1
|
Benjamin-Chung J, Li H, Nguyen A, Barratt Heitmann G, Bennett A, Ntuku H, Prach LM, Tambo M, Wu L, Drakeley C, Gosling R, Mumbengegwi D, Kleinschmidt I, Smith JL, Hubbard A, van der Laan M, Hsiang MS. Extension of efficacy range for targeted malaria-elimination interventions due to spillover effects. Nat Med 2024; 30:2813-2820. [PMID: 38965434 PMCID: PMC11483210 DOI: 10.1038/s41591-024-03134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Malaria-elimination interventions aim to extinguish hotspots and prevent transmission to nearby areas. Here, we re-analyzed a cluster-randomized trial of reactive, focal interventions (chemoprevention using artemether-lumefantrine and/or indoor residual spraying with pirimiphos-methyl) delivered within 500 m of confirmed malaria index cases in Namibia to measure direct effects (among intervention recipients within 500 m) and spillover effects (among non-intervention recipients within 3 km) on incidence, prevalence and seroprevalence. There was no or weak evidence of direct effects, but the sample size of intervention recipients was small, limiting statistical power. There was the strongest evidence of spillover effects of combined chemoprevention and indoor residual spraying. Among non-recipients within 1 km of index cases, the combined intervention reduced malaria incidence by 43% (95% confidence interval, 20-59%). In analyses among non-recipients within 3 km of interventions, the combined intervention reduced infection prevalence by 79% (6-95%) and seroprevalence, which captures recent infections and has higher statistical power, by 34% (20-45%). Accounting for spillover effects increased the cost-effectiveness of the combined intervention by 42%. Targeting hotspots with combined chemoprevention and vector-control interventions can indirectly benefit non-recipients up to 3 km away.
Collapse
Affiliation(s)
- Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Haodong Li
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Anna Nguyen
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- PATH, Seattle, WA, USA
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa M Prach
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
| | - Munyaradzi Tambo
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Jennifer L Smith
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Alan Hubbard
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Mark van der Laan
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Michelle S Hsiang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Reynders M, Tweneboah A, Abbas DA, Opoku Afriyie S, Nketsiah SN, Badu K, Koepfli C. Challenges in diagnosis of clinical and subclinical Plasmodium falciparum infections in Ghana and feasibility of reactive interventions to shrink the subclinical reservoir. Malar J 2024; 23:272. [PMID: 39256754 PMCID: PMC11389207 DOI: 10.1186/s12936-024-05096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Reactive case detection (RCD) aims to reduce malaria transmission stemming from asymptomatic carriers. Symptomatic individuals diagnosed with malaria at a health centre are followed to their households, where members of the index case and neighbouring households are tested and treated for malaria. An RCD programme was tested in the Ashanti region of Ghana in order to study diagnostic accuracy in the hospital and household settings, assess the prevalence of subclinical infections and possible clustering in index case households, and identify operational challenges for future RCD programmes. Currently, transmission in this region is high, but reactive interventions might become an option once transmission is reduced. METHODS 264 febrile individuals were enrolled at the Mankranso Government Hospital and tested for malaria using rapid diagnostic tests (RDT). From the pool of RDT-positive febrile index cases, 14 successful RCD follow-ups were conducted, and 233 individuals were enrolled from the index case, neighbour, and control households. The sensitivity of diagnostic tools for clinical and subclinical cases was compared, including RDT, expert microscopy by World Health Organization-certified microscopists, field microscopy, and qPCR. RESULTS Poor diagnosis and low receptivity to RCD-style follow-ups were major limitations to a successful and effective RCD programme. Field microscopy detected only 49% of clinical infections compared to RDT. 54% of individuals did not agree to a follow-up, and 66% of attempted follow-ups failed. The system effectiveness of RCD, calculated as the product of correctly diagnosed index cases, successful follow-ups, and proportion of asymptomatic infections detected by RDT, was very low at 4.0%. CONCLUSIONS Due to low system effectiveness and the endemic nature of the disease setting in which asymptomatic prevalence is high and infections are not clustered around index case households, RCD is currently not a feasible option for malaria control in this region. The operational challenges identified through this study may help inform future reactive intervention programme designs once transmission is reduced.
Collapse
Affiliation(s)
- Madeline Reynders
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Austine Tweneboah
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Dawood Ackom Abbas
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Stephen Opoku Afriyie
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Stephen Nelly Nketsiah
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Kingsley Badu
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Cristian Koepfli
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
3
|
Rosenthal PJ, Asua V, Bailey JA, Conrad MD, Ishengoma DS, Kamya MR, Rasmussen C, Tadesse FG, Uwimana A, Fidock DA. The emergence of artemisinin partial resistance in Africa: how do we respond? THE LANCET. INFECTIOUS DISEASES 2024; 24:e591-e600. [PMID: 38552654 DOI: 10.1016/s1473-3099(24)00141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/21/2024]
Abstract
Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.
Collapse
Affiliation(s)
- Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA.
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda; University of Tübingen, Tübingen, Germany
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA; Departments of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Melissa D Conrad
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania; Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania; School of Public Health, Harvard University, Boston, MA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda; Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Fitsum G Tadesse
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia; London School of Hygiene and Tropical Medicine, London, UK
| | - Aline Uwimana
- Rwanda Biomedical Center, Kigali, Rwanda; Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Rapp T, Amagai K, Sinai C, Basham C, Loya M, Ngasala S, Said H, Muller MS, Chhetri SB, Yang G, François R, Odas M, Mathias D, Juliano JJ, Lin FC, Ngasala B, Lin JT. Microheterogeneity of Transmission Shapes Submicroscopic Malaria Carriage in Coastal Tanzania. J Infect Dis 2024; 230:485-496. [PMID: 38781438 PMCID: PMC11326843 DOI: 10.1093/infdis/jiae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Asymptomatic carriage of malaria parasites persists even as malaria transmission declines. Low-density infections are often submicroscopic, not detected with rapid diagnostic tests (RDTs) or microscopy but detectable by polymerase chain reaction (PCR). METHODS To characterize submicroscopic Plasmodium falciparum carriage in an area of declining malaria transmission, asymptomatic persons >5 years of age in rural Bagamoyo District, Tanzania, were screened using RDT, microscopy, and PCR. We investigated the size of the submicroscopic reservoir of infection across villages, determined factors associated with submicroscopic carriage, and assessed the natural history of submicroscopic malaria over 4 weeks. RESULTS Among 6076 participants, P. falciparum prevalences by RDT, microscopy, and PCR were 9%, 9%, and 28%, respectively, with roughly two-thirds of PCR-positive individuals harboring submicroscopic infection. Adult status, female sex, dry season months, screened windows, and bed net use were associated with submicroscopic carriage. Among 15 villages encompassing 80% of participants, the proportion of submicroscopic carriers increased with decreasing village-level malaria prevalence. Over 4 weeks, 23% of submicroscopic carriers (61 of 266) became RDT positive, with half exhibiting symptoms, while half (133 of 266) were no longer parasitemic at the end of 4 weeks. Progression to RDT-positive patent malaria occurred more frequently in villages with higher malaria prevalence. CONCLUSIONS Microheterogeneity in transmission observed at the village level appears to affect both the size of the submicroscopic reservoir and the likelihood of submicroscopic carriers developing patent malaria in coastal Tanzania.
Collapse
Affiliation(s)
- Tyler Rapp
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kano Amagai
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cyrus Sinai
- Department of Geography, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christopher Basham
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Mwajabu Loya
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Sifa Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Hamza Said
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Meredith S Muller
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Srijana B Chhetri
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Guozheng Yang
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ruthly François
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Melic Odas
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Institute of Food & Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| | - Jonathan J Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Feng-Chang Lin
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Spillover effects of targeted malaria interventions benefit neighboring areas. Nat Med 2024:10.1038/s41591-024-03221-1. [PMID: 39147832 DOI: 10.1038/s41591-024-03221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
|
6
|
Jafari Y, Brady OJ, Biggs JR, Lien LT, Mai HK, Nguyen HAT, Van Loock M, Herrera-Taracena G, Menten J, Iwasaki C, Takegata M, Kitamura N, Do Thai H, Minh BX, Morita K, Anh DD, Clifford S, Prem K, Hafalla J, Edmunds WJ, Yoshida LM, Hibberd ML, Hué S. Could prophylactic antivirals reduce dengue incidence in a high-prevalence endemic area? PLoS Negl Trop Dis 2024; 18:e0012334. [PMID: 39074158 PMCID: PMC11309446 DOI: 10.1371/journal.pntd.0012334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/08/2024] [Accepted: 06/29/2024] [Indexed: 07/31/2024] Open
Abstract
Prophylactic drugs against dengue are currently under development. In this study, we explored how such prophylactic approaches might affect dengue cases in four communes of Nha Trang City, Vietnam. A community level dengue transmission survey indicated high levels of previous exposure to dengue (89.7%; 95% CI: 87.2,92.0). We fitted a spatially explicit model to an observed outbreak and simulated likely effectiveness of Case-Area Targeted Interventions (CATI) and One-Time Mass Distribution (OTMD) of drug and vector control strategies. Increasing radius and effectiveness and decreasing delay of CATI was most effective, with drugs being more effective in averting dengue cases than vector control. Using an OTMD approach early in the outbreak required the least number of treatments to avert a case, suggesting that OTMD strategies should be considered as pre-emptive rather than reactive strategies. These findings show that pre-emptive interventions can substantially reduce the burden of dengue outbreaks in endemic settings.
Collapse
Affiliation(s)
- Yalda Jafari
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Oliver J. Brady
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joseph R. Biggs
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Le Thuy Lien
- Pasteur Institute in Nha Trang, Nha Trang, Vietnam
| | | | | | - Marnix Van Loock
- Janssen Research & Development, Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Guillermo Herrera-Taracena
- Janssen Research & Development, Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Joris Menten
- Janssen Research & Development, Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Chihiro Iwasaki
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Mizuki Takegata
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Noriko Kitamura
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hung Do Thai
- Pasteur Institute in Nha Trang, Nha Trang, Vietnam
| | - Bui Xuan Minh
- Khanh Hoa health Service Department, Nha Trang, Vietnam
| | - Kouichi Morita
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Sam Clifford
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kiesha Prem
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Julius Hafalla
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - W. John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Lay Myint Yoshida
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Martin L. Hibberd
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Stéphane Hué
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Wang YH, Gao P, Wang YQ, Xu LZ, Zeng KW, Tu PF. Small-molecule targeting PKM2 provides a molecular basis of lactylation-dependent fibroblast-like synoviocytes proliferation inhibition against rheumatoid arthritis. Eur J Pharmacol 2024; 972:176551. [PMID: 38570082 DOI: 10.1016/j.ejphar.2024.176551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Fibroblast-like synoviocytes (FLS) play an important role in rheumatoid arthritis (RA)-related swelling and bone damage. Therefore, novel targets for RA therapy in FLS are urgently discovered for improving pathologic phenomenon, especially joint damage and dyskinesia. Here, we suggested that pyruvate kinase M2 (PKM2) in FLS represented a pharmacological target for RA treatment by antimalarial drug artemisinin (ART). We demonstrated that ART selectively inhibited human RA-FLS and rat collagen-induced arthritis (CIA)-FLS proliferation and migration without observed toxic effects. In particular, the identification of targets revealed that PKM2 played a crucial role as a primary regulator of the cell cycle, leading to the heightened proliferation of RA-FLS. ART exhibited a direct interaction with PKM2, resulting in an allosteric modulation that enhances the lactylation modification of PKM2. This interaction further promoted the binding of p300, ultimately preventing the nuclear translocation of PKM2 and inducing cell cycle arrest at the S phase. In vivo, ART obviously suppressed RA-mediated synovial hyperplasia, bone damage and inflammatory response to further improve motor behavior in CIA-rats. Taken together, these findings indicate that directing interventions towards PKM2 in FLS could offer a hopeful avenue for pharmaceutical treatments of RA through the regulation of cell cycle via PKM2 lactylation.
Collapse
Affiliation(s)
- Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yu-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lu-Zheng Xu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Steinhardt LC, KC A, Tiffany A, Quincer EM, Loerinc L, Laramee N, Large A, Lindblade KA. Reactive Case Detection and Treatment and Reactive Drug Administration for Reducing Malaria Transmission: A Systematic Review and Meta-Analysis. Am J Trop Med Hyg 2024; 110:82-93. [PMID: 38118166 PMCID: PMC10993791 DOI: 10.4269/ajtmh.22-0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/09/2023] [Indexed: 12/22/2023] Open
Abstract
Many countries pursuing malaria elimination implement "reactive" strategies targeting household members and neighbors of index cases to reduce transmission. These strategies include reactive case detection and treatment (RACDT; testing and treating those positive) and reactive drug administration (RDA; providing antimalarials without testing). We conducted systematic reviews of RACDT and RDA to assess their effect on reducing malaria transmission and gathered evidence about key contextual factors important to their implementation. Two reviewers screened titles/abstracts and full-text records using defined criteria (Patient = those in malaria-endemic/receptive areas; Intervention = RACDT or RDA; Comparison = standard of care; Outcome = malaria incidence/prevalence) and abstracted data for meta-analyses. The Grading of Recommendations, Assessment, Development, and Evaluations approach was used to rate certainty of evidence (CoE) for each outcome. Of 1,460 records screened, reviewers identified five RACDT studies (three cluster-randomized controlled trials [cRCTs] and two nonrandomized studies [NRS]) and seven RDA studies (six cRCTs and one NRS); three cRCTs comparing RDA to RACDT were included in both reviews. Compared with RDA, RACDT was associated with nonsignificantly higher parasite prevalence (odds ratio [OR] = 1.85; 95% CI: 0.96-3.57; one study) and malaria incidence (rate ratio [RR] = 1.30; 95% CI: 0.94-1.79; three studies), both very low CoE. Compared with control or RACDT, RDA was associated with non-significantly lower parasite incidence (RR = 0.73; 95% CI: 0.36-1.47; 2 studies, moderate CoE), prevalence (OR = 0.78; 95% CI: 0.52-1.17; 4 studies, low CoE), and malaria incidence (RR = 0.93; 95% CI: 0.82-1.05; six studies, moderate CoE). Evidence for reactive strategies' impact on malaria transmission is limited, especially for RACDT, but suggests RDA might be more effective.
