1
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
2
|
Calabrese DR, Ekstrand CA, Yellamilli S, Singer JP, Hays SR, Leard LE, Shah RJ, Venado A, Kolaitis NA, Perez A, Combes A, Greenland JR. Macrophage and CD8 T cell discordance are associated with acute lung allograft dysfunction progression. J Heart Lung Transplant 2024; 43:1074-1086. [PMID: 38367738 PMCID: PMC11230518 DOI: 10.1016/j.healun.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Acute lung allograft dysfunction (ALAD) is an imprecise syndrome denoting concern for the onset of chronic lung allograft dysfunction (CLAD). Mechanistic biomarkers are needed that stratify risk of ALAD progression to CLAD. We hypothesized that single cell investigation of bronchoalveolar lavage (BAL) cells at the time of ALAD would identify immune cells linked to progressive graft dysfunction. METHODS We prospectively collected BAL from consenting lung transplant recipients for single cell RNA sequencing. ALAD was defined by a ≥10% decrease in FEV1 not caused by infection or acute rejection and samples were matched to BAL from recipients with stable lung function. We examined cell compositional and transcriptional differences across control, ALAD with decline, and ALAD with recovery groups. We also assessed cell-cell communication. RESULTS BAL was assessed for 17 ALAD cases with subsequent decline (ALAD declined), 13 ALAD cases that resolved (ALAD recovered), and 15 cases with stable lung function. We observed broad differences in frequencies of the 26 unique cell populations across groups (p = 0.02). A CD8 T cell (p = 0.04) and a macrophage cluster (p = 0.01) best identified ALAD declined from the ALAD recovered and stable groups. This macrophage cluster was distinguished by an anti-inflammatory signature and the CD8 T cell cluster resembled a Tissue Resident Memory subset. Anti-inflammatory macrophages signaled to activated CD8 T cells via class I HLA, fibronectin, and galectin pathways (p < 0.05 for each). Recipients with discordance between these cells had a nearly 5-fold increased risk of severe graft dysfunction or death (HR 4.6, 95% CI 1.1-19.2, adjusted p = 0.03). We validated these key findings in 2 public lung transplant genomic datasets. CONCLUSIONS BAL anti-inflammatory macrophages may protect against CLAD by suppressing CD8 T cells. These populations merit functional and longitudinal assessment in additional cohorts.
Collapse
Affiliation(s)
- Daniel R Calabrese
- Department of Medicine, University of California, San Francisco, California; Medical Service, Veterans Affairs Health Care System, San Francisco, California.
| | | | - Shivaram Yellamilli
- Department of Pathology, University of California, San Francisco, California
| | - Jonathan P Singer
- Department of Medicine, University of California, San Francisco, California
| | - Steven R Hays
- Department of Medicine, University of California, San Francisco, California
| | - Lorriana E Leard
- Department of Medicine, University of California, San Francisco, California
| | - Rupal J Shah
- Department of Medicine, University of California, San Francisco, California
| | - Aida Venado
- Department of Medicine, University of California, San Francisco, California
| | | | - Alyssa Perez
- Department of Medicine, University of California, San Francisco, California
| | - Alexis Combes
- Department of Pathology, University of California, San Francisco, California
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, California; Medical Service, Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
3
|
Kim YA, Choi Y, Kim TG, Jeong J, Yu S, Kim T, Sheen K, Lee Y, Choi T, Park YH, Kang MS, Kim MS. Multi-System-Level Analysis with RNA-Seq on Pterygium Inflammation Discovers Association between Inflammatory Responses, Oxidative Stress, and Oxidative Phosphorylation. Int J Mol Sci 2024; 25:4789. [PMID: 38732006 PMCID: PMC11083828 DOI: 10.3390/ijms25094789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
A pterygium is a common conjunctival degeneration and inflammatory condition. It grows onto the corneal surface or limbus, causing blurred vision and cosmetic issues. Ultraviolet is a well-known risk factor for the development of a pterygium, although its pathogenesis remains unclear, with only limited understanding of its hereditary basis. In this study, we collected RNA-seq from both pterygial tissues and conjunctival tissues (as controls) from six patients (a total of twelve biological samples) and retrieved publicly available data, including eight pterygium samples and eight controls. We investigated the intrinsic gene regulatory mechanisms closely linked to the inflammatory reactions of pterygiums and compared Asian (Korea) and the European (Germany) pterygiums using multiple analysis approaches from different perspectives. The increased expression of antioxidant genes in response to oxidative stress and DNA damage implies an association between these factors and pterygium development. Also, our comparative analysis revealed both similarities and differences between Asian and European pterygiums. The decrease in gene expressions involved in the three primary inflammatory signaling pathways-JAK/STAT, MAPK, and NF-kappa B signaling-suggests a connection between pathway dysfunction and pterygium development. We also observed relatively higher activity of autophagy and antioxidants in the Asian group, while the European group exhibited more pronounced stress responses against oxidative stress. These differences could potentially be necessitated by energy-associated pathways, specifically oxidative phosphorylation.
Collapse
Affiliation(s)
- Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yueun Choi
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Tae Gi Kim
- Department of Ophthalmology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| | - Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Sanghyeon Yu
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Taeyoon Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Kisung Sheen
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yoonsung Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
| | - Taesoo Choi
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Min Seok Kang
- Department of Ophthalmology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea
| | - Man S. Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
| |
Collapse
|
4
|
Latifi-Navid H, Barzegar Behrooz A, Jamehdor S, Davari M, Latifinavid M, Zolfaghari N, Piroozmand S, Taghizadeh S, Bourbour M, Shemshaki G, Latifi-Navid S, Arab SS, Soheili ZS, Ahmadieh H, Sheibani N. Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related? Pharmaceuticals (Basel) 2023; 16:1555. [PMID: 38004422 PMCID: PMC10674956 DOI: 10.3390/ph16111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer's disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.
Collapse
Affiliation(s)
- Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3T 2N2, Canada;
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Maliheh Davari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Masoud Latifinavid
- Department of Mechatronic Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey;
| | - Narges Zolfaghari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Golnaz Shemshaki
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore 570005, India;
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Seyed Shahriar Arab
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran 1666673111, Iran;
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
5
|
Amini MA, Karbasi A, Vahabirad M, Khanaghaei M, Alizamir A. Mechanistic Insight into Age-Related Macular Degeneration (AMD): Anatomy, Epidemiology, Genetics, Pathogenesis, Prevention, Implications, and Treatment Strategies to Pace AMD Management. Chonnam Med J 2023; 59:143-159. [PMID: 37840684 PMCID: PMC10570864 DOI: 10.4068/cmj.2023.59.3.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
One of the most complicated eye disorders is age-related macular degeneration (AMD) which is the leading cause of irremediable blindness all over the world in the elderly. AMD is classified as early stage to late stage (advanced AMD), in which this stage is divided into the exudative or neovascular form (wet AMD) and the nonexudative or atrophic form (dry AMD). Clinically, AMD primarily influences the central area of retina known as the macula. Importantly, the wet form is generally associated with more severe vision loss. AMD has a systemic component, where many factors, like aging, genetic, environment, autoimmune and non-autoimmune disorders are associated with this disease. Additionally, healthy lifestyles, regular exercise, maintaining a normal lipid profile and weight are crucial to decreasing the risk of AMD. Furthermore, therapeutic strategies for limiting AMD should encompass a variety of factors to avoid and improve drug interventions, and also need to take into account personalized genetic information. In conclusion, with the development of technology and research progress, visual impairment and legal blindness from AMD have been substantially reduced in incidence. This review article is focused on identifying and developing the knowledge about the association between genetics, and etiology with AMD. We hope that this review will encourage researchers and lecturers, open new discussions, and contribute to a better understanding of AMD that improves patients' visual acuity, and upgrades the quality of life of AMD patients.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Karbasi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Vahabirad
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Khanaghaei
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Aida Alizamir
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Deng Y, Qiao L, Du M, Qu C, Wan L, Li J, Huang L. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis 2022; 9:62-79. [PMID: 35005108 PMCID: PMC8720701 DOI: 10.1016/j.gendis.2021.02.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/17/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disorder and is the leading cause of incurable blindness worldwide in the elderly. Clinically, AMD initially affects the central area of retina known as the macula and it is classified as early stage to late stage (advanced AMD). The advanced AMD is classified into the nonexudative or atrophic form (dry AMD) and the exudative or neovascular form (wet AMD). More severe vision loss is typically associated with the wet form. Multiple genetic factors, lipid metabolism, oxidative stress and aging, play a role in the etiology of AMD. Dysregulation in genetic to AMD is established to 46%-71% of disease contribution, with CFH and ARMS2/HTRA1 to be the two most notable risk loci among the 103 identified AMD associated loci so far. Chronic cigarette smoking is the most proven consistently risk living habits for AMD. Deep learning algorithm has been developed based on image recognition to distinguish wet AMD and normal macula with high accuracy. Currently, anti-vascular endothelial growth factor (VEGF) therapy is highly effective at treating wet AMD. Several new generation AMD drugs and iPSC-derived RPE cell therapy are in the clinical trial stage and are promising to improve AMD treatment in the near future.
