1
|
Gao J, Yin J, Li S, Jia P, Hong R, Chen J, Qu X, Zhang Z, Li M, Zhao H. Discovery of 4-(4-(3-(1-(2-(piperidin-1-yl)ethyl)-1H-benzo[d]imidazole-2-yl)isoxazol-5-yl)phenyl)morpholine as a novel c-Myc inhibitor against lung cancer in vitro and in vivo. Eur J Med Chem 2025; 281:117023. [PMID: 39531932 DOI: 10.1016/j.ejmech.2024.117023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The critical role of c-Myc as a driving factor in the development and progression of lung cancer establishes it as a pivotal target for anti-lung cancer therapeutic research. In our previous study, we reported on the discovery of D347-2761, a novel small-molecule inhibitor that specifically targets the unstable domain of c-Myc and disrupts the c-Myc/Max heterodimer. To enhance targeted therapies further, we conducted an extensive structural analysis and designed a series of innovative benzimidazole derivatives. The cytotoxic activities of these compounds were assessed using the CCK-8 assay, revealing that compound A1 displayed IC50 values of 6.32 μM and 11.39 μM against the A549 and NCI-H1299 lung cancer cell lines, respectively, while compound A5 exhibited IC50 values of 4.08 μM and 7.86 μM against the same cell lines. Our findings revealed that compounds A1 and A5 exhibited potent anticancer activity by disrupting the interaction between c-Myc and Max proteins, leading to the downregulation of c-Myc protein levels and induction of apoptosis through apoptotic pathways. Notably, compound A5 demonstrated superior inhibitory capacity compared to other compounds tested. Furthermore, in a syngeneic tumor model, compound A5 exhibited excellent efficacy with a tumor growth inhibition rate reaching up to 76.4 %, accompanied by a significant reduction in c-Myc protein expression levels. Therefore, compound A5 holds promise as a potential agent for targeting c-Myc in anti-lung cancer therapy.
Collapse
Affiliation(s)
- Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jiacheng Yin
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Shihao Li
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Pingting Jia
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Renjie Hong
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jiahui Chen
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Xinxin Qu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Zihui Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Mengting Li
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Hui Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, China.
| |
Collapse
|
2
|
Morrish F, Gingras H, Noonan J, Huang L, Sweet IR, Kuok IT, Knoblaugh SE, Hockenbery DM. Mitochondrial diabetes in mice expressing a dominant-negative allele of nuclear respiratory factor-1 (Nrf1) in pancreatic β-cells. Biochem Biophys Res Commun 2024; 737:150478. [PMID: 39128225 DOI: 10.1016/j.bbrc.2024.150478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Genetic polymorphisms in nuclear respiratory factor-1 (Nrf1), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with β-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic β-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in β-cells. Expression of NRF1 target genes Tfam, Tfb1m and Tfb2m, and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in β-cells was sufficient to restore β-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of β-cell function and establishes a model to study the interplay between regulators of bi-genomic gene transcription in diabetes.
Collapse
Affiliation(s)
- Fionnuala Morrish
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Helene Gingras
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joanna Noonan
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Li Huang
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ian R Sweet
- University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Iok Teng Kuok
- University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Sue E Knoblaugh
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Hockenbery
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Guerrieri AN, Hattinger CM, Marchesini F, Melloni M, Serra M, Ibrahim T, Penzo M. The Interplay Between the MYC Oncogene and Ribosomal Proteins in Osteosarcoma Onset and Progression: Potential Mechanisms and Indication of Candidate Therapeutic Targets. Int J Mol Sci 2024; 25:12031. [PMID: 39596100 PMCID: PMC11593864 DOI: 10.3390/ijms252212031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
High-grade osteosarcoma (OS) is the most common primary bone tumor mainly affecting children and young adults. First-line treatment consists of neo-adjuvant chemotherapy with doxorubicin, cisplatin, and methotrexate and surgery. The mean long-term survival rate for localized disease at diagnosis is 65-70%, dropping down to 20% when metastases are present at diagnosis. Therefore, curing OS is a clinical challenge, particularly for patients that do not respond to standard treatments. MYC has frequently been reported to be involved in the pathogenesis of OS and its high expression may be associated with drug resistance and patients' worse prognosis. Moreover, MYC is a master regulator of ribosomal proteins (RPs) synthesis and ribosome biogenesis (RiBi), which is often up-regulated in human tumors. In recent years, RPs have been recognized not only for their traditional role in ribosome assembly but also for their extra-ribosomal functions, many of which are linked to the onset and progression of cancer. In this review we focus on the role and possible interplay of MYC and RPs expression in association with drug resistance and worse prognosis in OS and discuss therapeutic options that target de-regulated MYC, RiBi, or RPs, which are already clinically available or under evaluation in clinical trials.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Federica Marchesini
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Martina Melloni
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Massimo Serra
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Marianna Penzo
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
4
|
Hao YH, Borenstein-Auerbach N, Grichuk A, Li L, Lafita-Navarro MC, Fang S, Nogueira P, Kim J, Xu L, Shay JW, Conacci-Sorrell M. MYC-Mediated Inhibition of ARNT2 Uncovers a Key Tumor Suppressor in Glioblastoma. RESEARCH SQUARE 2024:rs.3.rs-4810280. [PMID: 39184078 PMCID: PMC11343292 DOI: 10.21203/rs.3.rs-4810280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Tumor initiation and progression rely on intricate cellular pathways that promote proliferation while suppressing differentiation, yet the importance of pathways inhibiting differentiation in cancer remains incompletely understood. Here, we reveal a novel mechanism centered on the repression of the neuronal-specific transcription factor ARNT2 by the MYC oncogene that governs the balance between proliferation and differentiation. We found that MYC coordinates the transcriptional repression of ARNT2 through the activity of polycomb repressive complex 2 (PRC2). Notably, ARNT2, highly and specifically expressed in the central nervous system, is diminished in glioblastoma, inversely correlating with patient survival. Utilizing in vitro and in vivo models, we demonstrate that ARNT2 knockout (KO) exerts no discernible effect on the in vitro proliferation of glioblastoma cells, but significantly enhances the growth of glioblastoma cells in vivo. Conversely, ARNT2 overexpression severely dampens the growth of fully transformed glioblastoma cells subcutaneously or orthotopically xenografted in mice. Mechanistically, ARNT2 depletion diminishes differentiation and enhances stemness of glioblastoma cells. Our findings provide new insights into the complex mechanisms used by oncogenes to limit differentiation in cancer cells and define ARNT2 as a tumor suppressor in glioblastoma.
Collapse
|
5
|
Khaket TP, Rimal S, Wang X, Bhurtel S, Wu YC, Lu B. Ribosome stalling during c-myc translation presents actionable cancer cell vulnerability. PNAS NEXUS 2024; 3:pgae321. [PMID: 39161732 PMCID: PMC11330866 DOI: 10.1093/pnasnexus/pgae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Myc is a major driver of tumor initiation, progression, and maintenance. Up-regulation of Myc protein level rather than acquisition of neomorphic properties appears to underlie most Myc-driven cancers. Cellular mechanisms governing Myc expression remain incompletely defined. In this study, we show that ribosome-associated quality control (RQC) plays a critical role in maintaining Myc protein level. Ribosomes stall during the synthesis of the N-terminal portion of cMyc, generating aberrant cMyc species and necessitating deployment of the early RQC factor ZNF598 to handle translational stress and restore cMyc translation. ZNF598 expression is up-regulated in human glioblastoma (GBM), and its expression positively correlates with that of cMyc. ZNF598 knockdown inhibits human GBM neurosphere formation in cell culture and Myc-dependent tumor growth in vivo in Drosophila. Intriguingly, the SARS-COV-2-encoded translational regulator Nsp1 impinges on ZNF598 to restrain cMyc translation and consequently cMyc-dependent cancer growth. Remarkably, Nsp1 exhibits synthetic toxicity with the translation and RQC-related factor ATP-binding cassette subfamily E member 1, which, despite its normally positive correlation with cMyc in cancer cells, is co-opted by Nsp1 to down-regulate cMyc and inhibit tumor growth. Ribosome stalling during c-myc translation thus offers actionable cancer cell vulnerability.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suman Rimal
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xingjun Wang
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sunil Bhurtel
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yen-Chi Wu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Ayub A, Hasan MK, Mahmud Z, Hossain MS, Kabir Y. Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications. Med Oncol 2024; 41:183. [PMID: 38902544 DOI: 10.1007/s12032-024-02417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.
Collapse
Affiliation(s)
- Afia Ayub
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St. W., Hamilton, L8S 4K1, Canada.
- Department of Public Health, North South University, Dhaka, Bangladesh.
