1
|
Wilders H, Biggs G, Rowe SM, Cawood EE, Riziotis IG, Rendina AR, Grant EK, Pettinger J, Fallon DJ, Skehel M, House D, Tomkinson NCO, Bush JT. Expedited SARS-CoV-2 Main Protease Inhibitor Discovery through Modular 'Direct-to-Biology' Screening. Angew Chem Int Ed Engl 2025; 64:e202418314. [PMID: 39630105 DOI: 10.1002/anie.202418314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Reactive fragment (RF) screening has emerged as an efficient method for ligand discovery across the proteome, irrespective of a target's perceived tractability. To date, however, the efficiency of subsequent optimisation campaigns has largely been low-throughput, constrained by the need for synthesis and purification of target compounds. We report an efficient platform for 'direct-to-biology' (D2B) screening of cysteine-targeting chloroacetamide RFs, wherein synthesis is performed in 384-well plates allowing direct assessment in downstream biological assays without purification. Here, the developed platform was used to optimise inhibitors of SARS-CoV-2 main protease (MPro), an established drug target for the treatment of COVID-19. An initial RF hit was developed into a series of potent inhibitors, and further exploration using D2B screening enabled a 'switch' to a reversible inhibitor series. This example of ligand discovery for MPro illustrates the acceleration that D2B chemistry can offer for optimising RFs towards covalent inhibitor candidates, as well as providing future impetus to explore the evolution of RFs into non-covalent ligands.
Collapse
Affiliation(s)
- Harry Wilders
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - George Biggs
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Sam M Rowe
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Emma E Cawood
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Ioannis G Riziotis
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Alan R Rendina
- Screening, Profiling and Mechanistic Biology, GSK, 1250 South Collegeville Road, Collegevill, PA, 19426, US
| | - Emma K Grant
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jonathan Pettinger
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - David J Fallon
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David House
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Nicholas C O Tomkinson
- Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Jacob T Bush
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
2
|
Arsanious J, Rowland A, Sorich MJ, Hopkins AM, Alfred S, Rowland A. Ritonavir may prolong sedation but is unlikely to increase the risk of respiratory arrest in patients requiring intravenous midazolam for procedural sedation. J Clin Pharmacol 2024. [PMID: 39604049 DOI: 10.1002/jcph.6171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Intravenous midazolam is frequently used for procedural sedation. Use of ritonavir containing antivirals in patients requiring procedural sedation with intravenous midazolam is postulated to increase the risk or prolong the consequences of exposure related adverse events. The primary objective of this study was to characterize interaction of ritonavir with IV midazolam. The secondary objective was to define the time course over with the interaction of ritonavir with IV midazolam resolves following cessation of ritonavir. Physiologically based pharmacokinetic modeling was used to conduct clinical trials with a parallel group design defining exposure to a single 5 mg IV dose of midazolam in the presence and absence of nirmatrelvir/ritonavir dosed twice daily for 5 days. Simulations comprised 50 virtual healthy subjects aged 20 to 50 years (50% female). Based on FDA criteria, a moderate/strong interaction between nirmatrelvir/ritonavir and intravenous midazolam (area under the curve [AUC] ratio >2) was observed when intravenous midazolam was administered up to 72 h following cessation of nirmatrelvir/ritonavir. The geometric mean (90% CI) midazolam AUC ratio was 9.21 (5.44 to 16.43) when coadministered on the final day of nirmatrelvir/ritonavir dosing. Importantly, there was no change in peak exposure; the geometric mean (90% CI) midazolam maximum concentration ratio was 0.99 (0.99 to 1.00). Use of ritonavir containing antivirals is unlikely to increase a patient's risk of experiencing an exposure related adverse event following administration of intravenous midazolam but may prolong complications in patients who experience an event. A meaningful interaction persists for 72 h following cessation of nirmatrelvir/ritonavir.
Collapse
Affiliation(s)
- Jason Arsanious
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Angela Rowland
- SA Toxinology and Toxicology Service, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Sam Alfred
- SA Toxinology and Toxicology Service, Royal Adelaide Hospital, Adelaide, Australia
- Department of Emergency Medicine, Royal Adelaide Hospital, Adelaide, Australia
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
3
|
Protić S, Crnoglavac Popović M, Kaličanin N, Prodanović O, Senćanski M, Milićević J, Stevanović K, Perović V, Paessler S, Prodanović R, Glišić S. SARS-CoV-2 PL pro Inhibition: Evaluating in Silico Repurposed Fidaxomicin's Antiviral Activity Through In Vitro Assessment. ChemistryOpen 2024; 13:e202400091. [PMID: 39099532 PMCID: PMC11564859 DOI: 10.1002/open.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
The emergence of drug-resistant viruses and novel strains necessitates the rapid development of novel antiviral therapies. This need was particularly demanding during the COVID-19 pandemic. While de novo drug development is a time-consuming process, repurposing existing approved medications offers a more expedient approach. In our prior in silico screening of the DrugBank database, fidaxomicin emerged as a potential SARS-CoV-2 papain-like protease inhibitor. This study extends those findings by investigating fidaxomicin's antiviral properties in vitro. Our results support further exploration of fidaxomicin as a therapeutic candidate against SARS-CoV-2, given its promising in vitro antiviral activity and favorable safety profile.
Collapse
Affiliation(s)
- Sara Protić
- Faculty of ChemistryUniversity of BelgradeStudentski Trg 12–16BelgradeSerbia
| | | | - Nevena Kaličanin
- Institute of ChemistryTechnology and MetallurgyUniversity of BelgradeNjegoševa 12BelgradeSerbia
| | - Olivera Prodanović
- Institute for Multidisciplinary ResearchUniversity of BelgradeKneza Višeslava 1BelgradeSerbia
| | - Milan Senćanski
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
- Laboratory for Plant Molecular BiologyInstitute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeVojvode Stepe 444aBelgradeSerbia
| | - Jelena Milićević
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
| | - Kristina Stevanović
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
| | - Vladimir Perović
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
| | - Slobodan Paessler
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexasUnited States
- Institute for Human Infections and ImmunityUniversity of Texas Medical BranchGalvestonTexasUnited States
| | - Radivoje Prodanović
- Faculty of ChemistryUniversity of BelgradeStudentski Trg 12–16BelgradeSerbia
| | - Sanja Glišić
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
| |
Collapse
|
4
|
Chen Y, Lin Y, Lu H, Wu X, Pan Y, Xia A, Pang L, Ye W, Xu F. Real-world effectiveness of molnupiravir, azvudine and paxlovid against mortality and viral clearance among hospitalized patients with COVID-19 infection during the omicron wave in China: A retrospective cohort study. Diagn Microbiol Infect Dis 2024; 109:116353. [PMID: 38776665 DOI: 10.1016/j.diagmicrobio.2024.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES In this retrospective cohort study, we aimed to assess clinical effectiveness and viral clearance following the use of molnupiravir, azvudine and paxlovid in hospitalized patients with COVID-19 in China dominated by the omicron BA.5.2 and BF.7 subvariant of SARS-CoV-2. METHODS Enrolled patients were assigned to the molnupiravir group or the azvudine group or the paxlovid group or the control group (not taking any antiviral drugs). The primary outcome of the cohort study was viral clearance and viral burden rebound after treatment and the secondary outcome was 28-day all-cause mortality. The four groups were propensity score-matched (1:1). We plotted viral load trends for each antiviral drug intervention using locally weighted regression (LOWESS) smoothed data. Multivariate logistic regression (stepwise algorithm) models were used to determine any risk factors for 28-day mortality. RESULTS Of the 1537 patients receiving any treatment, 886 (57.6 %) received molnupiravir, 390 (25.4 %) received azvudine, 94 (6.1 %) received paxlovid, and 167 (10.9 %) did not use any antiviral drugs. Our data analysis showed that age (OR = 1.05, 95 % CI: 1.03-1.07, P < 0.001), Charlson comorbidty index (OR = 1.32, 95 % CI: 1.18-1.48, P < 0.001), severity of COVID-19 (P < 0.001), gamma globulin (OR = 2.04, 95 % CI: 1.03-3.99, P = 0.039) and corticosteroids use (OR = 2.3, 95 % CI: 1.19-4.69, P = 0.017) were independent prognostic factors for 28-day mortality in COVID-19 patients. After propensity score matching (PSM), the paxlovid recipients (OR = 0.22, 95 % CI: 0.05-0.83, P = 0.036) or azvudine recipients (OR = 0.27, 95 % CI: 0.07-0.91, P = 0.046) had lower 28-day mortality compared to their matched controls. Viral rebound occurred in the control group around days 9-16, while no viral rebound was found in any of the three oral antiviral groups. We found that molnupiravir group performed comparably in terms of the rate of nucleic acid conversion negative compared with the paxlovid group, while azvudine group performed slightly worse compared with the paxlovid group or molnupiravir group. CONCLUSIONS In our retrospective cohort of hospitalized patients with COVID-19 during the wave of omicron strain, the molnupiravir, paxlovid and azvudine recipients showed a faster and more stable decrease in viral load and rare virus rebound in response to antiviral treatments when compared to the controls. The study supported that initiation treatment with paxlovid and azvudine was associated with significantly lower risk of all-cause death within 28 days.
Collapse
Affiliation(s)
- Yingsha Chen
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Yushi Lin
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Huidan Lu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Xiaocui Wu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Ying Pan
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Anyue Xia
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Lantian Pang
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Wenjing Ye
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, PR China; Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, 310009, PR China.
| |
Collapse
|
5
|
Zhou CJ, Liu YN, Wang A, Wu H, Xu RA, Zhang Q. Simultaneous measurement of COVID-19 treatment drugs (nirmatrelvir and ritonavir) in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study. Heliyon 2024; 10:e32187. [PMID: 38868075 PMCID: PMC11168422 DOI: 10.1016/j.heliyon.2024.e32187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
PAXLOVID™ (Co-packaging of Nirmatrelvir with Ritonavir) has been approved for the treatment of Coronavirus Disease 2019 (COVID-19). The goal of the experiment was to create an accurate and straightforward analytical method using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to simultaneously quantify nirmatrelvir and ritonavir in rat plasma, and to investigate the pharmacokinetic profiles of these drugs in rats. After protein precipitation using acetonitrile, nirmatrelvir, ritonavir, and the internal standard (IS) lopinavir were separated using ultra performance liquid chromatography (UPLC). This separation was achieved with a mobile phase composed of acetonitrile and an aqueous solution of 0.1% formic acid, using a reversed-phase column with a binary gradient elution. Using multiple reaction monitoring (MRM) technology, the analytes were detected in the positive electrospray ionization mode. Favorable linearity was observed in the calibration range of 2.0-10000 ng/mL for nirmatrelvir and 1.0-5000 ng/mL for ritonavir, respectively, within plasma samples. The lower limits of quantification (LLOQ) attained were 2.0 ng/mL for nirmatrelvir and 1.0 ng/mL for ritonavir, respectively. Both drugs demonstrated inter-day and intra-day precision below 15%, with accuracies ranging from -7.6% to 13.2%. Analytes were extracted with recoveries higher than 90.7% and without significant matrix effects. Likewise, the stability was found to meet the requirements of the analytical method under different conditions. This UPLC-MS/MS method, characterized by enabling accurate and precise quantification of nirmatrelvir and ritonavir in plasma, was effectively utilized for in vivo pharmacokinetic studies in rats.
Collapse
Affiliation(s)
| | - Ya-nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Anzhou Wang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hualu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ren-ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qiang Zhang
- The People's Hospital of Lishui, Zhejiang, China
| |
Collapse
|
6
|
Qian H, Yang X, Zhang T, Zou P, Zhang Y, Tian W, Mao Z, Wei J. Improving the safety of CAR-T-cell therapy: The risk and prevention of viral infection for patients with relapsed or refractory B-cell lymphoma undergoing CAR-T-cell therapy. Am J Hematol 2024; 99:662-678. [PMID: 38197307 DOI: 10.1002/ajh.27198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy, an innovative immunotherapeutic against relapsed/refractory B-cell lymphoma, faces challenges due to frequent viral infections. Despite this, a comprehensive review addressing risk assessment, surveillance, and treatment management is notably absent. This review elucidates immune response compromises during viral infections in CAR-T recipients, collates susceptibility risk factors, and deliberates on preventive strategies. In the post-pandemic era, marked by the Omicron variant, new and severe threats to CAR-T therapy emerge, necessitating exploration of preventive and treatment measures for COVID-19. Overall, the review provides recommendations for viral infection prophylaxis and management, enhancing CAR-T product safety and recipient survival.
