1
|
Colnot E, Cardoit L, Cabirol MJ, Roudier L, Delville MH, Fayoux A, Thoby-Brisson M, Juvin L, Morin D. Chronic maternal exposure to titanium dioxide nanoparticles alters breathing in newborn offspring. Part Fibre Toxicol 2022; 19:57. [PMID: 35982496 PMCID: PMC9386967 DOI: 10.1186/s12989-022-00497-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Background Over the last two decades, nanotechnologies and the use of nanoparticles represent one of the greatest technological advances in many fields of human activity. Particles of titanium dioxide (TiO2) are one of the nanomaterials most frequently found in everyday consumer products. But, due in particular to their extremely small size, TiO2 nanoparticles (NPs) are prone to cross biological barriers and potentially lead to adverse health effects. The presence of TiO2 NPs found in human placentae and in the infant meconium has indicated unequivocally the capacity for a materno-fetal transfer of this nanomaterial. Although chronic exposure to TiO2 NPs during pregnancy is known to induce offspring cognitive deficits associated with neurotoxicity, the impact of a gestational exposure on a vital motor function such as respiration, whose functional emergence occurs during fetal development, remains unknown. Results Using in vivo whole-body plethysmographic recordings from neonatal mice, we show that a chronic exposure to TiO2 NPs during pregnancy alters the respiratory activity of offspring, characterized by an abnormally elevated rate of breathing. Correspondingly, using ex vivo electrophysiological recordings performed on isolated brainstem-spinal cord preparations of newborn mice and medullary slice preparations containing specific nuclei controlling breathing frequency, we show that the spontaneously generated respiratory-related rhythm is significantly and abnormally accelerated in animals prenatally exposed to TiO2 NPs. Moreover, such a chronic prenatal exposure was found to impair the capacity of respiratory neural circuitry to effectively adjust breathing rates in response to excitatory environmental stimuli such as an increase in ambient temperature. Conclusions Our findings thus demonstrate that a maternal exposure to TiO2 NPs during pregnancy affects the normal development and operation of the respiratory centers in progeny. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00497-4.
Collapse
Affiliation(s)
- Eloïse Colnot
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Laura Cardoit
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | - Lydia Roudier
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33608, Pessac, France
| | | | - Anne Fayoux
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | - Laurent Juvin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Didier Morin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France. .,Univ. Bordeaux, Department of Health, Safety and Environment, Bordeaux Institute of Technology, F-33175, Gradignan, France.
| |
Collapse
|
2
|
Goldwater PN. The Science (or Nonscience) of Research Into Sudden Infant Death Syndrome (SIDS). Front Pediatr 2022; 10:865051. [PMID: 35498810 PMCID: PMC9051368 DOI: 10.3389/fped.2022.865051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED This Viewpoint paper presents a timely and constructive critique of mainstream SIDS research. It is concerning that twenty-first century medical science has not provided an answer to the tragic enigma of SIDS. The paper helps explain why this is so and illustrates possible shortcomings in the investigation of Sudden Infant Death Syndrome/Sudden Unexplained Infant Death (SIDS/SUID) by mainstream researchers. Mainstream findings are often based on questionable and dogmatic assumptions that return to founding notions such as the Triple Risk Hypothesis and the contention that the mechanisms underlying SIDS/SUID are heterogeneous in nature. The paper illustrates how the pathological findings in SIDS have been under-investigated (or ignored) and that key epidemiological risk factors have slipped from memory. This apparent amnesia has resulted in failure to use these established SIDS facts to substantiate the significance of various neuropathological, neurochemical, or other research findings. These unsupported findings and their derivative hypotheses are therefore ill-founded and lack scientific rigor. CONCLUSION The deficits of SIDS "science" revealed in this paper explain why the SIDS enigma has not yet been solved. To make progress in understanding SIDS, it is important that researchers, as scientists, uphold standards of research. Encouragement for new directions of research is offered.