Collapse
Affiliation(s)
- Laura C. Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Achyut KC
- Malaria Branch, Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Amanda Tiffany
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | | | - Nicolas Laramee
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Amy Large
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Kim A. Lindblade
- Malaria Branch, Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
9
|
Gimnig JE, Steinhardt LC, Awolola TS, Impoinvil D, Zohdy S, Lindblade KA. Reducing Malaria Transmission through Reactive Indoor Residual Spraying: A Systematic Review. Am J Trop Med Hyg 2024; 110:94-100. [PMID: 38118168 PMCID: PMC10993783 DOI: 10.4269/ajtmh.22-0745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 09/08/2023] [Indexed: 12/22/2023] Open
Abstract
In the final stages of malaria elimination, interventions to reduce malaria transmission are often centered around a confirmed case of malaria, as cases tend to cluster together at very low levels of transmission. The WHO commissioned a systematic review of the literature and synthesis of evidence for reactive indoor residual spraying (IRS) to develop official recommendations for countries. Several electronic databases were searched in November 2020. A total of 455 records were identified and screened; 20 full-text articles were assessed for eligibility. Two cluster-randomized trials met the inclusion criteria for epidemiological outcomes. Risk of bias was assessed using standard criteria. Because one study was a superiority trial in which the comparator included reactive case detection or mass drug administration and the other was a noninferiority trial in which the comparator was proactive, focal IRS, results could not be pooled. In the superiority trial, reactive IRS reduced malaria prevalence by 68% (risk ratio [RR]: 0.32; 95% CI: 0.13-0.80; certainty of evidence: HIGH) compared with no reactive IRS. No difference was observed for clinical malaria (RR: 0.65; 95% CI: 0.38-1.11; certainty of evidence: MODERATE). In the noninferiority study, the mean difference in incidence between reactive IRS and proactive IRS was 0.10 additional case per 1,000 person-years, which was within the prespecified noninferiority bound (95% CI: -0.38 to 0.58; certainty of evidence: MODERATE). The evidence indicates that reactive IRS may be a cost-effective tool for the prevention of malaria in elimination settings. As only two cluster-randomized controlled trials from sub-Saharan Africa were found, additional high-quality studies should be encouraged.
Collapse
Affiliation(s)
- John E. Gimnig
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laura C. Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Taiwo Samson Awolola
- U.S. President’s Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Daniel Impoinvil
- U.S. President’s Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sarah Zohdy
- U.S. President’s Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kim A. Lindblade
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
10
|
Rapp T, Amagai K, Sinai C, Basham C, Loya M, Ngasala S, Said H, Muller MS, Chhetri SB, Yang G, François R, Odas M, Mathias D, Juliano JJ, Lin FC, Ngasala B, Lin JT. Micro-heterogeneity of transmission shapes the submicroscopic malaria reservoir in coastal Tanzania. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.06.23295089. [PMID: 37732257 PMCID: PMC10508794 DOI: 10.1101/2023.09.06.23295089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Background Asymptomatic malaria may be patent (visible by microscopy) and detectable by rapid malaria diagnostic tests (RDTs), or it may be submicroscopic and only detectable by polymerase chain reaction (PCR). Methods To characterize the submicroscopic reservoir in an area of declining malaria transmission, asymptomatic persons >5 years of age in Bagamoyo District, Tanzania, were screened using RDT, microscopy, and PCR. We investigated the size of the submicroscopic reservoir across villages, determined factors associated with submicroscopic parasitemia, and assessed the natural history of submicroscopic malaria over four weeks. Results Among 6,076 participants, Plasmodium falciparum prevalence by RDT, microscopy, and PCR was 9%, 9%, and 28%, respectively, with roughly two-thirds of PCR-positive individuals harboring submicroscopic infection. Adult status, female gender, dry season months, screened windows, and bednet use were associated with submicroscopic carriage. Among 15 villages encompassing 80% of participants, the proportion of submicroscopic carriers increased with decreasing village-level malaria prevalence. Over four weeks, 23% (61/266) of submicroscopic carriers became RDT-positive and were treated, with half exhibiting symptoms. This occurred more frequently in villages with higher malaria prevalence. Conclusions Micro-heterogeneity in transmission impacts the size of the submicroscopic reservoir and the likelihood of submicroscopic carriers developing patent malaria in coastal Tanzania.
Collapse
Affiliation(s)
- Tyler Rapp
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Kano Amagai
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Cyrus Sinai
- Department of Geography, University of North Carolina, Chapel Hill, NC USA
| | - Christopher Basham
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Mwajabu Loya
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Sifa Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Hamza Said
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Meredith S Muller
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Srijana B Chhetri
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Guozheng Yang
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Ruthly François
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Melic Odas
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Institute of Food & Agricultural Sciences, University of Florida, Vero Beach, FL USA
| | - Jonathan J Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Feng-Chang Lin
- Department of Geography, University of North Carolina, Chapel Hill, NC USA
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| |
Collapse
|
11
|
Suwannarong K, Cotter C, Ponlap T, Bubpa N, Thammasutti K, Chaiwan J, Finn TP, Kitchakarn S, Mårtensson A, Baltzell KA, Hsiang MS, Lertpiriyasuwat C, Sudathip P, Bennett A. Assessing the acceptability and feasibility of reactive drug administration for malaria elimination in a Plasmodium vivax predominant setting: a qualitative study in two provinces in Thailand. BMC Public Health 2023; 23:1346. [PMID: 37438774 DOI: 10.1186/s12889-023-15852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/09/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Reactive case detection (RACD) or testing and treatment of close contacts of recent malaria cases, is commonly practiced in settings approaching malaria elimination, but standard diagnostics have limited sensitivity to detect low level infections. Reactive drug administration (RDA), or presumptive treatment without testing, is an alternative approach, but better understanding regarding community acceptability and operational feasibility are needed. METHODS A qualitative study was conducted as part of a two-arm cluster randomized-controlled trial evaluating the effectiveness of RDA targeting high-risk villages and forest workers for reducing Plasmodium vivax and P. falciparum malaria in Thailand. Key informant interviews (KIIs) and focus group discussions (FGDs) were conducted virtually among key public health staff, village health volunteers (VHVs), and household members that implemented or received RDA activities. Transcriptions were reviewed, coded, and managed manually using Dedoose qualitative data analysis software, then underwent qualitative content analysis to identify key themes. RESULTS RDA was well accepted by household members and public health staff that implemented it. RDA participation was driven by fear of contracting malaria, eagerness to receive protection provided by malaria medicines, and the increased access to health care. Concerns were raised about the safety of taking malaria medicines without having an illness, particularly if underlying health conditions existed. Health promotion hospital (HPH) staff implementing RDA noted its operational feasibility, but highlighted difficulty in traveling to remote areas, and requested additional travel resources and hiring more VHVs. Other challenges were highlighted including the need for additional training for VHVs on malaria activities and the inability of HPH staff to conduct RDA due to other health priorities (e.g., Covid-19). More training and practice for VHVs were noted as ways to improve implementation of RDA. CONCLUSIONS To maximize uptake of RDA, regular education and sensitization campaigns in collaboration with village leaders on the purpose and rationale of RDA will be critical. To alleviate safety concerns and increase participant safety, a rigorous pharmacovigilance program will be important. To accelerate uptake of RDA, trust between HPH staff and VHVs and the communities they serve must continue to be strengthened to ensure acceptance of the intervention. TRIAL REGISTRATION This study was approved by the Committee on Human Research at the University of California San Francisco (19-28,060) and the local Ethics Committee for Research in Human Subjects at Tak Provincial Health office (009/63) and Kanchanaburi Provincial health office (Kor Chor 0032.002/2185). Local authorities and health officers in the provinces, districts, and villages agreed upon and coordinated the implementation of the study. All methods in this study were carried out in accordance with relevant guidelines and regulations.
Collapse
Grants
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
- QSE-M-UNOPS-UCSF-20864-003-41 Global Fund to Fight AIDS, Tuberculosis and Malaria
Collapse
Affiliation(s)
- Kanokwan Suwannarong
- Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- SUPA71 Co., Ltd, Bangkok, Thailand
| | - Chris Cotter
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, 550 16th Street, 3rd floor, San Francisco, CA, 94158, USA.
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | | | - Nisachon Bubpa
- Faculty of Nursing, Khon Kaen University, Khon Kaen Province, Thailand
| | | | - Jintana Chaiwan
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, 550 16th Street, 3rd floor, San Francisco, CA, 94158, USA
| | - Timothy P Finn
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, 550 16th Street, 3rd floor, San Francisco, CA, 94158, USA
| | - Suravadee Kitchakarn
- Department of Disease Control, Division of Vector Borne Diseases, Ministry of Public Health, Nonthaburi, Thailand
| | - Andreas Mårtensson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Kimberly A Baltzell
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
- School of Nursing, University of California San Francisco, San Francisco, CA, USA
| | - Michelle S Hsiang
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, 550 16th Street, 3rd floor, San Francisco, CA, 94158, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - Cheewanan Lertpiriyasuwat
- Department of Disease Control, Division of Vector Borne Diseases, Ministry of Public Health, Nonthaburi, Thailand
| | - Prayuth Sudathip
- Department of Disease Control, Division of Vector Borne Diseases, Ministry of Public Health, Nonthaburi, Thailand
| | - Adam Bennett
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, 550 16th Street, 3rd floor, San Francisco, CA, 94158, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- PATH, Seattle, WA, USA
| |
Collapse
|
12
|
Holzschuh A, Lerch A, Gerlovina I, Fakih BS, Al-Mafazy AWH, Reaves EJ, Ali A, Abbas F, Ali MH, Ali MA, Hetzel MW, Yukich J, Koepfli C. Multiplexed ddPCR-amplicon sequencing reveals isolated Plasmodium falciparum populations amenable to local elimination in Zanzibar, Tanzania. Nat Commun 2023; 14:3699. [PMID: 37349311 PMCID: PMC10287761 DOI: 10.1038/s41467-023-39417-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Zanzibar has made significant progress toward malaria elimination, but recent stagnation requires novel approaches. We developed a highly multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug-resistance loci, and successfully sequenced 290 samples from five districts covering both main islands. Here, we elucidate fine-scale Plasmodium falciparum population structure and infer relatedness and connectivity of infections using an identity-by-descent (IBD) approach. Despite high genetic diversity, we observe pronounced fine-scale spatial and temporal parasite genetic structure. Clusters of near-clonal infections on Pemba indicate persistent local transmission with limited parasite importation, presenting an opportunity for local elimination efforts. Furthermore, we observe an admixed parasite population on Unguja and detect a substantial fraction (2.9%) of significantly related infection pairs between Zanzibar and the mainland, suggesting recent importation. Our study provides a high-resolution view of parasite genetic structure across the Zanzibar archipelago and provides actionable insights for prioritizing malaria elimination efforts.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA
| | - Inna Gerlovina
- EPPIcenter Research Program, Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | | | - Erik J Reaves
- U.S. Centers for Disease Control and Prevention, President's Malaria Initiative, Dar es Salaam, United Republic of Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Faiza Abbas
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Ali Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
| |
Collapse
|
13
|
Das AM, Hetzel MW, Yukich JO, Stuck L, Fakih BS, Al-Mafazy AWH, Ali A, Chitnis N. Modelling the impact of interventions on imported, introduced and indigenous malaria infections in Zanzibar, Tanzania. Nat Commun 2023; 14:2750. [PMID: 37173317 PMCID: PMC10182017 DOI: 10.1038/s41467-023-38379-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Malaria cases can be classified as imported, introduced or indigenous cases. The World Health Organization's definition of malaria elimination requires an area to demonstrate that no new indigenous cases have occurred in the last three years. Here, we present a stochastic metapopulation model of malaria transmission that distinguishes between imported, introduced and indigenous cases, and can be used to test the impact of new interventions in a setting with low transmission and ongoing case importation. We use human movement and malaria prevalence data from Zanzibar, Tanzania, to parameterise the model. We test increasing the coverage of interventions such as reactive case detection; implementing new interventions including reactive drug administration and treatment of infected travellers; and consider the potential impact of a reduction in transmission on Zanzibar and mainland Tanzania. We find that the majority of new cases on both major islands of Zanzibar are indigenous cases, despite high case importation rates. Combinations of interventions that increase the number of infections treated through reactive case detection or reactive drug administration can lead to substantial decreases in malaria incidence, but for elimination within the next 40 years, transmission reduction in both Zanzibar and mainland Tanzania is necessary.
Collapse
Affiliation(s)
- Aatreyee M Das
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua O Yukich
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Logan Stuck
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Amsterdam Institute for Global Health and Development Amsterdam, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Abdul-Wahid H Al-Mafazy
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
- Office of the Chief Government Statistician (OCGS), Zanzibar, United Republic of Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Aidoo EK, Aboagye FT, Botchway FA, Osei-Adjei G, Appiah M, Duku-Takyi R, Sakyi SA, Amoah L, Badu K, Asmah RH, Lawson BW, Krogfelt KA. Reactive Case Detection Strategy for Malaria Control and Elimination: A 12 Year Systematic Review and Meta-Analysis from 25 Malaria-Endemic Countries. Trop Med Infect Dis 2023; 8:180. [PMID: 36977181 PMCID: PMC10058581 DOI: 10.3390/tropicalmed8030180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Reactive case detection (RACD) is the screening of household members and neighbors of index cases reported in passive surveillance. This strategy seeks asymptomatic infections and provides treatment to break transmission without testing or treating the entire population. This review discusses and highlights RACD as a recommended strategy for the detection and elimination of asymptomatic malaria as it pertains in different countries. Relevant studies published between January 2010 and September 2022 were identified mainly through PubMed and Google Scholar. Search terms included "malaria and reactive case detection", "contact tracing", "focal screening", "case investigation", "focal screen and treat". MedCalc Software was used for data analysis, and the findings from the pooled studies were analyzed using a fixed-effect model. Summary outcomes were then presented using forest plots and tables. Fifty-four (54) studies were systematically reviewed. Of these studies, 7 met the eligibility criteria based on risk of malaria infection in individuals living with an index case < 5 years old, 13 met the eligibility criteria based on risk of malaria infection in an index case household member compared with a neighbor of an index case, and 29 met the eligibility criteria based on risk of malaria infection in individuals living with index cases, and were included in the meta-analysis. Individuals living in index case households with an average risk of 2.576 (2.540-2.612) were more at risk of malaria infection and showed pooled results of high variation heterogeneity chi-square = 235.600, (p < 0.0001) I2 = 98.88 [97.87-99.89]. The pooled results showed that neighbors of index cases were 0.352 [0.301-0.412] times more likely to have a malaria infection relative to index case household members, and this result was statistically significant (p < 0.001). The identification and treatment of infectious reservoirs is critical to successful malaria elimination. Evidence to support the clustering of infections in neighborhoods, which necessitates the inclusion of neighboring households as part of the RACD strategy, was presented in this review.