Collapse
Affiliation(s)
- Hu Qian
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Ping Zou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zekai Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
7
|
de Almeida Marques DP, Andrade LAF, Reis EVS, Clarindo FA, Moraes TDFS, Lourenço KL, De Barros WA, Costa NEM, Andrade LMD, Lopes-Ribeiro Á, Coêlho Maciel MS, Corrêa-Dias LC, de Almeida IN, Arantes TS, Litwinski VCV, de Oliveira LC, Serafim MSM, Maltarollo VG, Guatimosim SC, Silva MM, Tsuji M, Ferreira RS, Barreto LV, Barbosa-Stancioli EF, da Fonseca FG, De Fátima Â, Coelho-Dos-Reis JGA. New anti-SARS-CoV-2 aminoadamantane compounds as antiviral candidates for the treatment of COVID-19. Virus Res 2024; 340:199291. [PMID: 38065303 PMCID: PMC10733093 DOI: 10.1016/j.virusres.2023.199291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Here, the antiviral activity of aminoadamantane derivatives were evaluated against SARS-CoV-2. The compounds exhibited low cytotoxicity to Vero, HEK293 and CALU-3 cells up to a concentration of 1,000 µM. The inhibitory concentration (IC50) of aminoadamantane was 39.71 µM in Vero CCL-81 cells and the derivatives showed significantly lower IC50 values, especially for compounds 3F4 (0.32 µM), 3F5 (0.44 µM) and 3E10 (1.28 µM). Additionally, derivatives 3F5 and 3E10 statistically reduced the fluorescence intensity of SARS-CoV-2 protein S from Vero cells at 10 µM. Transmission microscopy confirmed the antiviral activity of the compounds, which reduced cytopathic effects induced by the virus, such as vacuolization, cytoplasmic projections, and the presence of myelin figures derived from cellular activation in the face of infection. Additionally, it was possible to observe a reduction of viral particles adhered to the cell membrane and inside several viral factories, especially after treatment with 3F4. Moreover, although docking analysis showed favorable interactions in the catalytic site of Cathepsin L, the enzymatic activity of this enzyme was not inhibited significantly in vitro. The new derivatives displayed lower predicted toxicities than aminoadamantane, which was observed for either rat or mouse models. Lastly, in vivo antiviral assays of aminoadamantane derivatives in BALB/cJ mice after challenge with the mouse-adapted strain of SARS-CoV-2, corroborated the robust antiviral activity of 3F4 derivative, which was higher than aminoadamantane and its other derivatives. Therefore, aminoadamantane derivatives show potential broad-spectrum antiviral activity, which may contribute to COVID-19 treatment in the face of emerging and re-emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Daisymara Priscila de Almeida Marques
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luis Adan Flores Andrade
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro Tecnológico de Vacinas (CT Vacinas), Belo Horizonte, MG, Brazil
| | - Erik Vinicius Sousa Reis
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Alves Clarindo
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaís de Fátima Silva Moraes
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karine Lima Lourenço
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro Tecnológico de Vacinas (CT Vacinas), Belo Horizonte, MG, Brazil
| | - Wellington Alves De Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathália Evelyn Morais Costa
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lídia Maria de Andrade
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ágata Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariella Sousa Coêlho Maciel
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura Cardoso Corrêa-Dias
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabela Neves de Almeida
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Laboratório de Micobacterioses, Faculdade de Medicina, Universidade Federal de, Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thalita Souza Arantes
- Centro de Microscopia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian Costa Vasconcelos Litwinski
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Leonardo Camilo de Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Mateus Sá Magalhães Serafim
- Laboratório de Virus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Vinicius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos da Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Silvia Carolina Guatimosim
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Mário Morais Silva
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Luiza Valença Barreto
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Edel Figueiredo Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro Tecnológico de Vacinas (CT Vacinas), Belo Horizonte, MG, Brazil
| | - Ângelo De Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | |
Collapse
|
8
|
Zhan Y, Lin Z, Liang J, Sun R, Li Y, Lin B, Ge F, Lin L, Lu H, Su L, Xiang T, Pan H, Huang C, Deng Y, Wang F, Xu R, Chen D, Zhang P, Tong J, Wang X, Meng Q, Zheng Z, Ou S, Guo X, Yao H, Yu T, Li W, Zhang Y, Jiang M, Fang Z, Song Y, Chen R, Luo J, Kang C, Liang S, Li H, Zheng J, Zhong N, Yang Z. Leritrelvir for the treatment of mild or moderate COVID-19 without co-administered ritonavir: a multicentre randomised, double-blind, placebo-controlled phase 3 trial. EClinicalMedicine 2024; 67:102359. [PMID: 38188690 PMCID: PMC10770433 DOI: 10.1016/j.eclinm.2023.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Background Leritrelvir is a novel α-ketoamide based peptidomimetic inhibitor of SARS-CoV-2 main protease. A preclinical study has demonstrated leritrelvir poses similar antiviral activities towards different SARS-CoV-2 variants compared with nirmatrelvir. A phase 2 clinical trial has shown a comparable antiviral efficacy and safety between leritrelvir with and without ritonavir co-administration. This trial aims to test efficacy and safety of leritrelvir monotherapy in adults with mild-to-moderate COVID-19. Methods This was a randomised, double-blind, placebo-controlled, multicentre phase 3 trial at 29 clinical sites in China. Enrolled patients were from 18 to 75 years old, diagnosed with mild or moderate COVID-19 and not requiring hospitalization. Patients had a positive SARS-CoV-2 nucleic acid test (NAT) and at least one of the COVID-19 symptoms within 48 h before randomization, and the interval between the first positive SARS-CoV-2 NAT and randomization was ≤120 h (5 days). Patients were randomly assigned in a 1:1 ratio to receive a 5-day course of either oral leritrelvir 400 mg TID or placebo. The primary efficacy endpoint was the time from the first dose to sustained clinical recovery of all 11 symptoms (stuffy or runny nose, sore throat, shortness of breath or dyspnea, cough, muscle or body aches, headache, chills, fever ≥37 °C, nausea, vomiting, and diarrhea). The safety endpoint was the incidence of adverse events (AE). Primary and safety analyses were performed in the intention-to-treat (ITT) population. This study is registered with ClinicalTrials.gov, NCT05620160. Findings Between Nov 12 and Dec 30, 2022 when the zero COVID policy was abolished nationwide, a total of 1359 patients underwent randomization, 680 were assigned to leritrelvir group and 679 to placebo group. The median time to sustained clinical recovery in leritrelvir group was significantly shorter (251.02 h [IQR 188.95-428.68 h]) than that of Placebo (271.33 h [IQR 219.00-529.63 h], P = 0.0022, hazard ratio [HR] 1.20, 95% confidence interval [CI], 1.07-1.35). Further analysis of subgroups for the median time to sustained clinical recovery revealed that (1) subgroup with positive viral nucleic acid tested ≤72 h had a 33.9 h difference in leritrelvir group than that of placebo; (2) the subgroup with baseline viral load >8 log 10 Copies/mL in leritrelvir group had 51.3 h difference than that of placebo. Leritrelvir reduced viral load by 0.82 log10 on day 4 compared to placebo. No participants in either group progressed to severe COVID-19 by day 29. Adverse events were reported in two groups: leritrelvir 315 (46.46%) compared with placebo 292 (43.52%). Treatment-relevant AEs were similar 218 (32.15%) in the leritrelvir group and 186 (27.72%) in placebo. Two cases of COVID-19 pneumonia were reported in placebo group, and one case in leritrelvir group, none of them were considered by the investigators to be leritrelvir related. The most frequently reported AEs (occurring in ≥5% of participants in at least one group) were laboratory finding: hypertriglyceridemia (leritrelvir 79 [11.7%] vs. placebo 70 [10.4%]) and hyperlipidemia (60 [8.8%] vs. 52 [7.7%]); all of them were nonserious. Interpretation Leritrelvir monotherapy has good efficacy for mild-to-moderate COVID-19 and without serious safety concerns. Funding This study was funded by the National Multidisciplinary Innovation Team Project of Traditional Chinese Medicine, Guangdong Science and Technology Foundation, Guangzhou Science and Technology Planning Project and R&D Program of Guangzhou Laboratory.
Collapse
Affiliation(s)
- Yangqing Zhan
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Zhengshi Lin
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Jingyi Liang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Ruilin Sun
- Guangdong Second Provincial Central Hospital, Guangzhou, 510320, PR China
| | - Yueping Li
- Guangzhou Eighth People Hospital, Guangzhou, 510320, PR China
| | - Bingliang Lin
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510320, PR China
| | - Fangqi Ge
- Heze Municipal Hospital, Shandong Province, PR China
| | - Ling Lin
- Sanya Central Hospital, Hainan Province, PR China
| | - Hongzhou Lu
- The Third People's Hospital of Shenzhen, Guangdong Province, PR China
| | - Liang Su
- Shandong Public Health Clinical Center, Shandong Province, PR China
| | - Tianxin Xiang
- The First Affiliated Hospital of Nanchang University, Jiangxi Province, PR China
| | - Hongqiu Pan
- The Third People's Hospital of Zhenjiang, Jiangsu Province, PR China
| | | | - Ying Deng
- Qingyuan People's Hospital, Guangdong Province, PR China
| | - Furong Wang
- The Fourth Hospital of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, PR China
| | - Ruhong Xu
- The Ninth People's Hospital of Dongguan, Guangdong Province, PR China
| | - Dexiong Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangdong Province, PR China
| | - Ping Zhang
- Dongguan People's Hospital, Guangdong Province, PR China
| | - Jianlin Tong
- Jiujiang University Affiliated Hospital, Jiangxi Province, PR China
| | - Xifu Wang
- Shangrao People's Hospital, Jiangxi Province, PR China
| | - Qingwei Meng
- Shangrao People's Hospital, Jiangxi Province, PR China
| | - Zhigang Zheng
- Pingxiang People's Hospital, Jiangxi Province, PR China
| | - Shuqiang Ou
- Pingxiang Second People's Hospital, Jiangxi Province, PR China
| | - Xiaoyun Guo
- Pingxiang Second People's Hospital, Jiangxi Province, PR China
| | - Herui Yao
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Province, PR China
| | - Tao Yu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Province, PR China
| | - Weiyang Li
- Nanyang First People's Hospital, Henan Province, PR China
| | - Yu Zhang
- The First Affiliated Hospital of Nanyang Medical College, Henan Province, PR China
| | - Mei Jiang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Zhonghao Fang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Yudi Song
- Guangzhou University of Chinese Medicine, Guangdong Province, PR China
| | - Ruifeng Chen
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Jincan Luo
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Changyuan Kang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Shiwei Liang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Haijun Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410083, PR China
| | - other Collaborative Institutes
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
- Guangdong Second Provincial Central Hospital, Guangzhou, 510320, PR China
- Guangzhou Eighth People Hospital, Guangzhou, 510320, PR China
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510320, PR China
- Heze Municipal Hospital, Shandong Province, PR China
- Sanya Central Hospital, Hainan Province, PR China
- The Third People's Hospital of Shenzhen, Guangdong Province, PR China
- Shandong Public Health Clinical Center, Shandong Province, PR China
- The First Affiliated Hospital of Nanchang University, Jiangxi Province, PR China
- The Third People's Hospital of Zhenjiang, Jiangsu Province, PR China
- Wuhan Jinyintan Hospital, Hubei Province, PR China
- Qingyuan People's Hospital, Guangdong Province, PR China
- The Fourth Hospital of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, PR China
- The Ninth People's Hospital of Dongguan, Guangdong Province, PR China
- The Third Affiliated Hospital of Guangzhou Medical University, Guangdong Province, PR China
- Dongguan People's Hospital, Guangdong Province, PR China
- Jiujiang University Affiliated Hospital, Jiangxi Province, PR China
- Shangrao People's Hospital, Jiangxi Province, PR China
- Pingxiang People's Hospital, Jiangxi Province, PR China
- Pingxiang Second People's Hospital, Jiangxi Province, PR China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Province, PR China
- Nanyang First People's Hospital, Henan Province, PR China
- The First Affiliated Hospital of Nanyang Medical College, Henan Province, PR China
- Guangzhou University of Chinese Medicine, Guangdong Province, PR China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410083, PR China
| | - Jingping Zheng
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Nanshan Zhong
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| | - Zifeng Yang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
- Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, PR China
| |
Collapse
|
9
|
Khurshid R, Schulz JM, Hu J, Snowden TS, Reynolds RC, Schürer SC. Targeted degrader technologies as prospective SARS-CoV-2 therapies. Drug Discov Today 2024; 29:103847. [PMID: 38029836 PMCID: PMC10836335 DOI: 10.1016/j.drudis.2023.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
COVID-19 remains a severe public health threat despite the WHO declaring an end to the public health emergency in May 2023. Continual development of SARS-CoV-2 variants with resistance to vaccine-induced or natural immunity necessitates constant vigilance as well as new vaccines and therapeutics. Targeted protein degradation (TPD) remains relatively untapped in antiviral drug discovery and holds the promise of attenuating viral resistance development. From a unique structural design perspective, this review covers antiviral degrader merits and challenges by highlighting key coronavirus protein targets and their co-crystal structures, specifically illustrating how TPD strategies can refine existing SARS-CoV-2 3CL protease inhibitors to potentially produce superior protease-degrading agents.