Collapse
Affiliation(s)
- Paul Nathan Goldwater
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Nakstad B, Filippi V, Lusambili A, Roos N, Scorgie F, Chersich MF, Luchters S, Kovats S. How Climate Change May Threaten Progress in Neonatal Health in the African Region. Neonatology 2022; 119:644-651. [PMID: 35850106 DOI: 10.1159/000525573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
Abstract
Climate change is likely to have wide-ranging impacts on maternal and neonatal health in Africa. Populations in low-resource settings already experience adverse impacts from weather extremes, a high burden of disease from environmental exposures, and limited access to high-quality clinical care. Climate change is already increasing local temperatures. Neonates are at high risk of heat stress and dehydration due to their unique metabolism, physiology, growth, and developmental characteristics. Infants in low-income settings may have little protection against extreme heat due to housing design and limited access to affordable space cooling. Climate change may increase risks to neonatal health from weather disasters, decreasing food security, and facilitating infectious disease transmission. Effective interventions to reduce risks from the heat include health education on heat risks for mothers, caregivers, and clinicians; nature-based solutions to reduce urban heat islands; space cooling in health facilities; and equitable improvements in housing quality and food systems. Reductions in greenhouse gas emissions are essential to reduce the long-term impacts of climate change that will further undermine global health strategies to reduce neonatal mortality.
Collapse
Affiliation(s)
- Britt Nakstad
- Department of Pediatric and Adolescent Health, University of Botswana, Gaborone, Botswana.,Division of Pediatric and Adolescent Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Adelaide Lusambili
- Institute for Human Development, The Aga Khan University, Nairobi, Kenya
| | - Nathalie Roos
- Department of Medicine, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Fiona Scorgie
- University of Witswatersand, Johannesburg, South Africa
| | | | - Stanley Luchters
- Institute for Human Development, The Aga Khan University, Nairobi, Kenya
| | - Sari Kovats
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
4
|
Bach V, Libert JP. Hyperthermia and Heat Stress as Risk Factors for Sudden Infant Death Syndrome: A Narrative Review. Front Pediatr 2022; 10:816136. [PMID: 35498814 PMCID: PMC9051231 DOI: 10.3389/fped.2022.816136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Heat stress and hyperthermia are common findings in sudden infant death syndrome (SIDS) victims. It has been suggested that thermal stress can increase the risk of SIDS directly via lethal hyperthermia or indirectly by altering autonomic functions. Major changes in sleep, thermoregulation, cardiovascular function, and the emergence of circadian functions occur at the age at which the risk of SIDS peaks-explaining the greater vulnerability at this stage of development. Here, we review the literature data on (i) heat stress and hyperthermia as direct risk factors for SIDS, and (ii) the indirect effects of thermal loads on vital physiological functions. RESULTS Various situations leading to thermal stress (i.e., outdoors temperatures, thermal insulation from clothing and bedding, the prone position, bed-sharing, and head covering) have been analyzed. Hyperthermia mainly results from excessive clothing and bedding insulation with regard to the ambient thermal conditions. The appropriate amount of clothing and bedding thermal insulation for homeothermia requires further research. The prone position and bed-sharing do not have major thermal impacts; the elevated risk of SIDS in these situations cannot be explained solely by thermal factors. Special attention should be given to brain overheating because of the head's major role in body heat losses, heat production, and autonomic functions. Thermal stress can alter cardiovascular and respiratory functions, which in turn can lead to life-threatening events (e.g., bradycardia, apnea with blood desaturation, and glottal closure). Unfortunately, thermal load impairs the responses to these challenges by reducing chemosensitivity, arousability, and autoresuscitation. As a result, thermal load (even when not lethal directly) can interact detrimentally with vital physiological functions. CONCLUSIONS With the exception of excessive thermal insulation (which can lead to lethal hyperthermia), the major risk factors for SIDS appears to be associated with impairments of vital physiological functions when the infant is exposed to thermal stress.
Collapse
Affiliation(s)
- Véronique Bach
- PeriTox, UMR_I 01, UPJV/INERIS, Jules Verne University of Picardy, Amiens, France
| | - Jean-Pierre Libert
- PeriTox, UMR_I 01, UPJV/INERIS, Jules Verne University of Picardy, Amiens, France
| |
Collapse
|
5
|
Goldwater PN, Oberg EO. Infection, Celestial Influences, and Sudden Infant Death Syndrome: A New Paradigm. Cureus 2021; 13:e17449. [PMID: 34589355 PMCID: PMC8463918 DOI: 10.7759/cureus.17449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/16/2023] Open
Abstract
The etiology of sudden infant death syndrome (SIDS) still remains unclear. This situation would seem unprecedented for 21st-century medical science. This article explores scientific fields that have not been largely considered in investigating the etiology of SIDS so far. In this study, we examined previously ignored studies on heliobiology, celestial influences, and SIDS in the non-medical literature in an attempt to answer the following questions: is there a relationship between sunspot/solar activity and the occurrence of SIDS? Could there be alternative reasons for the decline in SIDS incidences in the 1990s that were originally attributed to the “Back-to-Sleep” campaign? We note that the decline coincided with the ~11-year cyclical diminution in sunspot numbers (SSNs). The SSN/SIDS relationship does not necessarily imply causality; however, it supports published data regarding sunspots, Schumann resonance, and geomagnetic effects. How solar energy could adversely influence a baby’s existence remains conjectural. Observations in this respect suggest pathways involving melatonin and/or infection/inflammation.
