1
|
Tedesco NS, Wallace M, Doung YC, Colman M, Wodajo F. Novel Clinical Practice Assessments: Informational Statements by the Musculoskeletal Tumor Society. J Surg Oncol 2024. [PMID: 39463163 DOI: 10.1002/jso.27967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Musculoskeletal oncology involves rare diseases. As a result, there is a paucity of literature to guide practitioners. Studies are often clinical experience, retrospective reviews, noncomparative studies, and involve small numbers of patients. However, technological advances consistently arise in this field. This article represents the Musculoskeletal Tumor Society efforts to improve multispecialty collaboration and research credibility. It involves brief systematic reviews of novel ideas and suggests high-quality research needed to provide and standardize best practices within this field.
Collapse
Affiliation(s)
- Nicholas S Tedesco
- Department of Orthopedic Surgery, WUCOM-PNW, Good Samaritan Regional Medical Center, Corvallis, Oregon, USA
| | - Matthew Wallace
- Surgery and Perioperative Care, University of Texas Dell Medical School, Austin, Texas, USA
| | - Yee-Cheen Doung
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew Colman
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Felasfa Wodajo
- Department of Orthopaedic Surgery, University of Virginia School of Medicine - Inova Campus, Virginia Cancer Specialists, Fairfax, Virginia, USA
| |
Collapse
|
2
|
Tsourmas KI, Butler CA, Kwang NE, Sloane ZR, Dykman KJG, Maloof GO, Prekopa CA, Krattli RP, El-Khatib SM, Swarup V, Acharya MM, Hohsfield LA, Green KN. Myeloid-derived β-hexosaminidase is essential for neuronal health and lysosome function: implications for Sandhoff disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619538. [PMID: 39484433 PMCID: PMC11526954 DOI: 10.1101/2024.10.21.619538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lysosomal storage disorders (LSDs) are a large disease class involving lysosomal dysfunction, often resulting in neurodegeneration. Sandhoff disease (SD) is an LSD caused by a deficiency in the β subunit of the β-hexosaminidase enzyme (Hexb). Although Hexb expression in the brain is specific to microglia, SD primarily affects neurons. To understand how a microglial gene is involved in maintaining neuronal homeostasis, we demonstrated that β-hexosaminidase is secreted by microglia and integrated into the neuronal lysosomal compartment. To assess therapeutic relevance, we treated SD mice with bone marrow transplant and colony stimulating factor 1 receptor inhibition, which broadly replaced Hexb -/- microglia with Hexb-sufficient cells. This intervention reversed apoptotic gene signatures, improved behavior, restored enzymatic activity and Hexb expression, ameliorated substrate accumulation, and normalized neuronal lysosomal phenotypes. These results underscore the critical role of myeloid-derived β-hexosaminidase in neuronal lysosomal function and establish microglial replacement as a potential LSD therapy.
Collapse
Affiliation(s)
- Kate I. Tsourmas
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Claire A. Butler
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Nellie E. Kwang
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Zachary R. Sloane
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Koby J. G. Dykman
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Ghassan O. Maloof
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Christiana A. Prekopa
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Robert P. Krattli
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
| | - Sanad M. El-Khatib
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Munjal M. Acharya
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
- Department of Radiation Oncology; University of California; Irvine, CA 92697; USA
| | - Lindsay A. Hohsfield
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Kim N. Green
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| |
Collapse
|
3
|
Dania V, Stavropoulos NA, Gavriil P, Trikoupis I, Koulouvaris P, Savvidou OD, Mavrogenis AF, Papagelopoulos PJ. Treatment Modalities for Refractory-Recurrent Tenosynovial Giant Cell Tumor (TGCT): An Update. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1675. [PMID: 39459462 PMCID: PMC11509811 DOI: 10.3390/medicina60101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Tenosynovial giant cell tumor (TGCT) is a rare, locally aggressive, benign neoplasm arising from the synovium of joints, tendon sheaths, and bursa. There are two main subtypes of TGCT: localized-type TGCT(L-TGCT) and diffuse-type TGCT (D-TGCT). While surgical excision is still considered the gold standard of treatment, the high recurrence rate, especially for D-TGCT, may suggest the need for other treatment modalities. Materials and Methods: This study reviews current literature on the current treatment modalities for refractory-relapsed TGCT disease. Results: The gold standard of treatment modality in TGCT remains surgical excision of the tumor nevertheless, the elevated recurrence rate and refractory disease, particularly in D-TGCT indicates and underscores the necessity for additional treatment alternatives. Conclusions: TGCT is a benign tumor with inflammatory features and a potential destructive and aggressive course that can lead to significant morbidity and functional impairment with a high impact on quality of life. Surgical resection remains the gold standard current treatment and the optimal surgical approach depends on the location and extent of the tumor. Systemic therapies have been recently used for relapsed mainly cases.
Collapse
Affiliation(s)
| | - Nikolaos A. Stavropoulos
- First Department of Orthopedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University General Hospital, 12462 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
4
|
Wang Q, Wang J, Xu K, Luo Z. Targeting the CSF1/CSF1R signaling pathway: an innovative strategy for ultrasound combined with macrophage exhaustion in pancreatic cancer therapy. Front Immunol 2024; 15:1481247. [PMID: 39416792 PMCID: PMC11479911 DOI: 10.3389/fimmu.2024.1481247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive and lethal malignancy characterized by a complex tumor microenvironment (TME) and immunosuppressive features that limit the efficacy of existing treatments. This paper reviews the potential of combining ultrasound with macrophage exhaustion in the treatment of pancreatic cancer. Macrophages, particularly tumor-associated macrophages (TAMs), are crucial in pancreatic cancer progression and immune escape. Prolonged exposure to the immunosuppressive TME leads to macrophage exhaustion, reducing their anti-tumor ability and instead promoting tumor growth. The CSF1/CSF1R signaling pathway is key in macrophage recruitment and functional regulation, making it an effective target for combating macrophage exhaustion. Ultrasound technology not only plays a significant role in diagnosis and staging but also enhances therapeutic efficacy by guiding radiofrequency ablation (RFA) and percutaneous alcohol injection (PEI) in combination with immunomodulators. Additionally, ultrasound imaging can monitor the number and functional status of TAMs in real-time, providing a basis for optimizing treatment strategies. Future studies should further investigate the combined use of ultrasound and immunomodulators to refine treatment regimens, address challenges such as individual variability and long-term effects, and offer new hope for pancreatic cancer patients.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ultrasound, Xichong People’s Hospital, Nanchong, China
| | - Jianhong Wang
- Department of Internal Medicine, Guang’an Vocational & Technical College, Guang’an, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Zhibin Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
Hachemi Y, Perrin S, Ethel M, Julien A, Vettese J, Geisler B, Göritz C, Colnot C. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma. Bone Res 2024; 12:56. [PMID: 39341816 PMCID: PMC11438896 DOI: 10.1038/s41413-024-00347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single-nucleus transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as a driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis.
Collapse
Affiliation(s)
| | - Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Maria Ethel
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Vettese
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | | | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.
| |
Collapse
|
6
|
Niu X, Ravi V, Shan B, Guo Q, Shi H, Zou Q, Gelderblom H. MANEUVER: A Phase III study of pimicotinib to assess efficacy and safety in tenosynovial giant cell tumor patients. Future Oncol 2024:1-8. [PMID: 39287124 DOI: 10.1080/14796694.2024.2396227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Tenosynovial giant cell tumor (TGCT) is a rare, locally invasive soft tissue tumor arising from the synovium of joints, bursa and tendon sheaths and is associated with the overexpression of the colony-stimulating factor 1 (CSF-1) gene. Pimicotinib is an orally available, highly selective and potent small molecule CSF-1 receptor (CSF-1R) inhibitor with robust efficacy and safety profile in patients with TGCT and is under development in multiple diseases. In an open-label Phase I study in patients with TGCT not amenable to surgery, pimicotinib showed superior efficacy and safety. In this article, we elucidate the rationale and study design of the multi-region Phase III MANEUVER trial (NCT05804045), which is designed to assess the efficacy and safety of pimicotinib in patients with TGCT not amenable to surgical resection in Asia, North America and Europe.
Collapse
Affiliation(s)
- Xiaohui Niu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Beijing, 100035, P.R.China
| | - Vinod Ravi
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyao Shan
- Abbisko Therapeutics Co., Ltd, Shanghai, 201203, P.R.China
| | - Qiuxiang Guo
- Abbisko Therapeutics Co., Ltd, Shanghai, 201203, P.R.China
| | - Haosong Shi
- Abbisko Therapeutics Co., Ltd, Shanghai, 201203, P.R.China
| | - Qingping Zou
- Abbisko Therapeutics Co., Ltd, Shanghai, 201203, P.R.China
| | - Hans Gelderblom
- Leiden University Medical Center, Leiden, 2333, The Netherlands
| |
Collapse
|
7
|
Gelderblom H, Razak AA, Taylor MH, Bauer TM, Wilky B, Martin-Broto J, Gonzalez AF, Rutkowski P, Szostakowski B, Alcindor T, Saleh R, Genta S, Stacchiotti S, van de Sande M, Wagner AJ, Bernthal N, Davis LE, Vuky J, Tait C, Matin B, Narasimhan S, Sharma MG, Ruiz-Soto R, Sherman ML, Tap WD. CSF1R Inhibition in Patients with Advanced Solid Tumors or Tenosynovial Giant Cell Tumor: A Phase I Study of Vimseltinib. Clin Cancer Res 2024; 30:3996-4004. [PMID: 38995311 PMCID: PMC11393540 DOI: 10.1158/1078-0432.ccr-24-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE Tenosynovial giant cell tumor (TGCT) is a locally aggressive neoplasm caused by dysregulation of the colony-stimulating factor 1 (CSF1) gene and overexpression of the CSF1 ligand. Surgery is the standard of care for most patients, but there are limited treatment options for patients with TGCT not amenable to surgery. This study evaluates vimseltinib, an investigational, oral, switch-control tyrosine kinase inhibitor designed to selectively and potently inhibit the CSF1 receptor. PATIENTS AND METHODS This first-in-human, multicenter, open-label phase I/II study of vimseltinib in patients with malignant solid tumors (N = 37) or TGCT not amenable to surgery (N = 32) followed a pharmacologically guided 3 + 3 study design (NCT03069469). The primary objectives were to assess safety and tolerability, determine the recommended phase II dose, and characterize the pharmacokinetics; exploratory objectives included pharmacodynamics and efficacy. RESULTS Vimseltinib was well tolerated; the majority of non-laboratory treatment-emergent adverse events were of grade 1/2 severity. There was no evidence of cholestatic hepatotoxicity or drug-induced liver injury. The recommended phase II dose was determined to be 30 mg twice weekly (no loading dose), and vimseltinib plasma exposure increased with the dose. In patients with TGCT, the median treatment duration was 25.1 months (range, 0.7-46.9), and the objective response rate as assessed by independent radiological review using RECIST version 1.1 was 72%. CONCLUSIONS Vimseltinib demonstrated long-term tolerability, manageable safety, dose-dependent exposure, and robust antitumor activity in patients with TGCT not amenable to surgery.