Collapse
Affiliation(s)
- Yanhui Deng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, PR China
| | - Lifeng Qiao
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Mingyan Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, PR China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Ling Wan
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
7
|
Epigenetic Age Acceleration Is Not Associated with Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222413457. [PMID: 34948253 PMCID: PMC8705580 DOI: 10.3390/ijms222413457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methylation age (DNAm age) estimation is a powerful biomarker of human ageing. To date, epigenetic clocks have not been evaluated in age-related macular degeneration (AMD). Here, we perform genome-wide DNA methylation analyses in blood of AMD patients with a documented smoking history (14 AMD, 16 Normal), identifying loci of differential methylation (DML) with a relaxed p-value criterion (p ≤ 10−4). We conduct DNAm age analyses using the Horvath-multi tissue, Hannum and Skin & Blood epigenetic clocks in both blood and retinal pigment epithelium (RPE). We perform Ingenuity Pathway Analysis Causal Network Analysis (IPA CNA) on the topmost significantly differentially methylated CpG probes in blood and RPE. Results show poor performance of epigenetic clocks in RPE. Epigenetic age acceleration (EAA) was not observed in AMD. However, we observe positive EAA in blood of smokers, and in smokers with AMD. DML analysis revealed hypomethylation at cg04953735 within RPTOR (p = 6.51 × 10−5; Δβ = −11.95%). IPA CNA in the RPE also identified RPTOR as the putative master regulator, predicted to be inhibited in AMD. In conclusion, this is the first study evaluating an association of epigenetic ageing in AMD. We posit a role for RPTOR as a common master regulator of methylation changes in the RPE in AMD.
Collapse
|
8
|
The effect of systemic levels of TNF-alpha and complement pathway activity on outcomes of VEGF inhibition in neovascular AMD. Eye (Lond) 2021; 36:2192-2199. [PMID: 34750590 PMCID: PMC9581945 DOI: 10.1038/s41433-021-01824-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background/Objectives Systemic levels of pro-inflammatory cytokines and activated complement components affect the risk and/or progression of neovascular age-related macular degeneration (AMD). This study investigated the effect of serum pro-inflammatory cytokine levels and complement pathway activity on the clinical response to vascular endothelial growth factor (VEGF) inhibition in neovascular AMD. Methods Sixty-five patients with a new diagnosis of neovascular AMD were observed over a six-month period in a single-centre, longitudinal cohort study. At each visit, the visual acuity score (VAS), central macular thickness (CMT), serum levels of CRP, pro-inflammatory cytokines (TNF-α, IL-1β, IL-2, IL-6 and IL-8), and complement pathway activity were measured. Participant DNA samples were sequenced for six complement pathway single nucleotide polymorphisms (SNPs) associated with AMD. Results A statistically significant difference in VAS was observed for serum levels of TNF-α only: there was a gain in VAS (from baseline) of 1.37 for participants below the 1st quartile of mean concentration compared to a reduction of 2.71 for those above the 3rd quartile. Statistical significance was maintained after Bonferroni correction (P value set at <0.006). No significant differences in CMT were observed. In addition, statistically significant differences, maintained after Bonferroni correction, were observed in serum complement activity for participants with the following SNPs: CFH region (rs1061170), SERPING1 (rs2511989) and CFB (rs641153). Serum complement pathway components did not significantly affect VAS. Conclusions Lower serum TNF-α levels were associated with an increase in visual acuity after anti-VEGF therapy. This suggests that targeting pro-inflammatory cytokines may augment treatment for neovascular AMD.
Collapse
|
9
|
Karnaukhova E. C1-Inhibitor: Structure, Functional Diversity and Therapeutic Development. Curr Med Chem 2021; 29:467-488. [PMID: 34348603 DOI: 10.2174/0929867328666210804085636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Human C1-Inhibitor (C1INH), also known as C1-esterase inhibitor, is an important multifunctional plasma glycoprotein that is uniquely involved in a regulatory network of complement, contact, coagulation, and fibrinolytic systems. C1INH belongs to a superfamily of serine proteinase inhibitor (serpins) and exhibits its inhibitory activities towards several target proteases of plasmatic cascades, operating as a major anti-inflammatory protein in the circulation. In addition to its inhibitory activities, C1INH is also involved in non-inhibitory interactions with some endogenous proteins, polyanions, cells and infectious agents. While C1INH is essential for multiple physiological processes, it is better known for its deficiency with regards to Hereditary Angioedema (HAE), a rare autosomal dominant disease clinically manifested by recurrent acute attacks of increased vascular permeability and edema. Since the link was first established between functional C1INH deficiency in plasma and HAE in the 1960s, tremendous progress has been made in the biochemical characterization of C1INH and its therapeutic development for replacement therapies in patients with C1INH-dependent HAE. Various C1INH biological activities, recent advances in the HAE-targeted therapies, and availability of C1INH commercial products have prompted intensive investigation of the C1INH potential for treatment of clinical conditions other than HAE. This article provides an updated overview of the structure and biological activities of C1INH, its role in HAE pathogenesis, and recent advances in the research and therapeutic development of C1INH; it also considers some trends for using C1INH therapeutic preparations for applications other than angioedema, from sepsis and endotoxin shock to severe thrombotic complications in COVID-19 patients.
Collapse
Affiliation(s)
- Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993. United States
| |
Collapse
|
10
|
Rinsky B, Beykin G, Grunin M, Amer R, Khateb S, Tiosano L, Almeida D, Hagbi-Levi S, Elbaz-Hayoun S, Chowers I. Analysis of the Aqueous Humor Proteome in Patients With Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34406330 PMCID: PMC8374990 DOI: 10.1167/iovs.62.10.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Purpose Age-related macular degeneration (AMD) is associated with altered gene and protein expression in the retina. We characterize the aqueous humor (AH) proteome in AMD to gain insight into the pathogenesis of the disease and identify potential biomarkers. Methods AH was collected from age and gender matched neovascular AMD (nvAMD; n = 10) patients and controls (n = 10). AH was pooled to create two samples (nvAMD and control), followed by intensity-based label-free quantification (MS1). Functional and bioinformatic analysis were then performed. A validation set (20 controls, 15 atrophic AMD and 15 nvAMD) was tested via multiplex ELISA for nine differentially expressed proteins according to the MS1 findings. Results MS1 identified 674 proteins in the AH. 239 proteins were upregulated in nvAMD (nvAMD/control > 2, peptide tags (PT) > 2), and 86 proteins were downregulated (nvAMD/control < 0.5, PT > 2). Functional analysis of proteins upregulated in AMD demonstrated enrichment for platelet degranulation (enrichment score (ES):28.1), negative regulation of endopeptidase activity (ES:18.8), cellular protein metabolic process (ES:11.8), epidermal growth factor-like domain (ES:10.3), sushi/SCR/CCP (ES:10.1), and complement/coagulation cascades (ES:9.2). AMD protein clusters were upregulated for 3/6 (χ2 < 0.05 compared to randomization). Validation via ELISA confirmed MS1 in 2/9 proteins (Clusterin and Serpin A4, P < 0.05), while 3/9 showed differential expression between aAMD and nvAMD (Clusterin, Serpin A4, and TF P < 0.05). Receiver operating characteristic curve calculation identified the area under the curve of 0.82 for clusterin as a biomarker for distinction of AMD. Conclusions AH proteomics in AMD patients identified several proteins and functional clusters with altered expression. Further research should confirm if these proteins may serve as biomarkers or therapeutic target for the disease.
Collapse
Affiliation(s)
- Batya Rinsky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gala Beykin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Radgonde Amer
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Liran Tiosano
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Diego Almeida
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
McMahon O, Hallam TM, Patel S, Harris CL, Menny A, Zelek WM, Widjajahakim R, Java A, Cox TE, Tzoumas N, Steel DHW, Shuttleworth VG, Smith-Jackson K, Brocklebank V, Griffiths H, Cree AJ, Atkinson JP, Lotery AJ, Bubeck D, Morgan BP, Marchbank KJ, Seddon JM, Kavanagh D. The rare C9 P167S risk variant for age-related macular degeneration increases polymerization of the terminal component of the complement cascade. Hum Mol Genet 2021; 30:1188-1199. [PMID: 33783477 PMCID: PMC8212764 DOI: 10.1093/hmg/ddab086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex neurodegenerative eye disease with behavioral and genetic etiology and is the leading cause of irreversible vision loss among elderly Caucasians. Functionally significant genetic variants in the alternative pathway of complement have been strongly linked to disease. More recently, a rare variant in the terminal pathway of complement has been associated with increased risk, Complement component 9 (C9) P167S. To assess the functional consequence of this variant, C9 levels were measured in two independent cohorts of AMD patients. In both cohorts, it was demonstrated that the P167S variant was associated with low C9 plasma levels. Further analysis showed that patients with advanced AMD had elevated sC5b-9 compared to those with non-advanced AMD, although this was not associated with the P167S polymorphism. Electron microscopy of membrane attack complexes (MACs) generated using recombinantly produced wild type or P167S C9 demonstrated identical MAC ring structures. In functional assays, the P167S variant displayed a higher propensity to polymerize and a small increase in its ability to induce hemolysis of sheep erythrocytes when added to C9-depleted serum. The demonstration that this C9 P167S AMD risk polymorphism displays increased polymerization and functional activity provides a rationale for the gene therapy trials of sCD59 to inhibit the terminal pathway of complement in AMD that are underway.