Collapse
Affiliation(s)
- Paul N Goldwater
- Pathology-Infectious Diseases and Clinical Microbiology, Adelaide Medical School, University of Adelaide, Adelaide, AUS
| | - Edward O Oberg
- Mechanical Engineering, University of Minnesota, Minnesota, USA
| |
Collapse
|
6
|
Harowitz J, Crandall L, McGuone D, Devinsky O. Seizure-related deaths in children: The expanding spectrum. Epilepsia 2021; 62:570-582. [PMID: 33586153 PMCID: PMC7986159 DOI: 10.1111/epi.16833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022]
Abstract
Although seizures are common in children, they are often overlooked as a potential cause of death. Febrile and nonfebrile seizures can be fatal in children with or without an epilepsy diagnosis and may go unrecognized by parents or physicians. Sudden unexpected infant deaths, sudden unexplained death in childhood, and sudden unexpected death in epilepsy share clinical, neuropathological, and genetic features, including male predominance, unwitnessed deaths, death during sleep, discovery in the prone position, hippocampal abnormalities, and variants in genes regulating cardiac and neuronal excitability. Additionally, epidemiological studies reveal that miscarriages are more common among individuals with a personal or family history of epilepsy, suggesting that some fetal losses may result from epileptic factors. The spectrum of seizure-related deaths in pediatrics is wide and underappreciated; accurately estimating this mortality and understanding its mechanism in children is critical to developing effective education and interventions to prevent these tragedies.
Collapse
Affiliation(s)
- Jenna Harowitz
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laura Crandall
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, USA.,SUDC Foundation, Herndon, Virginia, USA
| | - Declan McGuone
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Gabbay U, Carmi D, Birk E, Dagan D, Shatz A, Kidron D. The Sudden Infant Death Syndrome mechanism of death may be a non-septic hyper-dynamic shock. Med Hypotheses 2018; 122:35-40. [PMID: 30593418 DOI: 10.1016/j.mehy.2018.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Sudden Infant Death Syndrome (SIDS) mechanisms of death remains obscured. SIDS' Triple Risk Model assumed coexistence of individual subtle vulnerability, critical developmental period and stressors. Prone sleeping is a major risk factor but provide no clues regarding the mechanism of death. The leading assumed mechanisms of death are either an acute respiratory crisis or arrhythmias but neither one is supported with evidence, hence both are eventually speculations. Postmortem findings do exist but are inconclusive to identify the mechanism of death. WHAT DOES THE PROPOSED HYPOTHESIS BASED ON?: 1. The stressors (suggested by the triple risk model) share a unified compensatory physiological response of decrease in systemic vascular resistant (SVR) to facilitate a compensatory increase in cardiac output (CO). 2. The cardiovascular/cardiorespiratory control of the vulnerable infant during a critical developmental period may be impaired. 3. A severe decrease in SVR is associated with hyper-dynamic state, high output failure and distributive shock. THE HYPOTHESIS Infant who is exposed to one or more stressors responds normally by decrease in SVR which increases CO. In normal circumstances once the needs are met both SVR and CO are stabilized on a new steady state. The incompetent cardiovascular control of the vulnerable infant fails to stabilize SVR which decreases in an uncontrolled manner. Accordingly CO increases above the needs to hyper-dynamic state, high output heart failure and hyper-dynamic shock. CONCLUSIONS The proposed hypothesis provides an appropriate alternative to either respiratory crises or arrhythmia though both speculations cannot be entirely excluded.