Collapse
Affiliation(s)
- Rabia Khurshid
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joseph M Schulz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jiaming Hu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Timothy S Snowden
- The University of Alabama, Department of Chemistry and Biochemistry and Center for Convergent Bioscience and Medicine, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, USA
| | - Robert C Reynolds
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
10
|
Arman BY, Brun J, Hill ML, Zitzmann N, von Delft A. An Update on SARS-CoV-2 Clinical Trial Results-What We Can Learn for the Next Pandemic. Int J Mol Sci 2023; 25:354. [PMID: 38203525 PMCID: PMC10779148 DOI: 10.3390/ijms25010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed over 7 million lives worldwide, providing a stark reminder of the importance of pandemic preparedness. Due to the lack of approved antiviral drugs effective against coronaviruses at the start of the pandemic, the world largely relied on repurposed efforts. Here, we summarise results from randomised controlled trials to date, as well as selected in vitro data of directly acting antivirals, host-targeting antivirals, and immunomodulatory drugs. Overall, repurposing efforts evaluating directly acting antivirals targeting other viral families were largely unsuccessful, whereas several immunomodulatory drugs led to clinical improvement in hospitalised patients with severe disease. In addition, accelerated drug discovery efforts during the pandemic progressed to multiple novel directly acting antivirals with clinical efficacy, including small molecule inhibitors and monoclonal antibodies. We argue that large-scale investment is required to prepare for future pandemics; both to develop an arsenal of broad-spectrum antivirals beyond coronaviruses and build worldwide clinical trial networks that can be rapidly utilised.
Collapse
Affiliation(s)
- Benediktus Yohan Arman
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.B.); (N.Z.)
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Juliane Brun
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.B.); (N.Z.)
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Michelle L. Hill
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Nicole Zitzmann
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.B.); (N.Z.)
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Annette von Delft
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
- Centre for Medicine Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
11
|
Ali M, Park IH, Kim J, Kim G, Oh J, You JS, Kim J, Shin JS, Yoon SS. How Deep Learning in Antiviral Molecular Profiling Identified Anti-SARS-CoV-2 Inhibitors. Biomedicines 2023; 11:3134. [PMID: 38137356 PMCID: PMC10740425 DOI: 10.3390/biomedicines11123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The integration of artificial intelligence (AI) into drug discovery has markedly advanced the search for effective therapeutics. In our study, we employed a comprehensive computational-experimental approach to identify potential anti-SARS-CoV-2 compounds. We developed a predictive model to assess the activities of compounds based on their structural features. This model screened a library of approximately 700,000 compounds, culminating in the selection of the top 100 candidates for experimental validation. In vitro assays on human intestinal epithelial cells (Caco-2) revealed that 19 of these compounds exhibited inhibitory activity. Notably, eight compounds demonstrated dose-dependent activity in Vero cell lines, with half-maximal effective concentration (EC50) values ranging from 1 μM to 7 μM. Furthermore, we utilized a clustering approach to pinpoint potential nucleoside analog inhibitors, leading to the discovery of two promising candidates: azathioprine and its metabolite, thioinosinic acid. Both compounds showed in vitro activity against SARS-CoV-2, with thioinosinic acid also significantly reducing viral loads in mouse lungs. These findings underscore the utility of AI in accelerating drug discovery processes.
Collapse
Affiliation(s)
- Mohammed Ali
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - In Ho Park
- Department of Biomedical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Junebeom Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Gwanghee Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jooyeon Oh
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Sun You
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jieun Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BioMe Inc., Seoul 02455, Republic of Korea
| |
Collapse
|
12
|
Chen Z, Tian F. Evaluation of oral small molecule drugs for the treatment of COVID-19 patients: a systematic review and network meta-analysis. Ann Med 2023; 55:2274511. [PMID: 37967171 PMCID: PMC10768866 DOI: 10.1080/07853890.2023.2274511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
INTRODUCTION At present, there are some randomized controlled trials (RCTs) of oral small molecule drugs. The purpose of this study was to evaluate the efficacy and safety of oral small molecule drug treatment for COVID-19. METHODS RCTs were identified through systematic searches of PubMed, Embase, and Cochrane Central Register of Controlled Trials through 1 April 2023. A total of nine RCTs were included, including 30,970 COVID-19 patients comparing five treatments (azvudine, molnupiravir, paxlovid, VV116, and placebo). The Cochrane risk of bias tool for randomized trials (RoB) was used to assess the bias risk of the included studies. The direct and indirect evidence were combined using a Bayesian network meta-analysis (PROSPERO Code No: CRD42023397837). RESULTS Direct analysis showed that paxlovid was associated with a reduced risk of mortality (odds ratio [OR] 0.12, 95% confidence interval [CI] 0.06-0.25) and hospitalization (OR = 0.04, 95% CI: 0.00-0.67) compared with placebo. Network meta-analysis showed that paxlovid had the highest probability of being the best management strategy in patients with COVID-19, reducing mortality (OR = 0.11, 95% CI: 0.01-1.99; surface under the cumulative ranking curve [SUCRA]: 0.77) and hospitalization (OR = 0.06, 95% CI: 0.00-1.03; SUCRA: 0.95). For prespecified safety outcomes, SUCRA values ranked VV116 (OR = 0.09, 95% CI: 0.00-2.07: SUCRA 0.86) as the most beneficial intervention for the prevention of serious adverse events. CONCLUSIONS When compared to other antiviral medications, paxlovid can reduce the mortality and hospitalization of COVID-19 patients.
Collapse
Affiliation(s)
- Zhaoyan Chen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyuan Tian
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Boby ML, Fearon D, Ferla M, Filep M, Koekemoer L, Robinson MC, Chodera JD, Lee AA, London N, von Delft A, von Delft F. Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors. Science 2023; 382:eabo7201. [PMID: 37943932 PMCID: PMC7615835 DOI: 10.1126/science.abo7201] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery.
Collapse
Affiliation(s)
- Melissa L. Boby
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Program in Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
| | - Matteo Ferla
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK
| | - Mihajlo Filep
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - John D. Chodera
- Program in Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Annette von Delft
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
14
|
Mease PJ, Nash P, Grieb S, Chandran V. Impact of COVID-19 on Patients With Psoriasis or Psoriatic Arthritis. J Rheumatol 2023; 50:27-30. [PMID: 37527863 DOI: 10.3899/jrheum.2023-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/03/2023]
Abstract
Given the impact of the coronavirus disease 2019 (COVID-19) on patients with psoriatic disease (PsD), a session was devoted at the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) 2022 annual meeting to discussing the current understanding of the risk of severe COVID-19 in patients with PsD. The effects of PsD and its treatment on prevention and treatment of COVID-19 with vaccinations, antiviral drugs, and monoclonal antibodies were discussed. The session concluded with a presentation on the perspectives of patient research partners about their experiences with COVID-19.
Collapse
Affiliation(s)
- Philip J Mease
- P.J. Mease, MD, Swedish Medical Center/Providence St. Joseph Health, and University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter Nash
- P. Nash, MBBS, School of Medicine, Griffith University, Nathan, Queensland, Australia
| | - Suzanne Grieb
- S. Grieb, PhD, MSPH, Patient Research Partner, New York, New York, USA
| | - Vinod Chandran
- V. Chandran, MBBS, MD, DM, PhD, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, and Division of Rheumatology, Department of Medicine, Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Bakos É, Temesszentandrási-Ambrus C, Özvegy-Laczka C, Gáborik Z, Sarkadi B, Telbisz Á. Interactions of the Anti-SARS-CoV-2 Agents Molnupiravir and Nirmatrelvir/Paxlovid with Human Drug Transporters. Int J Mol Sci 2023; 24:11237. [PMID: 37510996 PMCID: PMC10379611 DOI: 10.3390/ijms241411237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Orally administered small molecules may have important therapeutic potential in treating COVID-19 disease. The recently developed antiviral agents, Molnupiravir and Nirmatrelvir, have been reported to be efficient treatments, with only moderate side effects, especially when applied in the early phases of this disease. However, drug-drug and drug-transporter interactions have already been noted by the drug development companies and in the application notes. In the present work, we have studied some of the key human transporters interacting with these agents. The nucleoside analog Molnupiravir (EIDD-2801) and its main metabolite (EIDD-1931) were found to inhibit CNT1,2 in addition to the ENT1,2 nucleoside transporters; however, it did not significantly influence the relevant OATP transporters or the ABCC4 nucleoside efflux transporter. The active component of Paxlovid (PF-07321332, Nirmatrelvir) inhibited the function of several OATPs and of ABCB1 but did not affect ABCG2. However, significant inhibition was observed only at high concentrations of Nirmatrelvir and probably did not occur in vivo. Paxlovid, as used in the clinic, is a combination of Nirmatrelvir (viral protease inhibitor) and Ritonavir (a "booster" inhibitor of Nirmatrelvir metabolism). Ritonavir is known to inhibit several drug transporters; therefore, we have examined these compounds together, in relevant concentrations and ratios. No additional inhibitory effect of Nirmatrelvir was observed compared to the strong transporter inhibition caused by Ritonavir. Our current in vitro results should help to estimate the potential drug-drug interactions of these newly developed agents during COVID-19 treatment.
Collapse
Affiliation(s)
- Éva Bakos
- Research Centre for Natural Sciences-RCNS, Magyar Tudósok krt 2, 1117 Budapest, Hungary
| | | | - Csilla Özvegy-Laczka
- Research Centre for Natural Sciences-RCNS, Magyar Tudósok krt 2, 1117 Budapest, Hungary
| | - Zsuzsanna Gáborik
- Charles River Laboratories, Irinyi József u. 4-20, 1117 Budapest, Hungary
| | - Balázs Sarkadi
- Research Centre for Natural Sciences-RCNS, Magyar Tudósok krt 2, 1117 Budapest, Hungary
| | - Ágnes Telbisz
- Research Centre for Natural Sciences-RCNS, Magyar Tudósok krt 2, 1117 Budapest, Hungary
| |
Collapse
|
16
|
Lübbert C, Dykukha I, Pelz JP, Yearley H, Junker W, Gruber N, Escher S, Biereth K, Melnik S, Puschmann J. Individuals at risk for severe COVID-19 in whom ritonavir-containing therapies are contraindicated or may lead to interactions with concomitant medications: a retrospective analysis of German health insurance claims data. Drugs Context 2023; 12:2023-3-4. [PMID: 37415918 PMCID: PMC10321469 DOI: 10.7573/dic.2023-3-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Background Nirmatrelvir/ritonavir is authorized for the treatment of COVID-19 but has several contraindications and potential drug-drug interactions (pDDIs) due to ritonavir-induced irreversible inhibition of cytochrome P450 3A4. We aimed to assess the prevalence of individuals with one or more risk factors for severe COVID-19 along with contraindications and pDDIs due to ritonavir-containing COVID-19 therapy. Methods Retrospective observational study of individuals with one or more risk factors according to Robert Koch Institute criteria for severe COVID-19 according to German statutory health insurance (SHI) claims data from the pre-pandemic years 2018-2019 based on the German Analysis Database for Evaluation and Health Services Research. Prevalence was extrapolated to the entire SHI population using age-adjusted and sex-adjusted multiplication factors. Results Nearly 2.5 million fully insured adults, representing 61 million people in the German SHI population, were included in the analysis. In 2019, prevalence of individuals that would have been at risk of severe COVID-19 was 56.4%. Amongst them, the prevalence of contraindications for treatment with ritonavir-containing COVID-19 therapy was approximately 2% according to presence of somatic comorbidities (severe liver or kidney disease). Prevalence of intake of medicines contraindicated for their potential interactions with ritonavir-containing COVID-19 therapy was 16.5% according to Summary of Product Characteristics and 31.8% according to previously published data. The prevalence of individuals at risk of pDDIs during ritonavir-containing COVID-19 therapy without adjustment of their concomitant therapy was 56.0% and 44.3%, respectively. Prevalence data for 2018 were similar. Conclusion Administering ritonavir-containing COVID-19 therapy can be challenging as thorough medical record review and close monitoring are required. In some cases, ritonavir-containing treatment may not be appropriate due to contraindications, risk of pDDIs, or both. For those individuals, an alternative ritonavir-free treatment should be considered.