Collapse
Affiliation(s)
- O McMahon
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - T M Hallam
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - S Patel
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - C L Harris
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - A Menny
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - W M Zelek
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - R Widjajahakim
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - A Java
- Divisions of Nephrology and Rheumatology, Department of Medicine, Washington University, St Louis, MO 63110, USA
| | - T E Cox
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - N Tzoumas
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - D H W Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - V G Shuttleworth
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - K Smith-Jackson
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - V Brocklebank
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - H Griffiths
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - A J Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - J P Atkinson
- Divisions of Nephrology and Rheumatology, Department of Medicine, Washington University, St Louis, MO 63110, USA
| | - A J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - D Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - B P Morgan
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - K J Marchbank
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - J M Seddon
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - D Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| |
Collapse
|
12
|
Holcomb D, Alexaki A, Hernandez N, Hunt R, Laurie K, Kames J, Hamasaki-Katagiri N, Komar AA, DiCuccio M, Kimchi-Sarfaty C. Gene variants of coagulation related proteins that interact with SARS-CoV-2. PLoS Comput Biol 2021; 17:e1008805. [PMID: 33730015 PMCID: PMC8007013 DOI: 10.1371/journal.pcbi.1008805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/29/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022] Open
Abstract
Thrombosis is a recognized complication of Coronavirus disease of 2019 (COVID-19) and is often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms, by which some of these variants may contribute to disease, are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches.
Collapse
Affiliation(s)
- David Holcomb
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nancy Hernandez
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ryan Hunt
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kyle Laurie
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jacob Kames
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nobuko Hamasaki-Katagiri
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chava Kimchi-Sarfaty
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
13
|
Potilinski MC, Tate PS, Lorenc VE, Gallo JE. New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 2021; 188:108513. [PMID: 33662390 DOI: 10.1016/j.neuropharm.2021.108513] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of age-related macular degeneration (AMD) has increased in the last years. Although anti-VEGF agents have improved the prognosis of exudative AMD, dry AMD has still devastating effects on elderly people vision. Oxidative stress and inflammation are mechanisms involved in AMD pathogenesis and its progression. Molecular pathways involving epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP4) and the nuclear erythroid related factor 2 (Nrf2) are behind oxidative stress in AMD due to their participation in antioxidant cellular pathways. As a consequence of the disbalance produced in the antioxidant mechanisms, there is an activation of innate and adaptative immune response with cell recruitment, changes in complement factors expression, and modification of cellular milieu. Different therapies are being studied to treat dry AMD based on the possible effects on antioxidant molecular pathways or their action on the immune response. There is a wide range of treatments presented in this review, from natural antioxidant compounds to cell and gene therapy, based on their mechanisms. Finally, we hypothesize that alpha-1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory molecule that can also modulate antioxidant cellular defenses, could be a good candidate for testing in AMD. This article is part of the special ssue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Pablo S Tate
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Valeria E Lorenc
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Juan E Gallo
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina; Departamento de Oftalmología, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Yang MM, Sun HY, Meng T, Qiu SH, Zeng QQ, Ng TK, Jiang L, Deng TM, Zeng AN, Wang J, Luo XL. CFH I62V as a Putative Genetic Marker for Posner-Schlossman Syndrome. Front Immunol 2021; 12:608723. [PMID: 33643312 PMCID: PMC7904693 DOI: 10.3389/fimmu.2021.608723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/22/2021] [Indexed: 12/03/2022] Open
Abstract
Objective: Posner-Schlossman syndrome (PSS), also known as glaucomatocyclitic crisis, is an ocular condition characterized by recurrent attacks of anterior uveitis and raised intraocular pressure. Previous studies by our team and others have identified the genetic association of complement pathway genes with uveitis and glaucoma. This study aimed to investigate the complement genes in PSS patients with the view of elucidating the genetic background of the disease. Methods: A total of 331 subjects (56 PSS patients and 275 controls) were recruited for this study. We selected 27 variants in six complement pathway genes (SERPING1, C2, CFB, CFH, C3, and C5) and detected them using TaqMan single nucleotide polymorphism (SNP) Genotyping Assays. Univariate SNP association analysis, haplotype-based association analysis, gene-gene interaction analysis among complement genes, and genotype-phenotype correlation analysis were performed. Results: Among the 27 variants of six complement pathway genes, the functional variant I62V (rs800292) at the CFH gene was found to be significantly associated with PSS; there was a significant increase in the frequency of A allele and AA homozygosity in PSS patients than in controls (P = 1.79 × 10−4; odds ratio (OR) 2.18, 95% CI: 1.44–3.29; P = 4.65 × 10−4; OR 3.66, 95% CI: 1.70–7.85, respectively). The additive effect of CFH-rs800292 and SERPING1-rs3824988 was identified with an OR of 12.50 (95% CI: 2.16–72.28). Genotype-phenotype analysis indicated that the rs800292 AA genotype was associated with a higher intraocular pressure and higher frequency of recurrence. Unlike a high proportion of human leukocyte antigen (HLA)-B27 positivity in anterior uveitis, only 3 in 56 (5.36%) PSS patients were HLA-B27 positive. In addition, one haplotype block (GC) in the SERPING1 gene showed a nominal association with PSS with an increased risk of 2.04 (P = 0.01; 95% CI: 1.18–3.53), but the P-value could not withstand the Bonferroni correction (Pcorr > 0.05). Conclusion: This study revealed a genetic association of a CFH variant with PSS as well as its clinical parameters, implying that the alternative complement pathway might play an important role in the pathogenesis of PSS. Further studies to enrich the understanding of the genetic background of PSS and the role of the complement system in ocular inflammation are warranted.
Collapse
Affiliation(s)
- Ming Ming Yang
- Department of Ophthalmology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Hong Yan Sun
- Department of Ophthalmology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ting Meng
- Department of Ophthalmology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Shan Hu Qiu
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Qi Qiao Zeng
- Department of Ophthalmology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jiang
- Department of Ophthalmology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ting Ming Deng
- Department of Ophthalmology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ai Neng Zeng
- Department of Ophthalmology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jun Wang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao Ling Luo
- Department of Ophthalmology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Targeted Gene Candidates for Treatment and Early Diagnosis of Age-Related Macular Degeneration. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6620900. [PMID: 33604378 PMCID: PMC7872763 DOI: 10.1155/2021/6620900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Abstract
Age-related macular degeneration (AMD) is an eye disease that impairs the sharp and central vision need for daily activities. Recent advances in molecular biology research not only lead to a better understanding of the genetics and pathophysiology of AMD but also to the development of applications based on targeted gene expressions to treat the disease. Clarification of molecular pathways that causing to development and progression in dry and wet types of AMD needs comprehensive and comparative investigations in particular precious biopsies involving peripheral blood samples from the patients. Therefore, in this investigation, dry and wet types of AMD patients and healthy individuals were aimed at investigating in regard to targeted gene candidates by using gene expression analysis for the first time. 13 most potent candidate genes involved in neurodegeneration were selected via in silico approach and investigated through gene expression analysis to suggest new targets for disease therapy. For the analyses, 30 individuals (10 dry and 10 wet types AMD patients and 10 healthy people) were involved in the study. SYBR-Green based Real-Time PCR analysis was performed on isolated peripheral blood mononuclear cells (PBMCs) to analyze differentially expressed genes related to these cases. According to the investigations, only the CRP gene was found to be upregulated for both dry and wet disease types. When the downregulated genes were analyzed, it was found that 11 genes were commonly decreased for both dry and wet types in the aspect of expression pattern. From these genes, CFH, CX3CR1, FLT1, and TIMP3 were found to have the most downregulated gene expression properties for both diseases. From these results, it might be concluded that these common upregulated and downregulated genes could be used as targets for early diagnosis and treatment for AMD.
Collapse
|
16
|
Hallam TM, Marchbank KJ, Harris CL, Osmond C, Shuttleworth VG, Griffiths H, Cree AJ, Kavanagh D, Lotery AJ. Rare Genetic Variants in Complement Factor I Lead to Low FI Plasma Levels Resulting in Increased Risk of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:18. [PMID: 32516404 PMCID: PMC7415286 DOI: 10.1167/iovs.61.6.18] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Rare genetic variants in complement factor I (CFI) that cause low systemic levels of the protein (FI) have been reported as a strong risk factor for advanced age-related macular degeneration (AMD). This study set out to replicate these findings. Methods FI levels were measured by sandwich ELISA in an independent cohort of 276 patients with AMD and 205 elderly controls. Single-nucleotide polymorphism genotyping and Sanger sequencing were used to assess genetic variability. Results The median FI level was significantly lower in those individuals with AMD and a rare CFI variant (28.3 µg/mL) compared to those with AMD without a rare CFI variant (38.8 µg/mL, P = 0.004) or the control population with (41.7 µg/mL, P = 0.0085) or without (41.5 µg/mL, P < 0.0001) a rare CFI variant. Thirty-six percent of patients with AMD with a rare CFI variant had levels below the fifth percentile, compared to 6% in controls with CFI variants. Multiple regression analyses revealed a decreased FI level associated with a rare CFI variant was a risk factor for AMD (early or late AMD: odds ratio [OR] 12.05, P = 0.03; early AMD: OR 30.3, P = 0.02; late AMD: OR 10.64, P < 0.01). Additionally, measurement of FI in aqueous humor revealed a large FI concentration gradient between systemic circulation and the eye (∼286-fold). Conclusions Rare genetic variants in CFI causing low systemic FI levels are strongly associated with AMD. The impermeability of the Bruch's membrane to FI will have implications for therapeutic replacement of FI in individuals with CFI variants and low FI levels at risk of AMD.