Collapse
Affiliation(s)
| | | | - Matthew H. Taylor
- Earle A. Chiles Research Institute, Providence Medical Center, Portland, Oregon.
| | | | - Breelyn Wilky
- University of Colorado Cancer Center, Aurora, Colorado.
| | - Javier Martin-Broto
- Fundación Jiménez Díaz University Hospital, University Hospital General de Villalba, Instituto de Investigactión Sanitaria Fundación Jiménez Díaz (IIS, FJD, UAM), Madrid, Spain.
| | | | - Piotr Rutkowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland.
| | | | - Thierry Alcindor
- McGill University Health Centre Research Institute, Montreal, Canada.
| | - Ramy Saleh
- McGill University Health Centre Research Institute, Montreal, Canada.
| | - Sofia Genta
- Princess Margaret Cancer Center, Toronto, Canada.
| | | | | | | | | | | | | | | | - Bahar Matin
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts.
| | | | | | | | | | - William D. Tap
- Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
8
|
Zhang Y, Ding X, Zhang X, Li Y, Xu R, Li HJ, Zuo D, Chen G. Unveiling the contribution of tumor-associated macrophages in driving epithelial-mesenchymal transition: a review of mechanisms and therapeutic Strategies. Front Pharmacol 2024; 15:1404687. [PMID: 39286635 PMCID: PMC11402718 DOI: 10.3389/fphar.2024.1404687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs), fundamental constituents of the tumor microenvironment (TME), significantly influence cancer development, primarily by promoting epithelial-mesenchymal transition (EMT). EMT endows cancer cells with increased motility, invasiveness, and resistance to therapies, marking a pivotal juncture in cancer progression. The review begins with a detailed exposition on the origins of TAMs and their functional heterogeneity, providing a foundational understanding of TAM characteristics. Next, it delves into the specific molecular mechanisms through which TAMs induce EMT, including cytokines, chemokines and stromal cross-talking. Following this, the review explores TAM-induced EMT features in select cancer types with notable EMT characteristics, highlighting recent insights and the impact of TAMs on cancer progression. Finally, the review concludes with a discussion of potential therapeutic targets and strategies aimed at mitigating TAM infiltration and disrupting the EMT signaling network, thereby underscoring the potential of emerging treatments to combat TAM-mediated EMT in cancer. This comprehensive analysis reaffirms the necessity for continued exploration into TAMs' regulatory roles within cancer biology to refine therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofei Ding
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| | - Xue Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ye Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hai-Jun Li
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Guang Chen
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
9
|
Bai H, Feng L, Schmid F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp Cell Res 2024; 442:114198. [PMID: 39103071 DOI: 10.1016/j.yexcr.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Macrophages play crucial roles in the tumor microenvironment (TME), exerting diverse functions ranging from promoting tumor growth and metastasis to orchestrating anti-tumor immune responses. Their plasticity allows them to adopt distinct activation states, often called M1-like (pro-inflammatory) and M2-like (anti-inflammatory or pro-tumoral), significantly influencing tumor progression and response to therapy. Harnessing the potential of macrophages in cancer immunotherapy has emerged as a promising strategy, with increasing interest in targeting these cells directly or modulating their functions within the TME. This review explores the intricate interplay between macrophages, the TME, and immunotherapeutic approaches. We discuss the dynamic phenotypic and functional heterogeneity of tumor-associated macrophages (TAMs), their impact on disease progression, and the mechanisms underlying their response to immunotherapy. Furthermore, we highlight recent advancements in macrophage-based immunotherapeutic strategies, including macrophage-targeting agents, adoptive cell transfer, and engineering approaches. Understanding the complex crosstalk between macrophages and the TME is essential for developing effective immunotherapeutic interventions that exploit the immunomodulatory functions of macrophages to enhance anti-tumor immunity and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Haotian Bai
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Li Feng
- Emergency Department, People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong Province, China.
| | - Felix Schmid
- School of Biomedical Sciences, Carleton University, Ottawa, Canada.
| |
Collapse
|
10
|
Liao Z, Wang Y, Yang Y, Liu X, Yang X, Tian Y, Deng S, Hu Y, Meng J, Li J, Deng Y, Zhou Z, Wei W, Swift M, Wan C, Sun Y, Yang K. Targeting the Cascade Amplification of Macrophage Colony-stimulating Factor to Alleviate the Immunosuppressive Effects Following Radiotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0450. [PMID: 39165639 PMCID: PMC11334716 DOI: 10.34133/research.0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024]
Abstract
Radiotherapy (RT) serves as the primary treatment for solid tumors. Its potential to incite an immune response against tumors both locally and distally profoundly impacts clinical outcomes. However, RT may also promote the accumulation of immunosuppressive cytokines and immunosuppressive cells, greatly impeding the activation of antitumor immune responses and substantially limiting the effectiveness of RT. Therefore, regulating post-RT immunosuppression to steer the immune milieu toward heightened activation potentially enhances RT's therapeutic potential. Cytokines, potent orchestrators of diverse cellular responses, play a pivotal role in regulating this immunosuppressive response. Identifying and promptly neutralizing early released immunosuppressive cytokines are a crucial development in augmenting RT's immunomodulatory effects. To this end, we conducted a screen of immunosuppressive cytokines following RT and identified macrophage colony-stimulating factor (MCSF) as an early up-regulated and persistent immune suppressor. Single-cell sequencing revealed that the main source of up-regulated MCSF derived from tumor cells. Mechanistic exploration revealed that irradiation-dependent phosphorylation of the p65 protein facilitated its binding to the MCSF gene promoter, enhancing transcription. Knockdown and chemical inhibitor experiments conclusively demonstrated that suppressing tumor cell-derived MCSF amplifies RT's immune-activating effects, with optimal results achieved by early MCSF blockade after irradiation. Additionally, we validated that MCSF acted on macrophages, inducing the secretion of a large number of inhibitory cytokines. In summary, we propose a novel approach to enhance the immune activation effects of RT by blocking the MCSF-CSF1R signaling pathway early after irradiation.
Collapse
Affiliation(s)
- Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yuxin Yang
- Department of Biochemistry and Molecular Medicine,
University of Southern California, Los Angeles, CA 90089, USA
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| |
Collapse
|
11
|
Palmerini E, Peta G, Tuzzato G. Pexidartinib Upfront in a Case of Tenosynovial Giant Cell Tumor: Proof of Concept for a Treatment Paradigm Shift. Oncol Ther 2024:10.1007/s40487-024-00298-z. [PMID: 39155359 DOI: 10.1007/s40487-024-00298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Tenosynovial giant cell tumor (TGCT) is a rare, locally aggressive tumor of the joints, bursa, and tendon sheath that can cause considerable pain and substantial morbidity. Although surgery is the primary treatment for patients with TGCT, surgical resection is associated with high rates of recurrence, particularly for patients with diffuse TGCT. Pexidartinib, a colony-stimulating factor 1 receptor inhibitor, is approved by the US Food and Drug Administration for the treatment of adult patients with symptomatic TGCT associated with severe morbidity or functional limitations and not amenable to improvement with surgery. CASE DESCRIPTION A 32-year-old man presented with intra-articular diffuse TGCT with pain and received noncurative treatment for 5 years (2014-2019). In 2019, the patient was found to have extensive disease accompanied by pain and limited range of motion. The patient's case was presented to a sarcoma multidisciplinary tumor board, who determined that surgery would cause significant morbidity and macroscopic residual tumor. As a result of the extent of disease, young age, and otherwise good health, treatment with pexidartinib was started through a compassionate use program at 800 mg/day. After dose reductions to pexidartinib at 400 mg/day and then 200 mg/day as a result of creatine phosphokinase elevations, the patient achieved a complete response after 2 years of treatment; pain was reduced and mobility was restored. The patient reported no side effects related to pexidartinib treatment. Treatment was stopped in 2022 for future family planning. After pexidartinib therapy was interrupted, the patient's wife had a successful pregnancy and delivery; however, the disease showed a slow but constant clinical deterioration, with a reduction in the range of movement of the affected knee and an apparent increase in widespread TGCT nodules. CONCLUSION Our case is unique because it provides support for pexidartinib use as upfront therapy for TGCT, instead of surgery, in selected cases.
Collapse
Affiliation(s)
- Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | | | - Gianmarco Tuzzato
- Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
12
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
13
|
Dharmani C, Fofah O, Fallon M, Rajper AW, Wooddell M, Salas M. TURALIO ® Risk Evaluation and Mitigation Strategy Program (tREMS): 3-year retrospective hepatic safety assessment. Future Oncol 2024; 20:2559-2564. [PMID: 39023446 PMCID: PMC11534110 DOI: 10.1080/14796694.2024.2373687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: Hepatic safety data assessment from the TURALIO® (pexidartinib) Risk Evaluation and Mitigation Strategy (tREMS) Program.Methods: Retrospective 3-year assessment (August 2019 to June 2022) of hepatic events from the TURALIO® (pexidartinib) Risk Evaluation and Mitigation Strategy Program.Results: A total of 451 patients, 369 prescribers, 2 wholesalers/distributors and 2 pharmacies were enrolled and certified. Twenty-one (4.7%) patients met the criteria for a hepatic adverse event or laboratory abnormality suggestive of serious and potentially fatal liver injury, all with onset within 2 months of therapy. No new hepatic safety signals were identified.Conclusion: Results are consistent with the phase 3 ENLIVEN trial data. Liver enzyme monitoring, combined with early intervention, including dose modification and discontinuation, conducted in patients treated with pexidartinib mitigate the risk of potential hepatotoxicity.