Collapse
Affiliation(s)
- Ebenezer Krampah Aidoo
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - Frank Twum Aboagye
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra AH 38, Ghana;
| | - Felix Abekah Botchway
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - George Osei-Adjei
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - Michael Appiah
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - Ruth Duku-Takyi
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, Kwame Nkrumah University of Science & Technology, University Post Office, Kumasi AK 039, Ghana;
| | - Linda Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra LG 581, Ghana;
| | - Kingsley Badu
- Department of Theoretical & Applied Biology, Kwame Nkrumah University of Science & Technology, University Post Office, Kumasi AK 039, Ghana; (K.B.); (B.W.L.)
| | - Richard Harry Asmah
- Department of Biomedical Sciences, School of Basic and Biomedical Science, University of Health & Allied Sciences, Ho PMB 31, Ghana;
| | - Bernard Walter Lawson
- Department of Theoretical & Applied Biology, Kwame Nkrumah University of Science & Technology, University Post Office, Kumasi AK 039, Ghana; (K.B.); (B.W.L.)
| | - Karen Angeliki Krogfelt
- Department of Science and Environment, Unit of Molecular and Medical Biology, The PandemiX Center, Roskilde University, 4000 Roskilde, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark
| |
Collapse
|
15
|
Paaijmans KP, Lobo NF. Gaps in protection: the actual challenge in malaria elimination. Malar J 2023; 22:46. [PMID: 36747225 PMCID: PMC9902240 DOI: 10.1186/s12936-023-04473-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Progress in reducing both malaria cases and deaths has stalled with regression seen in many geographies. While significant attention is given to the contributing challenges of drug and insecticide resistance, 'residual' malaria is often diminished to transmission resulting from outdoor-biting or zoophagic/opportunistic mosquito vectors. These specific vector bionomic traits are only part of the problem, as residual transmission may be driven by (a combination of) (1) sub-optimal intervention coverage, quality, acceptance, and/or usage, (2) drug resistance, (3) insecticide resistance, (4) refractory, resistant and adaptive vector and human behaviours that lower intervention effectiveness, (5) lack of, limited access to, and/or willingness to use healthcare systems, (6) diagnostic sensitivity along with the parallel issue of hrp2/3 mutations, (7) (inter)national policy, (8) the research and development pipeline, and (9) external factors such as natural disasters and conflict zones. Towards combating the minimization of this extensive and multipronged issue among the scientific community, funding agencies, and public health officials responsible for guiding or developing malaria programmes, an alternative way of describing this transmission is proposed by focusing in on the causative 'gaps in protection'. Defining and wording it as such zeros in on the drivers that result in the observed remaining (or increasing) transmission, allowing the malaria community to focus on solutions by identifying the actual causes. Outlining, defining and quantifying the gaps in protection for a given system is of utmost importance to understand what needs to be done, differentiating what can be done versus what cannot be tackled at that moment, along with delineating the technical and financial capacity required.
Collapse
Affiliation(s)
- Krijn P Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA.
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique.
- ISGlobal, Barcelona, Spain.
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Echodu DC, Yeka A, Eganyu T, Odude W, Bukenya F, Amoah B, Wanzira H, Colborn K, Elliott RC, Powell SE, Kilama M, Mulebeke R, Nankabirwa J, Giorgi E, Roskosky M, Omoding O, Gonahasa S, Opigo J. Impact of population based indoor residual spraying with and without mass drug administration with dihydroartemisinin-piperaquine on malaria prevalence in a high transmission setting: a quasi-experimental controlled before-and-after trial in northeastern Uganda. BMC Infect Dis 2023; 23:72. [PMID: 36747133 PMCID: PMC9901833 DOI: 10.1186/s12879-023-07991-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Declines in malaria burden in Uganda have slowed. Modelling predicts that indoor residual spraying (IRS) and mass drug administration (MDA), when co-timed, have synergistic impact. This study investigated additional protective impact of population-based MDA on malaria prevalence, if any, when added to IRS, as compared with IRS alone and with standard of care (SOC). METHODS The 32-month quasi-experimental controlled before-and-after trial enrolled an open cohort of residents (46,765 individuals, 1st enumeration and 52,133, 4th enumeration) of Katakwi District in northeastern Uganda. Consented participants were assigned to three arms based on residential subcounty at study start: MDA+IRS, IRS, SOC. IRS with pirimiphos methyl and MDA with dihydroartemisinin- piperaquine were delivered in 4 co-timed campaign-style rounds 8 months apart. The primary endpoint was population prevalence of malaria, estimated by 6 cross-sectional surveys, starting at baseline and preceding each subsequent round. RESULTS Comparing malaria prevalence in MDA+IRS and IRS only arms over all 6 surveys (intention-to-treat analysis), roughly every 6 months post-interventions, a geostatistical model found a significant additional 15.5% (95% confidence interval (CI): [13.7%, 17.5%], Z = 9.6, p = 5e-20) decrease in the adjusted odds ratio (aOR) due to MDA for all ages, a 13.3% reduction in under 5's (95% CI: [10.5%, 16.8%], Z = 4.02, p = 5e-5), and a 10.1% reduction in children 5-15 (95% CI: [8.5%, 11.8%], Z = 4.7, p = 2e-5). All ages residents of the MDA + IRS arm enjoyed an overall 80.1% reduction (95% CI: [80.0%, 83.0%], p = 0.0001) in odds of qPCR confirmed malaria compared with SOC residents. Secondary difference-in-difference analyses comparing surveys at different timepoints to baseline showed aOR (MDA + IRS vs IRS) of qPCR positivity between 0.28 and 0.66 (p < 0.001). Of three serious adverse events, one (nonfatal) was considered related to study medications. Limitations include the initial non-random assignment of study arms, the single large cluster per arm, and the lack of an MDA-only arm, considered to violate equipoise. CONCLUSIONS Despite being assessed at long time points 5-7 months post-round, MDA plus IRS provided significant additional protection from malaria infection over IRS alone. Randomized trials of MDA in large areas undergoing IRS recommended as well as cohort studies of impact on incidence. TRIAL REGISTRATION This trial was retrospectively registered 11/07/2018 with the Pan African Clinical Trials Registry (PACTR201807166695568).
Collapse
Affiliation(s)
| | - Adoke Yeka
- grid.11194.3c0000 0004 0620 0548Makerere University College of Health Sciences, School of Public Health, P.O. Box 7072, Kampala, Uganda
| | - Thomas Eganyu
- Pilgrim Africa, Plot 8 Engwau Road, PO Box 577, Soroti, Uganda
| | - Wycliff Odude
- Pilgrim Africa, Plot 8 Engwau Road, PO Box 577, Soroti, Uganda
| | - Fred Bukenya
- Pilgrim Africa, Plot 8 Engwau Road, PO Box 577, Soroti, Uganda
| | - Benjamin Amoah
- grid.7445.20000 0001 2113 8111School of Public Health, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ UK
| | | | - Kathryn Colborn
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO 80045 USA
| | - Richard C. Elliott
- Pilgrim Africa, 8001 14th Avenue NE, Suite A, Seattle, WA 98115 USA ,grid.184764.80000 0001 0670 228XMicron School of Materials Science and Engineering, Boise State University, Engineering Building, Suite 338, Boise, ID 83725 USA
| | | | - Maxwell Kilama
- Pilgrim Africa, Plot 8 Engwau Road, PO Box 577, Soroti, Uganda
| | - Ronald Mulebeke
- grid.11194.3c0000 0004 0620 0548Makerere University College of Health Sciences, School of Public Health, P.O. Box 7072, Kampala, Uganda
| | - Joaniter Nankabirwa
- grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Emanuele Giorgi
- grid.9835.70000 0000 8190 6402Lancaster University Medical School, Centre for Health Informatics, Computing and Statistics, Lancaster, UK
| | - Mellisa Roskosky
- Pilgrim Africa, 8001 14th Avenue NE, Suite A, Seattle, WA 98115 USA ,grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Osborn Omoding
- Pilgrim Africa, Plot 8 Engwau Road, PO Box 577, Soroti, Uganda
| | - Samuel Gonahasa
- grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jimmy Opigo
- grid.415705.2National Malaria Control Division, Ministry of Health Uganda, Kampala, Uganda
| |
Collapse
|
17
|
Oduma CO, Ombok M, Zhao X, Huwe T, Ondigo BN, Kazura JW, Grieco J, Achee N, Liu F, Ochomo E, Koepfli C. Altitude, not potential larval habitat availability, explains pronounced variation in Plasmodium falciparum infection prevalence in the western Kenya highlands. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001505. [PMID: 37068071 PMCID: PMC10109483 DOI: 10.1371/journal.pgph.0001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/18/2023]
Abstract
Progress in malaria control has stalled over the recent years. Knowledge on main drivers of transmission explaining small-scale variation in prevalence can inform targeted control measures. We collected finger-prick blood samples from 3061 individuals irrespective of clinical symptoms in 20 clusters in Busia in western Kenya and screened for Plasmodium falciparum parasites using qPCR and microscopy. Clusters spanned an altitude range of 207 meters (1077-1284 m). We mapped potential mosquito larval habitats and determined their number within 250 m of a household and distances to households using ArcMap. Across all clusters, P. falciparum parasites were detected in 49.8% (1524/3061) of individuals by qPCR and 19.5% (596/3061) by microscopy. Across the clusters, prevalence ranged from 26% to 70% by qPCR. Three to 34 larval habitats per cluster and 0-17 habitats within a 250m radius around households were observed. Using a generalized linear mixed effect model (GLMM), a 5% decrease in the odds of getting infected per each 10m increase in altitude was observed, while the number of larval habitats and their proximity to households were not statistically significant predictors for prevalence. Kitchen located indoors, open eaves, a lower level of education of the household head, older age, and being male were significantly associated with higher prevalence. Pronounced variation in prevalence at small scales was observed and needs to be taken into account for malaria surveillance and control. Potential larval habitat frequency had no direct impact on prevalence.
Collapse
Affiliation(s)
- Colins O Oduma
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Maurice Ombok
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Xingyuan Zhao
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, United States of America
| | - Tiffany Huwe
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - James W Kazura
- Case Western Reserve University, Center for Global Health and Diseases, Cleveland, OH, United States of America
| | - John Grieco
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Nicole Achee
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, United States of America
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Eric Ochomo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Cristian Koepfli
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
18
|
Butzin-Dozier Z, Athni TS, Benjamin-Chung J. A Review of the Ring Trial Design for Evaluating Ring Interventions for Infectious Diseases. Epidemiol Rev 2022; 44:29-54. [PMID: 35593400 PMCID: PMC10362935 DOI: 10.1093/epirev/mxac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/25/2022] [Accepted: 05/12/2022] [Indexed: 12/29/2022] Open
Abstract
In trials of infectious disease interventions, rare outcomes and unpredictable spatiotemporal variation can introduce bias, reduce statistical power, and prevent conclusive inferences. Spillover effects can complicate inference if individual randomization is used to gain efficiency. Ring trials are a type of cluster-randomized trial that may increase efficiency and minimize bias, particularly in emergency and elimination settings with strong clustering of infection. They can be used to evaluate ring interventions, which are delivered to individuals in proximity to or contact with index cases. We conducted a systematic review of ring trials, compare them with other trial designs for evaluating ring interventions, and describe strengths and weaknesses of each design. Of 849 articles and 322 protocols screened, we identified 26 ring trials, 15 cluster-randomized trials, 5 trials that randomized households or individuals within rings, and 1 individually randomized trial. The most common interventions were postexposure prophylaxis (n = 23) and focal mass drug administration and screening and treatment (n = 7). Ring trials require robust surveillance systems and contact tracing for directly transmitted diseases. For rare diseases with strong spatiotemporal clustering, they may have higher efficiency and internal validity than cluster-randomized designs, in part because they ensure that no clusters are excluded from analysis due to zero cluster incidence. Though more research is needed to compare them with other types of trials, ring trials hold promise as a design that can increase trial speed and efficiency while reducing bias.
Collapse
|
19
|
Das AM, Hetzel MW, Yukich JO, Stuck L, Fakih BS, Al-Mafazy AWH, Ali A, Chitnis N. The impact of reactive case detection on malaria transmission in Zanzibar in the presence of human mobility. Epidemics 2022; 41:100639. [PMID: 36343496 PMCID: PMC9758615 DOI: 10.1016/j.epidem.2022.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
Malaria persists at low levels on Zanzibar despite the use of vector control and case management. We use a metapopulation model to investigate the role of human mobility in malaria persistence on Zanzibar, and the impact of reactive case detection. The model was parameterized using survey data on malaria prevalence, reactive case detection, and travel history. We find that in the absence of imported cases from mainland Tanzania, malaria would likely cease to persist on Zanzibar. We also investigate potential intervention scenarios that may lead to elimination, especially through changes to reactive case detection. While we find that some additional cases are removed by reactive case detection, a large proportion of cases are missed due to many infections having a low parasite density that go undetected by rapid diagnostic tests, a low rate of those infected with malaria seeking treatment, and a low rate of follow up at the household level of malaria cases detected at health facilities. While improvements in reactive case detection would lead to a reduction in malaria prevalence, none of the intervention scenarios tested here were sufficient to reach elimination. Imported cases need to be treated to have a substantial impact on prevalence.
Collapse
Affiliation(s)
- Aatreyee M Das
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Joshua O Yukich
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Logan Stuck
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | | | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Fine-scale-mapping of Schistosoma haematobium infections at the school and community levels and intermediate host snail abundance in the north of Pemba Island: baseline cross-sectional survey findings before the onset of a 3-year intervention study. Parasit Vectors 2022; 15:292. [PMID: 35974353 PMCID: PMC9380971 DOI: 10.1186/s13071-022-05404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Schistosomiasis elimination has gained renewed priority in the WHO guidance documents published in 2020 and 2022. The SchistoBreak project, implemented in Pemba, Tanzania between 2020 and 2024, aims to assess new tools and strategies for shifting from elimination as a public health problem towards interruption of transmission. Here we report our baseline findings and discuss implications for future interventions. Methods In 2020, human water contact sites (HWCSs) in the study area were geolocated and snail surveys were conducted. A parasitological and questionnaire cross-sectional baseline survey was implemented in 20 communities and their 16 primary schools between November 2020 and February 2021. Urine samples were collected at the school and household levels from individuals aged ≥ 4 years. Schistosoma haematobium infection was detected by urine filtration microscopy. Snail, parasitological and questionnaire-derived data were analyzed descriptively, spatially and with generalized estimated equation models. Results The intermediate host snail Bulinus globosus was detected in 19.8% (33/167) of HWCSs. The overall S. haematobium prevalence was 1.2% (26/2196) in school-aged children and 0.8% (31/3893) in community members, with 0.2% (4/2196) and 0.1% (3/3893) heavy-intensity infections, respectively. Children who studied < 1 km away from HWCSs with B. globosus had significantly higher odds for a S. haematobium infection than those attending a school located > 2 km away (odds ratio [OR]: 5.0; 95% confidence interval [CI]: 2.3–11.1). Individuals living in a house located < 1 km away from HWCSs with B. globosus had higher odds than those residing in > 2 km distance (OR: 18.0; 95% CI: 2.9–111.0). Self-reported praziquantel treatment coverage was 83.2% (2015/2423) in schoolchildren in the mass drug administration (MDA) conducted in August 2020. Coverage among adult community members was 59.9% (574/958), but only 34.8% (333/958) took praziquantel correctly. Conclusions While the S. haematobium prevalence is very low in Pemba, there are many HWCSs with B. globosus situated close to schools or houses that pose a considerable risk of recrudescence. To maintain and accelerate the progress towards interruption of transmission, targeted and cost-effective interventions that are accepted by the community are needed; for example, snail control plus focal MDA, or test-and-treat in schools and households near infested waterbodies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05404-6.