Collapse
|
17
|
Holcomb D, Alexaki A, Hernandez N, Laurie K, Kames J, Hamasaki-Katagiri N, Komar AA, DiCuccio M, Kimchi-Sarfaty C. Potential impact on coagulopathy of gene variants of coagulation related proteins that interact with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32935103 DOI: 10.1101/2020.09.08.272328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thrombosis has been one of the complications of the Coronavirus disease of 2019 (COVID-19), often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms by which some of these variants may contribute to disease are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches. Author summary Increased blood clotting, especially in the lungs, is a common complication of COVID-19. Infectious diseases cause inflammation which in turn can contribute to increased blood clotting. However, the extent of clot formation that is seen in the lungs of COVID-19 patients suggests that there may be a more direct link. We identified three human proteins that are involved indirectly in the blood clotting cascade and have been shown to interact with proteins of SARS virus, which is closely related to the novel coronavirus. We examined computationally the interaction of these human proteins with the viral proteins. We looked for genetic variants of these proteins and examined how these variants are distributed across populations. We investigated whether variants of these genes could impact severity of COVID-19. Further investigation around these variants may provide clues for the pathogenesis of COVID-19 particularly in minority groups.
Collapse
|
18
|
Du L, Liu Q, Shen F, Fan Z, Hou R, Yue B, Zhang X. Transcriptome analysis reveals immune-related gene expression changes with age in giant panda ( Ailuropoda melanoleuca) blood. Aging (Albany NY) 2020; 11:249-262. [PMID: 30641486 PMCID: PMC6339791 DOI: 10.18632/aging.101747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022]
Abstract
The giant panda (Ailuropoda melanoleuca), an endangered species endemic to western China, has long been threatened with extinction that is exacerbated by highly contagious and fatal diseases. Aging is the most well-defined risk factor for diseases and is associated with a decline in immune function leading to increased susceptibility to infection and reduced response to vaccination. Therefore, this study aimed to determine which genes and pathways show differential expression with age in blood tissues. We obtained 210 differentially expressed genes by RNA-seq, including 146 up-regulated and 64 down-regulated genes in old pandas (18-21yrs) compared to young pandas (2-6yrs). We identified ISG15, STAT1, IRF7 and DDX58 as the hub genes in the protein-protein interaction network. All of these genes were up-regulated with age and played important roles in response to pathogen invasion. Functional enrichment analysis indicated that up-regulated genes were mainly involved in innate immune response, while the down-regulated genes were mainly related to B cell activation. These may suggest that the innate immunity is relatively well preserved to compensate for the decline in the adaptive immune function. In conclusion, our findings will provide a foundation for future studies on the molecular mechanisms underlying immune changes associated with ageing.
Collapse
Affiliation(s)
- Lianming Du
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Qin Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.,College of Life Sciences and Food Engineering, Yibin University, Yibin 644000, China
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Chen LJ. Genetic Association of Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy. Asia Pac J Ophthalmol (Phila) 2020; 9:104-109. [PMID: 32195675 DOI: 10.1097/01.apo.0000656976.47696.7d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) are leading causes of irreversible blindness among the elderly population in developed countries. Although being considered as different subtypes of a same disease, neovascular AMD and PCV have differences in clinical, epidemiological, therapeutic, and genetic profiles. Both AMD and PCV are complex diseases involving multiple genetic and environmental risk factors. Different genetic strategies have been adopted to discover associated genes and variants for neovascular AMD and PCV, including genome-wide association study (GWAS), next-generation sequencing (NGS) based sequence analysis, and candidate gene analyses. So far, a number of susceptible genes have been identified for AMD and/or PCV, such as CFH, ARMS2-HTRA1, C2-CFB-SKIV2L, C3, CETP, and FGD6. Although many of these genes are shared by AMD and PCV, some showed difference between them, such as ARMS2-HTRA1 and FGD6. Also, some of the genes showed ethnic diversities, such as the CFH p.Tyr402His variant. Further larger-scale genomic studies should be warranted to identify more susceptibility genes for AMD and, in particular, PCV among different populations, and differentiate the genetic architectures between neovascular AMD and PCV.
Collapse
Affiliation(s)
- Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital Eye Center, Hong Kong, China
| |
Collapse
|
20
|
Banday AZ, Kaur A, Jindal AK, Rawat A, Singh S. An update on the genetics and pathogenesis of hereditary angioedema. Genes Dis 2020; 7:75-83. [PMID: 32181278 PMCID: PMC7063419 DOI: 10.1016/j.gendis.2019.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 12/04/2022] Open
Abstract
Hereditary angioedema (HAE) is an uncommon genetic disorder characterized by recurrent episodes of edema involving subcutaneous tissue and submucosa. The pathogenesis of HAE reflects an intricate coordinated regulation of components of complement, kinin and hemostatic pathway. Till date, mutations in 4 different genes have been identified to cause HAE which includes serine protease inhibitor G1 (SERPING1), factor XII (F12), plasminogen (PLG) and angiopoietin 1 (ANGPT 1). These mutations lead to increased bradykinin 2 receptor mediated signalling via increased production of bradykinin except mutations in ANGPT1 gene that disturbs the cytoskeletal assembly of vascular endothelial cells. In this review we aim to summarize the recent advances in the pathogenesis and genetics of HAE. We also provide an overview of possible future prospects in the identification of new genetic defects in HAE.
Collapse
Affiliation(s)
| | | | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | |
Collapse
|
21
|
International Consensus on the Use of Genetics in the Management of Hereditary Angioedema. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:901-911. [DOI: 10.1016/j.jaip.2019.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022]
|
22
|
Horgusluoglu-Moloch E, Xiao G, Wang M, Wang Q, Zhou X, Nho K, Saykin AJ, Schadt E, Zhang B. Systems modeling of white matter microstructural abnormalities in Alzheimer's disease. Neuroimage Clin 2020; 26:102203. [PMID: 32062565 PMCID: PMC7025138 DOI: 10.1016/j.nicl.2020.102203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD). However, it is unclear which brain regions have the strongest WM changes in presymptomatic AD and what biological processes underlie WM abnormality during disease progression. METHODS We developed a systems biology framework to integrate matched diffusion tensor imaging (DTI), genetic and transcriptomic data to investigate regional vulnerability to AD and identify genetic risk factors and gene subnetworks underlying WM abnormality in AD. RESULTS We quantified regional WM abnormality and identified most vulnerable brain regions. A SNP rs2203712 in CELF1 was most significantly associated with several DTI-derived features in the hippocampus, the top ranked brain region. An immune response gene subnetwork in the blood was most correlated with DTI features across all the brain regions. DISCUSSION Incorporation of image analysis with gene network analysis enhances our understanding of disease progression and facilitates identification of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Emrin Horgusluoglu-Moloch
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Gaoyu Xiao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA.
| |
Collapse
|
23
|
Schori C, Trachsel C, Grossmann J, Barben M, Klee K, Storti F, Samardzija M, Grimm C. A chronic hypoxic response in photoreceptors alters the vitreous proteome in mice. Exp Eye Res 2019; 185:107690. [PMID: 31181196 DOI: 10.1016/j.exer.2019.107690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
Reduced oxygenation of the outer retina in the aging eye may activate a chronic hypoxic response in RPE and photoreceptor cells and is considered as a risk factor for the development of age-related macular degeneration (AMD). In mice, a chronically active hypoxic response in the retinal pigment epithelium (RPE) or photoreceptors leads to age-dependent retinal degeneration. To identify proteins that may serve as accessible markers for a chronic hypoxic insult to photoreceptors, we used proteomics to determine the protein composition of the vitreous humor in genetically engineered mice that lack the von Hippel-Lindau tumor suppressor (Vhl) specifically in rods (rodΔVhl) or cones (all-coneΔVhl). Absence of VHL leads to constitutively active hypoxia-inducible transcription factors (HIFs) and thus to a molecular response to hypoxia even in normal room air. To discriminate between the consequences of a local response in photoreceptors and systemic hypoxic effects, we also evaluated the vitreous proteome of wild type mice after exposure to acute hypoxia. 1'043 of the identified proteins were common to all three hypoxia models. 257, 258 and 356 proteins were significantly regulated after systemic hypoxia, in rodΔVhl and in all-coneΔVhl mice, respectively, at least at one of the analyzed time points. Only few of the regulated proteins were shared by the models indicating that the vitreous proteome is differentially affected by systemic hypoxia and the rod or cone-specific hypoxic response. Similarly, the distinct protein compositions in the individual genetic models at early and late time points suggest regulated, cell-specific and time-dependent processes. Among the proteins commonly regulated in the genetic models, guanylate binding protein 2 (GBP2) showed elevated levels in the vitreous that were accompanied by increased mRNA expression in the retina of both rodΔVhl and all-coneΔVhl mice. We hypothesize that some of the differentially regulated proteins at early time points may potentially be used as markers for the detection of a chronic hypoxic response of photoreceptors.