Collapse
Affiliation(s)
- Charles Dharmani
- Global Epidemiology, Daiichi Sankyo, Inc., Basking Ridge, NJ07920, USA
| | - Oluwatosin Fofah
- Global Epidemiology, Daiichi Sankyo, Inc., Basking Ridge, NJ07920, USA
| | - Maura Fallon
- Clinical Safety & Pharmacovigilance, Daiichi Sankyo UK Ltd., Uxbridge, UB8 1DH, UK
| | - Abdul Waheed Rajper
- Clinical Safety & Pharmacovigilance, Daiichi Sankyo, Inc., Basking Ridge, NJ07920, USA
| | - Margaret Wooddell
- Global Oncology Medical Affairs, Daiichi Sankyo, Inc., Basking Ridge, NJ07920, USA
| | - Maribel Salas
- Global Epidemiology, Daiichi Sankyo, Inc., Basking Ridge, NJ07920, USA
| |
Collapse
|
14
|
Salmaninejad A, Layeghi SM, Falakian Z, Golestani S, Kobravi S, Talebi S, Yousefi M. An update to experimental and clinical aspects of tumor-associated macrophages in cancer development: hopes and pitfalls. Clin Exp Med 2024; 24:156. [PMID: 39003350 PMCID: PMC11246281 DOI: 10.1007/s10238-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor-associated macrophages (TAMs) represent one of the most abundant tumor-infiltrating stromal cells, and their normal function in tumor microenvironment (TME) is to suppress tumor cells by producing cytokines which trigger both direct cell cytotoxicity and antibody-mediated immune response. However, upon prolonged exposure to TME, the classical function of these so-called M1-type TAMs can be converted to another type, "M2-type," which are recruited by tumor cells so that they promote tumor growth and metastasis. This is the reason why the accumulation of TAMs in TME is correlated with poor prognosis in cancer patients. Both M1- and M2-types have high degree of plasticity, and M2-type cells can be reprogrammed to M1-type for therapeutic purposes. This characteristic introduces TAMs as promising target for developing novel cancer treatments. In addition, inhibition of M2-type cells and blocking their recruitment in TME, as well as their depletion by inducing apoptosis, are other approaches for effective immunotherapy of cancer. In this review, we summarize the potential of TAMs to be targeted for cancer immunotherapy and provide an up-to-date about novel strategies for targeting TAMs.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Falakian
- Department of Laboratory Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Shahin Golestani
- Department of Ophthalmology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Tehran Azad University, Tehran, Iran
| | - Samaneh Talebi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Colella P, Sayana R, Suarez-Nieto MV, Sarno J, Nyame K, Xiong J, Pimentel Vera LN, Arozqueta Basurto J, Corbo M, Limaye A, Davis KL, Abu-Remaileh M, Gomez-Ospina N. CNS-wide repopulation by hematopoietic-derived microglia-like cells corrects progranulin deficiency in mice. Nat Commun 2024; 15:5654. [PMID: 38969669 PMCID: PMC11226701 DOI: 10.1038/s41467-024-49908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900, Monza, Italy
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | | | | | - Marco Corbo
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Anay Limaye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Wang Y, Shi J, Xin M, Kahkoska AR, Wang J, Gu Z. Cell-drug conjugates. Nat Biomed Eng 2024:10.1038/s41551-024-01230-6. [PMID: 38951139 DOI: 10.1038/s41551-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
By combining living cells with therapeutics, cell-drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell-drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiaqi Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Minhang Xin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Wang X, DeFilippis RA, Yan W, Shah NP, Li HY. Overcoming Secondary Mutations of Type II Kinase Inhibitors. J Med Chem 2024; 67:9776-9788. [PMID: 38837951 DOI: 10.1021/acs.jmedchem.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Type II kinase inhibitors bind in the "DFG-out" kinase conformation and are generally considered to be more potent and selective than type I inhibitors, which target a DFG-in conformation. Nine type II inhibitors are currently clinically approved, with more undergoing clinical development. Resistance-conferring secondary mutations emerged with the first series of type II inhibitors, most commonly at residues within the kinase activation loop and at the "gatekeeper" position. Recently, new inhibitors have been developed to overcome such mutations; however, mutations activating other pathways (and/or other targets) have subsequently emerged on occasion. Here, we systematically summarize the secondary mutations that confer resistance to type II inhibitors, the structural basis for resistance, newer inhibitors designed to overcome resistance, as well as the challenges and opportunities for the development of new inhibitors to overcome secondary kinase domain mutations.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rosa Anna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, California 94143, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, California 94143, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
18
|
Urakawa H, Imagama S. Vimseltinib for tenosynovial giant cell tumour. Lancet 2024; 403:2665-2667. [PMID: 38843859 DOI: 10.1016/s0140-6736(24)01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Affiliation(s)
- Hiroshi Urakawa
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya 4668560, Japan.
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Gelderblom H, Bhadri V, Stacchiotti S, Bauer S, Wagner AJ, van de Sande M, Bernthal NM, López Pousa A, Razak AA, Italiano A, Ahmed M, Le Cesne A, Tinoco G, Boye K, Martín-Broto J, Palmerini E, Tafuto S, Pratap S, Powers BC, Reichardt P, Casado Herráez A, Rutkowski P, Tait C, Zarins F, Harrow B, Sharma MG, Ruiz-Soto R, Sherman ML, Blay JY, Tap WD. Vimseltinib versus placebo for tenosynovial giant cell tumour (MOTION): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2024; 403:2709-2719. [PMID: 38843860 DOI: 10.1016/s0140-6736(24)00885-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Tenosynovial giant cell tumour (TGCT) is a locally aggressive neoplasm for which few systemic treatment options exist. This study evaluated the efficacy and safety of vimseltinib, an oral, switch-control, CSF1R inhibitor, in patients with symptomatic TGCT not amenable to surgery. METHODS MOTION is a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial done in 35 specialised hospitals in 13 countries. Eligible patients were adults (aged ≥18 years) with a histologically confirmed diagnosis of TGCT for which surgical resection could potentially worsen functional limitation or cause severe morbidity. Patients were randomly assigned (2:1) with interactive response technology to vimseltinib (30 mg orally twice weekly) or placebo, administrated in 28-day cycles for 24 weeks. Patients and site personnel were masked to treatment assignment until week 25, unless progressive disease was confirmed earlier. The primary endpoint was objective response rate by independent radiological review using Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST) at week 25 in the intention-to-treat population. Safety was assessed in all patients who received the study drug. The trial is registered with ClinicalTrials.gov, NCT05059262, and enrolment is complete. FINDINGS Between Jan 21, 2022, and Feb 21, 2023, 123 patients were randomly assigned (83 to vimseltinib and 40 to placebo). 73 (59%) patients were female and 50 (41%) were male. Nine (11%) of 83 patients assigned to vimseltinib and five (13%) of 40 patients assigned to placebo discontinued treatment before week 25; one patient in the placebo group did not receive any study drug. Objective response rate per RECIST was 40% (33 of 83 patients) in the vimseltinib group vs 0% (none of 40) in the placebo group (difference 40% [95% CI 29-51]; p<0·0001). Most treatment-emergent adverse events (TEAEs) were grade 1 or 2; the only grade 3 or 4 TEAE that occurred in more than 5% of patients receiving vimseltinib was increased blood creatine phosphokinase (eight [10%] of 83). One patient in the vimseltinib group had a treatment-related serious TEAE of subcutaneous abscess. No evidence of cholestatic hepatotoxicity or drug-induced liver injury was noted. INTERPRETATION Vimseltinib produced a significant objective response rate and clinically meaningful functional and symptomatic improvement in patients with TGCT, providing an effective treatment option for these patients. FUNDING Deciphera Pharmaceuticals.
Collapse
Affiliation(s)
- Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands.
| | - Vivek Bhadri
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | | | - Sebastian Bauer
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany; German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Andrew J Wagner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michiel van de Sande
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - Mahbubl Ahmed
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Axel Le Cesne
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Gabriel Tinoco
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Javier Martín-Broto
- Fundación Jiménez Díaz University Hospital, University Hospital General de Villalba, Instituto de Investigactión Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | | | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori IRCCS Fondazione G Pascale, Naples, Italy
| | - Sarah Pratap
- Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Benjamin C Powers
- Department of Internal Medicine, Medical Oncology Division, University of Kansas Cancer Center, Overland Park, KS, USA
| | - Peter Reichardt
- Department of Interdisciplinary Oncology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | | | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Fiona Zarins
- Deciphera Pharmaceuticals, LLC, Waltham, MA, USA
| | | | | | | | | | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - William D Tap
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
20
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
21
|
Minvielle Moncla LH, Briend M, Sokhna Sylla M, Mathieu S, Rufiange A, Bossé Y, Mathieu P. Mendelian randomization reveals interactions of the blood proteome and immunome in mitral valve prolapse. COMMUNICATIONS MEDICINE 2024; 4:108. [PMID: 38844506 PMCID: PMC11156961 DOI: 10.1038/s43856-024-00530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common heart disorder characterized by an excessive production of proteoglycans and extracellular matrix in mitral valve leaflets. Large-scale genome-wide association study (GWAS) underlined that MVP is heritable. The molecular underpinnings of the disease remain largely unknown. METHODS We interrogated cross-modality data totaling more than 500,000 subjects including GWAS, 4809 molecules of the blood proteome, and genome-wide expression of mitral valves to identify candidate drivers of MVP. Data were investigated through Mendelian randomization, network analysis, ligand-receptor inference and digital cell quantification. RESULTS In this study, Mendelian randomization identify that 33 blood proteins, enriched in networks for immunity, are associated with the risk of MVP. MVP- associated blood proteins are enriched in ligands for which their cognate receptors are differentially expressed in mitral valve leaflets during MVP and enriched in cardiac endothelial cells and macrophages. MVP-associated blood proteins are involved in the renewal-polarization of macrophages and regulation of adaptive immune response. Cytokine activity profiling and digital cell quantification show in MVP a shift toward cytokine signature promoting M2 macrophage polarization. Assessment of druggability identify CSF1R, CX3CR1, CCR6, IL33, MMP8, ENPEP and angiotensin receptors as actionable targets in MVP. CONCLUSIONS Hence, integrative analysis identifies networks of candidate molecules and cells involved in immune control and remodeling of the extracellular matrix, which drive the risk of MVP.