Collapse
Affiliation(s)
- Christoph Lübbert
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Leipzig University Medical Center, Leipzig, Germany
| | | | | | | | | | | | | | | | - Sima Melnik
- Gesundheitsforen Leipzig GmbH, Leipzig, Germany
| | | |
Collapse
|
17
|
Shah PL, Orton CM, Grinsztejn B, Donaldson GC, Crabtree Ramírez B, Tonkin J, Santos BR, Cardoso SW, Ritchie AI, Conway F, Riberio MPD, Wiseman DJ, Tana A, Vijayakumar B, Caneja C, Leaper C, Mann B, Samson A, Bhavsar PK, Boffito M, Johnson MR, Pozniak A, Pelly M, Shabbir N, Connolly S, Cartier A, Jaffer S, Winpenny C, Daby D, Pepper S, Adamson C, Carungcong J, Nundlall K, Fedele S, Samson-Fessale P, Schoolmeesters A, Gomes de Almeida Martins L, Bull R, Correia Da Costa P, Bautista C, Eleanor Flores M, Maheswaran S, Macabodbod L, Houseman R, Svensson ML, Sayan A, Fung C, Garner J, Lai D, Nelson M, Moore L, Gidwani S, Davies G, Ouma B, Salinos C, Salha J, Yassein R, Abbasi A, Oblak M, Steward A, Thankachen M, Barker A, Fernandes C, Beatriz V, Flores L, Soler-Carracedo A, Rocca A, Maheswaran S, Martella C, Lloyd C, Nolan C, Horsford L, Martins L, Thomas L, Winstanley M, Bourke M, Branch N, Orhan O, Morton R, Saunder S, Patil S, Hughes S, Zhe W, De Leon A, Farah A, Rya G, Alizadeh K, Leong K, Trepte L, Goel N, McGown P, Kirwan U, Vilela Baião T, Marins L, Nazer S, Malaguthi de Souza R, Feitosa M, Lessa F, Silva de Magalhães E, Costenaro J, de Cassia Alves Lira R, Carolina A, Cauduro de Castro A, Machado Da Silva A, Kliemann D, De Cassia Alves Lira R, Walker G, Norton D, Lowthorpe V, Ivan M, Lillie P, Easom N, Sierra Madero J, López Iñiguez Á, Patricia Muñuzuri Nájera G, Paola Alarcón Murra C, Alanis Vega A, Muñoz Trejo T, Pérez Rodríguez O. Favipiravir in patients hospitalised with COVID-19 (PIONEER trial): a multicentre, open-label, phase 3, randomised controlled trial of early intervention versus standard care. THE LANCET. RESPIRATORY MEDICINE 2023; 11:415-424. [PMID: 36528039 PMCID: PMC9891737 DOI: 10.1016/s2213-2600(22)00412-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND COVID-19 has overwhelmed health services globally. Oral antiviral therapies are licensed worldwide, but indications and efficacy rates vary. We aimed to evaluate the safety and efficacy of oral favipiravir in patients hospitalised with COVID-19. METHODS We conducted a multicentre, open-label, randomised controlled trial of oral favipiravir in adult patients who were newly admitted to hospital with proven or suspected COVID-19 across five sites in the UK (n=2), Brazil (n=2) and Mexico (n=1). Using a permuted block design, eligible and consenting participants were randomly assigned (1:1) to receive oral favipiravir (1800 mg twice daily for 1 day; 800 mg twice daily for 9 days) plus standard care, or standard care alone. All caregivers and patients were aware of allocation and those analysing data were aware of the treatment groups. The prespecified primary outcome was the time from randomisation to recovery, censored at 28 days, which was assessed using an intention-to-treat approach. Post-hoc analyses were used to assess the efficacy of favipiravir in patients aged younger than 60 years, and in patients aged 60 years and older. The trial was registered with clinicaltrials.gov, NCT04373733. FINDINGS Between May 5, 2020 and May 26, 2021, we assessed 503 patients for eligibility, of whom 499 were randomly assigned to favipiravir and standard care (n=251) or standard care alone (n=248). There was no significant difference between those who received favipiravir and standard care, relative to those who received standard care alone in time to recovery in the overall study population (hazard ratio [HR] 1·06 [95% CI 0·89-1·27]; n=499; p=0·52). Post-hoc analyses showed a faster rate of recovery in patients younger than 60 years who received favipiravir and standard care versus those who had standard care alone (HR 1·35 [1·06-1·72]; n=247; p=0·01). 36 serious adverse events were observed in 27 (11%) of 251 patients administered favipiravir and standard care, and 33 events were observed in 27 (11%) of 248 patients receiving standard care alone, with infectious, respiratory, and cardiovascular events being the most numerous. There was no significant between-group difference in serious adverse events per patient (p=0·87). INTERPRETATION Favipiravir does not improve clinical outcomes in all patients admitted to hospital with COVID-19, however, patients younger than 60 years might have a beneficial clinical response. The indiscriminate use of favipiravir globally should be cautioned, and further high-quality studies of antiviral agents, and their potential treatment combinations, are warranted in COVID-19. FUNDING LifeArc and CW+.
Collapse
Affiliation(s)
- Pallav L Shah
- Chelsea & Westminster NHS Foundation Trust, London, UK,Department of Respiratory Medicine, Royal Brompton Hospital, London, UK,National Heart and Lung Institute, Imperial College London, London, UK,Correspondence to: Prof Pallav L Shah, Chelsea & Westminster NHS Foundation Trust, London SW10 9NH, UK
| | - Christopher M Orton
- Chelsea & Westminster NHS Foundation Trust, London, UK,Department of Respiratory Medicine, Royal Brompton Hospital, London, UK,National Heart and Lung Institute, Imperial College London, London, UK
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Brazil
| | - Gavin C Donaldson
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - James Tonkin
- Chelsea & Westminster NHS Foundation Trust, London, UK,Department of Respiratory Medicine, Royal Brompton Hospital, London, UK,National Heart and Lung Institute, Imperial College London, London, UK
| | - Breno R Santos
- Departamento de Infectología, Hospital Nossa Senhora da Conceição–Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | - Sandra W Cardoso
- Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Brazil
| | - Andrew I Ritchie
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK,National Heart and Lung Institute, Imperial College London, London, UK
| | - Francesca Conway
- Chelsea & Westminster NHS Foundation Trust, London, UK,Department of Respiratory Medicine, Royal Brompton Hospital, London, UK,National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria P D Riberio
- Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Brazil
| | - Dexter J Wiseman
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK,National Heart and Lung Institute, Imperial College London, London, UK
| | - Anand Tana
- Chelsea & Westminster NHS Foundation Trust, London, UK,Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Bavithra Vijayakumar
- Chelsea & Westminster NHS Foundation Trust, London, UK,Department of Respiratory Medicine, Royal Brompton Hospital, London, UK,National Heart and Lung Institute, Imperial College London, London, UK
| | - Cielito Caneja
- Chelsea & Westminster NHS Foundation Trust, London, UK,Department of Respiratory Medicine, Royal Brompton Hospital, London, UK,National Heart and Lung Institute, Imperial College London, London, UK
| | - Craig Leaper
- Chelsea & Westminster NHS Foundation Trust, London, UK
| | - Bobby Mann
- Chelsea & Westminster NHS Foundation Trust, London, UK
| | - Anda Samson
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Marta Boffito
- Chelsea & Westminster NHS Foundation Trust, London, UK,National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Anton Pozniak
- Chelsea & Westminster NHS Foundation Trust, London, UK,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Pelly
- Chelsea & Westminster NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ayoup MS, ElShafey MM, Abdel-Hamid H, Ghareeb DA, Abu-Serie MM, Heikal LA, Teleb M. Repurposing 1,2,4-oxadiazoles as SARS-CoV-2 PLpro inhibitors and investigation of their possible viral entry blockade potential. Eur J Med Chem 2023; 252:115272. [PMID: 36966652 PMCID: PMC10008816 DOI: 10.1016/j.ejmech.2023.115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Although vaccines are obviously mitigating the COVID-19 pandemic diffusion, efficient complementary antiviral agents are urgently needed to combat SARS-CoV-2. The viral papain-like protease (PLpro) is a promising therapeutic target being one of only two essential proteases crucial for viral replication. Nevertheless, it dysregulates the host immune sensing response. Here we report repositioning of the privileged 1,2,4-oxadiazole scaffold as promising SARS-CoV-2 PLpro inhibitor with potential viral entry inhibition profile. The design strategy relied on mimicking the general structural features of the lead benzamide PLpro inhibitor GRL0617 with isosteric replacement of its pharmacophoric amide backbone by 1,2,4-oxadiazole core. Inspired by the multitarget antiviral agents, the substitution pattern was rationalized to tune the scaffold's potency against other additional viral targets, especially the spike receptor binding domain (RBD) that is responsible for the viral invasion. The Adopted facial synthetic protocol allowed easy access to various rationally substituted derivatives. Among the evaluated series, the 2-[5-(pyridin-4-yl)-1,2,4-oxadiazol-3-yl]aniline (5) displayed the most balanced dual inhibitory potential against SARS-CoV-2 PLpro (IC50=7.197 μM) and spike protein RBD (IC50 = 8.673 μM), with acceptable ligand efficiency metrics, practical LogP (3.8) and safety profile on Wi-38 (CC50 = 51.78 μM) and LT-A549 (CC50 = 45.77 μM) lung cells. Docking simulations declared the possible structural determinants of activities and enriched the SAR data for further optimization studies.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.
| | - Mariam M ElShafey
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Hamida Abdel-Hamid
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Doaa A Ghareeb
- Bio‑screening and preclinical trial lab, Biochemistry Department, Faculty of Science, Alexandria University, P.O. Box 21511, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
19
|
Tian F, Chen Z, Feng Q. Nirmatrelvir-ritonavir compared with other antiviral drugs for the treatment of COVID-19 patients: A systematic review and meta-analysis. J Med Virol 2023; 95:e28732. [PMID: 37183808 DOI: 10.1002/jmv.28732] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
At present, there are some differences in the research results of nirmatrelvir-ritonavir compared with other antiviral drugs for the treatment of COVID-19 patients. We aimed to evaluate the efficacy and safety of nirmatrelvir-ritonavir compared with other antiviral drugs and the impact of different antiviral drugs on the short- and long-term effects of COVID-19. PubMed, Embase, CENTRAL (Cochrane Central Register of Controlled Trials), Web of Science, Google Scholar, and MedRxiv were searched to identify relevant studies from inception to March 30, 2023. We conducted a meta-analysis to estimate the effects of nirmatrelvir-ritonavir compared with other antiviral drugs for the treatment of COVID-19 patients and safety outcomes. The RoB1 and ROBINS-I were used to assess the bias risk of the included studies. Revman 5.4 software was used for meta-analysis (PROSPERO Code No: CRD42023397816). Twelve studies were included, including 30 588 COVID-19 patients, of whom 13 402 received nirmatrelvir-ritonavir. The meta-analysis results showed that the nirmatrelvir-ritonavir group had a lower proportion of patients than the control group in terms of long-term mortality (odds ratio [OR] = 0.29, 95% confidence interval [CI]: 0.13-0.66), hospitalization (OR = 0.44, 95% CI: 0.37-0.53, short term; OR = 0.52, 95% CI: 0.36-0.77, long term), and disease progression (OR = 0.56, 95% CI: 0.38-0.83, short term; OR = 0.60, 95% CI: 0.48-0.74, long term), and nirmatrelvir ritonavir showed little difference in safety compared to the control group. Nirmatrelvir-ritonavir can reduce the mortality and hospitalization of COVID-19 patients compared with other antiviral drugs. Further large-scale studies remain to validate these findings.