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Sabbir Hossain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
7
|
Amoah AS, Pestov NB, Korneenko TV, Prokhorenko IA, Kurakin GF, Barlev NA. Lipoxygenases at the Intersection of Infection and Carcinogenesis. Int J Mol Sci 2024; 25:3961. [PMID: 38612771 PMCID: PMC11011848 DOI: 10.3390/ijms25073961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The persisting presence of opportunistic pathogens like Pseudomonas aeruginosa poses a significant threat to many immunocompromised cancer patients with pulmonary infections. This review highlights the complexity of interactions in the host's defensive eicosanoid signaling network and its hijacking by pathogenic bacteria to their own advantage. Human lipoxygenases (ALOXs) and their mouse counterparts are integral elements of the innate immune system, mostly operating in the pro-inflammatory mode. Taking into account the indispensable role of inflammation in carcinogenesis, lipoxygenases have counteracting roles in this process. In addition to describing the structure-function of lipoxygenases in this review, we discuss their roles in such critical processes as cancer cell signaling, metastases, death of cancer and immune cells through ferroptosis, as well as the roles of ALOXs in carcinogenesis promoted by pathogenic infections. Finally, we discuss perspectives of novel oncotherapeutic approaches to harness lipoxygenase signaling in tumors.
Collapse
Affiliation(s)
- Abdul-Saleem Amoah
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Igor A. Prokhorenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Georgy F. Kurakin
- Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow 117513, Russia;
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| |
Collapse
|
8
|
Ascanelli C, Dahir R, Wilson CH. Manipulating Myc for reparative regeneration. Front Cell Dev Biol 2024; 12:1357589. [PMID: 38577503 PMCID: PMC10991803 DOI: 10.3389/fcell.2024.1357589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Zacarías-Fluck MF, Soucek L, Whitfield JR. MYC: there is more to it than cancer. Front Cell Dev Biol 2024; 12:1342872. [PMID: 38510176 PMCID: PMC10952043 DOI: 10.3389/fcell.2024.1342872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
MYC is a pleiotropic transcription factor involved in multiple cellular processes. While its mechanism of action and targets are not completely elucidated, it has a fundamental role in cellular proliferation, differentiation, metabolism, ribogenesis, and bone and vascular development. Over 4 decades of research and some 10,000 publications linking it to tumorigenesis (by searching PubMed for "MYC oncogene") have led to MYC becoming a most-wanted target for the treatment of cancer, where many of MYC's physiological functions become co-opted for tumour initiation and maintenance. In this context, an abundance of reviews describes strategies for potentially targeting MYC in the oncology field. However, its multiple roles in different aspects of cellular biology suggest that it may also play a role in many additional diseases, and other publications are indeed linking MYC to pathologies beyond cancer. Here, we review these physiological functions and the current literature linking MYC to non-oncological diseases. The intense efforts towards developing MYC inhibitors as a cancer therapy will potentially have huge implications for the treatment of other diseases. In addition, with a complementary approach, we discuss some diseases and conditions where MYC appears to play a protective role and hence its increased expression or activation could be therapeutic.
Collapse
Affiliation(s)
- Mariano F. Zacarías-Fluck
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Soucek
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Peptomyc S.L., Barcelona, Spain
| | - Jonathan R. Whitfield
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
10
|
Liu H, Zhou D, Liu D, Xu X, Zhang K, Hu R, Xiong P, Wang C, Zeng X, Wang L, Zhang S. Synergistic antitumor activity between HER2 antibody-drug conjugate and chemotherapy for treating advanced colorectal cancer. Cell Death Dis 2024; 15:187. [PMID: 38443386 PMCID: PMC10914798 DOI: 10.1038/s41419-024-06572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer associated with a poor prognosis. Effective targeted therapy alone or in combination for treating advanced CRC remains to be a major clinical challenge. Here, we propose the therapeutic efficacy and molecular mechanism underlying RC48, a FDA-approved anti-HER2 antibody conjugate via a cleavable linker to the microtubule inhibitor monomethyl auristatin E (MMAE), either alone or in combination with gemcitabine (GEM) in various models of HER2-positive advanced CRC. Our findings demonstrated that HER2 was widely expressed and located on the plasma membrane of CRC patient specimens, PDX xenograft tumors and cell lines. It confirmed that RC48 alone significantly targeted and eradicated HER2 positive CRC tumor in these models. Moreover, we screened a panel of FDA-approved first-line chemotherapy drugs in vitro. We found that GEM exhibited stronger antiproliferative activity compared to the other first-line anti-cancer agents. Furthermore, combination therapy of RC48 and GEM significantly showed synergetic antitumor activity in vitro and in vivo. To gain further mechanistic insights into the combination therapy, we performed RNA-seq analysis. The results revealed that combination treatment of RC48 and GEM regulated multiple signaling pathways, such as PI3K-AKT, MAPK, p53, Foxo, apoptosis, cell cycle and cell senescence, etc., to exert its antitumor activity in CRC cells. Collectively, these preclinical findings demonstrated that RC48 alone or combinational therapy exerted promising antitumor activity, and meriting the preclinical framework for combinational therapy of anti-HER2 drug conjugate drug and chemotherapy drugs for HER2-positive patients with advanced CRC.
Collapse
Affiliation(s)
- Hongfu Liu
- Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China
| | - Dongdong Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Dongqin Liu
- Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China
| | - Xi Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Kai Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Ruxia Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Peng Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Changxin Wang
- Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China
| | - Xiangfu Zeng
- Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China.
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
11
|
Oser MG, MacPherson D, Oliver TG, Sage J, Park KS. Genetically-engineered mouse models of small cell lung cancer: the next generation. Oncogene 2024; 43:457-469. [PMID: 38191672 PMCID: PMC11180418 DOI: 10.1038/s41388-023-02929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Small cell lung cancer (SCLC) remains the most fatal form of lung cancer, with patients in dire need of new and effective therapeutic approaches. Modeling SCLC in an immunocompetent host is essential for understanding SCLC pathogenesis and ultimately discovering and testing new experimental therapeutic strategies. Human SCLC is characterized by near universal genetic loss of the RB1 and TP53 tumor suppressor genes. Twenty years ago, the first genetically-engineered mouse model (GEMM) of SCLC was generated using conditional deletion of both Rb1 and Trp53 in the lungs of adult mice. Since then, several other GEMMs of SCLC have been developed coupling genomic alterations found in human SCLC with Rb1 and Trp53 deletion. Here we summarize how GEMMs of SCLC have contributed significantly to our understanding of the disease in the past two decades. We also review recent advances in modeling SCLC in mice that allow investigators to bypass limitations of the previous generation of GEMMs while studying new genes of interest in SCLC. In particular, CRISPR/Cas9-mediated somatic gene editing can accelerate how new genes of interest are functionally interrogated in SCLC tumorigenesis. Notably, the development of allograft models and precancerous precursor models from SCLC GEMMs provides complementary approaches to GEMMs to study tumor cell-immune microenvironment interactions and test new therapeutic strategies to enhance response to immunotherapy. Ultimately, the new generation of SCLC models can accelerate research and help develop new therapeutic strategies for SCLC.
Collapse
Affiliation(s)
- Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - David MacPherson
- Division of Human Biology, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Trudy G Oliver
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
12
|
Bowleg JL, Mikek CG, Gwaltney SR. Computed interactions of berenil with restricted foldamers of c-MYC DNA G-quadruplexes. J Biomol Struct Dyn 2024; 42:2162-2169. [PMID: 37286380 DOI: 10.1080/07391102.2023.2217913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/16/2023] [Indexed: 06/09/2023]
Abstract
G-quadruplexes (G4s) are secondary four-stranded DNA helical structures made up of guanine-rich nucleic acids that can assemble in the promoter regions of multiple genes under the appropriate conditions. Stabilization of G4 structures by small molecules can regulate transcription in non-telomeric regions, including in proto-oncogenes and promoter regions, contributing to anti-proliferative and anti-tumor activities. Because G4s are detectable in cancer cells but not in normal cells, they make excellent drug discovery targets. Diminazene, DMZ (or berenil), has been shown to be an efficient G-quadruplex binder. Due to the stability of the folding topology, G-quadruplex structures are frequently found in the promotor regions of oncogenes and may play a regulatory role in gene activation. Using molecular docking and molecular dynamics simulations on several different binding poses, we have studied DMZ binding toward multiple G4 topologies of the c-MYC G-quadruplex. DMZ binds preferentially to G4s that have extended loops and flanking bases. This preference arises from its interactions with the loops and the flanking nucleotides, which were not found in the structure lacking extended regions. The binding to the G4s with no extended regions instead occurred mostly through end stacking. All binding sites for DMZ were confirmed by 100 ns molecular dynamics simulations and through binding enthalpies calculated using the MM-PBSA method. The primary driving forces were electrostatic, as the cationic DMZ interacts with the anionic phosphate backbone, and through van der Waals interactions, which primarily contributed in end stacking interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jerrano L Bowleg
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| | - Clinton G Mikek
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| |
Collapse
|
13
|
Leopizzi M, Mundo L, Messina E, Campolo F, Lazzi S, Angeloni A, Marchese C, Leoncini L, Giordano C, Slack F, Trivedi P, Anastasiadou E. Epstein-Barr virus-encoded EBNA2 downregulates ICOSL by inducing miR-24 in B-cell lymphoma. Blood 2024; 143:429-443. [PMID: 37847858 PMCID: PMC10862363 DOI: 10.1182/blood.2023021346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
ABSTRACT Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.