Collapse
Affiliation(s)
| | - Mewen Briend
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Mame Sokhna Sylla
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Samuel Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Anne Rufiange
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Patrick Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada.
- Department of Surgery, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
22
|
Panciera A, Colangelo A, Di Martino A, Ferri R, Bulzacki Bogucki BD, Cecchin D, Brunello M, Benvenuti L, Digennaro V. Total knee arthroplasty in pigmented villonodular synovitis osteoarthritis: a systematic review of literature. Musculoskelet Surg 2024; 108:145-152. [PMID: 37338752 PMCID: PMC11133153 DOI: 10.1007/s12306-023-00793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Pigmented Villonodular Synovitis (PVNS) is a proliferative disease arising from the synovial membrane, mainly affects large joints such as the knee (almost 80% of total). Prostheses implanted in PVNS osteoarthritis show a higher revision rate when compared to primary osteoarthritis, due to the recurrence of disease and the overall surgical complications. The purpose of this systematic review is to summarize and compare indications, clinical and functional outcomes, disease-related and surgical-related complications of total knee arthroplasty in PVNS osteoarthritis. MATERIALS AND METHODS A systematic review of the literature was performed with a primary search on Medline through PubMed. The PRISMA 2009 flowchart and checklist were used to edit the review. Screened studies had to provide preoperative diagnosis, previous treatments, main treatment, concomitant strategies, mean follow-up, outcomes and complications to be included in the review. RESULTS A total of 8 articles were finally included. Most of papers reported the use of non-constrained design implants, mainly posterior stabilized (PS) and in case of PVNS with extensive joint involvement implants with higher degree of constraint to obtain a fulfilling balancing. Recurrence of PVNS has been indicated as the major complication, followed by aseptic loosening of the implant and difficult post-operative course with an increased risk of stiffness. CONCLUSION Total knee arthroplasty represents a valid treatment for patients with PVNS end-stage osteoarthritis, with good clinical and functional results, even in longer follow-up. It would be advisable a multidisciplinary management and a meticulous rehabilitation and monitoring following the procedure, to reduce the emergence of recurrence and overall complications.
Collapse
Affiliation(s)
- A Panciera
- 1St Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
| | - A Colangelo
- 1St Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
| | - A Di Martino
- 1St Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
| | - R Ferri
- 1St Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
| | - B D Bulzacki Bogucki
- 1St Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
| | - D Cecchin
- 1St Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
| | - M Brunello
- 1St Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy.
| | - L Benvenuti
- 1St Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
| | - V Digennaro
- 1St Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
| |
Collapse
|
23
|
Mahon KL, Sutherland SI, Lin HM, Stockler MR, Gurney H, Mallesara G, Briscoe K, Marx G, Higano CS, de Bono JS, Chi KN, Clark G, Breit SN, Brown DA, Horvath LG. Clinical validation of circulating GDF15/MIC-1 as a marker of response to docetaxel and survival in men with metastatic castration-resistant prostate cancer. Prostate 2024; 84:747-755. [PMID: 38544345 DOI: 10.1002/pros.24691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Elevated circulating growth differentiation factor (GDF15/MIC-1), interleukin 4 (IL4), and IL6 levels were associated with resistance to docetaxel in an exploratory cohort of men with metastatic castration-resistant prostate cancer (mCRPC). This study aimed to establish level 2 evidence of cytokine biomarker utility in mCRPC. METHODS IntVal: Plasma samples at baseline (BL) and Day 21 docetaxel (n = 120). ExtVal: Serum samples at BL and Day 42 of docetaxel (n = 430). IL4, IL6, and GDF15 levels were measured by ELISA. Monocytes and dendritic cells were treated with 10% plasma from men with high or low GDF15 or recombinant GDF15. RESULTS IntVal: Higher GDF15 levels at BL and Day 21 were associated with shorter overall survival (OS) (BL; p = 0.03 and Day 21; p = 0.004). IL4 and IL6 were not associated with outcomes. ExtVal: Higher GDF15 levels at BL and Day 42 predicted shorter OS (BL; p < 0.0001 and Day 42; p < 0.0001). Plasma from men with high GDF15 caused an increase in CD86 expression on monocytes (p = 0.03), but was not replicated by recombinant GDF15. CONCLUSIONS Elevated circulating GDF15 is associated with poor prognosis in men with mCRPC receiving docetaxel and may be a marker of changes in the innate immune system in response to docetaxel resistance. These findings provide a strong rationale to consider GDF15 as a biomarker to guide a therapeutic trial of drugs targeting the innate immune system in combination with docetaxel in mCRPC.
Collapse
Affiliation(s)
- Kate L Mahon
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Im Sutherland
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Cancer Research Group, The ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Hui Ming Lin
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Martin R Stockler
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Howard Gurney
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Calvary Mater, Newcastle, New South Wales, Australia
| | - Girish Mallesara
- Medical Oncology Department, Mid North Coast Cancer Institute, Coffs Harbour, New South Wales, Australia
| | - Karen Briscoe
- Northern Haematology Oncology Group, Sydney, New South Wales, Australia
| | - Gavin Marx
- BC Cancer Agency, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Johann S de Bono
- St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Kim N Chi
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Georgina Clark
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Cancer Research Group, The ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Samuel N Breit
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
- Concord Hospital, Sydney, New South Wales, Australia
| | - David A Brown
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
- Concord Hospital, Sydney, New South Wales, Australia
| | - Lisa G Horvath
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Su P, Li O, Ke K, Jiang Z, Wu J, Wang Y, Mou Y, Jin W. Targeting tumor‑associated macrophages: Critical players in tumor progression and therapeutic strategies (Review). Int J Oncol 2024; 64:60. [PMID: 38695252 PMCID: PMC11087038 DOI: 10.3892/ijo.2024.5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor‑associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor‑promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage‑based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM‑targeting therapeutic strategies and discussed the obstacles and perspectives of TAM‑targeting therapies for cancers.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ou Li
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Kun Ke
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhichen Jiang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jianzhang Wu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
25
|
Rungsiprakarn P, Ryan AL, Wong DD, Luo M, Kazahaya K, Arkader A, Lau LMS, Ajuyah P, Rudzinski E, Kreiger PA, Roebuck DJ, Surrey LF, Foo TSY. Keratin-Positive Giant Cell Tumor of Bone and Soft Tissue With HMGA2::NCOR2 Fusion in Children Under 10 With Response to Imatinib Therapy: A Case Series. JCO Precis Oncol 2024; 8:e2300659. [PMID: 38935896 DOI: 10.1200/po.23.00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
HMGA2::NCOR2 keratin-positive giant cell tumors in children with response to imatinib in an infant.
Collapse
Affiliation(s)
- Phassawan Rungsiprakarn
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anne L Ryan
- Department of Hematology, Oncology and Bone Marrow Transplant, Perth Children's Hospital, Nedlands, Australia
- Telethon Kids Insitute, University of Western Australia, Nedlands, Australia
| | - Daniel D Wong
- PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Australia
| | - Minjie Luo
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ken Kazahaya
- Division of Pediatric Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | - Alexandre Arkader
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Orthopedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Loretta M S Lau
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, Australia
| | | | - Erin Rudzinski
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA
| | - Portia A Kreiger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek J Roebuck
- Department of Medical Imaging, Perth Children's Hospital, Nedlands, Australia
- Division of Pediatrics, Medical School, University of Western Australia, Crawley, Australia
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tiffany S Y Foo
- PathWest Laboratory Medicine, Perth Children's Hospital, Nedlands, WA, Australia
| |
Collapse
|
26
|
Wu Z, Chen S, Wang Y, Li F, Xu H, Li M, Zeng Y, Wu Z, Gao Y. Current perspectives and trend of computer-aided drug design: a review and bibliometric analysis. Int J Surg 2024; 110:3848-3878. [PMID: 38502850 PMCID: PMC11175770 DOI: 10.1097/js9.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
AIM Computer-aided drug design (CADD) is a drug design technique for computing ligand-receptor interactions and is involved in various stages of drug development. To better grasp the frontiers and hotspots of CADD, we conducted a review analysis through bibliometrics. METHODS A systematic review of studies published between 2000 and 20 July 2023 was conducted following the PRISMA guidelines. Literature on CADD was selected from the Web of Science Core Collection. General information, publications, output trends, countries/regions, institutions, journals, keywords, and influential authors were visually analyzed using software such as Excel, VOSviewer, RStudio, and CiteSpace. RESULTS A total of 2031 publications were included. These publications primarily originated from 99 countries or regions led by the U.S. and China. Among the contributors, MacKerell AD had the highest number of articles and the greatest influence. The Journal of Medicinal Chemistry was the most cited journal, whereas the Journal of Chemical Information and Modeling had the highest number of publications. CONCLUSIONS Influential authors in the field were identified. Current research shows active collaboration between countries, institutions, and companies. CADD technologies such as homology modeling, pharmacophore modeling, quantitative conformational relationships, molecular docking, molecular dynamics simulation, binding free energy prediction, and high-throughput virtual screening can effectively improve the efficiency of new drug discovery. Artificial intelligence-assisted drug design and screening based on CADD represent key topics that will influence future development. Furthermore, this paper will be helpful in better understanding the frontiers and hotspots of CADD.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Fangyang Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Huanhua Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Yingjian Zeng
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Zhenfeng Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Li S, Sheng J, Zhang D, Qin H. Targeting tumor-associated macrophages to reverse antitumor drug resistance. Aging (Albany NY) 2024; 16:10165-10196. [PMID: 38787372 PMCID: PMC11210230 DOI: 10.18632/aging.205858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Currently, antitumor drugs show limited clinical outcomes, mainly due to adaptive resistance. Clinical evidence has highlighted the importance of the tumor microenvironment (TME) and tumor-associated macrophages (TAMs) in tumor response to conventional antitumor drugs. Preclinical studies show that TAMs following antitumor agent can be reprogrammed to an immunosuppressive phenotype and proangiogenic activities through different mechanisms, mediating drug resistance and poor prognosis. Potential extrinsic inhibitors targeting TAMs repolarize to an M1-like phenotype or downregulate proangiogenic function, enhancing therapeutic efficacy of anti-tumor therapy. Moreover, pharmacological modulation of macrophages that restore the immune stimulatory characteristics is useful to reshaping the tumor microenvironment, thus further limiting tumor growth. This review aims to introduce macrophage response in tumor therapy and provide a potential therapeutic combination strategy of TAM-targeting immunomodulation with conventional antitumor drugs.