Collapse
Affiliation(s)
- Uri Gabbay
- Quality Unit, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Doron Carmi
- Shoham Pediatric Clinic, Southern District, Clalit Health Services, Shoham, Israel
| | - Einat Birk
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Cardiology Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - David Dagan
- Surgeon General's Headquarters, Israel Defense Forces, Ramat Gan, Israel
| | - Anat Shatz
- ENT, Shaare Zedek Medical Center, Jerusalem, Israel; Atid, the Israeli Society for the Study and Prevention of SIDS, Jerusalem, Israel
| | - Debora Kidron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pathology Department, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
8
|
Barrett KT, Daubenspeck JA, Wilson RJA. Pituitary adenylate cyclase-activating polypeptide drives cardiorespiratory responses to heat stress in neonatal mice. Am J Physiol Regul Integr Comp Physiol 2017; 313:R385-R394. [DOI: 10.1152/ajpregu.00118.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 11/22/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has emerged as a principal and rate-limiting regulator of physiological stress responses in adult rodents and has been implicated in sudden infant death syndrome (SIDS). Recent studies show that PACAP plays a role in neonatal cardiorespiratory responses to hypoxia, hypercapnia, and hypothermia, but not hyperthermia, which is often associated with SIDS. Here we tested the hypothesis that, consistent with a role in SIDS, PACAP is involved in regulating the neonatal cardiorespiratory responses to severe heat. To address this, we used head-out plethysmography and surface ECG electrodes to study the cardiorespiratory physiology of conscious neonatal PACAP-null and wild-type mice at ambient temperatures of 32°C (baseline) and 40°C (heat stress). We also assessed body surface temperature as an indicator of cutaneous heat loss. Our results show that wild-type neonatal mice respond to heat stress by increasing ventilation ( P = 0.007) and associated expired CO2 ( P = 0.041), heart rate ( P < 0.001), and cutaneous heat loss ( P < 0.001). In PACAP-null neonates, this heat response is impaired, as indicated by a decrease in ventilation ( P = 0.04) and associated expired CO2 ( P = 0.006) and a blunted increase in heart rate ( P = 0.001) and cutaneous heat loss ( P = 0.0002). In addition, heart rate variability at baseline was lower in PACAP-null neonates than wild-type controls ( P < 0.01). These results suggest that, during heat stress, PACAP is important for neonatal cardiorespiratory responses that help regulate body temperature. Abnormal PACAP regulation could, therefore, contribute to neonatal disorders in which the autonomic response to stress is impaired, such as SIDS.
Collapse
Affiliation(s)
- Karlene T. Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; and
| | - John A. Daubenspeck
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Richard J. A. Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; and
| |
Collapse
|
9
|
Siren PMA. SIDS-CDF Hypothesis Revisited: Cause vs. Contributing Factors. Front Neurol 2017; 7:244. [PMID: 28138321 PMCID: PMC5237635 DOI: 10.3389/fneur.2016.00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/23/2016] [Indexed: 01/10/2023] Open
Abstract
The sudden infant death syndrome (SIDS)–critical diaphragm failure (CDF) hypothesis was first published by Siren and Siren in 2011 (1). Since its publication, the hypothesis has continued to generate interest and several colleagues have contributed perspectives and insights to it (2–5). The basic premise of the hypothesis is that the diaphragm is a vital organ that must continuously generate adequate force to maintain ventilation, and that CDF is a terminal event and the cause of death in SIDS. I have argued in two follow-up articles that all SIDS factors either increase the workload of the respiratory muscles, the diaphragm being the primary muscle affected, or reduce its force generating capacity (6, 7). The SIDS–CDF hypothesis posits that SIDS has many contributing factors but only one cause, namely, the failure of the vital respiratory pump. There are several known SIDS factors, such as the prone sleeping position, non-lethal infections, deep sleep, gestational prematurity, low birth weight, cigarette smoke, male gender, and altitude, but of these, some such as the prone sleeping position more significantly both impact diaphragm function and correlate with SIDS. However, SIDS cases are multifactorial and as such can be caused by different combinations of factors. An infection combined with a prone sleeping position and elevated room temperature could lead to SIDS, whereas in other circumstances, low birth weight, cigarette smoke, prone sleeping position, and altitude could result in CDF and SIDS. The SIDS–CDF hypothesis also posits that SIDS does not have a congenital or genetic origin, and that efforts to identify significant genetic anomalies in SIDS victims are unlikely to be successful (8–11).