Collapse
Affiliation(s)
- Fangyuan Tian
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhaoyan Chen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyi Feng
- Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Precision Medicine Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Omotuyi O, Olatunji OM, Nash O, Oyinloye B, Soremekun O, Ijagbuji A, Fatumo S. Benzimidazole compound abrogates SARS-COV-2 receptor-binding domain (RBD)/ACE2 interaction In vitro. Microb Pathog 2023; 176:105994. [PMID: 36682669 PMCID: PMC9851952 DOI: 10.1016/j.micpath.2023.105994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
The development of clinically actionable pharmaceuticals against coronavirus disease (COVID-19); an infectious disease caused by the SARS-CoV-2 virus is very important for ending the pandemic. Coronavirus spike glycoprotein (GP)-Receptor Binding Domain (RBD) and its interaction with host receptor angiotensin converting enzyme 2 (ACE2) is one of the most structurally understood but therapeutically untapped aspect of COVID-19 pathogenesis. Binding interface based on previous x-ray structure of RBD/ACE2 were virtually screened to identify fragments with high-binding score from 12,000 chemical building blocks. The hit compound was subjected to fingerprint-based similarity search to identify compounds within the FDA-approved drug library containing the same core scaffold. Identified compounds were then re-docked into of RBD/ACE2. The best ranked compound was validated for RBD/ACE2 inhibition using commercial kit. Molecular dynamics simulation was conducted to provide further insight into the mechanism of inhibition. From the original 12000 chemical building blocks, benzimidazole (BAZ) scaffold was identified. Fingerprint-based similarity search of the FDA-approved drug library for BAZ-containing compounds identified 12 drugs with the benzimidazole-like substructure. When these compounds were re-docked into GP/ACE2 interface, the consensus docking identified bazedoxifene as the hit. In vitro RBD/ACE2 inhibition kinetics showed micromolar IC50 value (1.237 μM) in the presence of bazedoxifene. Molecular dynamics simulation of RBD/ACE2 in the presence BAZ resulted in loss of contact and specific hydrogen-bond interaction required for RBD/ACE2 stability. Taken together, these findings identified benzimidazole scaffold as a building block for developing novel RBD/ACE2 complex inhibitor and provided mechanistic basis for the use of bazedoxifene as a repurposable drug for the treatment of COVID-19 acting at RBD/ACE2 interface.
Collapse
Affiliation(s)
- Olaposi Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria; Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria; Bio-Computing & Drug Research Unit, Mols and Sims, Ado Ekiti, Ekiti State, Nigeria.
| | - Olusina M Olatunji
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, PMB 5118, Nigeria
| | - Babatunji Oyinloye
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria; Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria; Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, 3886, South Africa
| | - Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | - Ayodeji Ijagbuji
- Pharmaceutics International, Inc. Hunt Valley, Maryland, United States
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda; H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria; Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
21
|
Focosi D, McConnell S, Shoham S, Casadevall A, Maggi F, Antonelli G. Nirmatrelvir and COVID-19: development, pharmacokinetics, clinical efficacy, resistance, relapse, and pharmacoeconomics. Int J Antimicrob Agents 2023; 61:106708. [PMID: 36603694 DOI: 10.1016/j.ijantimicag.2022.106708] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Nirmatrelvir/ritonavir (N/R) is one of the most effective antiviral drugs against SARS-CoV-2. The preclinical development, pharmacodynamics and pharmacokinetics of N/R are reviewed herein. Randomized clinical trials have been conducted exclusively with pre-Omicron variants of concern, but in vitro studies show that efficacy against all Omicron sublineages is preserved, as confirmed by post-marketing observational studies. Nevertheless, investigations of large viral genome repositories have shown that mutation in the main protease causing resistance to N/R are increasingly frequent. In addition, virological and clinical rebounds after N/R discontinuation have been reported in immunocompetent patients. This finding is of concern when translated to immunocompromised patients, in whom N/R efficacy has not been formally investigated in clinical trials. Economical sustainability and perspectives for this therapeutic arena are discussed.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases "Spallanzani", Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, and Sapienza University Hospital "Policlinico Umberto I", Rome, Italy
| |
Collapse
|
22
|
Hopkins AM, Sorich MJ, McLachlan AJ, Karapetis CS, Miners JO, van Dyk M, Rowland A. Understanding the Risk of Drug Interactions Between Ritonavir-Containing COVID-19 Therapies and Small-Molecule Kinase Inhibitors in Patients With Cancer. JCO Precis Oncol 2023; 7:e2200538. [PMID: 36787507 DOI: 10.1200/po.22.00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
PURPOSE The introduction of COVID-19 therapies containing ritonavir has markedly expanded the scope of use for this medicine. As a strong cytochrome P450 3A4 inhibitor, the use of ritonavir is associated with a high drug interaction risk. There are currently no data to inform clinician regarding the likely magnitude and duration of interaction between ritonavir-containing COVID-19 therapies and small-molecule kinase inhibitors (KIs) in patients with cancer. METHODS Physiologically based pharmacokinetic modeling was used to conduct virtual clinical trials with a parallel group study design in the presence and absence of ritonavir (100 mg twice daily for 5 days). The magnitude and time course of changes in KI exposure when coadministered with ritonavir was evaluated as the primary outcome. RESULTS Dosing of ritonavir resulted in a > 2-fold increase in steady-state area under the plasma concentration-time curve and maximal concentration for six of the 10 KIs. When the KI was coadministered with ritonavir, dose reductions to between 10% and 75% of the original dose were required to achieve an area under the plasma concentration-time curve within 1.25-fold of the value in the absence of ritonavir. CONCLUSION To our knowledge, this study provides the first data to assist clinicians' understanding of the drug interaction risk associated with administering ritonavir-containing COVID-19 therapies to patients with cancer who are currently being treated with KIs. These data may support clinicians to make more informed dosing decisions for patients with cancer undergoing treatment with KIs who require treatment with ritonavir-containing COVID-19 antiviral therapies.
Collapse
Affiliation(s)
- Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew J McLachlan
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, Australia
| | - Christos S Karapetis
- College of Medicine and Public Health, Flinders University, Adelaide, Australia.,Department of Medical Oncology, Flinders Medical Centre, Adelaide, Australia
| | - John O Miners
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
23
|
Sasaki M, Tabata K, Kishimoto M, Itakura Y, Kobayashi H, Ariizumi T, Uemura K, Toba S, Kusakabe S, Maruyama Y, Iida S, Nakajima N, Suzuki T, Yoshida S, Nobori H, Sanaki T, Kato T, Shishido T, Hall WW, Orba Y, Sato A, Sawa H. S-217622, a SARS-CoV-2 main protease inhibitor, decreases viral load and ameliorates COVID-19 severity in hamsters. Sci Transl Med 2023; 15:eabq4064. [PMID: 36327352 PMCID: PMC9765455 DOI: 10.1126/scitranslmed.abq4064] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In parallel with vaccination, oral antiviral agents are highly anticipated to act as countermeasures for the treatment of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Oral antiviral medication demands not only high antiviral activity but also target specificity, favorable oral bioavailability, and high metabolic stability. Although a large number of compounds have been identified as potential inhibitors of SARS-CoV-2 infection in vitro, few have proven to be effective in vivo. Here, we show that oral administration of S-217622 (ensitrelvir), an inhibitor of SARS-CoV-2 main protease (Mpro; also known as 3C-like protease), decreases viral load and ameliorates disease severity in SARS-CoV-2-infected hamsters. S-217622 inhibited viral proliferation at low nanomolar to submicromolar concentrations in cells. Oral administration of S-217622 demonstrated favorable pharmacokinetic properties and accelerated recovery from acute SARS-CoV-2 infection in hamster recipients. Moreover, S-217622 exerted antiviral activity against SARS-CoV-2 variants of concern, including the highly pathogenic Delta variant and the recently emerged Omicron BA.5 and BA.2.75 variants. Overall, our study provides evidence that S-217622, an antiviral agent that is under evaluation in a phase 3 clinical trial (clinical trial registration no. jRCT2031210350), has remarkable antiviral potency and efficacy against SARS-CoV-2 and is a prospective oral therapeutic option for COVID-19.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan.,Corresponding author. (M.S.); (H.S.)
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan
| | - Hiroko Kobayashi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan
| | - Kentaro Uemura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan.,Shionogi & Co., Ltd., Osaka 561-0825, Japan.,Laboratory of Biomolecular Science, Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Shinsuke Toba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan.,Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Shinji Kusakabe
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan.,Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Yuki Maruyama
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan.,Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | | | | | | | | | | | - William W. Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan.,National Virus Reference Laboratory, School of Medicine, University College of Dublin, 4, Ireland.,Global Virus Network, Baltimore, MD, 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Akihiko Sato
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan.,Shionogi & Co., Ltd., Osaka 561-0825, Japan.,Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-220, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan.,Global Virus Network, Baltimore, MD, 21201, USA.,Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, 001-0021, Japan.,One Health Research Center, Hokkaido University, Sapporo, 001-0020, Japan.,Corresponding author. (M.S.); (H.S.)
| |
Collapse
|
24
|
Baker D, Forte E, Pryce G, Kang AS, James LK, Giovannoni G, Schmierer K. The impact of sphingosine-1-phosphate receptor modulators on COVID-19 and SARS-CoV-2 vaccination. Mult Scler Relat Disord 2023; 69:104425. [PMID: 36470168 PMCID: PMC9678390 DOI: 10.1016/j.msard.2022.104425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sphingosine-one phosphate receptor (S1PR) modulation inhibits S1PR1-mediated lymphocyte migration, lesion formation and positively-impacts on active multiple sclerosis (MS). These S1PR modulatory drugs have different: European Union use restrictions, pharmacokinetics, metabolic profiles and S1PR receptor affinities that may impact MS-management. Importantly, these confer useful properties in dealing with COVID-19, anti-viral drug responses and generating SARS-CoV-2 vaccine responses. OBJECTIVE To examine the biology and emerging data that potentially underpins immunity to the SARS-CoV-2 virus following natural infection and vaccination and determine how this impinges on the use of current sphingosine-one-phosphate modulators used in the treatment of MS. METHODS A literature review was performed, and data on infection, vaccination responses; S1PR distribution and functional activity was extracted from regulatory and academic information within the public domain. OBSERVATIONS Most COVID-19 related information relates to the use of fingolimod. This indicates that continuous S1PR1, S1PR3, S1PR4 and S1PR5 modulation is not associated with a worse prognosis following SARS-CoV-2 infection. Whilst fingolimod use is associated with blunted seroconversion and reduced peripheral T-cell vaccine responses, it appears that people on siponimod, ozanimod and ponesimod exhibit stronger vaccine-responses, which could be related notably to a limited impact on S1PR4 activity. Whilst it is thought that S1PR3 controls B cell function in addition to actions by S1PR1 and S1PR2, this may be species-related effect in rodents that is not yet substantiated in humans, as seen with bradycardia issues. Blunted antibody responses can be related to actions on B and T-cell subsets, germinal centre function and innate-immune biology. Although S1P1R-related functions are seeming central to control of MS and the generation of a fully functional vaccination response; the relative lack of influence on S1PR4-mediated actions on dendritic cells may increase the rate of vaccine-induced seroconversion with the newer generation of S1PR modulators and improve the risk-benefit balance IMPLICATIONS: Although fingolimod is a useful asset in controlling MS, recently-approved S1PR modulators may have beneficial biology related to pharmacokinetics, metabolism and more-restricted targeting that make it easier to generate infection-control and effective anti-viral responses to SARS-COV-2 and other pathogens. Further studies are warranted.