Collapse
Affiliation(s)
- Christian Schori
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Maya Barben
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Katrin Klee
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Federica Storti
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Khandhadia S, Gibson J, Ennis S, Cree AJ, Lotery AJ. AMD Risk Alleles Are Not Implicated in Age-Related Macular Degeneration in Patients with Liver Transplantation. Ophthalmol Retina 2019; 2:872-874. [PMID: 31047541 DOI: 10.1016/j.oret.2018.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Samir Khandhadia
- Southampton Eye Unit, University Hospital Southampton National Health Services Trust, Southampton, United Kingdom
| | - Jane Gibson
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Sarah Ennis
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Angela J Cree
- Genomic Informatics, Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J Lotery
- Southampton Eye Unit, University Hospital Southampton National Health Services Trust, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
25
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
26
|
Chrzanowska M, Modrzejewska A, Modrzejewska M. New insight into the role of the complement in the most common types of retinopathy-current literature review. Int J Ophthalmol 2018; 11:1856-1864. [PMID: 30450319 DOI: 10.18240/ijo.2018.11.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/25/2018] [Indexed: 11/23/2022] Open
Abstract
Pathological neovascularisation, which is a critical component of diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP), is a frequent cause of compromised vision or blindness. Researchers continuously investigate the role of the complement system in the pathogenesis of retinopathy. Studies have confirmed the role of factors H and I in the development of AMD, and factors H and B in the development of DR. Other components, such as C2, C3, and C5, have also been considered. However, findings on the involvement of the complement system in the pathogenesis of ROP are still inconclusive. This paper presents a review of the current literature data, pointing to the novel results and achievements from research into the role of complement components in the development of retinopathy. There is still a need to continue research in new directions, and to gather more detailed information about this problem which will be useful in the treatment of these diseases.
Collapse
Affiliation(s)
- Martyna Chrzanowska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Anna Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Monika Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| |
Collapse
|
27
|
Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez‐Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G, Semba RD, Ferrucci L. Plasma proteomic signature of age in healthy humans. Aging Cell 2018; 17:e12799. [PMID: 29992704 PMCID: PMC6156492 DOI: 10.1111/acel.12799] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/13/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
To characterize the proteomic signature of chronological age, 1,301 proteins were measured in plasma using the SOMAscan assay (SomaLogic, Boulder, CO, USA) in a population of 240 healthy men and women, 22-93 years old, who were disease- and treatment-free and had no physical and cognitive impairment. Using a p ≤ 3.83 × 10-5 significance threshold, 197 proteins were positively associated, and 20 proteins were negatively associated with age. Growth differentiation factor 15 (GDF15) had the strongest, positive association with age (GDF15; 0.018 ± 0.001, p = 7.49 × 10-56 ). In our sample, GDF15 was not associated with other cardiovascular risk factors such as cholesterol or inflammatory markers. The functional pathways enriched in the 217 age-associated proteins included blood coagulation, chemokine and inflammatory pathways, axon guidance, peptidase activity, and apoptosis. Using elastic net regression models, we created a proteomic signature of age based on relative concentrations of 76 proteins that highly correlated with chronological age (r = 0.94). The generalizability of our findings needs replication in an independent cohort.
Collapse
Affiliation(s)
- Toshiko Tanaka
- Longitudinal Study SectionTranslational Gerontology BranchNIANIHBaltimoreMaryland
| | - Angelique Biancotto
- Trans‐NIH Center for Human Immunology, Autoimmunity, and InflammationNIHBethesdaMaryland
| | - Ruin Moaddel
- Laboratory of Clinical InvestigationNIANIHBaltimoreMaryland
| | - Ann Zenobia Moore
- Longitudinal Study SectionTranslational Gerontology BranchNIANIHBaltimoreMaryland
| | | | - Miguel A. Aon
- Laboratory of Cardiovascular ScienceNational Institute on AgingNational Institutes of HealthBaltimoreMaryland
| | - Julián Candia
- Trans‐NIH Center for Human Immunology, Autoimmunity, and InflammationNIHBethesdaMaryland
| | - Pingbo Zhang
- Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Foo Cheung
- Trans‐NIH Center for Human Immunology, Autoimmunity, and InflammationNIHBethesdaMaryland
| | - Giovanna Fantoni
- Trans‐NIH Center for Human Immunology, Autoimmunity, and InflammationNIHBethesdaMaryland
| | - Richard D. Semba
- Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Luigi Ferrucci
- Longitudinal Study SectionTranslational Gerontology BranchNIANIHBaltimoreMaryland
| |
Collapse
|
28
|
Giummarra L, Crewther SG, Riddell N, Murphy MJ, Crewther DP. Pathway analysis identifies altered mitochondrial metabolism, neurotransmission, structural pathways and complement cascade in retina/RPE/ choroid in chick model of form-deprivation myopia. PeerJ 2018; 6:e5048. [PMID: 29967729 PMCID: PMC6026464 DOI: 10.7717/peerj.5048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose RNA sequencing analysis has demonstrated bidirectional changes in metabolism, structural and immune pathways during early induction of defocus induced myopia. Thus, the aim of this study was to investigate whether similar gene pathways are also related to the more excessive axial growth, ultrastructural and elemental microanalytic changes seen during the induction and recovery from form-deprivation myopia (FDM) in chicks and predicted by the RIDE model of myopia. Methods Archived genomic transcriptome data from the first three days of induction of monocularly occluded form deprived myopia (FDMI) in chicks was obtained from the GEO database (accession # GSE6543) while data from chicks monocularly occluded for 10 days and then given up to 24 h of normal visual recovery (FDMR) were collected. Gene set enrichment analysis (GSEA) software was used to determine enriched pathways during the induction (FDMI) and recovery (FDMR) from FD. Curated gene-sets were obtained from open access sources. Results Clusters of significant changes in mitochondrial energy metabolism, neurotransmission, ion channel transport, G protein coupled receptor signalling, complement cascades and neuron structure and growth were identified during the 10 days of induction of profound myopia and were found to correlate well with change in axial dimensions. Bile acid and bile salt metabolism pathways (cholesterol/lipid metabolism and sodium channel activation) were significantly upregulated during the first 24 h of recovery from 10 days of FDM. Conclusions The gene pathways altered during induction of FDM are similar to those reported in defocus induced myopia and are established indicators of oxidative stress, osmoregulatory and associated structural changes. These findings are also consistent with the choroidal thinning, axial elongation and hyperosmotic ion distribution patterns across the retina and choroid previously reported in FDM and predicted by RIDE.
Collapse
Affiliation(s)
- Loretta Giummarra
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Sheila G Crewther
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Nina Riddell
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Melanie J Murphy
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - David P Crewther
- Centre for Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
29
|
Warwick A, Lotery A. Genetics and genetic testing for age-related macular degeneration. Eye (Lond) 2018; 32:849-857. [PMID: 29125146 PMCID: PMC5944647 DOI: 10.1038/eye.2017.245] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Considerable advances have been made in our understanding of age-related macular degeneration (AMD) genetics over the past decade. The genetic associations discovered to date are estimated to account for approximately half of AMD heritability, and functional studies of these variants have revealed new insights into disease pathogenesis, leading to the development of potential novel therapies. There is furthermore growing interest in genetic testing for predicting an individual's risk of AMD and offering personalised preventive or therapeutic treatments. We review the progress made so far in AMD genetics and discuss the possible applications for genetic testing.
Collapse
Affiliation(s)
| | - A Lotery
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
30
|
Rodríguez JA, Narváez CF. First Analysis of SERPING1 Gene in Patients with Hereditary Angioedema in Colombia Reveals Two Genotypic Variants in a Highly Symptomatic Individual. J Clin Immunol 2018; 38:294-299. [PMID: 29623547 DOI: 10.1007/s10875-018-0491-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
Abstract
Hereditary angioedema (HAE) is a heterogeneous genetic disease caused by a deficit in C1 inhibitor (C1-INH) and clinically characterized by sudden events of edema, swelling, and pruritus. Here, we describe the first SERPING1 genotyping in 22 subjects from 4 non-related families, all from southern Colombia. The previously reported heterozygous gene mutations, c.1081C>T (p.Gln361*), c.1396C>G (p.Arg466Gly), c.1029+84G>A, or c.106_107del (p.Ser36Phefs*21), were found in 12 patients. Of note, a single patient clinically characterized as severe HAE type 2 expressed mutations in exon 8 and intron 6, whereas all the others have type 1 HAE and expressed one pathogenic variant. One of the subjects, a 5-year-old girl was discovered to have a pathogenic variant, and she is still asymptomatic. This is the first report focused on HAE genetic analysis in a Colombian population.