Collapse
Affiliation(s)
- Sheng Li
- The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Zhao Y, Zhang X, Ding X, Wang Y, Li Z, Zhao R, Cheng HE, Sun Y. Efficacy and safety of FLT3 inhibitors in monotherapy of hematological and solid malignancies: a systemic analysis of clinical trials. Front Pharmacol 2024; 15:1294668. [PMID: 38828446 PMCID: PMC11140126 DOI: 10.3389/fphar.2024.1294668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction: FLT3 mutations are closely associated with the occurrence of hematological and solid malignancies, especially with acute myeloid leukemia. Currently, several FLT3 inhibitors are in clinical trials, and some have been applied in clinic. However, the safety, efficacy and pharmacodynamics of these FLT3 inhibitors have not been systemically analyzed before. Methods: We searched and reviewed clinical trial reports on the monotherapy of 13 FLT3 inhibitors, including sorafenib, lestaurtinib, midostaurin, gilteritinib, quizartinib, sunitinib, crenolanib, tandutinib, cabozantinib, pexidartinib, pacritinib, famitinib, and TAK-659 in patients with hematological and solid malignancies before May 31, 2023. Results: Our results showed the most common adverse events (AEs) were gastrointestinal adverse reactions, including diarrhea, hand-foot syndrome and nausea, while the most common hematological AEs were febrile neutropenia, anemia, and thrombocytopenia. Based on the published data, the mean overall survival (OS) and the mean progression-free survival (PFS) were 9.639 and 5.905 months, respectively. The incidence of overall response rate (ORR), complete remission (CR), partial response (PR), and stable disease (SD) for all these FLT3 inhibitors was 29.0%, 8.7%, 16.0%, and 42.3%, respectively. The ORRs of FLT3 inhibitors in hematologic malignancies and solid tumors were 40.8% and 18.8%, respectively, indicating FLT3 inhibitors were more effective for hematologic malignancies than for solid tumors. In addition, time to maximum plasma concentration (Tmax) in these FLT3 inhibitors ranged from 0.7-12.0 hours, but the elimination half-life (T1/2) range was highly variable, from 6.8 to 151.8 h. Discussion: FLT3 inhibitors monotherapy has shown significant anti-tumor effect in clinic, and the effectiveness may be further improved through combination medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hai-En Cheng
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yanli Sun
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| |
Collapse
|
29
|
Latham BD, Geffert RM, Jackson KD. Kinase Inhibitors FDA Approved 2018-2023: Drug Targets, Metabolic Pathways, and Drug-Induced Toxicities. Drug Metab Dispos 2024; 52:479-492. [PMID: 38286637 PMCID: PMC11114602 DOI: 10.1124/dmd.123.001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Small molecule kinase inhibitors are one of the fastest growing classes of drugs, which are approved by the US Food and Drug Administration (FDA) for cancer and noncancer indications. As of September 2023, there were over 70 FDA-approved small molecule kinase inhibitors on the market, 42 of which were approved in the past five years (2018-2023). This minireview discusses recent advances in our understanding of the pharmacology, metabolism, and toxicity profiles of recently approved kinase inhibitors with a central focus on tyrosine kinase inhibitors (TKIs). In this minireview we discuss the most common therapeutic indications and molecular target(s) of kinase inhibitors FDA approved 2018-2023. We also describe unique aspects of the metabolism, bioactivation, and drug-drug interaction (DDI) potential of kinase inhibitors; discuss drug toxicity concerns related to kinase inhibitors, such as drug-induced liver injury; and highlight clinical outcomes and challenges relevant to TKI therapy. Case examples are provided for common TKI targets, metabolism pathways, DDI potential, and risks for serious adverse drug reactions. The minireview concludes with a discussion of perspectives on future research to optimize TKI therapy to maximize efficacy and minimize drug toxicity. SIGNIFICANCE STATEMENT: This minireview highlights important aspects of the clinical pharmacology and toxicology of small molecule kinase inhibitors FDA approved 2018-2023. We describe key advances in the therapeutic indications and molecular targets of TKIs. The major metabolism pathways and toxicity profiles of recently approved TKIs are discussed. Clinically relevant case examples are provided that demonstrate the risk for hepatotoxic drug interactions involving TKIs and coadministered drugs.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Hayes AJ, Nixon IF, Strauss DC, Seddon BM, Desai A, Benson C, Judson IR, Dangoor A. UK guidelines for the management of soft tissue sarcomas. Br J Cancer 2024:10.1038/s41416-024-02674-y. [PMID: 38734790 DOI: 10.1038/s41416-024-02674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/13/2024] Open
Abstract
Soft tissue sarcomas (STS) are rare tumours arising in mesenchymal tissues and can occur almost anywhere in the body. Their rarity, and the heterogeneity of subtype and location, means that developing evidence-based guidelines is complicated by the limitations of the data available. This makes it more important that STS are managed by expert multidisciplinary teams, to ensure consistent and optimal treatment, recruitment to clinical trials, and the ongoing accumulation of further data and knowledge. The development of appropriate guidance, by an experienced panel referring to the evidence available, is therefore a useful foundation on which to build progress in the field. These guidelines are an update of the previous versions published in 2010 and 2016 [1, 2]. The original guidelines were drawn up by a panel of UK sarcoma specialists convened under the auspices of the British Sarcoma Group (BSG) and were intended to provide a framework for the multidisciplinary care of patients with soft tissue sarcomas. This iteration of the guidance, as well as updating the general multidisciplinary management of soft tissue sarcoma, includes specific sections relating to the management of sarcomas at defined anatomical sites: gynaecological sarcomas, retroperitoneal sarcomas, breast sarcomas, and skin sarcomas. These are generally managed collaboratively by site specific multidisciplinary teams linked to the regional sarcoma specialist team, as stipulated in the recently published sarcoma service specification [3]. In the UK, any patient with a suspected soft tissue sarcoma should be referred to a specialist regional soft tissues sarcoma service, to be managed by a specialist sarcoma multidisciplinary team. Once the diagnosis has been confirmed using appropriate imaging and a tissue biopsy, the main modality of management is usually surgical excision performed by a specialist surgeon, combined with pre- or post-operative radiotherapy for tumours at higher risk for local recurrence. Systemic anti-cancer therapy (SACT) may be utilised in cases where the histological subtype is considered more sensitive to systemic treatment. Regular follow-up is recommended to assess local control, development of metastatic disease, and any late effects of treatment.
Collapse
Affiliation(s)
- Andrew J Hayes
- The Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK.
- The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Ioanna F Nixon
- Department of Clinical Oncology, The Beatson West of Scotland Cancer Center, Glasgow, G12 0YN, UK
| | - Dirk C Strauss
- The Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Beatrice M Seddon
- Department of Medical Oncology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| | - Anant Desai
- The Midlands Abdominal and Retroperitoneal Sarcoma Unit, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Charlotte Benson
- The Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Ian R Judson
- The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adam Dangoor
- Department of Medical Oncology, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, BS1 3NU, UK
| |
Collapse
|
31
|
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond) 2024; 44:521-553. [PMID: 38551889 PMCID: PMC11110955 DOI: 10.1002/cac2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Gholam‐Reza Khosravi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Samaneh Mostafavi
- Department of ImmunologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sanaz Bastan
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Narges Ebrahimi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Roya Safari Gharibvand
- Department of ImmunologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nahid Eskandari
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
32
|
Hachemi Y, Perrin S, Ethel M, Julien A, Vettese J, Geisler B, Göritz C, Colnot C. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591608. [PMID: 38746344 PMCID: PMC11092472 DOI: 10.1101/2024.04.29.591608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single cell transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis. Summary Hachemi et al. report the immune cell atlas of bone repair revealing macrophages as pro-fibrotic regulators and a therapeutic target for musculoskeletal regeneration. Genetic depletion or pharmacological inhibition of macrophages improves bone healing in musculoskeletal trauma.
Collapse
|
33
|
Wang M, Caryotakis SE, Smith GG, Nguyen AV, Pleasure DE, Soulika AM. CSF1R antagonism results in increased supraspinal infiltration in EAE. J Neuroinflammation 2024; 21:103. [PMID: 38643194 PMCID: PMC11031888 DOI: 10.1186/s12974-024-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Colony stimulating factor 1 receptor (CSF1R) signaling is crucial for the maintenance and function of various myeloid subsets. CSF1R antagonism was previously shown to mitigate clinical severity in experimental autoimmune encephalomyelitis (EAE). The associated mechanisms are still not well delineated. METHODS To assess the effect of CSF1R signaling, we employed the CSF1R antagonist PLX5622 formulated in chow (PLX5622 diet, PD) and its control chow (control diet, CD). We examined the effect of PD in steady state and EAE by analyzing cells isolated from peripheral immune organs and from the CNS via flow cytometry. We determined CNS infiltration sites and assessed the extent of demyelination using immunohistochemistry of cerebella and spinal cords. Transcripts of genes associated with neuroinflammation were also analyzed in these tissues. RESULTS In addition to microglial depletion, PD treatment reduced dendritic cells and macrophages in peripheral immune organs, both during steady state and during EAE. Furthermore, CSF1R antagonism modulated numbers and relative frequencies of T effector cells both in the periphery and in the CNS during the early stages of the disease. Classical neurological symptoms were milder in PD compared to CD mice. Interestingly, a subset of PD mice developed atypical EAE symptoms. Unlike previous studies, we observed that the CNS of PD mice was infiltrated by increased numbers of peripheral immune cells compared to that of CD mice. Immunohistochemical analysis showed that CNS infiltrates in PD mice were mainly localized in the cerebellum while in CD mice infiltrates were primarily localized in the spinal cords during the onset of neurological deficits. Accordingly, during the same timepoint, cerebella of PD but not of CD mice had extensive demyelinating lesions, while spinal cords of CD but not of PD mice were heavily demyelinated. CONCLUSIONS Our findings suggest that CSF1R activity modulates the cellular composition of immune cells both in the periphery and within the CNS, and affects lesion localization during the early EAE stages.