Collapse
|
21
|
Ntuku H, Smith-Gueye C, Scott V, Njau J, Whittemore B, Zelman B, Tambo M, Prach LM, Wu L, Schrubbe L, Kang Dufour MS, Mwilima A, Uusiku P, Sturrock H, Bennett A, Smith J, Kleinschmidt I, Mumbengegwi D, Gosling R, Hsiang M. Cost and cost effectiveness of reactive case detection (RACD), reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) to reduce malaria in the low endemic setting of Namibia: an analysis alongside a 2×2 factorial design cluster randomised controlled trial. BMJ Open 2022; 12:e049050. [PMID: 35738650 PMCID: PMC9226870 DOI: 10.1136/bmjopen-2021-049050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES To estimate the cost and cost effectiveness of reactive case detection (RACD), reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) to reduce malaria in a low endemic setting. SETTING The study was part of a 2×2 factorial design cluster randomised controlled trial within the catchment area of 11 primary health facilities in Zambezi, Namibia. PARTICIPANTS Cost and outcome data were collected from the trial, which included 8948 community members that received interventions due to their residence within 500 m of malaria index cases. OUTCOME MEASURES The primary outcome was incremental cost effectiveness ratio (ICER) per in incident case averted. ICER per prevalent case and per disability-adjusted life years (DALY) averted were secondary outcomes, as were per unit interventions costs and personnel time. Outcomes were compared as: (1) rfMDA versus RACD, (2) RAVC versus no RAVC and (3) rfMDA+RAVC versus RACD only. RESULTS rfMDA cost 1.1× more than RACD, and RAVC cost 1.7× more than no RAVC. Relative to RACD only, the cost of rfMDA+RAVC was double ($3082 vs $1553 per event). The ICERs for rfMDA versus RACD, RAVC versus no RAVC and rfMDA+RAVC versus RACD only were $114, $1472 and $842, per incident case averted, respectively. Using prevalent infections and DALYs as outcomes, trends were similar. The median personnel time to implement rfMDA was 20% lower than for RACD (30 vs 38 min per person). The median personnel time for RAVC was 34 min per structure sprayed. CONCLUSION Implemented alone or in combination, rfMDA and RAVC were cost effective in reducing malaria incidence and prevalence despite higher implementation costs in the intervention compared with control arms. Compared with RACD, rfMDA was time saving. Cost and time requirements for the combined intervention could be decreased by implementing rfMDA and RAVC simultaneously by a single team. TRIAL REGISTRATION NUMBER NCT02610400; Post-results.
Collapse
Affiliation(s)
- Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Cara Smith-Gueye
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Valerie Scott
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Joseph Njau
- JoDon Consulting Group LLC, Atlanta, Georgia, USA
| | - Brooke Whittemore
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brittany Zelman
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Munyaradzi Tambo
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Lisa M Prach
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Leah Schrubbe
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Mi-Suk Kang Dufour
- Division of Prevention Science, University of California San Francisco, San Francisco, California, USA
| | - Agnes Mwilima
- Ministry of Health and Social Services, Zambezi Region, Katima Mulilo, Namibia
| | - Petrina Uusiku
- Ministry of Health and Social Services, Windhoek, Namibia
| | - Hugh Sturrock
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Smith
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Immo Kleinschmidt
- Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
| | - Michelle Hsiang
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
A Systematic Review and Meta-Analysis of Malaria Test Positivity Outcomes and Programme Interventions in Low Transmission Settings in Southern Africa, 2000-2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116776. [PMID: 35682356 PMCID: PMC9180605 DOI: 10.3390/ijerph19116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023]
Abstract
Malaria is one of the most significant causes of mortality and morbidity globally, especially in sub-Saharan Africa (SSA) countries. It harmfully disturbs the public’s health and the economic growth of many developing countries. Despite the massive effect of malaria transmission, the overall pooled proportion of malaria positivity rate in Southern Africa is still elusive. Therefore, the objective of this systematic review and meta-analysis is to pool estimates of the incidence of the malaria positivity rate, which is the first of its kind in South African countries. A literature search is performed to identify all published articles reporting the incidence of malaria positivity in Southern Africa. Out of the 3359 articles identified, 17 studies meet the inclusion for systematic review and meta-analysis. In addition, because substantial heterogeneity is expected due to the studies being extracted from the universal population, random-effects meta-analyses are carried out to pool the incidence of the malaria positivity rate from diverse diagnostic methods. The result reveals that between-study variability is high (τ2 = 0.003; heterogeneity I2 = 99.91% with heterogeneity chi-square χ2 = 18,143.95, degree of freedom = 16 and a p-value < 0.0001) with the overall random pooled incidence of 10% (95%CI: 8−13%, I2 = 99.91%) in the malaria positivity rate. According to the diagnostic method called pooled incidence estimate, the rapid diagnostic test (RDT) is the leading diagnostic method (17%, 95%CI: 11−24%, I2 = 99.95%), followed by RDT and qPCR and RDT and loop mediated isothermal amplification (LAMP), respectively, found to be (3%, 95%CI: 2−3%, I2 = 0%) and (2%, 95%CI: 1−3%, I2 = 97.94%).Findings of the present study suggest high malaria positive incidence in the region. This implies that malaria control and elimination programmes towards malaria elimination could be negatively impacted and cause delays in actualising malaria elimination set dates. Further studies consisting of larger samples and continuous evaluation of malaria control programmes are recommended.
Collapse
|
23
|
Huber JH, Hsiang MS, Dlamini N, Murphy M, Vilakati S, Nhlabathi N, Lerch A, Nielsen R, Ntshalintshali N, Greenhouse B, Perkins TA. Inferring person-to-person networks of Plasmodium falciparum transmission: are analyses of routine surveillance data up to the task? Malar J 2022; 21:58. [PMID: 35189905 PMCID: PMC8860266 DOI: 10.1186/s12936-022-04072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inference of person-to-person transmission networks using surveillance data is increasingly used to estimate spatiotemporal patterns of pathogen transmission. Several data types can be used to inform transmission network inferences, yet the sensitivity of those inferences to different data types is not routinely evaluated. METHODS The influence of different combinations of spatial, temporal, and travel-history data on transmission network inferences for Plasmodium falciparum malaria were evaluated. RESULTS The information content of these data types may be limited for inferring person-to-person transmission networks and may lead to an overestimate of transmission. Only when outbreaks were temporally focal or travel histories were accurate was the algorithm able to accurately estimate the reproduction number under control, Rc. Applying this approach to data from Eswatini indicated that inferences of Rc and spatiotemporal patterns therein depend upon the choice of data types and assumptions about travel-history data. CONCLUSIONS These results suggest that transmission network inferences made with routine malaria surveillance data should be interpreted with caution.
Collapse
Affiliation(s)
- John H Huber
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Michelle S Hsiang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA.,Department of Pediatrics, University of California, San Francisco,, CA, USA
| | - Nomcebo Dlamini
- National Malaria Elimination Programme, Ministry of Health, Manzini, Eswatini
| | - Maxwell Murphy
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Nomcebo Nhlabathi
- National Malaria Elimination Programme, Ministry of Health, Manzini, Eswatini
| | - Anita Lerch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Rasmus Nielsen
- Department of Integrative Biology and Statistics, University of California, Berkeley, CA, USA
| | | | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
24
|
Wu L, Hsiang MS, Prach LM, Schrubbe L, Ntuku H, Dufour MSK, Whittemore B, Scott V, Yala J, Roberts KW, Patterson C, Biggs J, Hall T, Tetteh KK, Gueye CS, Greenhouse B, Bennett A, Smith JL, Katokele S, Uusiku P, Mumbengegwi D, Gosling R, Drakeley C, Kleinschmidt I. Serological evaluation of the effectiveness of reactive focal mass drug administration and reactive vector control to reduce malaria transmission in Zambezi Region, Namibia: Results from a secondary analysis of a cluster randomised trial. EClinicalMedicine 2022; 44:101272. [PMID: 35198913 PMCID: PMC8851292 DOI: 10.1016/j.eclinm.2022.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Due to challenges in measuring changes in malaria at low transmission, serology is increasingly being used to complement clinical and parasitological surveillance. Longitudinal studies have shown that serological markers, such as Etramp5.Ag1, can reflect spatio-temporal differences in malaria transmission. However, these markers have yet to be used as endpoints in intervention trials. METHODS Based on data from a 2017 cluster randomised trial conducted in Zambezi Region, Namibia, evaluating the effectiveness of reactive focal mass drug administration (rfMDA) and reactive vector control (RAVC), this study conducted a secondary analysis comparing antibody responses between intervention arms as trial endpoints. Antibody responses were measured on a multiplex immunoassay, using a panel of eight serological markers of Plasmodium falciparum infection - Etramp5.Ag1, GEXP18, HSP40.Ag1, Rh2.2030, EBA175, PfMSP119, PfAMA1, and PfGLURP.R2. FINDINGS Reductions in sero-prevalence to antigens Etramp.Ag1, PfMSP119, Rh2.2030, and PfAMA1 were observed in study arms combining rfMDA and RAVC, but only effects for Etramp5.Ag1 were statistically significant. Etramp5.Ag1 sero-prevalence was significantly lower in all intervention arms. Compared to the reference arms, adjusted prevalence ratio (aPR) for Etramp5.Ag1 was 0.78 (95%CI 0.65 - 0.91, p = 0.0007) in the rfMDA arms and 0.79 (95%CI 0.67 - 0.92, p = 0.001) in the RAVC arms. For the combined rfMDA plus RAVC intervention, aPR was 0.59 (95%CI 0.46 - 0.76, p < 0.0001). Significant reductions were also observed based on continuous antibody responses. Sero-prevalence as an endpoint was found to achieve higher study power (99.9% power to detect a 50% reduction in prevalence) compared to quantitative polymerase chain reaction (qPCR) prevalence (72.9% power to detect a 50% reduction in prevalence). INTERPRETATION While the observed relative reduction in qPCR prevalence in the study was greater than serology, the use of serological endpoints to evaluate trial outcomes measured effect size with improved precision and study power. Serology has clear application in cluster randomised trials, particularly in settings where measuring clinical incidence or infection is less reliable due to seasonal fluctuations, limitations in health care seeking, or incomplete testing and reporting. FUNDING This study was supported by Novartis Foundation (A122666), the Bill & Melinda Gates Foundation (OPP1160129), and the Horchow Family Fund (5,300,375,400).
Collapse
Affiliation(s)
- Lindsey Wu
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Michelle S. Hsiang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Lisa M. Prach
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Leah Schrubbe
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Mi-Suk Kang Dufour
- Division of Prevention Science, University of California San Francisco, San Francisco, CA, USA
| | - Brooke Whittemore
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Valerie Scott
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Joy Yala
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Kathryn W. Roberts
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Catriona Patterson
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Joseph Biggs
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Tom Hall
- St. George's University of London, London, UK
| | - Kevin K.A. Tetteh
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Cara Smith Gueye
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Bryan Greenhouse
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Jennifer L. Smith
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Stark Katokele
- National Vector-Borne Diseases Control Programme, Namibia Ministry of Health and Social Services, Windhoek, Namibia
| | - Petrina Uusiku
- National Vector-Borne Diseases Control Programme, Namibia Ministry of Health and Social Services, Windhoek, Namibia
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Immo Kleinschmidt
- London School of Hygiene and Tropical Medicine, Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London, UK
- Research Council Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Wits Institute for Malaria Research, Faculty of Health Science, University of Witwatersrand, Johannesburg, South Africa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| |
Collapse
|
25
|
Abstract
BACKGROUND Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are used to prevent malaria transmission. Both interventions use insecticides to kill mosquitoes that bite and rest indoors. Adding IRS to ITNs may improve malaria control simply because two interventions can be better than one. Furthermore, IRS may improve malaria control where ITNs are failing due to insecticide resistance. Pyrethroid insecticides are the predominant class of insecticide used for ITNs, as they are more safe than other insecticide classes when in prolonged contact with human skin. While many mosquito populations have developed some resistance to pyrethroid insecticides, a wider range of insecticides can be used for IRS. This review is an update of the previous Cochrane 2019 edition. OBJECTIVES To summarize the effect on malaria of additionally implementing IRS, using non-pyrethroid-like or pyrethroid-like insecticides, in communities currently using ITNs. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; CENTRAL; MEDLINE; and five other databases for records from 1 January 2000 to 8 November 2021, on the basis that ITN programmes did not begin to be implemented as policy before the year 2000. SELECTION CRITERIA We included cluster-randomized controlled trials (cRCTs), interrupted time series (ITS), or controlled before-after studies (CBAs) comparing IRS plus ITNs with ITNs alone. We included studies with at least 50% ITN ownership (defined as the proportion of households owning one or more ITN) in both study arms. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for eligibility, analyzed risk of bias, and extracted data. We used risk ratio (RR) and 95% confidence intervals (CI). We stratified by type of insecticide, 'pyrethroid-like' and 'non-pyrethroid-like'; the latter could improve malaria control better than adding IRS insecticides that have the same way of working as the insecticide on ITNs ('pyrethroid-like'). We used subgroup analysis of ITN usage in the studies to explore heterogeneity. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS Eight cRCTs (10 comparisons), one CBA, and one ITS study, all conducted since 2008 in sub-Saharan Africa, met our inclusion criteria. The primary vectors in all sites were mosquitoes belonging to the Anopheles gambiae s.l. complex species; five studies in Benin, Mozambique, Ghana, Sudan, and Tanzania also reported the vector Anopheles funestus. Five cRCTs and both quasi-experimental design studies used insecticides with targets different to pyrethroids (two used bendiocarb, three used pirimiphos-methyl, and one used propoxur. Each of these studies were conducted in areas where the vectors were described as resistant or highly resistant to pyrethroids. Two cRCTs used dichloro-diphenyl-trichlorethane (DDT), an insecticide with the same target as pyrethroids. The remaining cRCT used both types of insecticide (pyrethroid deltamethrin in the first year, switching to bendiocarb for the second year). Indoor residual spraying using 'non-pyrethroid-like' insecticides Six studies were included (four cRCTs, one CBA, and one ITS). Our main analysis for prevalence excluded a study at high risk of bias due to repeated sampling of the same population. This risk did not apply to other outcomes. Overall, the addition of IRS reduced malaria parasite prevalence (RR 0.61, 95% CI 0.42 to 0.88; 4 cRCTs, 16,394 participants; high-certainty evidence). IRS may also reduce malaria incidence on average (rate ratio 0.86, 95% CI 0.61 to 1.23; 4 cRCTs, 323,631 child-years; low-certainty evidence) but the effect was absent in two studies. Subgroup analyses did not explain the qualitative heterogeneity between studies. One cRCT reported no effect on malaria incidence or parasite prevalence in the first year, when a pyrethroid-like insecticide was used for IRS, but showed an effect on both outcomes in the second year, when a non-pyrethroid-like IRS was used. The addition of IRS may also reduce anaemia prevalence (RR 0.71, 95% CI 0.38 to 1.31; 3 cRCTs, 4288 participants; low-certainty evidence). Four cRCTs reported the impact of IRS on entomological inoculation rate (EIR), with variable results; overall, we do not know if IRS had any effect on the EIR in communities using ITNs (very low-certainty evidence). Studies also reported the adult mosquito density and the sporozoite rate, but we could not summarize or pool these entomological outcomes due to differences in the reported data. Three studies measured the prevalence of pyrethroid resistance before and after IRS being introduced: there was no difference detected, but these data are limited. Indoor residual spraying using 'pyrethroid-like' insecticides Adding IRS using a pyrethroid-like insecticide did not appear to markedly alter malaria incidence (rate ratio 1.07, 95% CI 0.80 to 1.43; 2 cRCTs, 15,717 child-years; moderate-certainty evidence), parasite prevalence (RR 1.11, 95% CI 0.86 to 1.44; 3 cRCTs, 10,820 participants; moderate-certainty evidence), or anaemia prevalence (RR 1.12, 95% CI 0.89 to 1.40; 1 cRCT, 4186 participants; low-certainty evidence). Data on EIR were limited so no conclusion was made (very low-certainty evidence). AUTHORS' CONCLUSIONS in communities using ITNs, the addition of IRS with 'non-pyrethroid-like' insecticides was associated with reduced malaria prevalence. Malaria incidence may also be reduced on average, but there was unexplained qualitative heterogeneity, and the effect may therefore not be observed in all settings. When using 'pyrethroid-like' insecticides, there was no detectable additional benefit of IRS in communities using ITNs.