Collapse
Affiliation(s)
- Jairo A Rodríguez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Calle 9 # 14-02, Neiva, Colombia. .,Departamento de Pediatría, Hospital Universitario de Neiva, Neiva, Colombia.
| | - Carlos F Narváez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Calle 9 # 14-02, Neiva, Colombia.
| |
Collapse
|
31
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
32
|
Ao J, Wood JP, Chidlow G, Gillies MC, Casson RJ. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol 2018; 46:670-686. [PMID: 29205705 DOI: 10.1111/ceo.13121] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
The retinal pigment epithelium (RPE) comprises a monolayer of cells located between the neuroretina and the choriocapillaries. The RPE serves several important functions in the eye: formation of the blood-retinal barrier, protection of the retina from oxidative stress, nutrient delivery and waste disposal, ionic homeostasis, phagocytosis of photoreceptor outer segments, synthesis and release of growth factors, reisomerization of all-trans-retinal during the visual cycle, and establishment of ocular immune privilege. Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. Dysfunction of the RPE has been associated with the pathogenesis of AMD in relation to increased oxidative stress, mitochondrial destabilization and complement dysregulation. Photobiomodulation or near infrared light therapy which refers to non-invasive irradiation of tissue with light in the far-red to near-infrared light spectrum (630-1000 nm), is an intervention that specifically targets key mechanisms of RPE dysfunction that are implicated in AMD pathogenesis. The current evidence for the efficacy of photobiomodulation in AMD is poor but its safety profile and proposed mechanisms of action motivate further research as a novel therapy for AMD.
Collapse
Affiliation(s)
- Jack Ao
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - John Pm Wood
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark C Gillies
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert J Casson
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Xu Q, Cao S, Rajapakse S, Matsubara JA. Understanding AMD by analogy: systematic review of lipid-related common pathogenic mechanisms in AMD, AD, AS and GN. Lipids Health Dis 2018; 17:3. [PMID: 29301530 PMCID: PMC5755337 DOI: 10.1186/s12944-017-0647-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/17/2017] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Age-related macular degeneration (AMD) is one of the leading causes of blindness among the elderly. Due to its complex etiology, current treatments have been insufficient. Previous studies reveal three systems closely involved in AMD pathogenesis: lipid metabolism, oxidation and inflammation. These systems are also involved in Alzheimer's disease, atherosclerosis and glomerulonephritis. Understanding commonalities of these four diseases may provide insight into AMD etiology. OBJECTIVES To understand AMD pathogenesis by analogy and suggest ideas for future research, this study summarizes main commonalities in disease pathogenesis of AMD, Alzheimer's disease, atherosclerosis and glomerulonephritis. METHODS Articles were identified through PubMed, Ovid Medline and Google Scholar. We summarized the common findings and synthesized critical differences. RESULTS Oxidation, lipid deposition, complement activation, and macrophage recruitment are involved in all four diseases shown by genetic, molecular, animal and human studies. Shared genetic variations further strengthen their connection. Potential areas for future research are suggested throughout the review. CONCLUSIONS The four diseases share many steps of an overall framework of pathogenesis. Various oxidative sources cause oxidative stress. Oxidized lipids and related molecules accumulate and lead to complement activation, macrophage recruitment and pathology. Investigations that arise under this structure may aid us to better understand AMD pathology.
Collapse
Affiliation(s)
- Qinyuan Xu
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| | - Sijia Cao
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| | - Sanjeeva Rajapakse
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| |
Collapse
|
34
|
Farrer LA, DeAngelis MM. Human induced pluripotent stem cells illuminate pathways and novel treatment targets for age-related macular degeneration. Stem Cell Investig 2017; 4:92. [PMID: 29270418 DOI: 10.21037/sci.2017.10.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, College of Pharmacy, University of Utah Salt Lake City, UT, USA.,Department of Pharmacotherapy, College of Pharmacy, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
35
|
Schäfer N, Grosche A, Schmitt SI, Braunger BM, Pauly D. Complement Components Showed a Time-Dependent Local Expression Pattern in Constant and Acute White Light-Induced Photoreceptor Damage. Front Mol Neurosci 2017; 10:197. [PMID: 28676742 PMCID: PMC5476694 DOI: 10.3389/fnmol.2017.00197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/02/2017] [Indexed: 11/26/2022] Open
Abstract
Background: Photoreceptor cell death due to extensive light exposure and induced oxidative-stress are associated with retinal degeneration. A correlated dysregulation of the complement system amplifies the damaging effects, but the local and time-dependent progression of this mechanism is not thoroughly understood. Methods: Light-induced photoreceptor damage (LD) was induced in Balb/c mice with white light illumination either for 24 h with 1000 lux (constant model) or 0.5 h with 5000 lux (acute model). Complement protein and mRNA expression levels were compared at 1 and 3 days post-LD for C1s, complement factor B (CFB), mannose binding lectin A, mannose-binding protein-associated serine protease 1 (MASP-1), C3, C4, C9, and complement factor P in retina and RPE/choroid. Histological analyses visualized apoptosis, microglia/macrophage migration, gliosis and deposition of the complement activation marker C3d. Systemic anaphylatoxin serum concentrations were determined using an ELISA. Results: Apoptosis, gliosis and microglia/macrophage migration into the outer nuclear layer showed similar patterns in both models. Local complement factor expression revealed an early upregulation of complement factor mRNA in the acute and constant light regimen at 1 day post-treatment for c1s, cfb, masp-1, c3, c4 and c9 in the RPE/choroid. However, intraretinal complement mRNA expression for c1s, cfb, c3 and c4 was increased at 1 day in the constant and at 3 days in the acute model. A corresponding regulation on protein level in the retina following both LD models was observed for C3, which was upregulated at 1 day and correlated with increased C3d staining in the ganglion cell layer and at the RPE. In the RPE/choroid C1s-complex protein detection was increased at 3 days after LD irrespectively of the light intensities used. Conclusion: LD in mouse eyes is correlated with local complement activity. The time-dependent local progression of complement regulation on mRNA and protein levels were equivalent in the acute and constant LD model, except for the intraretinal, time-dependent mRNA expression. Knowing the relative time courses of local complement expression and cellular activity can help to elucidate novel therapeutic options in retinal degeneration indicating at which time point of disease complement has to be rebalanced.
Collapse
Affiliation(s)
- Nicole Schäfer
- Department of Ophthalmology, University Hospital RegensburgRegensburg, Germany
| | - Antje Grosche
- Institute of Human Genetics, University RegensburgRegensburg, Germany
| | - Sabrina I Schmitt
- Institute of Human Anatomy and Embryology, University RegensburgRegensburg, Germany
| | - Barbara M Braunger
- Institute of Human Anatomy and Embryology, University RegensburgRegensburg, Germany
| | - Diana Pauly
- Department of Ophthalmology, University Hospital RegensburgRegensburg, Germany
| |
Collapse
|
36
|
Lynn SA, Keeling E, Munday R, Gabha G, Griffiths H, Lotery AJ, Ratnayaka JA. The complexities underlying age-related macular degeneration: could amyloid beta play an important role? Neural Regen Res 2017; 12:538-548. [PMID: 28553324 PMCID: PMC5436342 DOI: 10.4103/1673-5374.205083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) causes irreversible loss of central vision for which there is no effective treatment. Incipient pathology is thought to occur in the retina for many years before AMD manifests from midlife onwards to affect a large proportion of the elderly. Although genetic as well as non-genetic/environmental risks are recognized, its complex aetiology makes it difficult to identify susceptibility, or indeed what type of AMD develops or how quickly it progresses in different individuals. Here we summarize the literature describing how the Alzheimer's-linked amyloid beta (Aβ) group of misfolding proteins accumulate in the retina. The discovery of this key driver of Alzheimer's disease in the senescent retina was unexpected and surprising, enabling an altogether different perspective of AMD. We argue that Aβ fundamentally differs from other substances which accumulate in the ageing retina, and discuss our latest findings from a mouse model in which physiological amounts of Aβ were subretinally-injected to recapitulate salient features of early AMD within a short period. Our discoveries as well as those of others suggest the pattern of Aβ accumulation and pathology in donor aged/AMD tissues are closely reproduced in mice, including late-stage AMD phenotypes, which makes them highly attractive to study dynamic aspects of Aβ-mediated retinopathy. Furthermore, we discuss our findings revealing how Aβ behaves at single-cell resolution, and consider the long-term implications for neuroretinal function. We propose Aβ as a key element in switching to a diseased retinal phenotype, which is now being used as a biomarker for late-stage AMD.