Collapse
Affiliation(s)
- Martina Leopizzi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza University, Rome, Italy
| | - Frank Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
14
|
Schütz S, Bergsdorf C, Hänni-Holzinger S, Lingel A, Renatus M, Gossert AD, Jahnke W. Intrinsically Disordered Regions in the Transcription Factor MYC:MAX Modulate DNA Binding via Intramolecular Interactions. Biochemistry 2024. [PMID: 38264995 DOI: 10.1021/acs.biochem.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor (TF) MYC is in large part an intrinsically disordered oncoprotein. In complex with its obligate heterodimerization partner MAX, MYC preferentially binds E-Box DNA sequences (CANNTG). At promoters containing these sequence motifs, MYC controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. A vast network of proteins in turn regulates MYC function via intermolecular interactions. In this work, we establish another layer of MYC regulation by intramolecular interactions. We used nuclear magnetic resonance (NMR) spectroscopy to identify and map multiple binding sites for the C-terminal MYC:MAX DNA-binding domain (DBD) on the intrinsically disordered regions (IDRs) in the MYC N-terminus. We find that these binding events in trans are driven by electrostatic attraction, that they have distinct affinities, and that they are competitive with DNA binding. Thereby, we observe the strongest effects for the N-terminal MYC box 0 (Mb0), a conserved motif involved in MYC transactivation and target gene induction. We prepared recombinant full-length MYC:MAX complex and demonstrate that the interactions identified in this work are also relevant in cis, i.e., as intramolecular interactions. These findings are supported by surface plasmon resonance (SPR) experiments, which revealed that intramolecular IDR:DBD interactions in MYC decelerate the association of MYC:MAX complexes to DNA. Our work offers new insights into how bHLH-LZ TFs are regulated by intramolecular interactions, which open up new possibilities for drug discovery.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sandra Hänni-Holzinger
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
15
|
Nevzorova YA, Cubero FJ. Obesity under the moonlight of c-MYC. Front Cell Dev Biol 2023; 11:1293218. [PMID: 38116204 PMCID: PMC10728299 DOI: 10.3389/fcell.2023.1293218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
The moonlighting protein c-Myc is a master regulator of multiple biological processes including cell proliferation, differentiation, angiogenesis, apoptosis and metabolism. It is constitutively and aberrantly expressed in more than 70% of human cancers. Overwhelming evidence suggests that c-Myc dysregulation is involved in several inflammatory, autoimmune, metabolic and other non-cancerous diseases. In this review, we addressed the role of c-Myc in obesity. Obesity is a systemic disease, accompanied by multi-organ dysfunction apart from white adipose tissue (WAT), such as the liver, the pancreas, and the intestine. c-Myc plays a big diversity of functions regulating cellular proliferation, the maturation of progenitor cells, fatty acids (FAs) metabolism, and extracellular matrix (ECM) remodeling. Moreover, c-Myc drives the expression of a wide range of metabolic genes, modulates the inflammatory response, induces insulin resistance (IR), and contributes to the regulation of intestinal dysbiosis. Altogether, c-Myc is an interesting diagnostic tool and/or therapeutic target in order to mitigate obesity and its consequences.
Collapse
Affiliation(s)
- Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
16
|
Morrish F, Gingras H, Noonan J, Huang L, Sweet IR, Kuok IT, Knoblaugh SE, Hockenbery DM. Mitochondrial diabetes in mice expressing a dominant-negative allele of nuclear respiratory factor-1 ( Nrf1 ) in pancreatic β-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.524153. [PMID: 38014068 PMCID: PMC10680558 DOI: 10.1101/2023.01.22.524153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetic polymorphisms in nuclear respiratory factor-1 ( NRF1 ), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with β-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic β-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in β- cells. Expression of NRF1 target genes Tfam , T@1m and T@2m , and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in β-cells was sufficient to restore β-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of β-cell function and establishes a model to study the interplay between regulators of bi- genomic gene transcription in diabetes.
Collapse
|
17
|
Wu G, Su J, Zeng L, Deng S, Huang X, Ye Y, Li R, Bai R, Zhuang L, Li M, Zhou Q, Zheng Y, Deng J, Zhang S, Chen R, Lin D, Zhang J, Zheng J. LncRNA BCAN-AS1 stabilizes c-Myc via N 6-methyladenosine-mediated binding with SNIP1 to promote pancreatic cancer. Cell Death Differ 2023; 30:2213-2230. [PMID: 37726400 PMCID: PMC10589284 DOI: 10.1038/s41418-023-01225-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
C-Myc overexpression contributes to multiple hallmarks of human cancer but directly targeting c-Myc is challenging. Identification of key factors involved in c-Myc dysregulation is of great significance to develop potential indirect targets for c-Myc. Herein, a collection of long non-coding RNAs (lncRNAs) interacted with c-Myc is detected in pancreatic ductal adenocarcinoma (PDAC) cells. Among them, lncRNA BCAN-AS1 is identified as the one with highest c-Myc binding enrichment. BCAN-AS1 was abnormally elevated in PDAC tumors and high BCAN-AS1 level was significantly associated with poor prognosis. Mechanistically, Smad nuclear-interacting protein 1 (SNIP1) was characterized as a new N6-methyladenosine (m6A) mediator binding to BCAN-AS1 via recognizing its m6A modification. m6A-modified BCAN-AS1 acts as a scaffold to facilitate the formation of a ternary complex together with c-Myc and SNIP1, thereby blocking S phase kinase-associated protein 2 (SKP2)-mediated c-Myc ubiquitination and degradation. Biologically, BCAN-AS1 promotes malignant phenotypes of PDAC in vitro and in vivo. Treatment of metastasis xenograft and patient-derived xenograft mouse models with in vivo-optimized antisense oligonucleotide of BCAN-AS1 effectively represses tumor growth and metastasis. These findings shed light on the pro-tumorigenic role of BCAN-AS1 and provide an innovant insight into c-Myc-interacted lncRNA in PDAC.
Collapse
Affiliation(s)
- Guandi Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanfen Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Junge Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rufu Chen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Illi B, Nasi S. Myc beyond Cancer: Regulation of Mammalian Tissue Regeneration. PATHOPHYSIOLOGY 2023; 30:346-365. [PMID: 37606389 PMCID: PMC10443299 DOI: 10.3390/pathophysiology30030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
Myc is one of the most well-known oncogenes driving tumorigenesis in a wide variety of tissues. From the brain to blood, its deregulation derails physiological pathways that grant the correct functioning of the cell. Its action is carried out at the gene expression level, where Myc governs basically every aspect of transcription. Indeed, in addition to its role as a canonical, chromatin-bound transcription factor, Myc rules RNA polymerase II (RNAPII) transcriptional pause-release, elongation and termination and mRNA capping. For this reason, it is evident that minimal perturbations of Myc function mirror malignant cell behavior and, consistently, a large body of literature mainly focuses on Myc malfunctioning. In healthy cells, Myc controls molecular mechanisms involved in pivotal functions, such as cell cycle (and proliferation thereof), apoptosis, metabolism and cell size, angiogenesis, differentiation and stem cell self-renewal. In this latter regard, Myc has been found to also regulate tissue regeneration, a hot topic in the research fields of aging and regenerative medicine. Indeed, Myc appears to have a role in wound healing, in peripheral nerves and in liver, pancreas and even heart recovery. Herein, we discuss the state of the art of Myc's role in tissue regeneration, giving an overview of its potent action beyond cancer.
Collapse
Affiliation(s)
- Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council, c/o Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Nasi
- Institute of Molecular Biology and Pathology, National Research Council, c/o Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
19
|
Forsythe SD, Pu T, Andrews SG, Madigan JP, Sadowski SM. Models in Pancreatic Neuroendocrine Neoplasms: Current Perspectives and Future Directions. Cancers (Basel) 2023; 15:3756. [PMID: 37568572 PMCID: PMC10416968 DOI: 10.3390/cancers15153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are a heterogeneous group of tumors derived from multiple neuroendocrine origin cell subtypes. Incidence rates for pNENs have steadily risen over the last decade, and outcomes continue to vary widely due to inability to properly screen. These tumors encompass a wide range of functional and non-functional subtypes, with their rarity and slow growth making therapeutic development difficult as most clinically used therapeutics are derived from retrospective analyses. Improved molecular understanding of these cancers has increased our knowledge of the tumor biology for pNENs. Despite these advances in our understanding of pNENs, there remains a dearth of models for further investigation. In this review, we will cover the current field of pNEN models, which include established cell lines, animal models such as mice and zebrafish, and three-dimensional (3D) cell models, and compare their uses in modeling various disease aspects. While no study model is a complete representation of pNEN biology, each has advantages which allow for new scientific understanding of these rare tumors. Future efforts and advancements in technology will continue to create new options in modeling these cancers.