Collapse
|
10
|
McDonald FB, Chandrasekharan K, Wilson RJA, Hasan SU. Interactive effects of maternal cigarette smoke, heat stress, hypoxia, and lipopolysaccharide on neonatal cardiorespiratory and cytokine responses. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1113-R1124. [PMID: 27733384 DOI: 10.1152/ajpregu.00062.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022]
Abstract
Maternal cigarette smoke (CS) exposure exhibits a strong epidemiological association with Sudden Infant Death Syndrome, but other environmental stressors, including infection, hyperthermia, and hypoxia, have also been postulated as important risk factors. This study examines whether maternal CS exposure causes maladaptations within homeostatic control networks by influencing the response to lipopolysaccharide, heat stress, and/or hypoxia in neonatal rats. Pregnant dams were exposed to CS or parallel sham treatments daily for the length of gestation. Offspring were studied at postnatal days 6-8 at ambient temperatures (Ta) of 33°C or 38°C. Within each group, rats were allocated to control, saline, or LPS (200 µg/kg) treatments. Cardiorespiratory patterns were examined using head-out plethysmography and ECG surface electrodes during normoxia and hypoxia (10% O2). Serum cytokine concentrations were quantified from samples taken at the end of each experiment. Our results suggest maternal CS exposure does not alter minute ventilation (V̇e) or heart rate (HR) response to infection or high temperature, but independently increases apnea frequency. CS also primes the inflammatory system to elicit a stronger cytokine response to bacterial insult. High Ta independently depresses V̇e but augments the hypoxia-induced increase in V̇e Moreover, higher Ta increases HR during normoxia and hypoxia, and in the presence of an immune challenge, increases HR during normoxia, and reduces the increase normally associated with hypoxia. Thus, while most environmental risk factors increase the burden on the cardiorespiratory system in early life, hyperthermia and infection blunt the normal HR response to hypoxia, and gestational CS independently destabilizes breathing by increasing apneas.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, Alberta, Canada; and
| | - Kumaran Chandrasekharan
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Faculty of Medicine, Health Sciences Centre, University of Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, Alberta, Canada; and
| | - Shabih U Hasan
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Faculty of Medicine, Health Sciences Centre, University of Calgary, Alberta, Canada
| |
Collapse
|
11
|
McDonald FB, Chandrasekharan K, Wilson RJA, Hasan SU. Cardiorespiratory control and cytokine profile in response to heat stress, hypoxia, and lipopolysaccharide (LPS) exposure during early neonatal period. Physiol Rep 2016; 4:4/2/e12688. [PMID: 26811056 PMCID: PMC4760388 DOI: 10.14814/phy2.12688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sudden infant death syndrome (SIDS) is one of the most common causes of postneonatal infant mortality in the developed world. An insufficient cardiorespiratory response to multiple environmental stressors (such as prone sleeping positioning, overwrapping, and infection), during a critical period of development in a vulnerable infant, may result in SIDS. However, the effect of multiple risk factors on cardiorespiratory responses has rarely been tested experimentally. Therefore, this study aimed to quantify the independent and possible interactive effects of infection, hyperthermia, and hypoxia on cardiorespiratory control in rats during the neonatal period. We hypothesized that lipopolysaccharide (LPS) administration will negatively impact cardiorespiratory responses to increased ambient temperature and hypoxia in neonatal rats. Sprague-Dawley neonatal rat pups were studied at postnatal day 6-8. Rats were examined at an ambient temperature of 33°C or 38°C. Within each group, rats were allocated to control, saline, or LPS (200 μg/kg) treatments. Cardiorespiratory and thermal responses were recorded and analyzed before, during, and after a hypoxic exposure (10% O2). Serum samples were taken at the end of each experiment to measure cytokine concentrations. LPS significantly increased cytokine concentrations (such as TNFα, IL-1β, MCP-1, and IL-10) compared to control. Our results do not support a three-way interaction between experimental factors on cardiorespiratory control. However, independently, heat stress decreased minute ventilation during normoxia and increased the hypoxic ventilatory response. Furthermore, LPS decreased hypoxia-induced tachycardia. Herein, we provide an extensive serum cytokine profile under various experimental conditions and new evidence that neonatal cardiorespiratory responses are adversely affected by dual interactions of environmental stress factors.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kumaran Chandrasekharan
- Fetal and Neonatal Physiology, Department of Pediatrics, Faculty of Medicine B271, Health Sciences Center, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shabih U Hasan
- Fetal and Neonatal Physiology, Department of Pediatrics, Faculty of Medicine B271, Health Sciences Center, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Ferng J, Fregosi RF. Influence of developmental nicotine exposure on the ventilatory and metabolic response to hyperthermia. J Physiol 2015; 593:5201-13. [PMID: 26427762 PMCID: PMC4667002 DOI: 10.1113/jp271374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/22/2015] [Indexed: 11/08/2022] Open
Abstract