Collapse
Affiliation(s)
- Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gagandeep Gabha
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helen Griffiths
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Eye Unit, University Southampton NHS Trust, Southampton, United Kingdom
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
37
|
Ameratunga R, Bartlett A, McCall J, Steele R, Woon ST, Katelaris CH. Hereditary Angioedema as a Metabolic Liver Disorder: Novel Therapeutic Options and Prospects for Cure. Front Immunol 2016; 7:547. [PMID: 27965672 PMCID: PMC5127832 DOI: 10.3389/fimmu.2016.00547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Hereditary angioedema (HAE) is a rare autosomal dominant disorder caused by mutations of the SERPING1 or the Factor 12 genes. It is potentially fatal, particularly if not identified at an early stage. Apart from androgens, which are contraindicated in children and in pregnant women, a range of effective, albeit very expensive treatments have recently become available for HAE patients. The cost of these new treatments is beyond the reach of most developing countries. At this time, there is no cure for the disorder. In spite of mutations of the SERPING1 gene, autoimmunity and infections are not prominent features of the condition. Here, we present the argument that HAE should be viewed primarily as a metabolic liver disorder. This conceptual paradigm shift will stimulate basic research and may facilitate new therapeutic approaches to HAE outlined in this paper. We suggest several novel potential treatment options for HAE from the perspectives of clinical immunology, molecular biology, and liver transplantation. Many of these offer the prospect of curing the disorder. The effectiveness of these options is rapidly improving in many cases, and their risks are decreasing. Given the very high costs of treating HAE, some of these curative options may become feasible in the next decade.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Adam Bartlett
- Liver Transplantation Service, Auckland Hospital, Auckland, New Zealand
| | - John McCall
- Liver Transplantation Service, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Constance H. Katelaris
- Immunology and Allergy Unit, Campbelltown Hospital and Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
38
|
Leibfried M, Kovary A. C1 Esterase Inhibitor (Berinert) for ACE Inhibitor-Induced Angioedema: Two Case Reports. J Pharm Pract 2016; 30:668-671. [PMID: 27837046 DOI: 10.1177/0897190016677427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To describe 2 cases of angiotensin-converting enzyme inhibitor (ACEI)-induced angioedema treated with C1 esterase inhibitor (human) [Berinert]. SUMMARY Case 1 is a 60-year-old Caucasian male with angioedema from lisinopril. He was initially treated with a conventional regimen of an antihistamine, methylprednisolone, epinephrine, and fresh frozen plasma. When symptoms did not resolve, intravenous C1 peptide esterase inhibitor (C1INH) was administered, with clinical improvement. Four hours later, symptoms returned and the patient underwent emergency tracheostomy. Case 2 is a 64-year-old Caucasian male who presented with angioedema due to enalapril. In the emergency department, he received conventional treatment. Endotracheal tube placement was unsuccessful. While the patient was undergoing intubation in the operating room, intravenous C1INH was administered resulting in quick improvement of symptoms. DISCUSSION Angioedema from ACEI occurs at an incidence of 0.7%. Conventional treatment may be of limited benefit due to the mechanism of the reaction. C1INHs, which are indicated for hereditary angioedema, have been utilized in treating ACEI-induced angioedema. According to the Naranjo algorithm scale, the patient in case 1 experienced angioedema that is probably related to lisinopril. C1INH was administered intravenously when symptoms progressed, despite conventional treatment. In case 2, the patient experienced angioedema, which is possibly related to enalapril, and was treated with C1INH. CONCLUSION C1INH (human) was a successful addition to the traditional management of 2 patients with angioedema due to ACEI.
Collapse
Affiliation(s)
- Maria Leibfried
- 1 Fairleigh Dickinson University School of Pharmacy, Florham Park, NJ, USA
| | | |
Collapse
|
39
|
Kim H, Hwang D, Han J, Lee HK, Yang WJ, Jin J, Kim KH, Kim SI, Yoo DK, Kim S, Chung J. Genetic Polymorphism in Proteins of the Complement System. KOREAN JOURNAL OF TRANSPLANTATION 2016. [DOI: 10.4285/jkstn.2016.30.2.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hyori Kim
- Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dobeen Hwang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jungwon Han
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Hwa Kyoung Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Won Jun Yang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Junyeong Jin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Ki-hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Duck-Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Soohyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Junho Chung
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Polyphosphate is a novel cofactor for regulation of complement by a serpin, C1 inhibitor. Blood 2016; 128:1766-76. [PMID: 27338096 DOI: 10.1182/blood-2016-02-699561] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/20/2016] [Indexed: 01/11/2023] Open
Abstract
The complement system plays a key role in innate immunity, inflammation, and coagulation. The system is delicately balanced by negative regulatory mechanisms that modulate the host response to pathogen invasion and injury. The serpin, C1-esterase inhibitor (C1-INH), is the only known plasma inhibitor of C1s, the initiating serine protease of the classical pathway of complement. Like other serpin-protease partners, C1-INH interaction with C1s is accelerated by polyanions such as heparin. Polyphosphate (polyP) is a naturally occurring polyanion with effects on coagulation and complement. We recently found that polyP binds to C1-INH, prompting us to consider whether polyP acts as a cofactor for C1-INH interactions with its target proteases. We show that polyP dampens C1s-mediated activation of the classical pathway in a polymer length- and concentration-dependent manner by accelerating C1-INH neutralization of C1s cleavage of C4 and C2. PolyP significantly increases the rate of interaction between C1s and C1-INH, to an extent comparable to heparin, with an exosite on the serine protease domain of the enzyme playing a major role in this interaction. In a serum-based cell culture system, polyP significantly suppressed C4d deposition on endothelial cells, generated via the classical and lectin pathways. Moreover, polyP and C1-INH colocalize in activated platelets, suggesting that their interactions are physiologically relevant. In summary, like heparin, polyP is a naturally occurring cofactor for the C1s:C1-INH interaction and thus an important regulator of complement activation. The findings may provide novel insights into mechanisms underlying inflammatory diseases and the development of new therapies.
Collapse
|
41
|
Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 2016; 54:64-102. [PMID: 27156982 DOI: 10.1016/j.preteyeres.2016.04.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
A biomarker can be a substance or structure measured in body parts, fluids or products that can affect or predict disease incidence. As age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, much research and effort has been invested in the identification of different biomarkers to predict disease incidence, identify at risk individuals, elucidate causative pathophysiological etiologies, guide screening, monitoring and treatment parameters, and predict disease outcomes. To date, a host of genetic, environmental, proteomic, and cellular targets have been identified as both risk factors and potential biomarkers for AMD. Despite this, their use has been confined to research settings and has not yet crossed into the clinical arena. A greater understanding of these factors and their use as potential biomarkers for AMD can guide future research and clinical practice. This article will discuss known risk factors and novel, potential biomarkers of AMD in addition to their application in both academic and clinical settings.
Collapse
Affiliation(s)
- Nathan G Lambert
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Hanan ElShelmani
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Malkit K Singh
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Fiona C Mansergh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Maximilian Padilla
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - David Keegan
- Mater Misericordia Hospital, Eccles St, Dublin 7, Ireland.
| | - Ruth E Hogg
- Centre for Experimental Medicine, Institute of Clinical Science Block A, Grosvenor Road, Belfast, Co.Antrim, Northern Ireland, UK.
| | - Balamurali K Ambati
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| |
Collapse
|
42
|
|
43
|
Connecting the innate and adaptive immune responses in mouse choroidal neovascularization via the anaphylatoxin C5a and γδT-cells. Sci Rep 2016; 6:23794. [PMID: 27029558 PMCID: PMC4814842 DOI: 10.1038/srep23794] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/10/2016] [Indexed: 01/12/2023] Open
Abstract
Neovascular age-related macular degeneration (AMD) is characterized by choroidal neovascularization (CNV). An overactive complement system is associated with AMD pathogenesis, and serum pro-inflammatory cytokines, including IL-17, are elevated in AMD patients. IL-17 is produced by complement C5a-receptor-expressing T-cells. In murine CNV, infiltrating γδT- rather than Th17-cells produce the IL-17 measurable in lesioned eyes. Here we asked whether C5a generated locally in response to CNV recruits IL-17-producing T-cells to the eye. CNV lesions were generated using laser photocoagulation and quantified by imaging; T-lymphocytes were characterized by QRT-PCR. CNV resulted in an increase in splenic IL-17-producing γδT- and Th17-cells; yet in the CNV eye, only elevated levels of γδT-cells were observed. Systemic administration of anti-C5- or anti-C5a-blocking antibodies blunted the CNV-induced production of splenic Th17- and γδT-cells, reduced CNV size and eliminated ocular γδT-cell infiltration. In ARPE-19 cell monolayers, IL-17 triggered a pro-inflammatory state; and splenocyte proliferation was elevated in response to ocular proteins. Thus, we demonstrated that CNV lesions trigger a systemic immune response, augmenting local ocular inflammation via the infiltration of IL-17-producing γδT-cells, which are presumably recruited to the eye in a C5a-dependent manner. Understanding the complexity of complement-mediated pathological mechanisms will aid in the development of an AMD treatment.
Collapse
|
44
|
Genetic Investigation of Complement Pathway Genes in Type 2 Diabetic Retinopathy: An Inflammatory Perspective. Mediators Inflamm 2016; 2016:1313027. [PMID: 26989329 PMCID: PMC4771919 DOI: 10.1155/2016/1313027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) has complex multifactorial pathogenesis. This study aimed to investigate the association of complement pathway genes with susceptibility to DR. Eight haplotype-tagging SNPs of SERPING1 and C5 were genotyped in 570 subjects with type 2 diabetes: 295 DR patients (138 nonproliferative DR [NPDR] and 157 proliferative DR [PDR]) and 275 diabetic controls. Among the six C5 SNPs, a marginal association was first detected between rs17611 and total DR patients (P = 0.009, OR = 0.53 for recessive model). In stratification analysis, a significant decrease in the frequencies of G allele and GG homozygosity for rs17611 was observed in PDR patients compared with diabetic controls (Pcorr = 0.032, OR = 0.65 and Pcorr = 0.016, OR = 0.37, resp.); it was linked with a disease progression. A haplotype AA defined by the major alleles of rs17611 and rs1548782 was significantly predisposed to PDR with increased risk of 1.54 (Pcorr = 0.023). Regarding other variants in C5 and SERPING1, none of the tagging SNPs had a significant association with DR and its subgroups (all P > 0.05). Our study revealed an association between DR and C5 polymorphisms with clinical significance, whereas SERPING1 is not a major genetic component of DR. Our data suggest a link of complement pathway with DR pathogenesis.