Collapse
Affiliation(s)
- Steven D. Forsythe
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Tracey Pu
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stephen G. Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - James P. Madigan
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Samira M. Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| |
Collapse
|
20
|
Martínez-Martín S, Beaulieu ME, Soucek L. Targeting MYC-driven lymphoma: lessons learned and future directions. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:205-222. [PMID: 37457123 PMCID: PMC10344726 DOI: 10.20517/cdr.2022.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 07/18/2023]
Abstract
MYC plays a central role in tumorigenesis by orchestrating cell proliferation, growth and survival, among other transformation mechanisms. In particular, MYC has often been associated with lymphomagenesis. In fact, MYC overexpressing lymphomas such as high-grade B-cell lymphoma (HGBL) and double expressor diffuse large B-cell lymphomas (DLBCL), are considered addicted to MYC. In such a context, MYC targeting therapies are of special interest, as MYC withdrawal is expected to result in tumor regression. However, whether high MYC levels are always predictive of increased sensitivity to these approaches is not clear yet. Even though no MYC inhibitor has received regulatory approval to date, substantial efforts have been made to investigate avenues to render MYC a druggable target. Here, we summarize the different classes of molecules currently under development, which mostly target MYC indirectly in aggressive B-cell lymphomas, paying special attention to subtypes with MYC/BCL2 or BCL6 translocations or overexpression.
Collapse
Affiliation(s)
| | - Marie-Eve Beaulieu
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Laura Soucek
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
21
|
Elbadawi M, Boulos JC, Dawood M, Zhou M, Gul W, ElSohly MA, Klauck SM, Efferth T. The Novel Artemisinin Dimer Isoniazide ELI-XXIII-98-2 Induces c-MYC Inhibition, DNA Damage, and Autophagy in Leukemia Cells. Pharmaceutics 2023; 15:1107. [PMID: 37111592 PMCID: PMC10144546 DOI: 10.3390/pharmaceutics15041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The proto-oncogenic transcription factor c-MYC plays a pivotal role in the development of tumorigenesis, cellular proliferation, and the control of cell death. Its expression is frequently altered in many cancer types, including hematological malignancies such as leukemia. The dimer isoniazide ELI-XXIII-98-2 is a derivative of the natural product artemisinin, with two artemisinin molecules and an isoniazide moiety as a linker in between them. In this study, we aimed to study the anticancer activity and the molecular mechanisms of this dimer molecule in drug-sensitive CCRF-CEM leukemia cells and their corresponding multidrug-resistant CEM/ADR5000 sub-line. The growth inhibitory activity was studied using the resazurin assay. To reveal the molecular mechanisms underlying the growth inhibitory activity, we performed in silico molecular docking, followed by several in vitro approaches such as the MYC reporter assay, microscale thermophoresis, microarray analyses, immunoblotting, qPCR, and comet assay. The artemisinin dimer isoniazide showed a potent growth inhibitory activity in CCRF-CEM but a 12-fold cross-resistance in multidrug-resistant CEM/ADR5000 cells. The molecular docking of artemisinin dimer isoniazide with c-MYC revealed a good binding (lowest binding energy of -9.84 ± 0.3 kcal/mol) and a predicted inhibition constant (pKi) of 66.46 ± 29.5 nM, which was confirmed by microscale thermophoresis and MYC reporter cell assays. Furthermore, c-MYC expression was downregulated by this compound in microarray hybridization and Western blotting analyses. Finally, the artemisinin dimer isoniazide modulated the expression of autophagy markers (LC3B and p62) and the DNA damage marker pH2AX, indicating the stimulation of both autophagy and DNA damage, respectively. Additionally, DNA double-strand breaks were observed in the alkaline comet assay. DNA damage, apoptosis, and autophagy induction could be attributed to the inhibition of c-MYC by ELI-XXIII-98-2.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Joelle C. Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
- Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum 12702, Sudan
| | - Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Waseem Gul
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA
| | - Mahmoud A. ElSohly
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA
| | - Sabine M. Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| |
Collapse
|
22
|
An Insight on Functioning Pancreatic Neuroendocrine Neoplasms. Biomedicines 2023; 11:biomedicines11020303. [PMID: 36830839 PMCID: PMC9953748 DOI: 10.3390/biomedicines11020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare neoplasms arising from islets of the Langerhans in the pancreas. They can be divided into two groups, based on peptide hormone secretion, functioning and nonfunctioning PanNENs. The first group is characterized by different secreted peptides causing specific syndromes and is further classified into subgroups: insulinoma, gastrinoma, glucagonoma, somatostatinoma, VIPoma and tumors producing serotonin and adrenocorticotrophic hormone. Conversely, the second group does not release peptides and is usually associated with a worse prognosis. Today, although the efforts to improve the therapeutic approaches, surgery remains the only curative treatment for patients with PanNENs. The development of high-throughput techniques has increased the molecular knowledge of PanNENs, thereby allowing us to understand better the molecular biology and potential therapeutic vulnerabilities of PanNENs. Although enormous advancements in therapeutic and molecular aspects of PanNENs have been achieved, there is poor knowledge about each subgroup of functioning PanNENs.Therefore, we believe that combining high-throughput platforms with new diagnostic tools will allow for the efficient characterization of the main differences among the subgroups of functioning PanNENs. In this narrative review, we summarize the current landscape regarding diagnosis, molecular profiling and treatment, and we discuss the future perspectives of functioning PanNENs.
Collapse
|
23
|
Wang Y, Wang F, Qin Y, Lou X, Ye Z, Zhang W, Gao H, Chen J, Xu X, Yu X, Ji S. Recent progress of experimental model in pancreatic neuroendocrine tumors: drawbacks and challenges. Endocrine 2023; 80:266-282. [PMID: 36648608 DOI: 10.1007/s12020-023-03299-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
The neuroendocrine neoplasm, in general, refers to a heterogeneous group of all tumors originating from peptidergic neurons and neuroendocrine cells. Neuroendocrine neoplasms are divided into two histopathological subtypes: well-differentiated neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas. Pancreatic neuroendocrine tumors account for more than 80% of pancreatic neuroendocrine neoplasms. Due to the greater proportion of pancreatic neuroendocrine tumors compared to pancreatic neuroendocrine carcinoma, this review will only focus on them. The worldwide incidence of pancreatic neuroendocrine tumors is rising year by year due to sensitive detection with an emphasis on medical examinations and the improvement of testing technology. Although the biological behavior of pancreatic neuroendocrine tumors tends to be inert, distant metastasis is common, often occurring very early. Because of the paucity of basic research on pancreatic neuroendocrine tumors, the mechanism of tumor development, metastasis, and recurrence are still unclear. In this context, the representative preclinical models simulating the tumor development process are becoming ever more widely appreciated to address the clinical problems of pancreatic neuroendocrine tumors. So far, there is no comprehensive report on the experimental model of pancreatic neuroendocrine tumors. This article systematically summarizes the characteristics of preclinical models, such as patient-derived cell lines, patient-derived xenografts, genetically engineered mouse models, and patient-derived organoids, and their advantages and disadvantages, to provide a reference for further studies of neuroendocrine tumors. We also highlight the method of establishment of liver metastasis mouse models.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Fei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Gola C, Licenziato L, Accornero P, Iussich S, Morello E, Buracco P, Modesto P, Aresu L, De Maria R. The mitotic regulator polo-like kinase 1 as a potential therapeutic target for c-Myc-overexpressing canine osteosarcomas. Vet Comp Oncol 2022; 20:890-900. [PMID: 36054794 PMCID: PMC9804590 DOI: 10.1111/vco.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in dogs, characterized by a locally aggressive and highly metastatic behaviour. Despite the current standards of care, most dogs succumb to the disease, indicating the need for novel treatment strategies. Polo-like kinase 1 (PLK1) is dysregulated in a variety of human cancer types, including osteosarcoma, and induces c-Myc accumulation. The crosstalk between the two molecules coordinates cell proliferation, differentiation, self-renewal and apoptosis. Therefore, PLK1 has recently emerged as a potential therapeutic target, mainly in tumours overexpressing c-Myc. BI 2536 is a selective PLK1 inhibitor promoting mitotic arrest and apoptosis in a variety of cancer cells. This research aimed at evaluating PLK1 and c-Myc protein expression in 53 appendicular canine osteosarcoma (cOSA) samples and the in vitro effects of BI 2536 on a c-Myc and PLK1-overexpressing cOSA cell line (D17). PLK1 and c-Myc expression in cOSA samples showed no correlation with clinicopathological data. However, c-Myc overexpression was associated with a significantly reduced overall survival (p = .003). Western Blot and RT-qPCR assays revealed that D17 expressed high protein and transcript levels of both PLK1 and MYC. When treated with BI 2536 (range 2.5-15 nM) for 24 h, D17 showed a substantial decrease in cell growth, inducing apoptosis and G2 /M cell cycle arrest. Interestingly, under BI 2536 treatment, D17 showed decreased c-Myc protein levels. Consistent with human OSA, these preliminary data outline the prognostic value of c-Myc expression in cOSA and highlight the potential role of PLK1 as an antiproliferative therapeutic target for tumours overexpressing c-Myc.