Collapse
Affiliation(s)
- Joseph Pryce
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nancy Medley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leslie Choi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
26
|
Bridges DJ, Miller JM, Chalwe V, Moonga H, Hamainza B, Steketee RW, Mambwe B, Mulube C, Wu L, Tetteh KKA, Drakeley C, Chishimba S, Mwenda M, Silumbe K, Larsen DA. Reactive focal drug administration associated with decreased malaria transmission in an elimination setting: Serological evidence from the cluster-randomized CoRE study. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0001295. [PMID: 36962857 PMCID: PMC10021141 DOI: 10.1371/journal.pgph.0001295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2022] [Indexed: 12/12/2022]
Abstract
Efforts to eliminate malaria transmission need evidence-based strategies. However, accurately assessing end-game malaria elimination strategies is challenging due to the low level of transmission and the rarity of infections. We hypothesised that presumptively treating individuals during reactive case detection (RCD) would reduce transmission and that serology would more sensitively detect this change over standard approaches. We conducted a cluster randomised control trial (NCT02654912) of presumptive reactive focal drug administration (RFDA-intervention) compared to the standard of care, reactive focal test and treat (RFTAT-control) in Southern Province, Zambia-an area of low seasonal transmission (overall incidence of ~3 per 1,000). We measured routine malaria incidence from health facilities as well as PCR parasite prevalence / antimalarial seroprevalence in an endline cross-sectional population survey. No significant difference was identified from routine incidence data and endline prevalence by polymerase chain reaction (PCR) had insufficient numbers of malaria infections (i.e., 16 infections among 6,276 children) to assess the intervention. Comparing long-term serological markers, we found a 19% (95% CI = 4-32%) reduction in seropositivity for the RFDA intervention using a difference in differences approach incorporating serological positivity and age. We also found a 37% (95% CI = 2-59%) reduction in seropositivity to short-term serological markers in a post-only comparison. These serological analyses provide compelling evidence that RFDA both has an impact on malaria transmission and is an appropriate end-game malaria elimination strategy. Furthermore, serology provides a more sensitive approach to measure changes in transmission that other approaches miss, particularly in very low transmission settings. Trial Registration: Registered at www.clinicaltrials.gov (NCT02654912, 13/1/2016).
Collapse
Affiliation(s)
- Daniel J Bridges
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - John M Miller
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Victor Chalwe
- National Health Research Authority, Paediatric Centre of Excellence, University Teaching Hospital, Lusaka, Zambia
| | - Hawela Moonga
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital, Lusaka, Zambia
| | - Richard W Steketee
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), Seattle, Washington, United States of America
| | - Brenda Mambwe
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Conceptor Mulube
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Lindsey Wu
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K A Tetteh
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sandra Chishimba
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Mulenga Mwenda
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Kafula Silumbe
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - David A Larsen
- Syracuse University Department of Public Health, Syracuse, New York, United States of America
| |
Collapse
|
27
|
Boyce RM, Hollingsworth BD, Baguma E, Xu E, Goel V, Brown-Marusiak A, Muhindo R, Reyes R, Ntaro M, Siedner MJ, Staedke SG, Juliano JJ, Mulogo EM. Dihydroartemisinin-piperaquine chemoprevention and malaria incidence after severe flooding: evaluation of a pragmatic intervention in rural Uganda. Clin Infect Dis 2021; 74:2191-2199. [PMID: 34499116 DOI: 10.1093/cid/ciab781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Malaria epidemics are a well-described phenomenon after extreme precipitation and flooding, which account for nearly half of global disasters over the past two decades. Yet few studies have examined mitigation measures to prevent post-flood malaria epidemics. METHODS We conducted an evaluation of a malaria chemoprevention program implemented in response to severe flooding in western Uganda. Children ≤12 years of age from one village were eligible to receive 3 monthly rounds of dihydroartemisinin-piperaquine (DP). Two neighboring villages served as controls. Malaria cases were defined as individuals with a positive rapid diagnostic test result as recorded in health center registers. We performed a difference-in-differences analysis to estimate changes in the incidence and test positivity of malaria between intervention and control villages. RESULTS A total of 554 children received at least one round of chemoprevention with 75% participating in at least two rounds. Compared to control villages, we estimated a 53.4% reduction (aRR 0.47, 95% CI 0.34 - 0.62, p<.01) in malaria incidence and a 30% decrease in the test positivity rate (aRR=0.70, CI 0.50 - 0.97, p=0.03) in the intervention village in the six months post-intervention. The impact was greatest among children receiving the intervention, but decreased incidence was also observed in older children and adults (aRR=0.57, CI 0.38-0.84, p<.01). CONCLUSIONS Three rounds of chemoprevention with DP delivered under pragmatic conditions reduced the incidence of malaria after severe flooding in western Uganda. These findings provide a proof-of-concept for the use of malaria chemoprevention to reduce excess disease burden associated with severe flooding.
Collapse
Affiliation(s)
- Ross M Boyce
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandon D Hollingsworth
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emma Baguma
- Department of Community Health, Faculty of Medicine, Mbarara University of Science & Technology, Mbarara, Uganda
| | - Erin Xu
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Varun Goel
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amanda Brown-Marusiak
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rabbison Muhindo
- Department of Community Health, Faculty of Medicine, Mbarara University of Science & Technology, Mbarara, Uganda
| | - Raquel Reyes
- Division of Hospital Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Moses Ntaro
- Department of Community Health, Faculty of Medicine, Mbarara University of Science & Technology, Mbarara, Uganda
| | - Mark J Siedner
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA, USA
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edgar M Mulogo
- Department of Community Health, Faculty of Medicine, Mbarara University of Science & Technology, Mbarara, Uganda
| |
Collapse
|
28
|
Thomas R, Cirera L, Brew J, Saúte F, Sicuri E. The short-term impact of a malaria elimination initiative in Southern Mozambique: Application of the synthetic control method to routine surveillance data. HEALTH ECONOMICS 2021; 30:2168-2184. [PMID: 34105200 DOI: 10.1002/hec.4367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
In public health epidemiology, quasi-experimental methods are widely used to estimate the causal impacts of interventions. In this paper, we demonstrate the contribution the synthetic control method (SCM) can make in evaluating public health interventions, when routine surveillance data are available and the validity of other quasi-experimental approaches may be in question. In our application, we evaluate the short-term effects of a large-scale Mass Drug Administration (MDA) based malaria elimination initiative in Southern Mozambique. We apply the SCM to district level weekly malaria incidence data and compare the observed reduction in age group specific malaria incidence. Between August 2015 and April 2017, a total of 13,322 (78%) cases of malaria were averted relative to the synthetic control. During the peak malaria seasons, the elimination initiative resulted in an 87% reduction in Year 1 (December 2015-April 2016), and 79% reduction in Year 2 (December 2016-April 2017). Comparison with an interrupted time series approach shows the SCM accounts for pre-intervention trends in the data and post-intervention weather events influencing malaria cases. We conclude MDA brought about a drastic reduction in malaria burden and can be a useful addition to existing (or new) vector control strategies and tools in accelerating towards elimination.
Collapse
Affiliation(s)
- Ranjeeta Thomas
- Department of Health Policy, London School of Economics and Political Science, London, UK
| | - Laia Cirera
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
- Health Economics Group, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Joe Brew
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
- Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Elisa Sicuri
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
- Health Economics Group, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
29
|
Clustering of malaria in households in the Greater Mekong Subregion: operational implications for reactive case detection. Malar J 2021; 20:351. [PMID: 34446009 PMCID: PMC8393740 DOI: 10.1186/s12936-021-03879-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Malaria reactive case detection is the testing and, if positive, treatment of close contacts of index cases. It is included in national malaria control programmes of countries in the Greater Mekong Subregion to accelerate malaria elimination. Yet the value of reactive case detection in the control and elimination of malaria remains controversial because of the low yield, limited evidence for impact, and high demands on resources. Methods Data from the epidemiological assessments of large mass drug administration (MDA) studies in Myanmar, Vietnam, Cambodia and Laos were analysed to explore malaria infection clustering in households. The proportion of malaria positive cases among contacts screened in a hypothetical reactive case detection programme was then determined. The parasite density thresholds for rapid diagnostic test (RDT) detection was assumed to be > 50/µL (50,000/mL), for dried-blood-spot (DBS) based PCR > 5/µL (5000/mL), and for ultrasensitive PCR (uPCR) with a validated limit of detection at 0.0022/µL (22/mL). Results At baseline, before MDA, 1223 Plasmodium infections were detected by uPCR in 693 households. There was clustering of Plasmodium infections. In 637 households with asymptomatic infections 44% (278/637) had more than one member with Plasmodium infections. In the 132 households with symptomatic infections, 65% (86/132) had more than one member with Plasmodium infections. At baseline 4% of households had more than one Plasmodium falciparum infection, but three months after MDA no household had more than one P. falciparum infected member. Reactive case detection using DBS PCR would have detected ten additional cases in six households, and an RDT screen would have detected five additional cases in three households among the 169 households with at least one RDT positive case. This translates to 19 and 9 additional cases identified per 1000 people screened, respectively. Overall, assuming all febrile RDT positive patients would seek treatment and provoke reactive case detection using RDTs, then 1047 of 1052 (99.5%) Plasmodium infections in these communities would have remained undetected. Conclusion Reactive case detection in the Greater Mekong subregion is predicted to have a negligible impact on the malaria burden, but it has substantial costs in terms of human and financial resources. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03879-9.
Collapse
|
30
|
Meredith HR, Wesolowski A, Menya D, Esimit D, Lokoel G, Kipkoech J, Freedman B, Lokemer S, Maragia J, Ambani G, Taylor SM, Prudhomme-O’Meara W, Obala AA. Epidemiology of Plasmodium falciparum Infections in a Semi-Arid Rural African Setting: Evidence from Reactive Case Detection in Northwestern Kenya. Am J Trop Med Hyg 2021; 105:1076-1084. [PMID: 34339387 PMCID: PMC8592151 DOI: 10.4269/ajtmh.21-0256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/24/2021] [Indexed: 11/07/2022] Open
Abstract
In northwestern Kenya, Turkana County has been historically considered unsuitable for stable malaria transmission because of its unfavorable climate and predominantly semi-nomadic population; consequently, it is overlooked during malaria control planning. However, the area is changing, with substantial development, an upsurge in travel associated with resource extraction, and more populated settlements forming. Recently, numerous malaria outbreaks have highlighted the need to characterize malaria transmission and its associated risk factors in the region to inform control strategies. Reactive case detection of confirmed malaria cases at six health facilities across central Turkana was conducted from 2018 to 2019. Infections in household members of index cases were detected by malaria rapid diagnostic tests (RDTs) and PCR tests, and they were grouped according household and individual characteristics. The relationships between putative risk factors and infection were quantified by multilevel logistic regression models. Of the 3,189 household members analyzed, 33.6% had positive RDT results and/or PCR test results. RDT-detected infections were more prevalent in children; however, PCR-detected infections were similarly prevalent across age groups. Recent travel was rarely reported and not significantly associated with infection. Bed net coverage was low and net crowding was associated with increased risks of household infections. Infections were present year-round, and fluctuations in prevalence were not associated with rainfall. These findings indicate year-round, endemic transmission with moderate population immunity. This is in stark contrast to recent estimates in this area. Therefore, further investigations to design effective intervention approaches to address malaria in this rapidly changing region and other similar settings across the Horn of Africa are warranted.