Collapse
|
45
|
Kleinman ME, Ambati J. Complement Activation and Inhibition in Retinal Diseases. DEVELOPMENTS IN OPHTHALMOLOGY 2015; 55:46-56. [PMID: 26501209 DOI: 10.1159/000431141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Within the past several decades, a brigade of dedicated researchers from around the world has provided essential insights into the critical niche of immune-mediated inflammation in the pathogenesis of age-related macular degeneration (AMD). Yet, the question has lingered as to whether disease-initiating events are more or less dependent on isolated immune-related responses, unimpeded inflammation, endogenous pathways of age-related cell senescence and oxidative stress, or any of the other numerous molecular derangements that have been identified in the natural history of AMD. There is now an abundant cache of data signifying immune system activation as an impetus in the pathogenesis of this devastating condition. Furthermore, recent rigorous investigations have revealed multiple inciting factors, including several important complement-activating components, thus creating a new array of disease-modulating targets for the research and development of molecular therapeutic interventions. While the precise in vivo effects of complement activation and inhibition in the progression and treatment of AMD remain to be determined, ongoing clinical trials of the first generation of complement-targeted therapeutics are hoped to yield critical data on the contribution of this pathway to the disease process.
Collapse
|
46
|
Complement pathway biomarkers and age-related macular degeneration. Eye (Lond) 2015; 30:1-14. [PMID: 26493033 DOI: 10.1038/eye.2015.203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
In the age-related macular degeneration (AMD) 'inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration.
Collapse
|
47
|
Dong Y, Li ZD, Fang XY, Shi XF, Chen S, Tang X. Association between SERPING1 rs2511989 polymorphism and age-related macular degeneration: Meta-analysis. Int J Ophthalmol 2015; 8:385-94. [PMID: 25938061 DOI: 10.3980/j.issn.2222-3959.2015.02.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/19/2014] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the association between SERPING1 rs2511989 (G>A) polymorphism and age-related macular degeneration (AMD). METHODS A number of electronic databases (up to July 15, 2014) were searched independently by two investigators. A Meta-analysis was performed on the association between SERPING1 rs2511989 polymorphism and AMD. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were estimated. RESULTS Eight studies with 16 cohorts consisting of 9163 cases and 6813 controls were included in this Meta-analysis. There was no significant association between rs2511989 polymorphism and AMD under all genetic models in overall estimates (A vs G: OR= 0.938, 95%CI =0.858-1.025; AA vs GG:OR =0.871, 95%CI =0.719-1.056; AG vs GG: OR =0.944, 95%CI =0.845-1.054; AA+AG vs GG: OR =0.927, 95% CI =0.823-1.044; AA vs AG+GG: OR =0.890, 95%CI =0.780-1.034). Cumulative Meta-analyses also showed a trend of no association between rs2511989 polymorphism and AMD as information accumulated by year. Subgroup analysis and Meta-regression analysis indicated that age-matching status was the main source of heterogeneity. Sensitivity analysis found the results in overall comparisons and subgroup comparisons of white subjects under the allele model were found to have significantly statistical differences after studies deviating from Hardy-Weinberg equilibrium (HWE) were excluded (overall: OR=0.918, 95%CI = 0.844-0.999, P =0.049; whites: OR =0.901, 95%CI = 0.817-0.994, P =0.038). However, the results were not sufficiently robust for further sensitivity analysis and statistical differences disappeared on applying Bonferroni correction (with a significance level set at 0.05/25). CONCLUSION This Meta-analysis indicates that SERPING1 rs2511989 polymorphism and AMD tend to have no association with each other. Age matching status is a big confounding factor, and more studies with subtle designs are warranted in future.
Collapse
Affiliation(s)
- Yi Dong
- Tianjin Medical University, Tianjin 300070, China ; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Hospital, Tianjin 300020, China
| | - Ze-Dong Li
- Tianjin Medical University, Tianjin 300070, China ; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Hospital, Tianjin 300020, China
| | - Xin-Yu Fang
- Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xue-Feng Shi
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Hospital, Tianjin 300020, China
| | - Song Chen
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Hospital, Tianjin 300020, China
| | - Xin Tang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Hospital, Tianjin 300020, China
| |
Collapse
|
48
|
Liu K, Lai TYY, Ma L, Lai FHP, Young AL, Brelen ME, Tam POS, Pang CP, Chen LJ. Ethnic differences in the association of SERPING1 with age-related macular degeneration and polypoidal choroidal vasculopathy. Sci Rep 2015; 5:9424. [PMID: 25800435 PMCID: PMC4371106 DOI: 10.1038/srep09424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
Neovascular age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) are leading causes of irreversible blindness in developed countries. In this study, we investigated the association of single nucleotide polymorphisms (SNPs) in the serpin peptidase inhibitor, clade G, member 1 (SERPING1) gene with neovascular AMD and PCV. Two haplotype-tagging SNPs, rs1005510 and rs11603020, of SERPING1 were genotyped in 708 unrelated Chinese individuals: 200 neovascular AMD, 233 PCV and 275 controls. A meta-analysis was also performed for all reported associations of SERPING1 SNPs with AMD and PCV. None of the tagging SNPs had a significant association with neovascular AMD or PCV (P > 0.05) in our study cohort. The meta-analyses showed that the most-studied SNP rs2511989 was not significantly associated with all forms of AMD, neovascular AMD, or PCV in East Asians (P = 0.98, 0.93 and 0.30, respectively) but was associated with AMD in Caucasians (P = 0.04 for all AMD and 0.004 for neovascular AMD). Therefore, the results of our study and meta-analysis suggest that SERPING1 is not a major genetic component of AMD or PCV in East Asians but is a genetic risk factor for AMD in Caucasians, providing evidence for an ethnic diversity in the genetic etiology of AMD.
Collapse
Affiliation(s)
- Ke Liu
- 1] Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China [2] Shenzhen Eye Hospital, Shenzhen, China [3] Shenzhen Key Laboratory of Ophthalmology, Shenzhen, China
| | - Timothy Y Y Lai
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Li Ma
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Frank H P Lai
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Alvin L Young
- 1] Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China [2] Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Marten E Brelen
- 1] Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China [2] Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Pancy O S Tam
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- 1] Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China [2] Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- 1] Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China [2] Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
49
|
Ji Y, Zhang X, Wu K, Su Y, Li M, Zuo C, Wen F. Association of rs6982567 near GDF6 with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Han Chinese cohort. BMC Ophthalmol 2014; 14:140. [PMID: 25416513 PMCID: PMC4251681 DOI: 10.1186/1471-2415-14-140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/11/2014] [Indexed: 11/30/2022] Open
Abstract
Background Growth differentiation factor 6 (GDF6) has been reported to be a novel disease gene for age-related macular degeneration (AMD) in Caucasians. This study aimed to investigate whether rs6982567 was associated with neovascular AMD (nAMD) or polypoidal choroidal vasculopathy (PCV) in a Han Chinese cohort. Methods A total of 612 participants (251 PCV patients, 157 nAMD patients and 204 controls) were included in this study. The SNaPshot system was used to genotype the rs6982567. PLINK software was used to evaluate the genotypes and allele frequencies of patients and controls. Results The allele frequencies of rs6982567 were not significantly associated with nAMD, PCV or PCV and nAMD combined. Subjects with the TT genotype had a 2.42-fold greater risk of PCV (95% confidence interval, 1.07-5.43, p = 0.0290) than subjects with CC genotype. A recessive model of rs6982567 was statistically significantly associated with PCV (odds ratio, 2.29; 95% confidence interval, 1.04-5.05; p = 0.0351). However, the association did not withstand stringent Bonferroni correction. There were no significant differences in genotype distributions or models in nAMD. Conclusions There was a possible weak association between the rs6982567 near GDF6 and PCV in this replication study with an independent Han Chinese cohort. A complete survey of the GDF6 locus with a larger sample size is needed in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou 510060, China.
| |
Collapse
|
50
|
Warwick A, Khandhadia S, Ennis S, Lotery A. Age-Related Macular Degeneration: A Disease of Systemic or Local Complement Dysregulation? J Clin Med 2014; 3:1234-57. [PMID: 26237601 PMCID: PMC4470180 DOI: 10.3390/jcm3041234] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/25/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in developed countries. The role of complement in the development of AMD is now well-established. While some studies show evidence of complement dysregulation within the eye, others have demonstrated elevated systemic complement activation in association with AMD. It is unclear which one is the primary driver of disease. This has important implications for designing novel complement-based AMD therapies. We present a summary of the current literature and suggest that intraocular rather than systemic modulation of complement may prove more effective.
Collapse
Affiliation(s)
- Alasdair Warwick
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Samir Khandhadia
- Eye Unit, University Southampton NHS Trust, Southampton SO16 6YD, UK.
| | - Sarah Ennis
- Genomic Informatics, Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Andrew Lotery
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
- Eye Unit, University Southampton NHS Trust, Southampton SO16 6YD, UK.
| |
Collapse
|