Collapse
Affiliation(s)
- Cecilia Gola
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Luca Licenziato
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paolo Accornero
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Selina Iussich
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Emanuela Morello
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paolo Buracco
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paola Modesto
- SC Diagnostica SpecialisticaIstituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'AostaTurinTOItaly
| | - Luca Aresu
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | | |
Collapse
|
25
|
Gaspar TB, Lopes JM, Soares P, Vinagre J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2022; 29:R191-R208. [PMID: 36197786 DOI: 10.1530/erc-22-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare and clinically challenging entities. At the molecular level, PanNENs' genetic profile is well characterized, but there is limited knowledge regarding the contribution of the newly identified genes to tumor initiation and progression. Genetically engineered mouse models (GEMMs) are the most versatile tool for studying the plethora of genetic variations influencing PanNENs' etiopathogenesis and behavior over time. In this review, we present the state of the art of the most relevant PanNEN GEMMs available and correlate their findings with the human neoplasms' counterparts. We discuss the historic GEMMs as the most used and with higher translational utility models. GEMMs with Men1 and glucagon receptor gene germline alterations stand out as the most faithful models in recapitulating human disease; RIP-Tag models are unique models of early-onset, highly vascularized, invasive carcinomas. We also include a section of the most recent GEMMs that evaluate pathways related to cell cycle and apoptosis, Pi3k/Akt/mTOR, and Atrx/Daxx. For the latter, their tumorigenic effect is heterogeneous. In particular, for Atrx/Daxx, we will require more in-depth studies to evaluate their contribution; even though they are prevalent genetic events in PanNENs, they have low/inexistent tumorigenic capacity per se in GEMMs. Researchers planning to use GEMMs can find a road map of the main clinical features in this review, presented as a guide that summarizes the chief milestones achieved. We identify pitfalls to overcome, concerning the novel designs and standardization of results, so that future models can replicate human disease more closely.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - José Manuel Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Vinagre
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
27
|
Schütz S, Bergsdorf C, Goretzki B, Lingel A, Renatus M, Gossert AD, Jahnke W. The disordered MAX N-terminus modulates DNA binding of the transcription factor MYC:MAX. J Mol Biol 2022; 434:167833. [PMID: 36174765 DOI: 10.1016/j.jmb.2022.167833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/15/2022]
Abstract
The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using Nuclear Magnetic resonance (NMR) spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Benedikt Goretzki
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| |
Collapse
|
28
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
29
|
Zanotti S, Decaesteker B, Vanhauwaert S, De Wilde B, De Vos WH, Speleman F. Cellular senescence in neuroblastoma. Br J Cancer 2022; 126:1529-1538. [PMID: 35197583 PMCID: PMC9130206 DOI: 10.1038/s41416-022-01755-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a tumour that arises from the sympathoadrenal lineage occurring predominantly in children younger than five years. About half of the patients are diagnosed with high-risk tumours and undergo intensive multi-modal therapy. The success rate of current treatments for high-risk neuroblastoma is disappointingly low and survivors suffer from multiple therapy-related long-term side effects. Most chemotherapeutics drive cancer cells towards cell death or senescence. Senescence has long been considered to represent a terminal non-proliferative state and therefore an effective barrier against tumorigenesis. This dogma, however, has been challenged by recent observations that infer a much more dynamic and reversible nature for this process, which may have implications for the efficacy of therapy-induced senescence-oriented treatment strategies. Neuroblastoma cells in a dormant, senescent-like state may escape therapy, whilst their senescence-associated secretome may promote inflammation and invasiveness, potentially fostering relapse. Conversely, due to its distinct molecular identity, senescence may also represent an opportunity for the development of novel (combination) therapies. However, the limited knowledge on the molecular dynamics and diversity of senescence signatures demands appropriate models to study this process in detail. This review summarises the molecular knowledge about cellular senescence in neuroblastoma and investigates current and future options towards therapeutic exploration.
Collapse
Affiliation(s)
- Sofia Zanotti
- grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610 Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.510942.bCancer Research Institute Ghent (CRIG), Ghent, 9000 Belgium
| | - Bieke Decaesteker
- grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.510942.bCancer Research Institute Ghent (CRIG), Ghent, 9000 Belgium
| | - Suzanne Vanhauwaert
- grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.510942.bCancer Research Institute Ghent (CRIG), Ghent, 9000 Belgium
| | - Bram De Wilde
- grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.5342.00000 0001 2069 7798Department of Internal Medicine and Pediatrics, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.410566.00000 0004 0626 3303Department of Pediatric Hematology Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, 9000 Belgium
| | - Winnok H. De Vos
- grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610 Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium.
| |
Collapse
|
30
|
Mulla SW, Venkatraman P. Novel Nexus with NFκB, β-catenin, and RB1 empowers PSMD10/Gankyrin to counteract TNF-α induced apoptosis establishing its oncogenic role. Int J Biochem Cell Biol 2022; 146:106209. [PMID: 35378311 DOI: 10.1016/j.biocel.2022.106209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/06/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
NFκB is a critical rapid-acting transcription factor that protects cancer cells from programmed cell death induced by stress or therapy. While NFκB works in nexus with non-classical oncoproteins such as STAT3 and AKT under a variety of conditions, it is a major antiapoptotic factor activated by TNF-α of the tumor microenvironment. Therefore, it is surprising that PSMD10, an oncoprotein overexpressed in several cancers and a marker of poor prognosis, is reported to inhibit the NFκB pathway. In this study, we explore the role of PSMD10 in cancer cells exposed to TNF-α. We screen several breast and colon cancer cell lines and select SW480, a colon cancer cell line highly resistant to TNF-α, and demonstrate that PSMD10 knockdown sensitizes these cells to TNF-α induced cell death. One of the mechanisms involves transcriptional regulation of β-catenin and RB1, two key colon cancer cell specific anti-apoptotic factors. Surprisingly, we find that PSMD10 is required for optimal phosphorylation and transcriptional activation of NFκB (RELA). Thus, upon PSMD10 knockdown, there is significant downregulation of anti-apoptotic NFκB target genes TNFAIP3 (A20), BIRC2 (cIAP1), BIRC3 (cIAP2), and XIAP. Our study, for the first time, shows that PSMD10 is required for the activation of the pro-survival arm via NFκB transcriptional activation to prevent cancer cells from succumbing to TNF-induced cell death. In addition by transcriptional regulation of two major antiapoptotic players RB1 and β-catenin, PSMD10 proves to be a coveted oncoprotein with a key role in tumorigenesis.
Collapse
Affiliation(s)
- Saim Wasi Mulla
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India.
| |
Collapse
|
31
|
Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ 2022; 29:961-971. [PMID: 35396345 PMCID: PMC9090748 DOI: 10.1038/s41418-022-00996-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor TP53 is a master regulator of several cellular processes that collectively suppress tumorigenesis. The TP53 gene is mutated in ~50% of human cancers and these defects usually confer poor responses to therapy. The TP53 protein functions as a homo-tetrameric transcription factor, directly regulating the expression of ~500 target genes, some of them involved in cell death, cell cycling, cell senescence, DNA repair and metabolism. Originally, it was thought that the induction of apoptotic cell death was the principal mechanism by which TP53 prevents the development of tumours. However, gene targeted mice lacking the critical effectors of TP53-induced apoptosis (PUMA and NOXA) do not spontaneously develop tumours. Indeed, even mice lacking the critical mediators for TP53-induced apoptosis, G1/S cell cycle arrest and cell senescence, namely PUMA, NOXA and p21, do not spontaneously develop tumours. This suggests that TP53 must activate additional cellular responses to mediate tumour suppression. In this review, we will discuss the processes by which TP53 regulates cell death, cell cycling/cell senescence, DNA damage repair and metabolic adaptation, and place this in context of current understanding of TP53-mediated tumour suppression.