Collapse
Affiliation(s)
- Marilyn Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Sofia E Caryotakis
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- University of California, San Francisco, San Francisco, CA, USA
| | - Glendalyn G Smith
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
| | - Alan V Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Sutro Biosciences, South San Francisco, CA, USA
| | - David E Pleasure
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA.
| |
Collapse
|
34
|
Hwang C, Agulnik M, Schulte B. Prices and Trends in FDA-Approved Medications for Sarcomas. Cancers (Basel) 2024; 16:1545. [PMID: 38672627 PMCID: PMC11048328 DOI: 10.3390/cancers16081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcomas represent a diverse set of both malignant and benign subtypes consisting of often rare and ultra-rare conditions. Over the course of the last decade, there have been numerous FDA approvals for agents treating various sarcoma subtypes. Given this burgeoning landscape of sarcoma treatments, we seek to review current FDA-approved agents with respect to their rates of incidence, approval rates, and financial costs. We gathered clinical trial data by searching FDA approval announcements from 2013 to 2023. We determined the 30 day and one year cost of therapy for patients of FDA-approved sarcoma treatments in the aforementioned timeframe. From 2013 to 2023, 14 medications have been FDA-approved for sarcoma subtypes. The 30-day dosing prices for these medications range from $11,162.86 to $46,926.00. Since 2013, the rates of approval for sarcoma medications have been higher than in prior decades. Nonetheless, there remains the potential for significant financial toxicity for patients living with sarcoma.
Collapse
Affiliation(s)
- Caleb Hwang
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Mark Agulnik
- Division of Oncology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Brian Schulte
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
35
|
Sullivan KM, Li H, Yang A, Zhang Z, Munoz RR, Mahuron KM, Yuan YC, Paz IB, Von Hoff D, Han H, Fong Y, Woo Y. Tumor and Peritoneum-Associated Macrophage Gene Signature as a Novel Molecular Biomarker in Gastric Cancer. Int J Mol Sci 2024; 25:4117. [PMID: 38612926 PMCID: PMC11012629 DOI: 10.3390/ijms25074117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
A spectrum of immune states resulting from tumor resident macrophages and T-lymphocytes in the solid tumor microenvironment correlates with patient outcomes. We hypothesized that in gastric cancer (GC), macrophages in a polarized immunosuppressive transcriptional state would be prognostic of poor survival. We derived transcriptomic signatures for M2 (M2TS, MRC1; MS4A4A; CD36; CCL13; CCL18; CCL23; SLC38A6; FGL2; FN1; MAF) and M1 (M1TS, CCR7; IL2RA; CXCL11; CCL19; CXCL10; PLA1A; PTX3) macrophages, and cytolytic T-lymphocytes (CTLTS, GZMA; GZMB; GZMH; GZMM; PRF1). Primary GC in a TCGA stomach cancer dataset was evaluated for signature expressions, and a log-rank test determined overall survival (OS) and the disease-free interval (DFI). In 341 TCGA GC entries, high M2TS expression was associated with histological types and later stages. Low M2TS expression was associated with significantly better 5-year OS and DFI. We validated M2TS in prospectively collected peritoneal fluid of a GC patient cohort (n = 28). Single-cell RNA sequencing was used for signature expression in CD68+CD163+ cells and the log-rank test compared OS. GC patients with high M2TS in CD68+CD163+ cells in their peritoneal fluid had significantly worse OS than those with low expression. Multivariate analyses confirmed M2TS was significantly and independently associated with survival. As an independent predictor of poor survival, M2TS may be prognostic in primary tumors and peritoneal fluid of GC patients.
Collapse
Affiliation(s)
- Kevin M. Sullivan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Haiqing Li
- Integrative Genome Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.L.); (Y.-C.Y.)
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Ruben R. Munoz
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.R.M.); (D.V.H.); (H.H.)
| | - Kelly M. Mahuron
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Yate-Ching Yuan
- Integrative Genome Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (H.L.); (Y.-C.Y.)
| | - Isaac Benjamin Paz
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Daniel Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.R.M.); (D.V.H.); (H.H.)
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.R.M.); (D.V.H.); (H.H.)
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (K.M.S.); (A.Y.); (Z.Z.); (K.M.M.); (I.B.P.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
36
|
Nakayama S, Lukacova V, Tanabe S, Watanabe A, Mullin J, Suarez-Sharp S, Shimizu T. Physiologically Based Pharmacokinetic Absorption Model for Pexidartinib to Evaluate the Impact of Meal Contents and Intake Timing on Drug Exposure. Clin Pharmacol Drug Dev 2024; 13:440-448. [PMID: 38396317 DOI: 10.1002/cpdd.1385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Pexidartinib is a systemic treatment for patients with tenosynovial giant cell tumor not amenable to surgery. Oral absorption of pexidartinib is affected by food; administration with a high-fat meal (HFM) or low-fat meal (LFM) increases absorption by approximately 100% and approximately 60%, respectively, compared with the fasted state. Pexidartinib is currently dosed 250 mg orally twice daily with an LFM (approximately 11-14 g of total fat). We developed a physiologically based pharmacokinetic model to determine the impact on drug exposure of dose timing with respect to meals, meal type, and caloric content. A 15%-16% increase in plasma exposure was predicted when consuming an HFM 1 hour after dosing with an LFM, but almost no effect on pharmacokinetics was predicted when an HFM was consumed 3 hours or more before or after pexidartinib dosing with an LFM. Exposure was not significantly affected when pexidartinib was taken with a 500-kcal LFM over the range of fat (approximately 11-14 g of total fat; 20%-25% calories from fat) for an LFM. These findings on timing of pexidartinib dose with respect to meals should be considered by patients and physicians to reduce the potential for side effects.
Collapse
Affiliation(s)
- Shintaro Nakayama
- Quantitative Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | | | - Shuichi Tanabe
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Akiko Watanabe
- Quantitative Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Jim Mullin
- Simulations Plus, Inc., Lancaster, CA, USA
| | | | - Takako Shimizu
- Quantitative Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| |
Collapse
|
37
|
Ajam-Hosseini M, Heydari R, Rasouli M, Akhoondi F, Asadi Hanjani N, Bekeschus S, Doroudian M. Lactic acid in macrophage polarization: A factor in carcinogenesis and a promising target for cancer therapy. Biochem Pharmacol 2024; 222:116098. [PMID: 38431231 DOI: 10.1016/j.bcp.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Cancer remains a formidable challenge, continually revealing its intricate nature and demanding novel treatment approaches. Within this intricate landscape, the tumor microenvironment and its dynamic components have gained prominence, particularly macrophages that can adopt diverse polarization states, exerting a profound influence on cancer progression. Recent revelations have spotlighted lactic acid as a pivotal player in this complex interplay. This review systematically explores lactic acid's multifaceted role in macrophage polarization, focusing on its implications in carcinogenesis. We commence by cultivating a comprehensive understanding of the tumor microenvironment and the pivotal roles played by macrophages. The dynamic landscape of macrophage polarization, typified by M1 and M2 phenotypes, is dissected to reveal its substantial impact on tumor progression. Lactic acid, a metabolic byproduct, emerges as a key protagonist, and we meticulously unravel the mechanisms underpinning its generation within cancer cells, shedding light on its intimate association with glycolysis and its transformative effects on the tumor microenvironment. Furthermore, we decipher the intricate molecular framework that underlies lactic acid's pivotal role in facilitating macrophage polarization. Our review underscores lactic acid's dual role in carcinogenesis, orchestrating tumor growth and immune modulation within the tumor microenvironment, thereby profoundly influencing the balance between pro-tumor and anti-tumor immune responses. This duality highlights the therapeutic potential of selectively manipulating lactic acid metabolism for cancer treatment. Exploring strategies to inhibit lactic acid production by tumor cells, novel approaches to impede lactic acid transport in the tumor microenvironment, and the burgeoning field of immunotherapeutic cancer therapies utilizing lactic acid-induced macrophage polarization form the core of our investigation.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Romina Heydari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Milad Rasouli
- Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Akhoondi
- Department of Molecular Biology of the Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Niloofar Asadi Hanjani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str 2, 17489 Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
38
|
Fontebasso AM, Rytlewski JD, Blay JY, Gladdy RA, Wilky BA. Precision Oncology in Soft Tissue Sarcomas and Gastrointestinal Stromal Tumors. Surg Oncol Clin N Am 2024; 33:387-408. [PMID: 38401916 DOI: 10.1016/j.soc.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Soft tissue sarcomas (STSs), including gastrointestinal stromal tumors (GISTs), are mesenchymal neoplasms with heterogeneous clinical behavior and represent broad categories comprising multiple distinct biologic entities. Multidisciplinary management of these rare tumors is critical. To date, multiple studies have outlined the importance of biological characterization of mesenchymal tumors and have identified key molecular alterations which drive tumor biology. GIST has represented a flagship for targeted therapy in solid tumors with the advent of imatinib which has revolutionized the way we treat this malignancy. Herein, the authors discuss the importance of biological and molecular diagnostics in managing STS and GIST patients.