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.
| | - Eugenia Forte
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gareth Pryce
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Angray S Kang
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Louisa K James
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Klaus Schmierer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
25
|
Viral proteases as therapeutic targets. Mol Aspects Med 2022; 88:101159. [PMID: 36459838 PMCID: PMC9706241 DOI: 10.1016/j.mam.2022.101159] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Some medically important viruses-including retroviruses, flaviviruses, coronaviruses, and herpesviruses-code for a protease, which is indispensable for viral maturation and pathogenesis. Viral protease inhibitors have become an important class of antiviral drugs. Development of the first-in-class viral protease inhibitor saquinavir, which targets HIV protease, started a new era in the treatment of chronic viral diseases. Combining several drugs that target different steps of the viral life cycle enables use of lower doses of individual drugs (and thereby reduction of potential side effects, which frequently occur during long term therapy) and reduces drug-resistance development. Currently, several HIV and HCV protease inhibitors are routinely used in clinical practice. In addition, a drug including an inhibitor of SARS-CoV-2 main protease, nirmatrelvir (co-administered with a pharmacokinetic booster ritonavir as Paxlovid®), was recently authorized for emergency use. This review summarizes the basic features of the proteases of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and SARS-CoV-2 and discusses the properties of their inhibitors in clinical use, as well as development of compounds in the pipeline.
Collapse
|
26
|
Al-Taie A, Büyük AŞ, Sardas S. Considerations into pharmacogenomics of COVID-19 pharmacotherapy: Hope, hype and reality. Pulm Pharmacol Ther 2022; 77:102172. [PMID: 36265833 PMCID: PMC9576910 DOI: 10.1016/j.pupt.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
COVID-19 medicines, such as molnupiravir are beginning to emerge for public health and clinical practice. On the other hand, drugs display marked variability in their efficacy and safety. Hence, COVID-19 medicines, as with all drugs, will be subject to the age-old maxim "one size prescription does not fit all". In this context, pharmacogenomics is the study of genome-by-drug interactions and offers insights on mechanisms of patient-to-patient and between-population variations in drug efficacy and safety. Pharmacogenomics information is crucial to tailoring the patients' prescriptions to achieve COVID-19 preventive and therapeutic interventions that take into account the host biology, patients' genome, and variable environmental exposures that collectively influence drug efficacy and safety. This expert review critically evaluates and summarizes the pharmacogenomics and personalized medicine aspects of the emerging COVID-19 drugs, and other selected drug interventions deployed to date. Here, we aim to sort out the hope, hype, and reality and suggest that there are veritable prospects to advance COVID-19 medicines for public health benefits, provided that pharmacogenomics is considered and implemented adequately. Pharmacogenomics is an integral part of rational and evidence-based medical practice. Scientists, health care professionals, pharmacists, pharmacovigilance practitioners, and importantly, patients stand to benefit by expanding the current pandemic response toolbox by the science of pharmacogenomics, and its applications in COVID-19 medicines and clinical trials.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Clinical Pharmacy Department, Faculty of Pharmacy, Istinye University, Istanbul, Turkey.
| | - Ayşe Şeyma Büyük
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Semra Sardas
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| |
Collapse
|
27
|
Progress on COVID-19 Chemotherapeutics Discovery and Novel Technology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238257. [PMID: 36500347 PMCID: PMC9736643 DOI: 10.3390/molecules27238257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
COVID-19 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel highly contagious and pathogenic coronavirus that emerged in late 2019. SARS-CoV-2 spreads primarily through virus-containing droplets and small particles of air pollution, which greatly increases the risk of inhaling these virus particles when people are in close proximity. COVID-19 is spreading across the world, and the COVID-19 pandemic poses a threat to human health and public safety. To date, there are no specific vaccines or effective drugs against SARS-CoV-2. In this review, we focus on the enzyme targets of the virus and host that may be critical for the discovery of chemical compounds and natural products as antiviral drugs, and describe the development of potential antiviral drugs in the preclinical and clinical stages. At the same time, we summarize novel emerging technologies applied to the research on new drug development and the pathological mechanisms of COVID-19.
Collapse
|
28
|
Jansen-van Vuuren RD, Jedlovčnik L, Košmrlj J, Massey TE, Derdau V. Deuterated Drugs and Biomarkers in the COVID-19 Pandemic. ACS OMEGA 2022; 7:41840-41858. [PMID: 36440130 PMCID: PMC9685803 DOI: 10.1021/acsomega.2c04160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/18/2022] [Indexed: 06/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Initially identified in Wuhan (China) in December 2019, COVID-19 rapidly spread globally, resulting in the COVID-19 pandemic. Carriers of the SARS-CoV-2 can experience symptoms ranging from mild to severe (or no symptoms whatsoever). Although vaccination provides extra immunity toward SARS-CoV-2, there has been an urgent need to develop treatments for COVID-19 to alleviate symptoms for carriers of the disease. In seeking a potential treatment, deuterated compounds have played a critical role either as therapeutic agents or as internal MS standards for studying the pharmacological properties of new drugs by quantifying the parent compounds and metabolites. We have identified >70 examples of deuterium-labeled compounds associated with treatment of COVID-19. Of these, we found 9 repurposed drugs and >20 novel drugs studied for potential therapeutic roles along with a total of 38 compounds (drugs, biomarkers, and lipids) explored as internal mass spectrometry standards. This review details the synthetic pathways and modes of action of these compounds (if known), and a brief analysis of each study.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Luka Jedlovčnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thomas E. Massey
- Department
of Biomedical and Molecular Sciences, School of Medicine, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Volker Derdau
- Research
& Development, Integrated Drug Discovery, Isotope Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst G876, Frankfurt/Main 65926, Germany
| |
Collapse
|
29
|
Discovery and structural characterization of chicoric acid as a SARS-CoV-2 nucleocapsid protein ligand and RNA binding disruptor. Sci Rep 2022; 12:18500. [PMID: 36323732 PMCID: PMC9628480 DOI: 10.1038/s41598-022-22576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023] Open
Abstract
The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.
Collapse
|
30
|
Chen W, Liang B, Wu X, Li L, Wang C, Xing D. Advances And Challenges In Using Nirmatrelvir And Its Derivatives Against Sars-Cov-2 Infection. J Pharm Anal 2022; 13:255-261. [PMID: 36345404 PMCID: PMC9628234 DOI: 10.1016/j.jpha.2022.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
On 22 December 2021, the United States Food and Drug Administration (FDA) approved the first Mpro inhibitor, i.e., oral antiviral nirmatrelvir (PF-07321332)/ritonavir (Paxlovid), for the treatment of early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Nirmatrelvir inhibits SARS-CoV-2 infection, but high doses or long-term treatment may cause embryonic developmental toxicity and changes in host gene expression. The chiral structure of nirmatrelvir plays a key role in its antiviral activity. Ritonavir boosts the efficacy of nirmatrelvir by inactivating cytochrome P450 3A4 (CYP3A4) expression and occupying the plasma protein binding sites. Multidrug resistance protein 1 (MDR1) inhibitors may increase the efficacy of nirmatrelvir. However, paxlovid has many contraindications. Some patients treated with paxlovid experience a second round of coronavirus disease 2019 (COVID-19) symptoms soon after recovery. Interestingly, the antiviral activity of nirmatrelvir metabolites, such as compounds 12−18, is similar to or higher than that of nirmatrelvir. Herein, we review the advances and challenges in using nirmatrelvir and its derivatives with the aim of providing knowledge to drug developers and physicians in the fight against COVID-19.
Collapse
Affiliation(s)
- Wujun Chen
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Bing Liang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Chao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China,Corresponding author
| | - Dongming Xing
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China,School of Life Sciences, Tsinghua University, Beijing, 100084, China,Corresponding author. Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| |
Collapse
|
31
|
Blasiak A, Truong ATL, Wang P, Hooi L, Chye DH, Tan SB, You K, Remus A, Allen DM, Chai LYA, Chan CEZ, Lye DCB, Tan GYG, Seah SGK, Chow EKH, Ho D. IDentif.AI-Omicron: Harnessing an AI-Derived and Disease-Agnostic Platform to Pinpoint Combinatorial Therapies for Clinically Actionable Anti-SARS-CoV-2 Intervention. ACS NANO 2022; 16:15141-15154. [PMID: 35977379 DOI: 10.1021/acsnano.2c06366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomedicine-based and unmodified drug interventions to address COVID-19 have evolved over the course of the pandemic as more information is gleaned and virus variants continue to emerge. For example, some early therapies (e.g., antibodies) have experienced markedly decreased efficacy. Due to a growing concern of future drug resistant variants, current drug development strategies are seeking to find effective drug combinations. In this study, we used IDentif.AI, an artificial intelligence-derived platform, to investigate the drug-drug and drug-dose interaction space of six promising experimental or currently deployed therapies at various concentrations: EIDD-1931, YH-53, nirmatrelvir, AT-511, favipiravir, and auranofin. The drugs were tested in vitro against a live B.1.1.529 (Omicron) virus first in monotherapy and then in 50 strategic combinations designed to interrogate the interaction space of 729 possible combinations. Key findings and interactions were then further explored and validated in an additional experimental round using an expanded concentration range. Overall, we found that few of the tested drugs showed moderate efficacy as monotherapies in the actionable concentration range, but combinatorial drug testing revealed significant dose-dependent drug-drug interactions, specifically between EIDD-1931 and YH-53, as well as nirmatrelvir and YH-53. Checkerboard validation analysis confirmed these synergistic interactions and also identified an interaction between EIDD-1931 and favipiravir in an expanded range. Based on the platform nature of IDentif.AI, these findings may support further explorations of the dose-dependent drug interactions between different drug classes in further pre-clinical and clinical trials as possible combinatorial therapies consisting of unmodified and nanomedicine-enabled drugs, to combat current and future COVID-19 strains and other emerging pathogens.
Collapse
Affiliation(s)
- Agata Blasiak
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Anh T L Truong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Peter Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - De Hoe Chye
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
| | - Shi-Bei Tan
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Kui You
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Alexandria Remus
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - David Michael Allen
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- Division of Infectious Disease, Department of Medicine, National University Hospital, 119074, Singapore
| | - Louis Yi Ann Chai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- Division of Infectious Disease, Department of Medicine, National University Hospital, 119074, Singapore
| | - Conrad E Z Chan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
- National Centre for Infectious Diseases (NCID), Jalan Tan Tock Seng, 308442, Singapore
| | - David C B Lye
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- National Centre for Infectious Diseases (NCID), Jalan Tan Tock Seng, 308442, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, 308433, Singapore
| | - Gek-Yen G Tan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
| | - Shirley G K Seah
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
| | - Edward Kai-Hua Chow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| |
Collapse
|
32
|
Zhang W, Yang Z, Zhou F, Wei Y, Ma X. Network Pharmacology and Bioinformatics Analysis Identifies Potential Therapeutic Targets of Paxlovid Against LUAD/COVID-19. Front Endocrinol (Lausanne) 2022; 13:935906. [PMID: 36157452 PMCID: PMC9493477 DOI: 10.3389/fendo.2022.935906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic in many countries around the world. The virus is highly contagious and has a high fatality rate. Lung adenocarcinoma (LUAD) patients may have higher susceptibility and mortality to COVID-19. While Paxlovid is the first oral drug approved by the U.S. Food and Drug Administration (FDA) for COVID-19, its specific drug mechanism for lung cancer patients infected with COVID-19 remains to be further studied. Methods COVID-19 related genes were obtained from NCBI, GeneCards, and KEGG, and then the transcriptome data for LUAD was downloaded from TCGA. The drug targets of Paxlovid were revealed through BATMAN-TCM, DrugBank, SwissTargetPrediction, and TargetNet. The genes related to susceptibility to COVID-19 in LUAD patients were obtained through differential analysis. The interaction of LUAD/COVID-19 related genes was evaluated and displayed by STRING, and a COX risk regression model was established to screen and evaluate the correlation between genes and clinical characteristics. The Venn diagram was drawn to select the candidate targets of Paxlovid against LUAD/COVID-19, and the functional analysis of the target genes was performed using KEGG and GO enrichment analysis. Finally, Cytoscape was used to screen and visualize the Hub Gene, and Autodock was used for molecular docking between the drug and the target. Result Bioinformatics analysis was performed by combining COVID-19-related genes with the gene expression and clinical data of LUAD, including analysis of prognosis-related genes, survival rate, and hub genes screened out by the prognosis model. The key targets of Paxlovid against LUAD/COVID-19 were obtained through network pharmacology, the most important targets include IL6, IL12B, LBP. Furthermore, pathway analysis showed that Paxlovid modulates the IL-17 signaling pathway, the cytokine-cytokine receptor interaction, during LUAD/COVID-19 treatment. Conclusions Based on bioinformatics and network pharmacology, the prognostic signature of LUAD/COVID-19 patients was screened. And identified the potential therapeutic targets and molecular pathways of Paxlovid Paxlovid in the treatment of LUAD/COVID. As promising features, prognostic signatures and therapeutic targets shed light on improving the personalized management of patients with LUAD.