Collapse
Affiliation(s)
- Hannah R. Meredith
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Diana Menya
- Department of Epidemiology and Medical Statistics, School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Daniel Esimit
- Department of Health Services and Sanitation, Turkana County, Kenya
| | - Gilchrist Lokoel
- Department of Health Services and Sanitation, Turkana County, Kenya
| | - Joseph Kipkoech
- Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - Betsy Freedman
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina
| | - Samuel Lokemer
- Department of Health Services and Sanitation, Turkana County, Kenya
| | - James Maragia
- Lodwar County Referral Hospital, Turkana County, Kenya
| | - George Ambani
- Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - Steve M. Taylor
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Wendy Prudhomme-O’Meara
- Department of Epidemiology and Medical Statistics, School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Andrew A. Obala
- School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya
| |
Collapse
|
31
|
Smith JL, Mumbengegwi D, Haindongo E, Cueto C, Roberts KW, Gosling R, Uusiku P, Kleinschmidt I, Bennett A, Sturrock HJ. Malaria risk factors in northern Namibia: The importance of occupation, age and mobility in characterizing high-risk populations. PLoS One 2021; 16:e0252690. [PMID: 34170917 PMCID: PMC8232432 DOI: 10.1371/journal.pone.0252690] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
In areas of low and unstable transmission, malaria cases occur in populations with lower access to malaria services and interventions, and in groups with specific malaria risk exposures often away from the household. In support of the Namibian National Vector Borne Disease Program's drive to better target interventions based upon risk, we implemented a health facility-based case control study aimed to identify risk factors for symptomatic malaria in Zambezi Region, northern Namibia. A total of 770 febrile individuals reporting to 6 health facilities and testing positive by rapid diagnostic test (RDT) between February 2015 and April 2016 were recruited as cases; 641 febrile individuals testing negative by RDT at the same health facilities through June 2016 were recruited as controls. Data on socio-demographics, housing construction, overnight travel, use of malaria prevention and outdoor behaviors at night were collected through interview and recorded on a tablet-based questionnaire. Remotely-sensed environmental data were extracted for geo-located village residence locations. Multivariable logistic regression was conducted to identify risk factors and latent class analyses (LCA) used to identify and characterize high-risk subgroups. The majority of participants (87% of cases and 69% of controls) were recruited during the 2016 transmission season, an outbreak year in Southern Africa. After adjustment, cases were more likely to be cattle herders (Adjusted Odds Ratio (aOR): 4.46 95%CI 1.05-18.96), members of the police or other security personnel (aOR: 4.60 95%CI: 1.16-18.16), and pensioners/unemployed persons (aOR: 2.25 95%CI 1.24-4.08), compared to agricultural workers (most common category). Children (aOR 2.28 95%CI 1.13-4.59) and self-identified students were at higher risk of malaria (aOR: 4.32 95%CI 2.31-8.10). Other actionable risk factors for malaria included housing and behavioral characteristics, including traditional home construction and sleeping in an open structure (versus modern structure: aOR: 2.01 95%CI 1.45-2.79 and aOR: 4.76 95%CI: 2.14-10.57); cross border travel in the prior 30 days (aOR: 10.55 95%CI 2.94-37.84); and outdoor agricultural work at night (aOR: 2.09 95%CI 1.12-3.87). Malaria preventive activities were all protective and included personal use of an insecticide treated net (ITN) (aOR: 0.61 95%CI 0.42-0.87), adequate household ITN coverage (aOR: 0.63 95%CI 0.42-0.94), and household indoor residual spraying (IRS) in the past year (versus never sprayed: (aOR: 0.63 95%CI 0.44-0.90). A number of environmental factors were associated with increased risk of malaria, including lower temperatures, higher rainfall and increased vegetation for the 30 days prior to diagnosis and residing more than 5 minutes from a health facility. LCA identified six classes of cases, with class membership strongly correlated with occupation, age and select behavioral risk factors. Use of ITNs and IRS coverage was similarly low across classes. For malaria elimination these high-risk groups will need targeted and tailored intervention strategies, for example, by implementing alternative delivery methods of interventions through schools and worksites, as well as the use of specific interventions that address outdoor transmission.
Collapse
Affiliation(s)
- Jennifer L. Smith
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Erastus Haindongo
- School of Medicine, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Carmen Cueto
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Kathryn W. Roberts
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Petrina Uusiku
- National Ministry of Health and Social Services, Windhoek, Namibia
| | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Hugh J. Sturrock
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| |
Collapse
|
32
|
Okebe J, Dabira E, Jaiteh F, Mohammed N, Bradley J, Drammeh NF, Bah A, Masunaga Y, Achan J, Muela Ribera J, Yeung S, Balen J, Peeters Grietens K, D'Alessandro U. Reactive, self-administered malaria treatment against asymptomatic malaria infection: results of a cluster randomized controlled trial in The Gambia. Malar J 2021; 20:253. [PMID: 34098984 PMCID: PMC8186162 DOI: 10.1186/s12936-021-03761-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/11/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Selectively targeting and treating malaria-infected individuals may further decrease parasite carriage in low-burden settings. Using a trans-disciplinary approach, a reactive treatment strategy to reduce Plasmodium falciparum prevalence in participating communities was co-developed and tested. METHODS This is a 2-arm, open-label, cluster-randomized trial involving villages in Central Gambia during the 2017 and 2018 malaria transmission season. Villages were randomized in a 1:1 ratio using a minimizing algorithm. In the intervention arm, trained village health workers delivered a full course of pre-packed dihydroartemisinin-piperaquine to all residents of compounds where clinical cases were reported while in the control arm, compound residents were screened for infection at the time of the index case reporting. All index cases were treated following national guidelines. The primary endpoint was malaria prevalence, determined by molecular methods, at the end of the intervention period. RESULTS The trial was carried out in 50 villages: 34 in 2017 and 16 additional villages in 2018. At the end of the 2018 transmission season, malaria prevalence was 0.8% (16/1924, range 0-4%) and 1.1% (20/1814, range 0-17%) in the intervention and control arms, respectively. The odds of malaria infection were 29% lower in the intervention than in the control arm after adjustment for age (OR 0.71, 95% CI 0.27-1.84, p = 0.48). Adherence to treatment was high, with 98% (964/979) of those treated completing the 3-day treatment. Over the course of the study, only 37 villages, 20 in the intervention and 17 in the control arm, reported at least one clinical case. The distribution of clinical cases by month in both transmission seasons was similar and the odds of new clinical malaria cases during the trial period did not vary between arms (OR 1.04, 95% CI 0.57-1.91, p = 0.893). All adverse events were classified as mild to moderate and resolved completely. CONCLUSION The systematic and timely administration of an anti-malarial treatment to residents of compounds with confirmed malaria cases did not significantly decrease malaria prevalence and incidence in communities where malaria prevalence was already low. Treatment coverage and adherence was very high. Results were strongly influenced by the lower-than-expected malaria prevalence, and by no clinical cases in villages with asymptomatic malaria-infected individuals. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov, NCT02878200. Registered 25 August 2016. https://clinicaltrials.gov/ct2/show/NCT02878200 .
Collapse
Affiliation(s)
- Joseph Okebe
- Medical Research Council Unit The Gambia At the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Edgard Dabira
- Medical Research Council Unit The Gambia At the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Fatou Jaiteh
- Medical Anthropology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Amsterdam Institute of Social Science Research, Amsterdam, The Netherlands
| | - Nuredin Mohammed
- Medical Research Council Unit The Gambia At the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Ndey-Fatou Drammeh
- Medical Research Council Unit The Gambia At the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Amadou Bah
- Medical Research Council Unit The Gambia At the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Yoriko Masunaga
- Medical Anthropology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Amsterdam Institute of Social Science Research, Amsterdam, The Netherlands
| | - Jane Achan
- Medical Research Council Unit The Gambia At the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Malaria Consortium, Cambridge Heath, London, UK
| | | | - Shunmay Yeung
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Julie Balen
- School of Health and Related Research, The University of Sheffield, Sheffield, UK
| | | | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia At the London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| |
Collapse
|
33
|
Vilakati S, Mngadi N, Benjamin-Chung J, Dlamini N, Dufour MSK, Whittemore B, Bhangu K, Prach LM, Baltzell K, Nhlabathi N, Malambe C, Dlamini B, Helb D, Greenhouse B, Maphalala G, Pindolia D, Kalungero M, Tesfa G, Gosling R, Ntshalintshali N, Kunene S, Hsiang MS. Effectiveness and safety of reactive focal mass drug administration (rfMDA) using dihydroartemisinin-piperaquine to reduce malaria transmission in the very low-endemic setting of Eswatini: a pragmatic cluster randomised controlled trial. BMJ Glob Health 2021; 6:e005021. [PMID: 34193475 PMCID: PMC8246301 DOI: 10.1136/bmjgh-2021-005021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/30/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION To reduce malaria transmission in very low-endemic settings, screening and treatment near index cases (reactive case detection (RACD)), is widely practised, but the rapid diagnostic tests (RDTs) used miss low-density infections. Reactive focal mass drug administration (rfMDA) may be safe and more effective. METHODS We conducted a pragmatic cluster randomised controlled trial in Eswatini, a very low-endemic setting. 77 clusters were randomised to rfMDA using dihydroartemisin-piperaquine (DP) or RACD involving RDTs and artemether-lumefantrine. Interventions were delivered by the local programme. An intention-to-treat analysis was used to compare cluster-level cumulative confirmed malaria incidence among clusters with cases. Secondary outcomes included safety and adherence. RESULTS From September 2015 to August 2017, 222 index cases from 47 clusters triggered 46 RACD events and 64 rfMDA events. RACD and rfMDA were delivered to 1455 and 1776 individuals, respectively. Index case coverage was 69.5% and 62.4% for RACD and rfMDA, respectively. Adherence to DP was 98.7%. No serious adverse events occurred. For rfMDA versus RACD, cumulative incidences (per 1000 person-years) of all malaria were 2.11 (95% CI 1.73 to 2.59) and 1.97 (95% CI 1.57 to 2.47), respectively; and of locally acquired malaria, they were 1.29 (95% CI 1.00 to 1.67) and 0.97 (95% CI 0.71 to 1.34), respectively. Adjusting for imbalance in baseline incidence, incidence rate ratio for rfMDA versus RACD was 0.95 (95% CI 0.55 to 1.65) for all malaria and 0.82 (95% CI 0.40 to 1.71) for locally acquired malaria. Similar results were obtained in a per-protocol analysis that excluded clusters with <80% index case coverage. CONCLUSION In a very low-endemic, real-world setting, rfMDA using DP was safe, but did not lower incidence compared with RACD, potentially due to insufficient coverage and/or power. To assess impact of interventions in very low-endemic settings, improved coverage, complementary interventions and adaptive ring trial designs may be needed. TRIAL REGISTRATION NUMBER NCT02315690.
Collapse
Affiliation(s)
| | | | - Jade Benjamin-Chung
- Epidemiology & Biostatistics, University of California, Berkeley, California, USA
- Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Nomcebo Dlamini
- National Malaria Program, Ministry of Health, Manzini, Eswatini
| | - Mi-Suk Kang Dufour
- Epidemiology & Biostatistics, University of California, Berkeley, California, USA
- Medicine, University of California, San Francisco, California, USA
| | - Brooke Whittemore
- Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Lisa M Prach
- Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Kimberly Baltzell
- Family Health Care Nursing, University of California, San Francisco, California, USA
| | | | | | | | - Danica Helb
- Medicine, University of California, San Francisco, California, USA
| | - Bryan Greenhouse
- Medicine, University of California, San Francisco, California, USA
| | - Gugu Maphalala
- National Clinical Laboratory Services, Mbabane, Swaziland
| | | | | | - Getahun Tesfa
- Paediatrics, Raleigh Fitkin Memorial Hospital, Manzini, Swaziland
| | - Roly Gosling
- Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | | | - Simon Kunene
- National Malaria Program, Ministry of Health, Manzini, Eswatini
| | - Michelle S Hsiang
- Malaria Elimination Initiative, University of California, San Francisco, California, USA
- Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Pediatrics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
34
|
Stanton MC, Kalonde P, Zembere K, Hoek Spaans R, Jones CM. The application of drones for mosquito larval habitat identification in rural environments: a practical approach for malaria control? Malar J 2021; 20:244. [PMID: 34059053 PMCID: PMC8165685 DOI: 10.1186/s12936-021-03759-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spatio-temporal trends in mosquito-borne diseases are driven by the locations and seasonality of larval habitat. One method of disease control is to decrease the mosquito population by modifying larval habitat, known as larval source management (LSM). In malaria control, LSM is currently considered impractical in rural areas due to perceived difficulties in identifying target areas. High resolution drone mapping is being considered as a practical solution to address this barrier. In this paper, the authors' experiences of drone-led larval habitat identification in Malawi were used to assess the feasibility of this approach. METHODS Drone mapping and larval surveys were conducted in Kasungu district, Malawi between 2018 and 2020. Water bodies and aquatic vegetation were identified in the imagery using manual methods and geographical object-based image analysis (GeoOBIA) and the performances of the classifications were compared. Further, observations were documented on the practical aspects of capturing drone imagery for informing malaria control including cost, time, computing, and skills requirements. Larval sampling sites were characterized by biotic factors visible in drone imagery and generalized linear mixed models were used to determine their association with larval presence. RESULTS Imagery covering an area of 8.9 km2 across eight sites was captured. Larval habitat characteristics were successfully identified using GeoOBIA on images captured by a standard camera (median accuracy = 98%) with no notable improvement observed after incorporating data from a near-infrared sensor. This approach however required greater processing time and technical skills compared to manual identification. Larval samples captured from 326 sites confirmed that drone-captured characteristics, including aquatic vegetation presence and type, were significantly associated with larval presence. CONCLUSIONS This study demonstrates the potential for drone-acquired imagery to support mosquito larval habitat identification in rural, malaria-endemic areas, although technical challenges were identified which may hinder the scale up of this approach. Potential solutions have however been identified, including strengthening linkages with the flourishing drone industry in countries such as Malawi. Further consultations are therefore needed between experts in the fields of drones, image analysis and vector control are needed to develop more detailed guidance on how this technology can be most effectively exploited in malaria control.