Collapse
Affiliation(s)
- Annabella F Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
32
|
Hirano M, So Y, Tsunekawa S, Kabata M, Ohta S, Sagara H, Sankoda N, Taguchi J, Yamada Y, Ukai T, Kato M, Nakamura J, Ozawa M, Yamamoto T, Yamada Y. MYCL-mediated reprogramming expands pancreatic insulin-producing cells. Nat Metab 2022; 4:254-268. [PMID: 35145326 DOI: 10.1038/s42255-022-00530-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
β cells have a limited capacity for regeneration, which predisposes towards diabetes. Here, we show that, of the MYC family members, Mycl plays a key role in proliferation of pancreatic endocrine cells. Genetic ablation of Mycl causes a reduction in the proliferation of pancreatic endocrine cells in neonatal mice. By contrast, the expression of Mycl in adult mice stimulates the proliferation of β and α cells, and the cells persist after withdrawal of Mycl expression. A subset of the expanded α cells give rise to insulin-producing cells after this withdrawal. Transient Mycl expression in vivo is sufficient to normalize the hyperglycaemia of diabetic mice. In vitro expression of Mycl similarly provokes active replication in islet cells, even in those from aged mice. Finally, we show that MYCL stimulates the division of human adult cadaveric islet cells. Our results demonstrate that the induction of Mycl alone expands the functional β-cell population, which may provide a regenerative strategy for β cells.
Collapse
Affiliation(s)
- Michitada Hirano
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yusei So
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Nao Sankoda
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jumpei Taguchi
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Makoto Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, AMED, Tokyo, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- AMED-CREST, AMED, Tokyo, Japan.
| |
Collapse
|
33
|
microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis. Biomolecules 2022; 12:biom12020213. [PMID: 35204714 PMCID: PMC8961662 DOI: 10.3390/biom12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs, pivotal post-transcriptional regulators of gene expression, in the past decades have caught the attention of researchers for their involvement in different biological processes, ranging from cell development to cancer. Although lots of effort has been devoted to elucidate the topological features and the equilibrium properties of microRNA-mediated motifs, little is known about how the information encoded in frequency, amplitude, duration, and other features of their regulatory signals can affect the resulting gene expression patterns. Here, we review the current knowledge about microRNA-mediated gene regulatory networks characterized by time-dependent input signals, such as pulses, transient inputs, and oscillations. First, we identify the general characteristic of the main motifs underlying temporal patterns. Then, we analyze their impact on two commonly studied oncogenic networks, showing how their dysfunction can lead to tumorigenesis.
Collapse
|
34
|
Costa AC, Santos JMO, Gil da Costa RM, Medeiros R. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol 2021; 168:103541. [PMID: 34801696 DOI: 10.1016/j.critrevonc.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) are critical players in the tumor microenvironment, modulating cancer cell functions. TIICs are highly heterogenic and plastic and may either suppress cancers or provide support for tumor growth. A wide range of studies have shed light on how tumor-associated macrophages, dendritic cells, neutrophils, mast cells, natural killer cells and lymphocytes contribute for the establishment of several hallmarks of cancer and became the basis for successful immunotherapies. Many of those TIICs play pivotal roles in several hallmarks of cancer. This review contributes to elucidate the multifaceted roles of immune cells in cancer development, highlighting molecular components that constitute promising therapeutic targets. Additional studies are needed to clarify the relation between TIICs and hallmarks such as enabling replicative immortality, evading growth suppressors, sustaining proliferative signaling, resisting cell death and genome instability and mutation, to further explore their therapeutic potential and improve the outcomes of cancer patients.
Collapse
Affiliation(s)
- Alexandra C Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| |
Collapse
|
35
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
36
|
Martínez-Martín S, Soucek L. MYC inhibitors in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:842-865. [PMID: 35582389 PMCID: PMC8992455 DOI: 10.20517/cdr.2021.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
The importance of MYC function in cancer was discovered in the late 1970s when the sequence of the avian retrovirus that causes myelocytic leukemia was identified. Since then, over 40 years of unceasing research have highlighted the significance of this protein in malignant transformation, especially in hematologic diseases. Indeed, some of the earliest connections among the higher expression of proto-oncogenes (such as MYC), genetic rearrangements and their relation to cancer development were made in Burkitt lymphoma, chronic myeloid leukemia and mouse plasmacytomas. Multiple myeloma (MM), in particular, is a plasma cell malignancy strictly associated with MYC deregulation, suggesting that therapeutic strategies against it would be beneficial in treating this disease. However, targeting MYC was - and, somehow, still is - challenging due to its unique properties: lack of defined three-dimensional structure, nuclear localization and absence of a targetable enzymatic pocket. Despite these difficulties, however, many studies have shown the potential therapeutic impact of direct or indirect MYC inhibition. Different molecules have been tested, in fact, in the context of MM. In this review, we summarize the current status of the different compounds, including the results of their clinical testing, and propose to continue with the efforts to identify, repurpose, redesign or improve drug candidates to combine them with standard of care therapies to overcome resistance and enable better management of myeloma treatment.
Collapse
Affiliation(s)
- Sandra Martínez-Martín
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Laura Soucek
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
37
|
Moruzzi M, Nestor-Bergmann A, Goddard GK, Tarannum N, Brennan K, Woolner S. Generation of anisotropic strain dysregulates wild-type cell division at the interface between host and oncogenic tissue. Curr Biol 2021; 31:3409-3418.e6. [PMID: 34111402 PMCID: PMC8360906 DOI: 10.1016/j.cub.2021.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Epithelial tissues are highly sensitive to anisotropies in mechanical force, with cells altering fundamental behaviors, such as cell adhesion, migration, and cell division.1-5 It is well known that, in the later stages of carcinoma (epithelial cancer), the presence of tumors alters the mechanical properties of a host tissue and that these changes contribute to disease progression.6-9 However, in the earliest stages of carcinoma, when a clonal cluster of oncogene-expressing cells first establishes in the epithelium, the extent to which mechanical changes alter cell behavior in the tissue as a whole remains unclear. This is despite knowledge that many common oncogenes, such as oncogenic Ras, alter cell stiffness and contractility.10-13 Here, we investigate how mechanical changes at the cellular level of an oncogenic cluster can translate into the generation of anisotropic strain across an epithelium, altering cell behavior in neighboring host tissue. We generated clusters of oncogene-expressing cells within otherwise normal in vivo epithelium, using Xenopus laevis embryos. We find that cells in kRasV12, but not cMYC, clusters have increased contractility, which introduces radial stress in the tissue and deforms surrounding host cells. The strain imposed by kRasV12 clusters leads to increased cell division and altered division orientation in neighboring host tissue, effects that can be rescued by reducing actomyosin contractility specifically in the kRasV12 cells. Our findings indicate that some oncogenes can alter the mechanical and proliferative properties of host tissue from the earliest stages of cancer development, changes that have the potential to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Megan Moruzzi
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alexander Nestor-Bergmann
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK; School of Mathematics, University of Manchester, Manchester M13 9PL, UK
| | - Georgina K Goddard
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Keith Brennan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
38
|
RABL6A Promotes Pancreatic Neuroendocrine Tumor Angiogenesis and Progression In Vivo. Biomedicines 2021; 9:biomedicines9060633. [PMID: 34199469 PMCID: PMC8228095 DOI: 10.3390/biomedicines9060633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are difficult-to-treat neoplasms whose incidence is rising. Greater understanding of pNET pathogenesis is needed to identify new biomarkers and targets for improved therapy. RABL6A, a novel oncogenic GTPase, is highly expressed in patient pNETs and required for pNET cell proliferation and survival in vitro. Here, we investigated the role of RABL6A in pNET progression in vivo using a well-established model of the disease. RIP-Tag2 (RT2) mice develop functional pNETs (insulinomas) due to SV40 large T-antigen expression in pancreatic islet β cells. RABL6A loss in RT2 mice significantly delayed pancreatic tumor formation, reduced tumor angiogenesis and mitoses, and extended survival. Those effects correlated with upregulation of anti-angiogenic p19ARF and downregulation of proangiogenic c-Myc in RABL6A-deficient islets and tumors. Our findings demonstrate that RABL6A is a bona fide oncogenic driver of pNET angiogenesis and development in vivo.
Collapse
|
39
|
Tripathi A, Kashyap A, Tripathi G, Yadav J, Bibban R, Aggarwal N, Thakur K, Chhokar A, Jadli M, Sah AK, Verma Y, Zayed H, Husain A, Bharti AC, Kashyap MK. Tumor reversion: a dream or a reality. Biomark Res 2021; 9:31. [PMID: 33958005 PMCID: PMC8101112 DOI: 10.1186/s40364-021-00280-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Reversion of tumor to a normal differentiated cell once considered a dream is now at the brink of becoming a reality. Different layers of molecules/events such as microRNAs, transcription factors, alternative RNA splicing, post-transcriptional, post-translational modifications, availability of proteomics, genomics editing tools, and chemical biology approaches gave hope to manipulation of cancer cells reversion to a normal cell phenotype as evidences are subtle but definitive. Regardless of the advancement, there is a long way to go, as customized techniques are required to be fine-tuned with precision to attain more insights into tumor reversion. Tumor regression models using available genome-editing methods, followed by in vitro and in vivo proteomics profiling techniques show early evidence. This review summarizes tumor reversion developments, present issues, and unaddressed challenges that remained in the uncharted territory to modulate cellular machinery for tumor reversion towards therapeutic purposes successfully. Ongoing research reaffirms the potential promises of understanding the mechanism of tumor reversion and required refinement that is warranted in vitro and in vivo models of tumor reversion, and the potential translation of these into cancer therapy. Furthermore, therapeutic compounds were reported to induce phenotypic changes in cancer cells into normal cells, which will contribute in understanding the mechanism of tumor reversion. Altogether, the efforts collectively suggest that tumor reversion will likely reveal a new wave of therapeutic discoveries that will significantly impact clinical practice in cancer therapy.