Collapse
Affiliation(s)
- Adam M Fontebasso
- Division of Surgical Oncology, Department of Surgery, University of Toronto, 700 University Avenue, 7th Floor, Ontario Power Generation Building, Toronto, Ontario, Canada; Department of Surgery, Mount Sinai Hospital, Sinai Health Systems, 600 University Avenue Room 6-445.10 Surgery, Toronto, Ontario M5G 1X5, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey D Rytlewski
- University of Colorado School of Medicine, 12801 East 17th Avenue, Mailstop 8117, Aurora, CO 80045, USA
| | - Jean-Yves Blay
- Centre Léon Bérard, 28, rue Laennec, 69373 cedex 08. Lyon, France
| | - Rebecca A Gladdy
- Division of Surgical Oncology, Department of Surgery, University of Toronto, 700 University Avenue, 7th Floor, Ontario Power Generation Building, Toronto, Ontario, Canada; Department of Surgery, Mount Sinai Hospital, Sinai Health Systems, 600 University Avenue Room 6-445.10 Surgery, Toronto, Ontario M5G 1X5, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Breelyn A Wilky
- University of Colorado School of Medicine, 12801 East 17th Avenue, Mailstop 8117, Aurora, CO 80045, USA.
| |
Collapse
|
39
|
Tap WD, Sharma MG, Vallee M, Smith BD, Sherman ML, Ruiz-Soto R, de Sande MV, Randall RL, Bernthal NM, Gelderblom H. The MOTION study: a randomized, phase III study of vimseltinib for the treatment of tenosynovial giant cell tumor. Future Oncol 2024; 20:593-601. [PMID: 37593881 DOI: 10.2217/fon-2023-0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Tenosynovial giant cell tumor (TGCT) is a rare, locally aggressive neoplasm that occurs in the synovium of joints, bursae, or tendon sheaths and is caused by upregulation of the CSF1 gene. Vimseltinib is an oral switch-control tyrosine kinase inhibitor specifically designed to selectively and potently inhibit the CSF1 receptor. Here, we describe the rationale and design for the phase III MOTION trial (NCT05059262), which aims to evaluate the efficacy and safety of vimseltinib in participants with TGCT not amenable to surgical resection. In part 1, participants are randomized to receive vimseltinib 30 mg twice weekly or matching placebo for ≤24 weeks. Part 2 is a long-term treatment phase in which participants will receive open-label vimseltinib.
Collapse
Affiliation(s)
- William D Tap
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maitreyi G Sharma
- Clinical Development, Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, USA
| | - Marc Vallee
- Biostatistics, Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, USA
| | - Bryan D Smith
- Biological Sciences, Deciphera Pharmaceuticals, LLC, Lawrence, KS 66044, USA
| | - Matthew L Sherman
- Clinical Development, Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, USA
| | - Rodrigo Ruiz-Soto
- Clinical Development, Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, USA
| | | | - R Lor Randall
- University of California Davis Medical Center, Sacramento, CA 95817, USA
| | | | - Hans Gelderblom
- Leiden University Medical Center, Leiden, 2333, The Netherlands
| |
Collapse
|
40
|
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, Bao X, Fang W, Li H, Zhao P, Dai X. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024; 305:122463. [PMID: 38232643 DOI: 10.1016/j.biomaterials.2023.122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.
Collapse
Affiliation(s)
- Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yangyue Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Hui Ren
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Huanhuan Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, 310022, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
42
|
Yotsuya K, Shido Y, Matsuyama Y. Invasion Patterns and Long-Term Clinical Outcomes of Diffuse Tenosynovial Giant Cell Tumor of the Ankle Joint. Cureus 2024; 16:e56148. [PMID: 38487651 PMCID: PMC10938483 DOI: 10.7759/cureus.56148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The invasion patterns and long-term outcomes of diffuse tenosynovial giant cell tumor (D-TSGCT) of the ankle joint remain unclear. METHODS Seven patients who visited our department between 2011 and 2023 and were diagnosed with D-TSGCT of the ankle joint by contrast-enhanced MRI and a pathological diagnosis were included. The invasion patterns of ankle D-TSGCT on MRI were investigated. The recurrence rate and clinical symptoms were examined in five patients followed up for more than seven years after total resection. RESULTS In seven patients (1 male/6 females, mean age 37.0±16.6 years, range 15-57 years) with D-TSGCT of the ankle joint, contrast-enhanced MRI at the initial presentation showed invasion within the ankle joint, extending along the tendon sheath, within the talocalcaneal joint, and in the tarsal sinus in 100% of cases, around the deltoid ligament in 86%, within the plantar surface in 43%, invasion of the interosseous membrane in 57%, around the Achilles tendon in 29%, and scalloping on the talocrural joint in 43%. The mean time from mass awareness to the first visit was 51.9±80.0 months (range 1-240 months). Gross total resection, defined as the removal of all tumors as gauged by MRI, was initially performed on 6/7 patients. One patient underwent partial resection of only the anterior part of the tumor. Of the six cases in which gross total resection was performed, 5 had long-term follow-up of more than seven years post-operatively, and one case is still only one year post-operatively. The long-term results of five patients followed for more than seven years after total resection were as follows: a mean follow-up period of 125 months (range 89-171 months), a 100% recurrence rate, a mean time to recurrence of 27.5±19.2 months (range 7-60 months), and a 16% reoperation rate. In the last follow-up, osteoarthritic changes were observed radiographically in 2/5 patients (40%), both of whom had scalloping of the talocrural joint on MRI at the time of the initial diagnosis. Four of the five patients (80%) had no clinical symptoms in the last follow-up. CONCLUSION Ankle D-TSGCT presents with a strong local infiltrative pattern inside and outside the ankle joint along the tendon sheath, radical resection may be difficult, and the recurrence rate may be higher than previously reported. On the other hand, there are many cases that remain free of clinical symptoms in the long term after recurrence, and surgical indications for ankle D-TSGCT need to consider function preservation as well as recurrence rates.
Collapse
Affiliation(s)
- Kumiko Yotsuya
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Yoji Shido
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Yukihiro Matsuyama
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| |
Collapse
|
43
|
Dharmani C, Fofah O, Wang E, Salas M, Wooddell M, Tu N, Tse J, Near A, Tinoco G. Real-world drug utilization and treatment patterns in patients with tenosynovial giant cell tumors in the USA. Future Oncol 2024; 20:1079-1097. [PMID: 38380590 DOI: 10.2217/fon-2023-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Aim: Real-world treatment patterns in tenosynovial giant cell tumor (TGCT) patients remain unknown. Pexidartinib is the only US FDA-approved treatment for TGCT associated with severe morbidity or functional limitations and not amenable to improvement with surgery. Objective: To characterize drug utilization and treatment patterns in TGCT patients. Methods: In a retrospective observational study using IQVIA's linked prescription and medical claims databases (2018-2021), TGCT patients were stratified by their earliest systemic therapy claim (pexidartinib [N = 82] or non-FDA-approved systemic therapy [N = 263]). Results: TGCT patients treated with pexidartinib versus non-FDA-approved systemic therapies were predominantly female (61 vs 50.6%) and their median age was 47 and 54 years, respectively. Pexidartinib-treated patients had the highest 12-month probability of remaining on treatment (54%); 34.1% of pexidartinib users had dose reduction after their first claim. Conclusion: This study provides new insights into the unmet need, utilization and treatment patterns of systemic therapies for the treatment of TGCT patients.
Collapse
Affiliation(s)
- Charles Dharmani
- Daiichi Sankyo, Inc., 211, Mt. Airy Road, Basking Ridge, NJ 07920, USA
| | - Oluwatosin Fofah
- Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Eric Wang
- Daiichi Sankyo, Inc., 211, Mt. Airy Road, Basking Ridge, NJ 07920, USA
| | - Maribel Salas
- Daiichi Sankyo, Inc., 211, Mt. Airy Road, Basking Ridge, NJ 07920, USA
| | - Margaret Wooddell
- Daiichi Sankyo, Inc., 211, Mt. Airy Road, Basking Ridge, NJ 07920, USA
| | - Nora Tu
- Daiichi Sankyo, Inc., 211, Mt. Airy Road, Basking Ridge, NJ 07920, USA
| | | | | | - Gabriel Tinoco
- The Ohio State University Wexner Medical Center, 460 W 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Kim AB, Xiao Q, Yan P, Pan Q, Pandey G, Grathwohl S, Gonzales E, Xu I, Cho Y, Haecker H, Epelman S, Diwan A, Lee JM, DeSelm CJ. Chimeric antigen receptor macrophages target and resorb amyloid plaques. JCI Insight 2024; 9:e175015. [PMID: 38516884 PMCID: PMC11063938 DOI: 10.1172/jci.insight.175015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Substantial evidence suggests a role for immunotherapy in treating Alzheimer's disease (AD). While the precise pathophysiology of AD is incompletely understood, clinical trials of antibodies targeting aggregated forms of β amyloid (Aβ) have shown that reducing amyloid plaques can mitigate cognitive decline in patients with early-stage AD. Here, we describe what we believe to be a novel approach to target and degrade amyloid plaques by genetically engineering macrophages to express an Aβ-targeting chimeric antigen receptor (CAR-Ms). When injected intrahippocampally, first-generation CAR-Ms have limited persistence and fail to significantly reduce plaque load, which led us to engineer next-generation CAR-Ms that secrete M-CSF and self-maintain without exogenous cytokines. Cytokine secreting "reinforced CAR-Ms" have greater survival in the brain niche and significantly reduce plaque load locally in vivo. These findings support CAR-Ms as a platform to rationally target, resorb, and degrade pathogenic material that accumulates with age, as exemplified by targeting Aβ in AD.
Collapse
Affiliation(s)
- Alexander B. Kim
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| | - Qingli Xiao
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ping Yan
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qiuyun Pan
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| | - Gaurav Pandey
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| | - Susie Grathwohl
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ernesto Gonzales
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Isabella Xu
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yoonho Cho
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hans Haecker
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Slava Epelman
- Department of Medicine, Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Abhinav Diwan
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- Departments of Medicine, Cell Biology and Physiology, Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
- Medicine Service, St. Louis VA Medical Center, St. Louis, Missouri, USA
| | - Jin-Moo Lee
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carl J. DeSelm
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| |
Collapse
|
45
|
Chipman DE, Perkins CA, Lijesen E, Green DW. Pigmented villonodular synovitis/giant cell tumor in the knee. Curr Opin Pediatr 2024; 36:78-82. [PMID: 37994651 DOI: 10.1097/mop.0000000000001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
PURPOSE OF REVIEW Pigmented villonodular synovitis (PVNS) is a rare diagnosis in pediatric patients and commonly presents with symptoms of swelling and pain. Early diagnosis is important to prevent secondary degeneration into the subchondral bone. This review will analyze the etiology, clinical signs/symptoms, diagnosis, treatment, and recent literature on PVNS in the pediatric population. RECENT FINDINGS Many theories of PVNS etiology have been described in the literature; however, an inflammatory response has been most widely accepted. PVNS can occur in any joint, but most commonly in the knee. The most common treatment for PVNS is synovectomy, and long-term follow-up is necessary to detect disease persistence or recurrence. SUMMARY Although uncommon, PVNS does occur in the pediatric population and this diagnosis should be included in the differential of atraumatic joint swelling and pain.