Collapse
Affiliation(s)
- Michelle C Stanton
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK. .,Lancaster Medical School, Lancaster University, Lancaster, UK.
| | - Patrick Kalonde
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Kennedy Zembere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Remy Hoek Spaans
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Christopher M Jones
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| |
Collapse
|
35
|
Kyaw SS, Delmas G, Drake TL, Celhay O, Pan-Ngum W, Pukrittayakamee S, Lubell Y, Aguas RJ, Maude RJ, White LJ, Nosten F. Estimating the programmatic cost of targeted mass drug administration for malaria in Myanmar. BMC Public Health 2021; 21:826. [PMID: 33926399 PMCID: PMC8082869 DOI: 10.1186/s12889-021-10842-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mass drug administration (MDA) has received growing interest to accelerate the elimination of multi-drug resistant malaria in the Greater Mekong Subregion. Targeted MDA, sometimes referred to as focal MDA, is the practice of delivering MDA to high incidence subpopulations only, rather than the entire population. The potential effectiveness of delivering targeted MDA was demonstrated in a recent intervention in Kayin State, Myanmar. Policymakers and funders need to know what resources are required if MDA, targeted or otherwise, is to be included in elimination packages beyond existing malaria interventions. This study aims to estimate the programmatic cost and the unit cost of targeted MDA in Kayin State, Myanmar. Methods We used financial data from a malaria elimination initiative, conducted in Kayin State, to estimate the programmatic costs of the targeted MDA component using a micro-costing approach. Three activities (community engagement, identification of villages for targeted MDA, and conducting mass treatment in target villages) were evaluated. We then estimated the programmatic costs of implementing targeted MDA to support P. falciparum malaria elimination in Kayin State. A costing tool was developed to aid future analyses. Results The cost of delivering targeted MDA within an integrated malaria elimination initiative in eastern Kayin State was approximately US$ 910,000. The cost per person reached, distributed among those in targeted and non-targeted villages, for the MDA component was US$ 2.5. Conclusion This cost analysis can assist policymakers in determining the resources required to clear malaria parasite reservoirs. The analysis demonstrated the value of using financial data from research activities to predict programmatic implementation costs of targeting MDA to different numbers of target villages. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-10842-5.
Collapse
Affiliation(s)
- Shwe Sin Kyaw
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mae Sot, Thailand
| | - Tom L Drake
- Department for International Development, London, UK
| | - Olivier Celhay
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wirichada Pan-Ngum
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yoel Lubell
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ricardo J Aguas
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard James Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Harvard TH Chan School of Public Health, Harvard University, Boston, USA
| | - Lisa J White
- Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, UK
| | - Francois Nosten
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Kosasih A, Koepfli C, Dahlan MS, Hawley WA, Baird JK, Mueller I, Lobo NF, Sutanto I. Gametocyte carriage of Plasmodium falciparum (pfs25) and Plasmodium vivax (pvs25) during mass screening and treatment in West Timor, Indonesia: a longitudinal prospective study. Malar J 2021; 20:177. [PMID: 33836772 PMCID: PMC8034167 DOI: 10.1186/s12936-021-03709-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Background A goal of malaria epidemiological interventions is the detection and treatment of parasite reservoirs in endemic areas—an activity that is expected to reduce local transmission. Since the gametocyte is the only transmissible stage from human host to mosquito vector, this study evaluated the pre and post presence of gametocytes during a mass screening and treatment (MST) intervention conducted during 2013 in East Nusa Tenggara, Indonesia. Methods RT-qPCR targeting pfs25 and pvs25 transcripts—gametocyte molecular markers for Plasmodium falciparum and Plasmodium vivax, respectively, was performed to detect and quantify gametocytes in blood samples of P. falciparum and P. vivax-infected subjects over the course of the MST study. The presence of both asexual and sexual parasites in microscopic and submicroscopic infections was compared from the start and end of the MST, using proportion tests as well as parametric and non-parametric tests. Results Parasite prevalence remained unchanged for P. falciparum (6% = 52/811 versus 7% = 50/740, p = 0.838), and decreased slightly for P. vivax (24% = 192/811 versus 19% = 142/740, p = 0.035) between the MST baseline and endpoint. No significant difference was observed in gametocyte prevalence for either P. falciparum (2% = 19/803 versus 3% = 23/729, p = 0.353, OR = 1.34, 95%CI = 0.69–2.63), or P. vivax (7% = 49/744 versus 5% = 39/704, p = 0.442, OR = 0.83, 95%CI = 0.52–1.31). Even though there was an insignificant difference between the two time points, the majority of parasite positive subjects at the endpoint had been negative at baseline (P. falciparum: 66% = 29/44, P. vivax: 60% = 80/134). This was similarly demonstrated for the transmissible stage—where the majority of gametocyte positive subjects at the endpoint were negative at baseline (P. falciparum: 95% = 20/21, P. vivax: 94% = 30/32). These results were independent of treatment provided during MST activities. No difference was demonstrated in parasite and gametocyte density between both time points either in P. falciparum or P. vivax. Conclusion In this study area, similar prevalence rates of P. falciparum and P. vivax parasites and gametocytes before and after MST, although in different individuals, points to a negligible impact on the parasite reservoir. Treatment administration based on parasite positivity as implemented in the MST should be reevaluated for the elimination strategy in the community. Trial registration Clinical trials registration NCT01878357. Registered 14 June 2013, https://www.clinicaltrials.gov/ct2/show/NCT01878357. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03709-y.
Collapse
Affiliation(s)
- Ayleen Kosasih
- PhD Programme in Biomedical Sciences, Medical Faculty, Universitas Indonesia, Jakarta, Indonesia.,Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia.,Indonesian Medical Education and Research Institute, Jakarta, Indonesia
| | - Cristian Koepfli
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,Infection & Immunity Division, Walter & Eliza Hall Institute, Melbourne, Australia
| | | | | | - J Kevin Baird
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ivo Mueller
- Infection & Immunity Division, Walter & Eliza Hall Institute, Melbourne, Australia
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Inge Sutanto
- Indonesian Medical Education and Research Institute, Jakarta, Indonesia. .,Department of Parasitology, Medical Faculty, Universitas Indonesia, Jakarta, Indonesia.
| |
Collapse
|
37
|
Roberts KW, Smith Gueye C, Baltzell K, Ntuku H, McCreesh P, Maglior A, Whittemore B, Uusiku P, Mumbengegwi D, Kleinschmidt I, Gosling R, Hsiang MS. Community acceptance of reactive focal mass drug administration and reactive focal vector control using indoor residual spraying, a mixed-methods study in Zambezi region, Namibia. Malar J 2021; 20:162. [PMID: 33752673 PMCID: PMC7986500 DOI: 10.1186/s12936-021-03679-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Namibia, as in many malaria elimination settings, reactive case detection (RACD), or malaria testing and treatment around index cases, is a standard intervention. Reactive focal mass drug administration (rfMDA), or treatment without testing, and reactive focal vector control (RAVC) in the form of indoor residual spraying, are alternative or adjunctive interventions, but there are limited data regarding their community acceptability. METHODS A parent trial aimed to compare the effectiveness of rfMDA versus RACD, RAVC versus no RAVC, and rfMDA + RAVC versus RACD only. To assess acceptability of these interventions, a mixed-methods study was conducted using key informant interviews (KIIs) and focus group discussions (FGDs) in three rounds (pre-trial and in years 1 and 2 of the trial), and an endline survey. RESULTS In total, 17 KIIs, 49 FGDs were conducted with 449 people over three annual rounds of qualitative data collection. Pre-trial, community members more accurately predicted the level of community acceptability than key stakeholders. Throughout the trial, key participant motivators included: malaria risk perception, access to free community-based healthcare and IRS, and community education by respectful study teams. RACD or rfMDA were offered to 1372 and 8948 individuals in years 1 and 2, respectively, and refusal rates were low (< 2%). RAVC was offered to few households (n = 72) in year 1. In year 2, RAVC was offered to more households (n = 944) and refusals were < 1%. In the endline survey, 94.3% of 2147 respondents said they would participate in the same intervention again. CONCLUSIONS Communities found both reactive focal interventions and their combination highly acceptable. Engaging communities and centering and incorporating their perspectives and experiences during design, implementation, and evaluation of this community-based intervention was critical for optimizing study engagement.
Collapse
Affiliation(s)
- Kathryn W Roberts
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA.
- Global Programs for Research and Training, Malaria Elimination Initiative Namibia, Windhoek, Namibia.
| | - Cara Smith Gueye
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
- Global Programs for Research and Training, Malaria Elimination Initiative Namibia, Windhoek, Namibia
| | - Kimberly Baltzell
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
- Department of Family Health Care Nursing, School of Nursing, UCSF, San Francisco, USA
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
- Global Programs for Research and Training, Malaria Elimination Initiative Namibia, Windhoek, Namibia
| | - Patrick McCreesh
- Department of Pediatrics, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, TX, Dallas, USA
| | - Alysse Maglior
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
| | - Brooke Whittemore
- Department of Pediatrics, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, TX, Dallas, USA
| | - Petrina Uusiku
- National Vectorborne Diseases Control Programme, Namibia Ministry of Health and Social Services, Windhoek, Namibia
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Immo Kleinschmidt
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Southern Africa Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
- Global Programs for Research and Training, Malaria Elimination Initiative Namibia, Windhoek, Namibia
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Michelle S Hsiang
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA.
- Department of Pediatrics, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, TX, Dallas, USA.
- Department of Pediatrics, UCSF, San Francisco, USA.
| |
Collapse
|
38
|
Snetselaar J, Rowland MW, Manunda BJ, Kisengwa EM, Small GJ, Malone DJ, Mosha FW, Kirby MJ. Efficacy of indoor residual spraying with broflanilide (TENEBENAL), a novel meta-diamide insecticide, against pyrethroid-resistant anopheline vectors in northern Tanzania: An experimental hut trial. PLoS One 2021; 16:e0248026. [PMID: 33657179 PMCID: PMC7928474 DOI: 10.1371/journal.pone.0248026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 11/24/2022] Open
Abstract
Novel chemistry for vector control is urgently needed to counter insecticide resistance in mosquitoes. Here a new meta-diamide insecticide, broflanilide (TENEBENALTM), was evaluated in East African experimental huts in Moshi, northern Tanzania. Two consecutive experimental hut trials with broflanilide 50WP were conducted; the first evaluating the efficacy of three concentrations, 50 mg/m2, 100 mg/m2, and 200 mg/m2 using a prototype formulation, and the second trial evaluating an improved formulation. The IRS treatments were applied on both mud and concrete surfaces and efficacy was monitored over time. The mortality, blood-feeding inhibition and exiting behaviour of free-flying wild mosquitoes was compared between treatment arms. Additionally, cone assays with pyrethroid-susceptible and resistant mosquito strains were conducted in the huts to determine residual efficacy. The first trial showed a dosage-mortality response of the prototype formulation and 3-8 months of residual activity, with longer activity on concrete than mud. The second trial with an improved formulation showed prolonged residual efficacy of the 100 mg/m2 concentration to 5-6 months on mud, and mosquito mortality on the concrete surface ranged between 94-100% for the full duration of the trial. In both trials, results with free-flying, wild Anopheles arabiensis echoed the mortality trend shown in cone assays, with the highest dose inducing the highest mortality and the improved formulation showing increased mortality rates. No blood-feeding inhibition or insecticide-induced exiting effects were observed with broflanilide. Broflanilide 50WP was effective against both susceptible and pyrethroid-resistant mosquito strains, demonstrating an absence of cross resistance between broflanilide and pyrethroids. The improved formulation, which has now been branded VECTRONTM T500, resulted in a prolonged residual efficacy. These results indicate the potential of this insecticide as an addition to the arsenal of IRS products needed to maintain both control of malaria and resistance management of malaria-transmitting mosquitoes.
Collapse
Affiliation(s)
| | - Mark W. Rowland
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Ezekia M. Kisengwa
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
| | - Graham J. Small
- Innovative Vector Control Consortium, Liverpool, United Kingdom
| | - David J. Malone
- Innovative Vector Control Consortium, Liverpool, United Kingdom
| | - Franklin W. Mosha
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
| | - Matthew J. Kirby
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
39
|
Bath D, Cook J, Govere J, Mathebula P, Morris N, Hlongwana K, Raman J, Seocharan I, Zitha A, Zitha M, Mabuza A, Mbokazi F, Machaba E, Mabunda E, Jamesboy E, Biggs J, Drakeley C, Moonasar D, Maharaj R, Coetzee M, Pitt C, Kleinschmidt I. Effectiveness and cost-effectiveness of reactive, targeted indoor residual spraying for malaria control in low-transmission settings: a cluster-randomised, non-inferiority trial in South Africa. Lancet 2021; 397:816-827. [PMID: 33640068 PMCID: PMC7910276 DOI: 10.1016/s0140-6736(21)00251-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/11/2020] [Accepted: 01/14/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Increasing insecticide costs and constrained malaria budgets could make universal vector control strategies, such as indoor residual spraying (IRS), unsustainable in low-transmission settings. We investigated the effectiveness and cost-effectiveness of a reactive, targeted IRS strategy. METHODS This cluster-randomised, open-label, non-inferiority trial compared reactive, targeted IRS with standard IRS practice in northeastern South Africa over two malaria seasons (2015-17). In standard IRS clusters, programme managers conducted annual mass spray campaigns prioritising areas using historical data, expert opinion, and other factors. In targeted IRS clusters, only houses of index cases (identified through passive surveillance) and their immediate neighbours were sprayed. The non-inferiority margin was 1 case per 1000 person-years. Health service costs of real-world implementation were modelled from primary and secondary data. Incremental costs per disability-adjusted life-year (DALY) were estimated and deterministic and probabilistic sensitivity analyses conducted. This study is registered with ClinicalTrials.gov, NCT02556242. FINDINGS Malaria incidence was 0·95 per 1000 person-years (95% CI 0·58 to 1·32) in the standard IRS group and 1·05 per 1000 person-years (0·72 to 1·38) in the targeted IRS group, corresponding to a rate difference of 0·10 per 1000 person-years (-0·38 to 0·59), demonstrating non-inferiority for targeted IRS (p<0·0001). Per additional DALY incurred, targeted IRS saved US$7845 (2902 to 64 907), giving a 94-98% probability that switching to targeted IRS would be cost-effective relative to plausible cost-effectiveness thresholds for South Africa ($2637 to $3557 per DALY averted). Depending on the threshold used, targeted IRS would remain cost-effective at incidences of less than 2·0-2·7 per 1000 person-years. Findings were robust to plausible variation in other parameters. INTERPRETATION Targeted IRS was non-inferior, safe, less costly, and cost-effective compared with standard IRS in this very-low-transmission setting. Saved resources could be reallocated to other malaria control and elimination activities. FUNDING Joint Global Health Trials.