To determine whether developmental nicotine exposure (DNE) alters the ventilatory and metabolic response to hyperthermia in neonatal rats (postnatal age 2-4 days), pregnant dams were exposed to nicotine (6 mg kg(-1) of nicotine tartrate daily) or saline with an osmotic mini-pump implanted subdermally on day 5 of gestation. Rat pups (a total of 72 controls and 72 DNE pups) were studied under thermoneutral conditions (chamber temperature 33°C) and during moderate thermal stress (37.5°C). In all pups, core temperature was similar to chamber temperature, with no treatment effects. The rates of pulmonary ventilation (V̇(I)), O2 consumption (V̇(O2)) and CO2 production (V̇(CO2)) did not change with hyperthermia in either control or DNE pups. However, V̇(I) was lower in DNE pups at both chamber temperatures, whereas the duration of spontaneous apnoeas was longer in DNE pups than in controls at 33°C. The V̇(I)/V̇(O2) ratio increased at 37.5°C in control pups, although it did not change in DNE pups. To simulate severe thermal stress, additional pups were studied at 33°C and 43°C. V̇(I) increased with heating in control pups but not in DNE pups. As heat stress continued, gasping was evoked in both groups, with no effect of DNE on the gasping pattern. Over a 20 min recovery period at 33°C, V̇(I) returned to baseline in control pups but remained depressed in DNE pups. In addition to altering baseline V̇(I) and apnoea duration, DNE is associated with subtle but significant alterations in the ventilatory response to hyperthermia in neonatal rats.
Collapse
Affiliation(s)
| | - Ralph F Fregosi
- Department of Physiology
- Department of Neuroscience, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Kinney HC, Cryan JB, Haynes RL, Paterson DS, Haas EA, Mena OJ, Minter M, Journey KW, Trachtenberg FL, Goldstein RD, Armstrong DD. Dentate gyrus abnormalities in sudden unexplained death in infants: morphological marker of underlying brain vulnerability. Acta Neuropathol 2015; 129:65-80. [PMID: 25421424 PMCID: PMC4282685 DOI: 10.1007/s00401-014-1357-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 01/19/2023]
Abstract
Sudden unexplained death in infants, including the sudden infant death syndrome, is likely due to heterogeneous causes that involve different intrinsic vulnerabilities and/or environmental factors. Neuropathologic research focuses upon the role of brain regions, particularly the brainstem, that regulate or modulate autonomic and respiratory control during sleep or transitions to waking. The hippocampus is a key component of the forebrain-limbic network that modulates autonomic/respiratory control via brainstem connections, but its role in sudden infant death has received little attention. We tested the hypothesis that a well-established marker of hippocampal pathology in temporal lobe epilepsy-focal granule cell bilamination in the dentate, a variant of granule cell dispersion-is associated with sudden unexplained death in infants. In a blinded study of hippocampal morphology in 153 infants with sudden and unexpected death autopsied in the San Diego County medical examiner's office, deaths were classified as unexplained or explained based upon autopsy and scene investigation. Focal granule cell bilamination was present in 41.2% (47/114) of the unexplained group compared to 7.7% (3/39) of the explained (control) group (p < 0.001). It was associated with a cluster of other dentate developmental abnormalities that reflect defective neuronal proliferation, migration, and/or survival. Dentate lesions in a large subset of infants with sudden unexplained death may represent a developmental vulnerability that leads to autonomic/respiratory instability or autonomic seizures, and sleep-related death when the infants are challenged with homeostatic stressors. Importantly, these lesions can be recognized in microscopic sections prepared in current forensic practice. Future research is needed to determine the relationship between hippocampal and previously reported brainstem pathology in sudden infant death.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Neonates in Ahmedabad, India, during the 2010 heat wave: a climate change adaptation study. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2014; 2014:946875. [PMID: 24734050 PMCID: PMC3964840 DOI: 10.1155/2014/946875] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
Health effects from climate change are an international concern with urban areas at particular risk due to urban heat island effects. The burden of disease on vulnerable populations in non-climate-controlled settings has not been well studied. This study compared neonatal morbidity in a non-air-conditioned hospital during the 2010 heat wave in Ahmedabad to morbidity in the prior and subsequent years. The outcome of interest was neonatal intensive care unit (NICU) admissions for heat. During the months of April, May, and June of 2010, 24 NICU admissions were for heat versus 8 and 4 in 2009 and 2011, respectively. Both the effect of moving the maternity ward and the effect of high temperatures were statistically significant, controlling for each other. Above 42 degrees Celsius, each daily maximum temperature increase of a degree was associated with 43% increase in heat-related admissions (95% CI 9.2–88%). Lower floor location of the maternity ward within hospital which occurred after the 2010 heat wave showed a protective effect. These findings demonstrate the importance of simple surveillance measures in motivating a hospital policy change for climate change adaptation—here relocating one ward—and the potential increasing health burden of heat in non-climate-controlled institutions on vulnerable populations.