Collapse
Affiliation(s)
- Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India
| | - Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India
| | - Joni Yadav
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Rakhi Bibban
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Nikita Aggarwal
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Kulbhushan Thakur
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Arun Chhokar
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Mohit Jadli
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Ashok Kumar Sah
- Department of Medical Laboratory Technology, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), India
- Department of Pathology and Laboratory Medicine, Medanta-The Medicity, Haryana, Gurugram, India
| | - Yeshvandra Verma
- Department of Toxicology, C C S University, Meerut, UP, 250004, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Alok Chandra Bharti
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India.
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|
40
|
Zacarías-Fluck MF, Jauset T, Martínez-Martín S, Kaur J, Casacuberta-Serra S, Massó-Vallés D, Serrano Del Pozo E, Martín-Fernández G, González-Larreategui Í, López-Estévez S, Brown-Swigart L, Beaulieu ME, Whitfield JR, Madan B, Virshup DM, Evan GI, Soucek L. The Wnt signaling receptor Fzd9 is essential for Myc-driven tumorigenesis in pancreatic islets. Life Sci Alliance 2021; 4:e201900490. [PMID: 33653688 PMCID: PMC8008953 DOI: 10.26508/lsa.201900490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and β-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.
Collapse
Affiliation(s)
- Mariano F Zacarías-Fluck
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Toni Jauset
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Peptomyc SL, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Martínez-Martín
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jastrinjan Kaur
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Daniel Massó-Vallés
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Erika Serrano Del Pozo
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Génesis Martín-Fernández
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Íñigo González-Larreategui
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Lamorna Brown-Swigart
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Marie-Eve Beaulieu
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jonathan R Whitfield
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Laura Soucek
- Mouse Models of Cancer Therapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Peptomyc SL, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
41
|
Thng DKH, Toh TB, Chow EKH. Capitalizing on Synthetic Lethality of MYC to Treat Cancer in the Digital Age. Trends Pharmacol Sci 2021; 42:166-182. [PMID: 33422376 DOI: 10.1016/j.tips.2020.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Deregulation of MYC is among the most frequent oncogenic drivers of cancer. Developing targeted therapies against MYC is, therefore, one of the most critical unmet needs of cancer therapy. Unfortunately, MYC has been labelled as undruggable due to the lack of success in developing clinically relevant MYC-targeted therapies. Synthetic lethality is a promising approach that targets MYC-dependent vulnerabilities in cancer. However, translating the synthetic lethality targets to the clinics is still challenging due to the complex nature of cancers. This review highlights the most promising mechanisms of MYC synthetic lethality and how these discoveries are currently translated into the clinic. Finally, we discuss how in silico computational platforms can improve clinical success of synthetic lethality-based therapy.
Collapse
Affiliation(s)
- Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
42
|
Kobayashi S, Hiwasa T, Ishige T, Kano M, Hoshino T, Rahmutulla B, Seimiya M, Shimada H, Nomura F, Matsubara H, Matsushita K. Anti-FIRΔexon2 autoantibody as a novel indicator for better overall survival in gastric cancer. Cancer Sci 2021; 112:847-858. [PMID: 33306856 PMCID: PMC7894018 DOI: 10.1111/cas.14767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
There is no clinically available biomarker for efficiently indicating the overall survival or therapy response of gastric cancer (GC). The autoantibodies (Abs) in the sera of anti‐far‐upstream element‐binding protein‐interacting repressor‐lacking exon2 (FIRΔexon2), anti‐sorting nexin 15, and anti‐spermatogenesis and oogenesis–specific basic helix–loop–helix 1 were markedly higher in GC patients than in healthy donors (HDs). These Abs were identified by large‐scale serological identification of antigens by recombinant cDNA expression cloning screenings and their expression levels were evaluated by amplified luminescence proximity homogeneous assay. In particular, compared with age‐matched HDs, the level of anti‐FIRΔexon2 Abs in GC patients was significantly higher (P < .001). The Spearman's rank correlation analysis between anti‐FIRΔexon2 Abs and clinically available tumor markers such as carcinoembryonic antigen (CEA) was statistically insignificant, indicating that FIRΔexon2 Abs is an independent biomarker. We performed receiver‐operating curve analysis to evaluate the anti‐FIRΔexon2 Ab as a candidate biomarker with CEA and carbohydrate antigen 19‐9 (CA19‐9). The overall survival of GC patients with high anti‐FIRΔexon2 Abs titer was significantly favorable (P = .04) than that of GC patients who were below detection level of anti‐FIRΔexon2 Abs. However, clinical stages were not apparently correlated with the levels of anti‐FIRΔexon2 Ab, CEA, and CA19‐9. In conclusion, anti‐FIRΔexon2 Abs detected in GC patients is a potential biomarker for monitoring a better prognosis. Hence, anti‐FIRΔexon2 Abs is a promising biomarker for indicating better overall survival of gastric cancer patients.
Collapse
Affiliation(s)
- Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan.,Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Ishige
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanori Seimiya
- Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Fumio Nomura
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
43
|
Detjen K, Hammerich L, Özdirik B, Demir M, Wiedenmann B, Tacke F, Jann H, Roderburg C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021; 111:217-236. [PMID: 32615560 DOI: 10.1159/000509864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare, heterogeneous group of tumors that originate from the endocrine system of the gastrointestinal tract and pancreas. GEP-NENs are subdivided according to their differentiation into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Since GEP-NENs represent rare diseases, only limited data from large prospective, randomized clinical trials are available, and recommendations for treatment of GEP-NEN are in part based on data from retrospective analyses or case series. In this context, tractable disease models that reflect the situation in humans and that allow to recapitulate the different clinical aspects and disease stages of GEP-NET or GEP-NEC are urgently needed. In this review, we highlight available data on mouse models for GEP-NEN. We discuss how these models reflect tumor biology of human disease and whether these models could serve as a tool for understanding the pathogenesis of GEP-NEN and for disease modeling and pharmacosensitivity assays, facilitating prediction of treatment response in patients. In addition, open issues applicable for future developments will be discussed.
Collapse
Affiliation(s)
- Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Henning Jann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany,
| |
Collapse
|
44
|
Whitfield J, Soucek L. An "-omycs" Toolbox to Work with MYC. Methods Mol Biol 2021; 2318:1-11. [PMID: 34019283 DOI: 10.1007/978-1-0716-1476-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The MYC transcription factor coordinates a wide range of intra- and extracellular processes associated with tissue proliferation and regeneration. While these processes are typically tightly regulated in physiological conditions, they become deregulated in cancer, where MYC is oncogenically activated.The last decade has seen MYC progress from a renowned undruggable target to a hot topic in the cancer therapy field, as proof emerged from mouse models that its inhibition constitutes an effective and broadly applicable approach to fight cancer. However, there are several aspects of MYC biology that still appear to be elusive and maintain the interest in further studying this intriguing protein. Since MYC's discovery, more than four decades ago, multiple strategies have been developed to study it, related to the many and varied facets of its biology. This new version of The Myc gene: Methods and Protocols provides valuable tips from key "inhabitants of the MYC world," which significantly increase the reach of our investigative tools to shed light on the mysteries still surrounding MYC.
Collapse
Affiliation(s)
- Jonathan Whitfield
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
45
|
Lu D, Wilson C, Littlewood TD. Methods for Determining Myc-Induced Apoptosis. Methods Mol Biol 2021; 2318:209-229. [PMID: 34019292 DOI: 10.1007/978-1-0716-1476-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Although many oncoproteins promote cell growth and proliferation, some also possess the potential to induce cell cycle arrest or cell death by apoptosis. Elevated and deregulated expression of the Myc protein promotes apoptosis in both cultured cells and in some tissues in vivo. Here we describe techniques to detect Myc-induced apoptosis in vitro using flow cytometry, microscopy, and immunoblotting, and in vivo using immunohistochemical staining, immunoblotting, and analysis of RNA expression.