Collapse
Affiliation(s)
- Wentao Zhang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical Unversity, Jinan, China
- Shandong First Medical Unversity, Jinan, China
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical Unversity, Jinan, China
| | - Fengge Zhou
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical Unversity, Jinan, China
| | - Yanjun Wei
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoqing Ma
- Shandong First Medical Unversity, Jinan, China
| |
Collapse
|
33
|
Joyce RP, Hu VW, Wang J. The history, mechanism, and perspectives of nirmatrelvir (PF-07321332): an orally bioavailable main protease inhibitor used in combination with ritonavir to reduce COVID-19-related hospitalizations. Med Chem Res 2022; 31:1637-1646. [PMID: 36060104 PMCID: PMC9425786 DOI: 10.1007/s00044-022-02951-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
The rapid development of effective vaccines to combat the SARS-CoV-2 virus has been an effective counter measure to decrease hospitalization and the mortality rate in many countries. However, with the risk of mutated strains decreasing the efficacy of the vaccine, there has been an increasing demand for antivirals to treat COVID-19. While antivirals, such as remdesivir, have had some success treating COVID-19 patients in hospital settings, there is a need for orally bioavailable, cost-effective antivirals that can be administered in outpatient settings to minimize COVID-19-related hospitalizations and death. Nirmatrelvir (PF-07321332) is an orally bioavailable Mpro (also called 3CLpro) inhibitor developed by Pfizer. It is administered in combination with ritonavir, a potent CYP3A4 inhibitor that decreases the metabolism of nirmatrelvir. This review seeks to outline the history of the rational design, the target selectivity, synthesis, drug resistance, and future perspectives of nirmatrelvir. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ryan P. Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Vivian W. Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
34
|
Feng Y, Liu Y, Liu L, Liu Y, Jiang Y, Hou Y, Zhou Y, Song R, Chen X, Wang X. Real-world effectiveness of Yindan Jiedu granules-based treatment on patients infected with the SARS-CoV-2 Omicron variants BA.2 combined with high-risk factors: A cohort study. Front Pharmacol 2022; 13:978979. [PMID: 36052136 PMCID: PMC9426238 DOI: 10.3389/fphar.2022.978979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Our previous studies have shown that Yindan Jiedu granules (YDJDG) can effectively treat coronavirus disease 2019 (COVID-19); however, the high infectivity and the immune escape potential of the Omicron variant BA.2 make it more difficult to control, and patients with high-risk factors prone to progress rapidly. Purpose: To evaluate YDJDG’s efficacy in treating patients with the Omicron variant BA.2 with high-risk factors and compared it with that of Paxlovid. Methods: A total of 257 patients who fulfilled the inclusion criteria were allocated to the YDJDG (115 cases), Paxlovid (115 cases), and control (27 cases) groups. A Cox regression model was used to analyze the independent factors affecting the shedding time of nucleic acid in 14 days. Propensity score matching (PSM) was used to match the characteristics of individuals in the three groups, while the Kaplan-Meier method was used to compare the shedding proportion of nucleic acids. Results: Cox analysis showed that the vaccine booster (p = 0.006), YDJDG treatment (p = 0.020), and Paxlovid treatment (p < 0.0001) were independent predictors of nucleic acid shedding at 14 days. The median recovery time was 11.49 days in the YDJDG group, 10.21 days in the Paxlovid group, and 13.93 days in the control group. After PSM (3:1), the results showed that the nucleic acid shedding time of the YDJDG group (n = 53) was 2.47 days shorter than that of the control group (n = 21) (p = 0.0076), while the Paxlovid group (n = 44) had a 4.34 days shorter than that of the control group (n = 17) (p < 0.0001). After PSM (1:1), YDJDG and Paxlovid (76 pairs) were also analyzed. In the YDJDG group, nucleic acid shedding time was 1.43 days longer than that observed in the Paxlovid group (p = 0.020). At 10 and 14 days, the Paxlovid group showed a significant difference in the nucleic acid shedding proportion compared with the control group (p = 0.036, p = 0.0015). A significant difference was also observed between the YDJDG and control groups (p = 0.040) at 14 days. Conclusion: As a safe and convenient oral drug, YDJDG can be used as an alternative to antiviral therapy for such patients.
Collapse
Affiliation(s)
- Ying Feng
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Liu
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Long Liu
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Liu
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuyong Jiang
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixin Hou
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhou
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xianbo Wang, ; Xiaoyou Chen, ; Rui Song,
| | - Xiaoyou Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xianbo Wang, ; Xiaoyou Chen, ; Rui Song,
| | - Xianbo Wang
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xianbo Wang, ; Xiaoyou Chen, ; Rui Song,
| |
Collapse
|
35
|
Shivshankar P, Karmouty-Quintana H, Mills T, Doursout MF, Wang Y, Czopik AK, Evans SE, Eltzschig HK, Yuan X. SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation 2022; 45:1430-1449. [PMID: 35320469 PMCID: PMC8940980 DOI: 10.1007/s10753-022-01656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a global pandemic with severe socioeconomic effects. Immunopathogenesis of COVID-19 leads to acute respiratory distress syndrome (ARDS) and organ failure. Binding of SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (hACE2) on bronchiolar and alveolar epithelial cells triggers host inflammatory pathways that lead to pathophysiological changes. Proinflammatory cytokines and type I interferon (IFN) signaling in alveolar epithelial cells counter barrier disruption, modulate host innate immune response to induce chemotaxis, and initiate the resolution of inflammation. Here, we discuss experimental models to study SARS-CoV-2 infection, molecular pathways involved in SARS-CoV-2-induced inflammation, and viral hijacking of anti-inflammatory pathways, such as delayed type-I IFN response. Mechanisms of alveolar adaptation to hypoxia, adenosinergic signaling, and regulatory microRNAs are discussed as potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Internal Medicine, Divisions of Critical Care, Pulmonary and Sleep Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yanyu Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Agnieszka K Czopik
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Weiss DJ, Filiano A, Galipeau J, Khoury M, Krampera M, Lalu M, Blanc KL, Nolta J, Phinney DG, Rocco PR, Shi Y, Tarte K, Viswanathan S, Martin I. An ISCT MSC Committee Editorial on overcoming limitations in clinical trials of mesenchymal stromal cell therapy for COVID-19: Time for a global registry. Cytotherapy 2022; 24:1071-1073. [PMID: 36028438 PMCID: PMC9339970 DOI: 10.1016/j.jcyt.2022.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022]
|
37
|
Ton AT, Pandey M, Smith JR, Ban F, Fernandez M, Cherkasov A. Targeting SARS-CoV-2 Papain-Like Protease in the Post-Vaccine Era. Trends Pharmacol Sci 2022; 43:906-919. [PMID: 36114026 PMCID: PMC9399131 DOI: 10.1016/j.tips.2022.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
While vaccines remain at the forefront of global healthcare responses, pioneering therapeutics against SARS-CoV-2 are expected to fill the gaps for waning immunity. Rapid development and approval of orally available direct-acting antivirals targeting crucial SARS-CoV-2 proteins marked the beginning of the era of small-molecule drugs for COVID-19. In that regard, the papain-like protease (PLpro) can be considered a major SARS-CoV-2 therapeutic target due to its dual biological role in suppressing host innate immune responses and in ensuring viral replication. Here, we summarize the challenges of targeting PLpro and innovative early-stage PLpro-specific small molecules. We propose that state-of-the-art computer-aided drug design (CADD) methodologies will play a critical role in the discovery of PLpro compounds as a novel class of COVID-19 drugs.
Collapse
Affiliation(s)
- Anh-Tien Ton
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Mohit Pandey
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Smith
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Michael Fernandez
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Luque Paz D, Sesques P, Wallet F, Bachy E, Ader F. The burden of SARS-CoV-2 in patients receiving chimeric antigen receptor T cell immunotherapy: everything to lose. Expert Rev Anti Infect Ther 2022; 20:1155-1162. [PMID: 35838042 DOI: 10.1080/14787210.2022.2101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Chimeric antigen receptor T (CAR-T) cell immunotherapy has revolutionized the prognosis of refractory or relapsed B-cell malignancies. CAR-T cell recipients have immunosuppression generated by B-cell aplasia leading to a higher susceptibility to respiratory virus infections and poor response to vaccination. AREAS COVERED This review focuses on the challenge posed by B-cell targeted immunotherapies: managing long-lasting B-cell impairment during the successive surges of a deadly viral pandemic. We restricted this report to data regarding vaccine efficacy in CAR-T cell recipients, outcomes after developing COVID-19 and specificities of treatment management. We searched in MEDLINE database to identify relevant studies until March 31st 2022. EXPERT OPINION Among available observational studies, the pooled mortality rate reached 40% in CAR-T cell recipients infected by SARS-CoV-2. Additionally, vaccines responses seem to be widely impaired in recipients (seroconversion 20%, T-cell response 50%). In this setting of B-cell depletion, passive immunotherapy is the backbone of treatment. Convalescent plasma therapy has proven to be a highly effective curative treatment with rare adverse events. Neutralizing monoclonal antibodies could be used as pre-exposure prophylaxis or early treatment but their neutralizing activity is constantly challenged by new variants. In order to reduce viral replication, direct-acting antiviral drugs should be considered.
Collapse
Affiliation(s)
- David Luque Paz
- Université Rennes-I, Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, Rennes, France.,Département des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, France
| | - Pierre Sesques
- Service d'Hématologie clinique, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Florent Wallet
- Service d'Anesthésie, médecine intensive, réanimation, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Emmanuel Bachy
- Service d'Hématologie clinique, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Florence Ader
- Département des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Lyon, Infectious diseases, Hôpital de la Croix-Rousse, Lyon, France
| |
Collapse
|
39
|
Lin Q, Lu C, Hong Y, Li R, Chen J, Chen W, Chen J. Animal models for studying coronavirus infections and developing antiviral agents and vaccines. Antiviral Res 2022; 203:105345. [PMID: 35605699 PMCID: PMC9122840 DOI: 10.1016/j.antiviral.2022.105345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 01/17/2023]
Abstract
In addition to severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has become the third deadly coronavirus that infects humans and causes the new coronavirus disease (COVID-19). COVID-19 has already caused more than six million deaths worldwide and it is likely the biggest pandemic of this century faced by mankind. Although many studies on SARS-CoV-2 have been conducted, a detailed understanding of SARS-CoV-2 and COVID-19 is still lacking. Animal models are indispensable for studying its pathogenesis and developing vaccines and antivirals. In this review, we analyze animal models of coronavirus infections and explore their applications on antivirals and vaccines.