Collapse
|
15
|
Courts C, Grabmüller M, Madea B. Functional single-nucleotide variant of HSPD1 in sudden infant death syndrome. Pediatr Res 2013; 74:380-3. [PMID: 23823174 DOI: 10.1038/pr.2013.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/19/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND An insufficient stress response due to a genetically impaired heat shock protein (Hsp) could play a role in the pathogenesis in a subgroup of sudden infant death syndrome (SIDS) cases. Herein, we are the first to investigate whether a functionally impairing and thus pathogenic variant of the gene for Hsp60, encoded by HSPD1 (rs72466451), is correlated with the occurrence of SIDS. METHODS In a case-control study of a series of 133 cases of SIDS and 192 gender-matched German Caucasian control cases, the occurrence and distribution of the HSPD1 single-nucleotide variant (SNV) was analyzed using SNV genotyping by minisequencing. RESULTS The results show significantly increased frequency of the pathogenic variant of the HSPD1 SNV in a subgroup (4.5%) of SIDS cases. CONCLUSION The results suggest that the pathogenic variant of rs72466451 may play a role in a subgroup of SIDS cases with impaired Hsp60-mediated stress response.
Collapse
Affiliation(s)
- Cornelius Courts
- Department of Forensic Genetics, Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
16
|
Molgat-Seon Y, Daboval T, Chou S, Jay O. Accidental overheating of a newborn under an infant radiant warmer: a lesson for future use. J Perinatol 2013; 33:738-9. [PMID: 23986092 DOI: 10.1038/jp.2013.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/30/2013] [Accepted: 02/21/2013] [Indexed: 11/09/2022]
Abstract
A fully functional radiant warmer induced rapid and continuous increases in regional skin temperatures, heart rate, mean arterial blood pressure and respiratory rate in a newborn patient without corrective action. We report this case of passive overheating to create awareness of the risks associated with regulating radiant heat output based upon a single servo-controlled temperature.
Collapse
Affiliation(s)
- Y Molgat-Seon
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Franco P, Raoux A, Kugener B, Dijoud F, Scaillet S, Groswasser J, Kato I, Montemitro E, Lin JS, Kahn A. Sudden death in infants during sleep. HANDBOOK OF CLINICAL NEUROLOGY 2011; 98:501-17. [PMID: 21056208 DOI: 10.1016/b978-0-444-52006-7.00033-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- P Franco
- Pediatric Sleep Unit, Hôpital Femme-Mère-Enfant, SIDS Reference Center of Lyon & INSERM-628, Université Lyon 1, Lyon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Opdal SH, Rognum TO. Gene variants predisposing to SIDS: current knowledge. Forensic Sci Med Pathol 2010; 7:26-36. [PMID: 20623341 DOI: 10.1007/s12024-010-9182-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2010] [Indexed: 01/04/2023]
Abstract
Genetic risk factors play a role in sudden unexpected infant death; either as a cause of death, such as in cases with medium-chain acyl-coenzyme A dehydrogenase deficiency and cardiac arrest due to long QT syndrome, or as predisposing factors for sudden infant death syndrome (SIDS). Most likely genetic predisposition to SIDS represent a polygenic inheritance pattern leading to sudden death when combined with other risk factors, such as a vulnerable developmental stage of the central nervous system and/or the immune system, in addition to environmental risk factors, such as a common cold or prone sleeping position. Genes involved in the regulation of the immune system, cardiac function, the serotonergic network and brain function and development have so far emerged as the most important with respect to SIDS. The purpose of the present paper is to survey current knowledge on SIDS and possible genetic contributions.