Collapse
Affiliation(s)
- Dan Lu
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Catherine Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
46
|
Rosselot C, Baumel-Alterzon S, Li Y, Brill G, Lambertini L, Katz LS, Lu G, Garcia-Ocaña A, Scott DK. The many lives of Myc in the pancreatic β-cell. J Biol Chem 2021; 296:100122. [PMID: 33239359 PMCID: PMC7949031 DOI: 10.1074/jbc.rev120.011149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes results from insufficient numbers of functional pancreatic β-cells. Thus, increasing the number of available functional β-cells ex vivo for transplantation, or regenerating them in situ in diabetic patients, is a major focus of diabetes research. The transcription factor, Myc, discovered decades ago lies at the nexus of most, if not all, known proliferative pathways. Based on this, many studies in the 1990s and early 2000s explored the potential of harnessing Myc expression to expand β-cells for diabetes treatment. Nearly all these studies in β-cells used pathophysiological or supraphysiological levels of Myc and reported enhanced β-cell death, dedifferentiation, or the formation of insulinomas if cooverexpressed with Bcl-xL, an inhibitor of apoptosis. This obviously reduced the enthusiasm for Myc as a therapeutic target for β-cell regeneration. However, recent studies indicate that "gentle" induction of Myc expression enhances β-cell replication without induction of cell death or loss of insulin secretion, suggesting that appropriate levels of Myc could have therapeutic potential for β-cell regeneration. Furthermore, although it has been known for decades that Myc is induced by glucose in β-cells, very little is known about how this essential anabolic transcription factor perceives and responds to nutrients and increased insulin demand in vivo. Here we summarize the previous and recent knowledge of Myc in the β-cell, its potential for β-cell regeneration, and its physiological importance for neonatal and adaptive β-cell expansion.
Collapse
Affiliation(s)
- Carolina Rosselot
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sharon Baumel-Alterzon
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yansui Li
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel Brill
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Lambertini
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Liora S Katz
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geming Lu
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Garcia-Ocaña
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Donald K Scott
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
47
|
Modelling Pancreatic Neuroendocrine Cancer: From Bench Side to Clinic. Cancers (Basel) 2020; 12:cancers12113170. [PMID: 33126717 PMCID: PMC7693644 DOI: 10.3390/cancers12113170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic neuroendocrine tumours (pNETs) are a heterogeneous group of epithelial tumours with neuroendocrine differentiation. Although rare (incidence of <1 in 100,000), they are the second most common group of pancreatic neoplasms after pancreatic ductal adenocarcinoma (PDAC). pNET incidence is however on the rise and patient outcomes, although variable, have been linked with 5-year survival rates as low as 40%. Improvement of diagnostic and treatment modalities strongly relies on disease models that reconstruct the disease ex vivo. A key constraint in pNET research, however, is the absence of human pNET models that accurately capture the original tumour phenotype. In attempts to more closely mimic the disease in its native environment, three-dimensional culture models as well as in vivo models, such as genetically engineered mouse models (GEMMs), have been developed. Despite adding significant contributions to our understanding of more complex biological processes associated with the development and progression of pNETs, factors such as ethical considerations and low rates of clinical translatability limit their use. Furthermore, a role for the site-specific extracellular matrix (ECM) in disease development and progression has become clear. Advances in tissue engineering have enabled the use of tissue constructs that are designed to establish disease ex vivo within a close to native ECM that can recapitulate tumour-associated tissue remodelling. Yet, such advanced models for studying pNETs remain underdeveloped. This review summarises the most clinically relevant disease models of pNETs currently used, as well as future directions for improved modelling of the disease.
Collapse
|
48
|
Ting TA, Chaumet A, Bard FA. Targeting c-Myc with a novel Peptide Nuclear Delivery Device. Sci Rep 2020; 10:17762. [PMID: 33082422 PMCID: PMC7576588 DOI: 10.1038/s41598-020-73998-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Biologics such as peptides and antibodies are a well-established class of therapeutics. However, their intracellular delivery remains problematic. In particular, methods to efficiently inhibit intra-nuclear targets are lacking. We previously described that Pseudomonas Exotoxin A reaches the nucleoplasm via the endosomes-to-nucleus trafficking pathway. Here, we show that a non-toxic truncated form of PE can be coupled to peptides and efficiently reach the nucleoplasm. It can be used as a Peptide Nuclear Delivery Device (PNDD) to deliver polypeptidic cargos as large as Glutathione- S-transferase (GST) to the nucleus. PNDD1 is a fusion of PNDD to the c-myc inhibitor peptide H1. PNDD1 is able to inhibit c-Myc dependent transcription at nanomolar concentration. In contrast, H1 fused to various cell-penetrating peptides are active only in the micromolar range. PNDD1 attenuates cell proliferation and induces cell death in various tumor cell lines. In particular, several patient-derived Diffuse Large B-Cell Lymphomas cell lines die after exposure to PNDD1, while normal B-cells survive. Altogether, our data indicate that PNDD is a powerful tool to bring active cargo to the nucleus and PNDD1 could be the basis of a new therapy against lymphoma.
Collapse
Affiliation(s)
- Trinda Anne Ting
- Institute of Molecular and Cell Biology, Singapore, 138673, Singapore
| | - Alexandre Chaumet
- Institute of Molecular and Cell Biology, Singapore, 138673, Singapore
| | - Frederic Andre Bard
- Institute of Molecular and Cell Biology, Singapore, 138673, Singapore. .,Department of Biochemistry, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
49
|
Normoxic Tumour Extracellular Vesicles Modulate the Response of Hypoxic Cancer and Stromal Cells to Doxorubicin In Vitro. Int J Mol Sci 2020; 21:ijms21175951. [PMID: 32824972 PMCID: PMC7503554 DOI: 10.3390/ijms21175951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EV) secreted in the tumour microenvironment (TME) are emerging as major antagonists of anticancer therapies by orchestrating the therapeutic outcome through altering the behaviour of recipient cells. Recent evidence suggested that chemotherapeutic drugs could be responsible for the EV-mediated tumour-stroma crosstalk associated with cancer cell drug resistance. Here, we investigated the capacity of tumour EV (TEV) secreted by normoxic and hypoxic (1% oxygen) C26 cancer cells after doxorubicin (DOX) treatment to alter the response of naïve C26 cells and RAW 264.7 macrophages to DOX. We observed that C26 cells were less responsive to DOX treatment under normoxia compared to hypoxia, and a minimally cytotoxic DOX concentration that mounted distinct effects on cell viability was selected for TEV harvesting. Homotypic and heterotypic pretreatment of naïve hypoxic cancer and macrophage-like cells with normoxic DOX-elicited TEV rendered these cells slightly less responsive to DOX treatment. The observed effects were associated with strong hypoxia-inducible factor 1-alpha (HIF-1α) induction and B-cell lymphoma-extra-large anti-apoptotic protein (Bcl-xL)-mediated anti-apoptotic response in normoxic DOX-treated TEV donor cells, being also tightly connected to the DOX-TEV-mediated HIF-1α induction, as well as Bcl-xL levels increasing in recipient cells. Altogether, our results could open new perspectives for investigating the role of chemotherapy-elicited TEV in the colorectal cancer TME and their modulatory actions on promoting drug resistance.
Collapse
|
50
|
Transcriptional Profiling and Biological Pathway(s) Analysis of Type 2 Diabetes Mellitus in a Pakistani Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165866. [PMID: 32823525 PMCID: PMC7460550 DOI: 10.3390/ijerph17165866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) is an important global health concern. Our earlier epidemiological investigation in Pakistan prompted us to conduct a molecular investigation to decipher the differential genetic pathways of this health condition in relation to non-diabetic controls. Our microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their canonical pathways. High-throughput qRT-PCR TaqMan Low Density Array (TLDA) was performed to validate the selected differentially expressed genes of our interest, viz., ARNT, LEPR, MYC, RRAD, CYP2D6, TP53, APOC1, APOC2, CYP1B1, SLC2A13, and SLC33A1 using a small population validation sample (n = 15 cases and their corresponding matched controls). Overall, our small pilot study revealed a discrete gene expression profile in cases compared to controls. The disease pathways included: Insulin Receptor Signaling, Type II Diabetes Mellitus Signaling, Apoptosis Signaling, Aryl Hydrocarbon Receptor Signaling, p53 Signaling, Mitochondrial Dysfunction, Chronic Myeloid Leukemia Signaling, Parkinson's Signaling, Molecular Mechanism of Cancer, and Cell Cycle G1/S Checkpoint Regulation, GABA Receptor Signaling, Neuroinflammation Signaling Pathway, Dopamine Receptor Signaling, Sirtuin Signaling Pathway, Oxidative Phosphorylation, LXR/RXR Activation, and Mitochondrial Dysfunction, strongly consistent with the evidence from epidemiological studies. These gene fingerprints could lead to the development of biomarkers for the identification of subgroups at high risk for future disease well ahead of time, before the actual disease becomes visible.
Collapse
|