Collapse
Affiliation(s)
- David Bath
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, UK; Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK.
| | - Jackie Cook
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - John Govere
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Phillemon Mathebula
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Natashia Morris
- Health GIS Centre, South African Medical Research Council, Durban, South Africa
| | - Khumbulani Hlongwana
- School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Jaishree Raman
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Ishen Seocharan
- Biostatistics Unit, South African Medical Research Council, Durban, South Africa
| | - Alpheus Zitha
- Mpumalanga Provincial Malaria Control Programme, Nelspruit, South Africa
| | - Matimba Zitha
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aaron Mabuza
- Mpumalanga Provincial Malaria Control Programme, Nelspruit, South Africa
| | - Frans Mbokazi
- Mpumalanga Provincial Malaria Control Programme, Nelspruit, South Africa
| | - Elliot Machaba
- Limpopo Provincial Malaria Control Programme, Polokwane, South Africa
| | - Erik Mabunda
- Limpopo Provincial Malaria Control Programme, Polokwane, South Africa
| | - Eunice Jamesboy
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Joseph Biggs
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Devanand Moonasar
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; South Africa National Malaria Programme, National Department of Health, Pretoria, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Durban, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Catherine Pitt
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, UK
| | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| |
Collapse
|
40
|
Hsiang MS, Mumbengegwi D, Chimumbwa J. Mini-outbreak response for malaria using indoor residual spraying. Lancet 2021; 397:771-773. [PMID: 33640045 DOI: 10.1016/s0140-6736(21)00426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Michelle S Hsiang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Malaria Elimination Initiative and Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - John Chimumbwa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| |
Collapse
|
41
|
Jaiteh F, Ribera JM, Masunaga Y, Okebe J, D'Alessandro U, Balen J, Achan J, Gerrets R, Peeters Grietens K. Complexities in Defining the Unit of Intervention for Reactive Community-Based Malaria Treatment in the Gambia. Front Public Health 2021; 9:601152. [PMID: 33718317 PMCID: PMC7952428 DOI: 10.3389/fpubh.2021.601152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
With significant declines in malaria, infections are increasingly clustered in households, or groups of households where malaria transmission is higher than in surrounding household/villages. To decrease transmission in such cases, reactive interventions target household members of clinical malaria cases, with the intervention unit (e.g., the "household/s") derived from an epidemiological and operational perspective. A lack of unanimity regarding the spatial range of the intervention unit calls for greater importance to be placed on social context in conceptualizing the appropriate unit. A novel malaria elimination strategy based on reactive treatment was recently evaluated by a cluster randomized trial in a low transmission setting in The Gambia. Transdisciplinary research was used to assess and improve the effectiveness of the intervention which consisted, among others, of reflecting on whether the household was the most adequate unit of analysis. The intervention was piloted on the smallest treatment unit possible and was further adapted following a better understanding of the social and epidemiological context. Intervention units defined according to (i) shared sleeping spaces and (ii) household membership, showed substantial limitations as it was not possible to define them clearly and they were extremely variable within the study setting. Incorporating local definitions and community preference in the trial design led to the appropriate intervention unit-the compound-defined as an enclosed space containing one or several households belonging to the same extended patrilineal family. Our study demonstrates the appropriateness of using transdisciplinary research for investigating alternative intervention units that are better tailored to reactive treatment approaches.
Collapse
Affiliation(s)
- Fatou Jaiteh
- Medical Research Council Unit the Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Medical Anthropology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Social and Behavioural Sciences, Amsterdam Institute of Social Science Research, Amsterdam, Netherlands
| | | | - Yoriko Masunaga
- Medical Anthropology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Social and Behavioural Sciences, Amsterdam Institute of Social Science Research, Amsterdam, Netherlands
| | - Joseph Okebe
- Medical Research Council Unit the Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Umberto D'Alessandro
- Medical Research Council Unit the Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julie Balen
- School of Health and Related Research (ScHARR), The University of Sheffield, Sheffield, United Kingdom
| | - Jane Achan
- Medical Research Council Unit the Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Rene Gerrets
- Faculty of Social and Behavioural Sciences, Amsterdam Institute of Social Science Research, Amsterdam, Netherlands
| | - Koen Peeters Grietens
- Medical Anthropology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- PASS Suisse, Neuchâtel, Switzerland
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
42
|
Oduma CO, Ogolla S, Atieli H, Ondigo BN, Lee MC, Githeko AK, Dent AE, Kazura JW, Yan G, Koepfli C. Increased investment in gametocytes in asymptomatic Plasmodium falciparum infections in the wet season. BMC Infect Dis 2021; 21:44. [PMID: 33422001 PMCID: PMC7797145 DOI: 10.1186/s12879-020-05761-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Transmission stemming from asymptomatic infections is increasingly being recognized as a threat to malaria elimination. In many regions, malaria transmission is seasonal. It is not well understood whether Plasmodium falciparum modulates its investment in transmission to coincide with seasonal vector abundance. Methods We sampled 1116 asymptomatic individuals in the wet season, when vectors are abundant, and 1743 in the dry season, in two sites in western Kenya, representing different transmission intensities (Chulaimbo, moderate transmission, and Homa Bay, low transmission). Blood samples were screened for P. falciparum by qPCR, and gametocytes by pfs25 RT-qPCR. Results Parasite prevalence by qPCR was 27.1% (Chulaimbo, dry), 48.2% (Chulaimbo, wet), 9.4% (Homabay, dry), and 7.8% (Homabay, wet). Mean parasite densities did not differ between seasons (P = 0.562). pfs25 transcripts were detected in 119/456 (26.1%) of infections. In the wet season, fewer infections harbored detectable gametocytes (22.3% vs. 33.8%, P = 0.009), but densities were 3-fold higher (wet: 3.46 transcripts/uL, dry: 1.05 transcripts/uL, P < 0.001). In the dry season, 4.0% of infections carried gametocytes at moderate-to-high densities likely infective (> 1 gametocyte per 2 uL blood), compared to 7.9% in the wet season. Children aged 5–15 years harbored 76.7% of infections with gametocytes at moderate-to-high densities. Conclusions Parasites increase their investment in transmission in the wet season, reflected by higher gametocyte densities. Despite increased gametocyte densities, parasite density remained similar across seasons and were often below the limit of detection of microscopy or rapid diagnostic test, thus a large proportion of infective infections would escape population screening in the wet season. Seasonal changes of gametocytemia in asymptomatic infections need to be considered when designing malaria control measures. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-020-05761-6.
Collapse
Affiliation(s)
- Colins O Oduma
- Department of Biochemistry and Molecular Biology, Egerton University, P. O Box 536, Nakuru, 20115, Kenya.,Kenya Medical Research Institute/Centre for Global Health Research, P. O Box 1578, Kisumu, 40100, Kenya
| | - Sidney Ogolla
- Kenya Medical Research Institute/Centre for Global Health Research, P. O Box 1578, Kisumu, 40100, Kenya
| | - Harrysone Atieli
- School of Public Health, Maseno University, P. O Box 3275, Maseno, 40100, Kenya.,International Center of Excellence for Malaria Research, P. O Box 199, Homa Bay, 40300, Kenya
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, P. O Box 536, Nakuru, 20115, Kenya.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute Health, Bethesda, MD, 20892, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Andrew K Githeko
- International Center of Excellence for Malaria Research, P. O Box 199, Homa Bay, 40300, Kenya
| | - Arlene E Dent
- Case Western Reserve University, Center for Global Health and Diseases, LC 4983, Cleveland, OH, 44106, USA
| | - James W Kazura
- Case Western Reserve University, Center for Global Health and Diseases, LC 4983, Cleveland, OH, 44106, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Cristian Koepfli
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556-0369, USA.
| |
Collapse
|
43
|
Stresman G, Whittaker C, Slater HC, Bousema T, Cook J. Quantifying Plasmodium falciparum infections clustering within households to inform household-based intervention strategies for malaria control programs: An observational study and meta-analysis from 41 malaria-endemic countries. PLoS Med 2020; 17:e1003370. [PMID: 33119589 PMCID: PMC7595326 DOI: 10.1371/journal.pmed.1003370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/11/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Reactive malaria strategies are predicated on the assumption that individuals infected with malaria are clustered within households or neighbourhoods. Despite the widespread programmatic implementation of reactive strategies, little empirical evidence exists as to whether such strategies are appropriate and, if so, how they should be most effectively implemented. METHODS AND FINDINGS We collated 2 different datasets to assess clustering of malaria infections within households: (i) demographic health survey (DHS) data, integrating household information and patent malaria infection, recent fever, and recent treatment status in children; and (ii) data from cross-sectional and reactive detection studies containing information on the household and malaria infection status (patent and subpatent) of all-aged individuals. Both datasets were used to assess the odds of infections clustering within index households, where index households were defined based on whether they contained infections detectable through one of 3 programmatic strategies: (a) Reactive Case Detection (RACD) classifed by confirmed clinical cases, (b) Mass Screen and Treat (MSAT) classifed by febrile, symptomatic infections, and (c) Mass Test and Treat (MTAT) classifed by infections detectable using routine diagnostics. Data included 59,050 infections in 208,140 children under 7 years old (median age = 2 years, minimum = 2, maximum = 7) by microscopy/rapid diagnostic test (RDT) from 57 DHSs conducted between November 2006 and December 2018 from 23 African countries. Data representing 11,349 infections across all ages (median age = 22 years, minimum = 0.5, maximum = 100) detected by molecular tools in 132,590 individuals in 43 studies published between April 2006 and May 2019 in 20 African, American, Asian, and Middle Eastern countries were obtained from the published literature. Extensive clustering was observed-overall, there was a 20.40 greater (95% credible interval [CrI] 0.35-20.45; P < 0.001) odds of patent infections (according to the DHS data) and 5.13 greater odds (95% CI 3.85-6.84; P < 0.001) of molecularly detected infections (from the published literature) detected within households in which a programmatically detectable infection resides. The strongest degree of clustering identified by polymerase chain reaction (PCR)/ loop mediated isothermal amplification (LAMP) was observed using the MTAT strategy (odds ratio [OR] = 6.79, 95% CI 4.42-10.43) but was not significantly different when compared to MSAT (OR = 5.2, 95% CI 3.22-8.37; P-difference = 0.883) and RACD (OR = 4.08, 95% CI 2.55-6.53; P-difference = 0.29). Across both datasets, clustering became more prominent when transmission was low. However, limitations to our analysis include not accounting for any malaria control interventions in place, malaria seasonality, or the likely heterogeneity of transmission within study sites. Clustering may thus have been underestimated. CONCLUSIONS In areas where malaria transmission is peri-domestic, there are programmatic options for identifying households where residual infections are likely to be found. Combining these detection strategies with presumptively treating residents of index households over a sustained time period could contribute to malaria elimination efforts.
Collapse
Affiliation(s)
- Gillian Stresman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Charlie Whittaker
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research and MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London, United Kingdom
| | - Hannah C. Slater
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- PATH, Seattle, Washington, United States of America
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jackie Cook
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
44
|
Abstract
BACKGROUND The COVID-19 pandemic has resulted in millions of infections, hundreds of thousands of deaths and major societal disruption due to lockdowns and other restrictions introduced to limit disease spread. Relatively little attention has been paid to understanding how the pandemic has affected treatment, prevention and control of malaria, which is a major cause of death and disease and predominantly affects people in less well-resourced settings. MAIN BODY Recent successes in malaria control and elimination have reduced the global malaria burden, but these gains are fragile and progress has stalled in the past 5 years. Withdrawing successful interventions often results in rapid malaria resurgence, primarily threatening vulnerable young children and pregnant women. Malaria programmes are being affected in many ways by COVID-19. For prevention of malaria, insecticide-treated nets need regular renewal, but distribution campaigns have been delayed or cancelled. For detection and treatment of malaria, individuals may stop attending health facilities, out of fear of exposure to COVID-19, or because they cannot afford transport, and health care workers require additional resources to protect themselves from COVID-19. Supplies of diagnostics and drugs are being interrupted, which is compounded by production of substandard and falsified medicines and diagnostics. These disruptions are predicted to double the number of young African children dying of malaria in the coming year and may impact efforts to control the spread of drug resistance. Using examples from successful malaria control and elimination campaigns, we propose strategies to re-establish malaria control activities and maintain elimination efforts in the context of the COVID-19 pandemic, which is likely to be a long-term challenge. All sectors of society, including governments, donors, private sector and civil society organisations, have crucial roles to play to prevent malaria resurgence. Sparse resources must be allocated efficiently to ensure integrated health care systems that can sustain control activities against COVID-19 as well as malaria and other priority infectious diseases. CONCLUSION As we deal with the COVID-19 pandemic, it is crucial that other major killers such as malaria are not ignored. History tells us that if we do, the consequences will be dire, particularly in vulnerable populations.
Collapse
|
45
|
Stuck L, Fakih BS, Al-Mafazy AWH, Hofmann NE, Holzschuh A, Grossenbacher B, Bennett A, Cotter C, Reaves E, Ali A, der Horst TV, Felger I, Hetzel MW, Yukich J. Malaria infection prevalence and sensitivity of reactive case detection in Zanzibar. Int J Infect Dis 2020; 97:337-346. [PMID: 32534138 PMCID: PMC8450816 DOI: 10.1016/j.ijid.2020.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Reactive case detection (RCD) is a commonly used strategy for malaria surveillance and response in elimination settings. Many approaches to RCD assume detectable infections are clustered within and around homes of passively detected cases (index households), which has been evaluated in a number of settings with disparate results. METHODS Household questionnaires and diagnostic testing were conducted following RCD investigations in Zanzibar, Tanzania, including the index household and up to 9 additional neighboring households. RESULTS Of 12,487 participants tested by malaria rapid diagnostic test (RDT), 3·2% of those residing in index households and 0·4% of those residing in non-index households tested positive (OR = 8·4; 95%CI: 5·7, 12·5). Of 6,281 participants tested by quantitative polymerase chain reaction (qPCR), 8·4% of those residing in index households and 1·3% of those residing in non-index households tested positive (OR = 7·1; 95%CI: 6·1, 10·9). Within households of index cases defined as imported, odds of qPCR-positivity amongst members reporting recent travel were 1·4 times higher than among those without travel history (95%CI: 0·2, 4·4). Amongst non-index households, odds of qPCR-detectable infection were no different between households located within 50 m of the index household as compared with those located farther away (OR = 0·8, 95%CI: 0·5, 1·4). Sensitivity of RDT to detect qPCR-detectable infections was 34% (95%CI: 26·4, 42·3). CONCLUSIONS Malaria prevalence in index households in Zanzibar is much higher than in non-index households, in which prevalence is very low. Travelers represent a high-risk population. Low sensitivity of RDTs due to a high prevalence of low-density infections results in an RCD system missing a large proportion of the parasite reservoir.
Collapse
Affiliation(s)
- Logan Stuck
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Bakar S Fakih
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Abdul-Wahid H Al-Mafazy
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Natalie E Hofmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Aurel Holzschuh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Grossenbacher
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA
| | - Chris Cotter
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA
| | - Erik Reaves
- U.S. President's Malaria Initiative, Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Tina van der Horst
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Joshua Yukich
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
46
|
Hetzel MW, Chitnis N. Reducing malaria transmission with reactive focal interventions. Lancet 2020; 395:1317-1319. [PMID: 32334688 DOI: 10.1016/s0140-6736(20)30678-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Manuel W Hetzel
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|