Collapse
Affiliation(s)
- Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chunni Lu
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria 3168, Australia
| | - Yuqi Hong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Jinding Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
40
|
Islam T, Hasan M, Rahman MS, Islam MR. Comparative evaluation of authorized drugs for treating Covid-19 patients. Health Sci Rep 2022; 5:e671. [PMID: 35734340 PMCID: PMC9194463 DOI: 10.1002/hsr2.671] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/22/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Background and Aims Vaccines are the first line of defense against coronavirus disease 2019 (Covid-19). However, the antiviral drugs provide a new tool to fight the Covid-19 pandemic. Here we aimed for a comparative evaluation of authorized drugs for treating Covid-19 patients. Methods We searched in PubMed and Google Scholar using keywords and terms such as Covid, SARS-CoV-2, Coronavirus disease 2019, therapeutic management, hospitalized Covid-19 patients, Covid-19 treatment. We also gathered information from reputed newspapers, web portals, and websites. We thoroughly observed, screened, and included the studies relevant to our inclusion criteria. We included only the United States Food and Drug Administration (FDA) authorized drugs for this review. Results We found that molnupiravir and paxlovid are available for oral use, and remdesivir is for only hospitalized patients. Paxlovid is a combination of nirmatrelvir and ritonavir, nirmatrelvir is a protease inhibitor (ritonavir increases the concentration of nirmatrelvir), and the other two (remdesivir and molnupiravir) are nucleoside analog prodrugs. Remdesivir and molnupiravir doses do not need to adjust in renal and hepatic impairment. However, the paxlovid dose adjustment is required for mild to moderate renal or hepatic impaired patients. Also, the drug is not allowed for Covid-19 patients with severe renal or hepatic impairment. Preliminary studies showed oral antiviral drugs significantly reduce hospitalization or death among mild to severe patients. Moreover, the US FDA has approved four monoclonal antibodies for Covid-19 treatment. Studies suggest that these drugs would reduce the risk of hospitalization or severity of symptoms. World Health Organization strongly recommended the use of corticosteroids along with other antiviral drugs for severe or critically hospitalized patients. Conclusion All authorized drugs are effective in inhibiting viral replication for most SARS-CoV-2 variants. Therefore, along with vaccines, these drugs might potentially aid in fighting the Covid-19 pandemic.
Collapse
Affiliation(s)
- Towhidul Islam
- Department of PharmacyUniversity of Asia PacificDhakaBangladesh
| | - Moynul Hasan
- Department of PharmacyJagannath UniversityDhakaBangladesh
| | | | | |
Collapse
|
41
|
Zeng S, Li Y, Zhu W, Luo Z, Wu K, Li X, Fang Y, Qin Y, Chen W, Li Z, Zou L, Liu X, Yi L, Fan S. The Advances of Broad-Spectrum and Hot Anti-Coronavirus Drugs. Microorganisms 2022; 10:microorganisms10071294. [PMID: 35889013 PMCID: PMC9317368 DOI: 10.3390/microorganisms10071294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Coronaviruses, mainly including severe acute respiratory syndrome virus, severe acute respiratory syndrome coronavirus 2, Middle East respiratory syndrome virus, human coronavirus OC43, chicken infectious bronchitis virus, porcine infectious gastroenteritis virus, porcine epidemic diarrhea virus, and murine hepatitis virus, can cause severe diseases in humans and livestock. The severe acute respiratory syndrome coronavirus 2 is infecting millions of human beings with high morbidity and mortality worldwide, and the multiplicity of swine epidemic diarrhea coronavirus in swine suggests that coronaviruses seriously jeopardize the safety of public health and that therapeutic intervention is urgently needed. Currently, the most effective methods of prevention and control for coronaviruses are vaccine immunization and pharmacotherapy. However, the emergence of mutated viruses reduces the effectiveness of vaccines. In addition, vaccine developments often lag behind, making it difficult to put them into use early in the outbreak. Therefore, it is meaningful to screen safe, cheap, and broad-spectrum antiviral agents for coronaviruses. This review systematically summarizes the mechanisms and state of anti-human and porcine coronavirus drugs, in order to provide theoretical support for the development of anti-coronavirus drugs and other antivirals.
Collapse
Affiliation(s)
- Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zipeng Luo
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yiqi Fang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| |
Collapse
|
42
|
Tan H, Hu Y, Jadhav P, Tan B, Wang J. Progress and Challenges in Targeting the SARS-CoV-2 Papain-like Protease. J Med Chem 2022; 65:7561-7580. [PMID: 35620927 PMCID: PMC9159073 DOI: 10.1021/acs.jmedchem.2c00303] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. The approval of vaccines and small-molecule antivirals is vital in combating the pandemic. The viral polymerase inhibitors remdesivir and molnupiravir and the viral main protease inhibitor nirmatrelvir/ritonavir have been approved by the U.S. FDA. However, the emergence of variants of concern/interest calls for additional antivirals with novel mechanisms of action. The SARS-CoV-2 papain-like protease (PLpro) mediates the cleavage of viral polyprotein and modulates the host's innate immune response upon viral infection, rendering it a promising antiviral drug target. This Perspective highlights major achievements in structure-based design and high-throughput screening of SARS-CoV-2 PLpro inhibitors since the beginning of the pandemic. Encouraging progress includes the design of non-covalent PLpro inhibitors with favorable pharmacokinetic properties and the first-in-class covalent PLpro inhibitors. In addition, we offer our opinion on the knowledge gaps that need to be filled to advance PLpro inhibitors to the clinic.
Collapse
Affiliation(s)
- Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yanmei Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
43
|
Waters L, Marra F, Pozniak A, Cockburn J, Boffito M. Ritonavir and COVID-19: pragmatic guidance is important. Lancet 2022; 399:1464-1465. [PMID: 35334211 PMCID: PMC8940184 DOI: 10.1016/s0140-6736(22)00280-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Laura Waters
- Department of HIV and Sexual Health, Central and North West London NHS Trust, London, WC1E 6JB, UK.
| | - Fiona Marra
- Department of Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Anton Pozniak
- Department of Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - James Cockburn
- Department of Cardiology, Brighton and Sussex University Hospital, Brighton, UK
| | - Marta Boffito
- Department of HIV and Sexual Health, Chelsea and Westminster NHS Trust, London, UK
| |
Collapse
|
44
|
Tan DX, Reiter RJ. Mechanisms and clinical evidence to support melatonin's use in severe COVID-19 patients to lower mortality. Life Sci 2022; 294:120368. [PMID: 35108568 PMCID: PMC8800937 DOI: 10.1016/j.lfs.2022.120368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
The fear of SARS-CoV-2 infection is due to its high mortality related to seasonal flu. To date, few medicines have been developed to significantly reduce the mortality of the severe COVID-19 patients, especially those requiring tracheal intubation. The severity and mortality of SARS-CoV-2 infection not only depend on the viral virulence, but are primarily determined by the cytokine storm and the destructive inflammation driven by the host immune reaction. Thus, to target the host immune response might be a better strategy to combat this pandemic. Melatonin is a molecule with multiple activities on a virus infection. These include that it downregulates the overreaction of innate immune response to suppress inflammation, promotes the adaptive immune reaction to enhance antibody formation, inhibits the entrance of the virus into the cell as well as limits its replication. These render it a potentially excellent candidate for treatment of the severe COVID-19 cases. Several clinical trials have confirmed that melatonin when added to the conventional therapy significantly reduces the mortality of the severe COVID-19 patients. The cost of melatonin is a small fraction of those medications approved by FDA for emergency use to treat COVID-19. Because of its self-administered, low cost and high safety margin, melatonin could be made available to every country in the world at an affordable cost. We recommend melatonin be used to treat severe COVID-19 patients with the intent of reducing mortality. If successful, it would make the SARS-CoV-2 pandemic less fearful and help to return life back to normalcy.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
45
|
Mótyán JA, Mahdi M, Hoffka G, Tőzsér J. Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Int J Mol Sci 2022; 23:3507. [PMID: 35408866 PMCID: PMC8998604 DOI: 10.3390/ijms23073507] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises; however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| |
Collapse
|
46
|
Nocentini A, Capasso C, Supuran CT. Perspectives on the design and discovery of α-ketoamide inhibitors for the treatment of novel coronavirus: where do we stand and where do we go? Expert Opin Drug Discov 2022; 17:547-557. [DOI: 10.1080/17460441.2022.2052847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
47
|
Iacopetta D, Ceramella J, Catalano A, Saturnino C, Pellegrino M, Mariconda A, Longo P, Sinicropi MS, Aquaro S. COVID-19 at a Glance: An Up-to-Date Overview on Variants, Drug Design and Therapies. Viruses 2022; 14:573. [PMID: 35336980 PMCID: PMC8950852 DOI: 10.3390/v14030573] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the Coronavirus family which caused the worldwide pandemic of human respiratory illness coronavirus disease 2019 (COVID-19). Presumably emerging at the end of 2019, it poses a severe threat to public health and safety, with a high incidence of transmission, predominately through aerosols and/or direct contact with infected surfaces. In 2020, the search for vaccines began, leading to the obtaining of, to date, about twenty COVID-19 vaccines approved for use in at least one country. However, COVID-19 continues to spread and new genetic mutations and variants have been discovered, requiring pharmacological treatments. The most common therapies for COVID-19 are represented by antiviral and antimalarial agents, antibiotics, immunomodulators, angiotensin II receptor blockers, bradykinin B2 receptor antagonists and corticosteroids. In addition, nutraceuticals, vitamins D and C, omega-3 fatty acids and probiotics are under study. Finally, drug repositioning, which concerns the investigation of existing drugs for new therapeutic target indications, has been widely proposed in the literature for COVID-19 therapies. Considering the importance of this ongoing global public health emergency, this review aims to offer a synthetic up-to-date overview regarding diagnoses, variants and vaccines for COVID-19, with particular attention paid to the adopted treatments.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (C.S.); (A.M.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (C.S.); (A.M.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| |
Collapse
|
48
|
Le Corre P, Loas G. Difficulty in Repurposing Selective Serotonin Reuptake Inhibitors and Other Antidepressants with Functional Inhibition of Acid Sphingomyelinase in COVID-19 Infection. Front Pharmacol 2022; 13:849095. [PMID: 35308205 PMCID: PMC8927035 DOI: 10.3389/fphar.2022.849095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid spread of COVID-19 has become a health emergency causing an urgent need for drug treatments to control the outbreak, especially in more vulnerable individuals. This is reinforced by the fact that prophylactic vaccines and neutralizing monoclonal antibodies may not be fully effective against emerging variants. Despite all efforts made by the scientific community, efficient therapeutic options currently remain scarce, either in the initial, as well as in the advanced forms of the disease. From retrospective observational studies and prospective clinical trials, selective serotonin reuptake inhibitors (SSRIs), and other antidepressants with functional inhibition of acid sphingomyelinase (FIASMAs), have emerged as potential treatments of COVID-19. This has led to some prematurely optimistic points of view, promoting a large prescription of fluvoxamine in patients with COVID-19, that we think should be reasonably tempered.
Collapse
Affiliation(s)
- Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, Rennes, France
| | - Gwenolé Loas
- Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Research Unit (ULB 266), Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
49
|
Girardin F, Manuel O, Marzolini C, Buclin T. Evaluating the risk of drug-drug interactions with pharmacokinetic boosters: the case of ritonavir-enhanced nirmatrelvir to prevent severe COVID-19. Clin Microbiol Infect 2022; 28:1044-1046. [PMID: 35358684 PMCID: PMC8958820 DOI: 10.1016/j.cmi.2022.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/14/2023]
Affiliation(s)
- François Girardin
- Division of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Faculty of Medicine, University of Lausanne, Lausanne, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Centre, Lausanne, Lausanne University Hospital, Faculty of Medicine, University of Lausanne, Lausanne, Switzerland
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland; Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom
| | - Thierry Buclin
- Division of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Faculty of Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
50
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-safi I, Mechchate H, Lyoussi B. New Insights into Potential Beneficial Effects of Bioactive Compounds of Bee Products in Boosting Immunity to Fight COVID-19 Pandemic: Focus on Zinc and Polyphenols. Nutrients 2022; 14:nu14050942. [PMID: 35267917 PMCID: PMC8912813 DOI: 10.3390/nu14050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an epidemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Populations at risk as well as those who can develop serious complications are people with chronic diseases such as diabetes, hypertension, and the elderly. Severe symptoms of SARS-CoV-2 infection are associated with immune failure and dysfunction. The approach of strengthening immunity may be the right choice in order to save lives. This review aimed to provide an overview of current information revealing the importance of bee products in strengthening the immune system against COVID-19. We highlighted the immunomodulatory and the antiviral effects of zinc and polyphenols, which may actively contribute to improving symptoms and preventing complications caused by COVID-19 and can counteract viral infections. Thus, this review will pave the way for conducting advanced experimental research to evaluate zinc and polyphenols-rich bee products to prevent and reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
- Correspondence:
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|