapiedra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Madrid, Spain
| | - Kaia Achim
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nicole L Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Leslie Pan
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Warren R Francis
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 München, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 München, Germany
| | - Svenja Kling
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Maike Renkert
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Maxim Polikarpov
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory, Hamburg, 22607 Germany.,Department of Information Technology and Electrical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Gleb Bourenkov
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory, Hamburg, 22607 Germany
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Imre Gaspar
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Totipotency, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Thomas R Schneider
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory, Hamburg, 22607 Germany
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gert Wörheide
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 München, Germany.,Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 München, Germany.,Bayerische Staatssammlung für Paläontologie und Geologie (SNSB), 80333 München, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Madrid, Spain.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Leonid L Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA.,Department of Neuroscience and Brain Institute, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
TNF-α-mediated m 6A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nat Commun 2021; 12:5373. [PMID: 34508078 PMCID: PMC8433149 DOI: 10.1038/s41467-021-25710-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a type of rheumatic disease characterized by chronic inflammation and pathological osteogenesis in the entheses. Previously, we demonstrated that enhanced osteogenic differentiation of MSC from AS patients (AS-MSC) resulted in pathological osteogenesis, and that during the enhanced osteogenic differentiation course, AS-MSC induced TNF-α-mediated local inflammation. However, whether TNF-α in turn affects AS-MSC remains unknown. Herein, we further demonstrate that a high-concentration TNF-α treatment triggers enhanced directional migration of AS-MSC in vitro and in vivo, which enforces AS pathogenesis. Mechanistically, TNF-α leads to increased expression of ELMO1 in AS-MSC, which is mediated by a METTL14 dependent m6A modification in ELMO1 3′UTR. Higher ELMO1 expression of AS-MSC is found in vivo in AS patients, and inhibiting ELMO1 in SKG mice produces therapeutic effects in this spondyloarthritis model. This study may provide insight into not only the pathogenesis but also clinical therapy for AS. Abnormal functions of mesenchymal stem cells (MSC) contribute into the pathogenensis of ankylosing spondylitis (AS). Here, the authors show that TNF-α at high concentration induces enhances migration of AS-MSC through METTL14 mediated m6A modification of the ELMO1 3′ UTR.
Collapse
|