Collapse
Affiliation(s)
- Danielle E Chipman
- Department of Pediatric Orthopedics, Hospital for Special Surgery, New York, New York
| | | | - Emilie Lijesen
- Department of Pediatric Orthopedics, Hospital for Special Surgery, New York, New York
| | - Daniel W Green
- Department of Pediatric Orthopedics, Hospital for Special Surgery, New York, New York
| |
Collapse
|
46
|
Voissière A, Gomez-Roca C, Chabaud S, Rodriguez C, Nkodia A, Berthet J, Montane L, Bidaux AS, Treilleux I, Eberst L, Terret C, Korakis I, Garin G, Pérol D, Delord JP, Caux C, Dubois B, Ménétrier-Caux C, Bendriss-Vermare N, Cassier PA. The CSF-1R inhibitor pexidartinib affects FLT3-dependent DC differentiation and may antagonize durvalumab effect in patients with advanced cancers. Sci Transl Med 2024; 16:eadd1834. [PMID: 38266104 DOI: 10.1126/scitranslmed.add1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Tumor-associated macrophages (TAMs) are a critical determinant of resistance to PD-1/PD-L1 blockade. This phase 1 study (MEDIPLEX, NCT02777710) investigated the safety and efficacy of pexidartinib, a CSF-1R-directed tyrosine kinase inhibitor (TKI), and durvalumab (anti-PD-L1) in patients with advanced colorectal and pancreatic carcinoma with the aim to enhance responses to PD-L1 blockade by eliminating CSF-1-dependent suppressive TAM. Forty-seven patients were enrolled. No unexpected toxicities were observed, one (2%) high microsatellite instability CRC patient had a partial response, and seven (15%) patients experienced stable disease as their best response. Increase of CSF-1 concentrations and decrease of CD14lowCD16high monocytes in peripheral blood mononuclear cells (PBMCs) confirmed CSF-1R engagement. Treatment decreased blood dendritic cell (DC) subsets and impaired IFN-λ/IL-29 production by type 1 conventional DCs in ex vivo TLR3-stimulated PBMCs. Pexidartinib also targets c-KIT and FLT3, both key growth factor receptors of DC development and maturation. In patients, FLT3-L concentrations increased with pexidartinib treatment, and AKT phosphorylation induced by FLT3-L ex vivo stimulation was abrogated by pexidartinib in human blood DC subsets. In addition, pexidartinib impaired the FLT3-L- but not GM-CSF-dependent generation of DC subsets from murine bone marrow (BM) progenitors in vitro and decreased DC frequency in BM and tumor-draining lymph node in vivo. Our results demonstrate that pexidartinib, through the inhibition of FLT3 signaling, has a deleterious effect on DC differentiation, which may explain the limited antitumor clinical activity observed in this study. This work suggests that inhibition of FLT3 should be considered when combining TKIs with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Aurélien Voissière
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
| | - Carlos Gomez-Roca
- Department of Medical Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Sylvie Chabaud
- Clinical Research Platform (DRCI), Centre Léon Bérard, Lyon, France
| | - Céline Rodriguez
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Axelle Nkodia
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Justine Berthet
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Laure Montane
- Clinical Research Platform (DRCI), Centre Léon Bérard, Lyon, France
| | | | | | - Lauriane Eberst
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Catherine Terret
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Iphigénie Korakis
- Department of Medical Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Gwenaelle Garin
- Clinical Research Platform (DRCI), Centre Léon Bérard, Lyon, France
| | - David Pérol
- Clinical Research Platform (DRCI), Centre Léon Bérard, Lyon, France
| | - Jean-Pierre Delord
- Department of Medical Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Christophe Caux
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Bertrand Dubois
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Christine Ménétrier-Caux
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Nathalie Bendriss-Vermare
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Philippe A Cassier
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| |
Collapse
|
47
|
Laureano RS, Vanmeerbeek I, Sprooten J, Govaerts J, Naulaerts S, Garg AD. The cell stress and immunity cycle in cancer: Toward next generation of cancer immunotherapy. Immunol Rev 2024; 321:71-93. [PMID: 37937803 DOI: 10.1111/imr.13287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
The cellular stress and immunity cycle is a cornerstone of organismal homeostasis. Stress activates intracellular and intercellular communications within a tissue or organ to initiate adaptive responses aiming to resolve the origin of this stress. If such local measures are unable to ameliorate this stress, then intercellular communications expand toward immune activation with the aim of recruiting immune cells to effectively resolve the situation while executing tissue repair to ameliorate any damage and facilitate homeostasis. This cellular stress-immunity cycle is severely dysregulated in diseased contexts like cancer. On one hand, cancer cells dysregulate the normal cellular stress responses to reorient them toward upholding growth at all costs, even at the expense of organismal integrity and homeostasis. On the other hand, the tumors severely dysregulate or inhibit various components of organismal immunity, for example, by facilitating immunosuppressive tumor landscape, lowering antigenicity, and increasing T-cell dysfunction. In this review we aim to comprehensively discuss the basis behind tumoral dysregulation of cellular stress-immunity cycle. We also offer insights into current understanding of the regulators and deregulators of this cycle and how they can be targeted for conceptualizing successful cancer immunotherapy regimen.
Collapse
Affiliation(s)
- Raquel S Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Geiger EJ, Jensen AR, Singh AS, Nelson SD, Bernthal NM. Use of neoadjuvant pexidartinib with limb salvage surgery for diffuse tenosynovial giant cell tumor: A case report. J Orthop Sci 2024; 29:458-462. [PMID: 36402606 DOI: 10.1016/j.jos.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/24/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Erik J Geiger
- Department of Orthopaedic Surgery, The Rothman Institute at Thomas Jefferson University, Philadelphia, PA, USA.
| | - Andrew R Jensen
- Department of Orthopaedic Surgery, University of California-Los Angeles, Santa Monica, CA, USA
| | - Arun S Singh
- Department of Medicine, Division of Hematology-Oncology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Scott D Nelson
- Departments of Pathology and Orthopaedic Surgery, University of California-Los Angeles, Santa Monica, CA, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California-Los Angeles, Santa Monica, CA, USA
| |
Collapse
|
49
|
Walker K, Simister SK, Carr-Ascher J, Monument MJ, Thorpe SW, Randall RL. Emerging innovations and advancements in the treatment of extremity and truncal soft tissue sarcomas. J Surg Oncol 2024; 129:97-111. [PMID: 38010997 DOI: 10.1002/jso.27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
In this special edition update on soft tissue sarcomas (STS), we cover classifications, emerging technologies, prognostic tools, radiation schemas, and treatment disparities in extremity and truncal STS. We discuss the importance of enhancing local control and reducing complications, including the role of innovative imaging, surgical guidance, and hypofractionated radiation. We review advancements in systemic and immunotherapeutic treatments and introduce disparities seen in this vulnerable population that must be considered to improve overall patient care.
Collapse
Affiliation(s)
- Kyle Walker
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| | - Samuel K Simister
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| | - Janai Carr-Ascher
- Department of Hematology and Oncology, University of California, Davis, Sacramento, California, USA
| | - Michael J Monument
- Department of Surgery, The University of Calgary, Calgary, Alberta, Canada
| | - Steven W Thorpe
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| | - R Lor Randall
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
50
|
Bosch AJT, Keller L, Steiger L, Rohm TV, Wiedemann SJ, Low AJY, Stawiski M, Rachid L, Roux J, Konrad D, Wueest S, Tugues S, Greter M, Böni-Schnetzler M, Meier DT, Cavelti-Weder C. CSF1R inhibition with PLX5622 affects multiple immune cell compartments and induces tissue-specific metabolic effects in lean mice. Diabetologia 2023; 66:2292-2306. [PMID: 37792013 PMCID: PMC10627931 DOI: 10.1007/s00125-023-06007-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 10/05/2023]
Abstract
AIMS/HYPOTHESIS Colony stimulating factor 1 (CSF1) promotes the proliferation, differentiation and survival of macrophages, which have been implicated in both beneficial and detrimental effects on glucose metabolism. However, the physiological role of CSF1 signalling in glucose homeostasis and the potential therapeutic implications of modulating this pathway are not known. We aimed to study the composition of tissue macrophages (and other immune cells) following CSF1 receptor (CSF1R) inhibition and elucidate the metabolic consequences of CSF1R inhibition. METHODS We assessed immune cell populations in various organs by flow cytometry, and tissue-specific metabolic effects by hyperinsulinaemic-euglycaemic clamps and insulin secretion assays in mice fed a chow diet containing PLX5622 (a CSF1R inhibitor) or a control diet. RESULTS CSF1R inhibition depleted macrophages in multiple tissues while simultaneously increasing eosinophils and group 2 innate lymphoid cells. These immunological changes were consistent across different organs and were sex independent and reversible after cessation of the PLX5622. CSF1R inhibition improved hepatic insulin sensitivity but concomitantly impaired insulin secretion. In healthy islets, we found a high frequency of IL-1β+ islet macrophages. Their depletion by CSF1R inhibition led to downregulation of macrophage-related pathways and mediators of cytokine activity, including Nlrp3, suggesting IL-1β as a candidate insulin secretagogue. Partial restoration of physiological insulin secretion was achieved by injecting recombinant IL-1β prior to glucose stimulation in mice lacking macrophages. CONCLUSIONS/INTERPRETATION Macrophages and macrophage-derived factors, such as IL-1β, play an important role in physiological insulin secretion. A better understanding of the tissue-specific effects of CSF1R inhibition on immune cells and glucose homeostasis is crucial for the development of targeted immune-modulatory treatments in metabolic disease. DATA AVAILABILITY The RNA-Seq dataset is available in the Gene Expression Omnibus (GEO) under the accession number GSE189434 ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189434 ).
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lena Keller
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Steiger
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Andy J Y Low
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Stawiski
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Leila Rachid
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Daniel T Meier
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|