Collapse
Affiliation(s)
- Siri H Opdal
- Institute of Forensic Medicine, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
19
|
Xia L, Leiter J, Bartlett D. Gestational nicotine exposure exaggerates hyperthermic enhancement of laryngeal chemoreflex in rat pups. Respir Physiol Neurobiol 2010; 171:17-21. [DOI: 10.1016/j.resp.2010.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/22/2009] [Accepted: 01/15/2010] [Indexed: 11/25/2022]
|
20
|
Effects of body position on thermal, cardiorespiratory and metabolic activity in low birth weight infants. Early Hum Dev 2009; 85:497-501. [PMID: 19419824 PMCID: PMC2719968 DOI: 10.1016/j.earlhumdev.2009.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 04/02/2009] [Accepted: 04/21/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND Low birth weight (LBW) infants sleeping prone are known to exhibit many physiological differences from those sleeping supine, including lower energy expenditure (heat production) and higher surface temperature. This apparent increase in heat storage suggests that heat loss may be inhibited in the prone position which, in turn, might influence cardiorespiratory activity. AIMS To determine the effects of body position (prone vs. supine) on absolute surface temperature profile (heat storage), central-peripheral (C-P) thermal gradients (vasomotor response), cardiorespiratory activity and metabolic gas exchange in growing LBW infants. METHODS Six-hour continuous recordings of absolute surface temperature profiles, cardiorespiratory activity and O2 and CO2 exchange, along with minute-to-minute assessment of behavioral sleep states were performed in 32 healthy growing LBW infants (birth weight 805-1590 g, gestational age 26-35 weeks and postconceptional age at study 33-38 weeks). Each infant was randomly assigned to the prone or supine position for the first 3 h of the study and then reversed for the second 3 h. Surface temperatures were recorded from 4 sites (forehead, flank, forearm and leg) and averaged each minute. Central (forehead and flank)-to-peripheral (forearm and leg) and forehead-to-environment (H-E) thermal gradients were calculated from the surface temperatures. Corresponding sleep states were aligned with minute averages obtained from the temperature and cardiorespiratory measurements. Data were then sorted for prone and supine positions during quiet (QS) and active sleep (AS) and compared using paired t-tests. RESULTS In the prone position during both AS and QS, infants had higher forehead, flank, forearm and leg surface temperatures, narrower C-P gradients, higher heart rates and respiratory frequency, and lower heart rate and respiratory variability. Despite similar environmental temperatures, the H-E gradient was higher in the prone position. In the prone position infants demonstrated lower O2 consumption and CO2 production and a higher respiratory quotient. CONCLUSIONS Despite thermoregulatory adjustments in cardiorespiratory function, infants sleeping prone have relatively higher body temperature. The cardiorespiratory responses to this modest increase in temperature indicate that thermal and metabolic control of cardiac and respiratory pumps seem to work in opposition. The consequences of any attendant changes in blood gas activity (e.g. hypocapnia and/or increased mixed venous oxygen concentration) due to this override of metabolic control remains speculative.
Collapse
|
21
|
Xia L, Crane-Godreau M, Leiter JC, Bartlett D. Gestational cigarette smoke exposure and hyperthermic enhancement of laryngeal chemoreflex in rat pups. Respir Physiol Neurobiol 2008; 165:161-6. [PMID: 19041957 DOI: 10.1016/j.resp.2008.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/27/2008] [Accepted: 11/04/2008] [Indexed: 01/05/2023]
Abstract
Laryngeal chemoreflex (LCR) apnea occurs in infant mammals of many species in response to water or other liquids in the laryngeal lumen. The apnea can last for many seconds, sometimes leading to dangerous hypoxemia, and has therefore been considered as a possible mechanism in the Sudden Infant Death Syndrome (SIDS). We have found recently that this reflex is markedly prolonged in decerebrate piglets and anesthetized rat pups that are warmed 1-3 degrees C above their normal body temperatures. We intermittently exposed pregnant rats to cigarette smoke and examined the LCR in their four- to fifteen-day-old offspring under general anesthesia, with and without whole body warming. During warming, pups of gestationally smoke-exposed dams had significantly longer LCR-induced respiratory disruption than similarly warmed control pups. The results may be significant for the pathogenesis and/or prevention of SIDS as maternal cigarette smoking during human pregnancy and heat stress in infants are known risk factors for SIDS.
Collapse
Affiliation(s)
- Luxi Xia
- Department of Physiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
22
|
Xia L, Leiter JC, Bartlett D. Laryngeal apnea in rat pups: effects of age and body temperature. J Appl Physiol (1985) 2008; 104:269-74. [DOI: 10.1152/japplphysiol.00721.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In neonatal mammals of many species, including human infants, apnea and other reflex responses frequently arise from stimulation of laryngeal receptors by ingested or regurgitated liquids. These reflexes, mediated by afferents in the superior laryngeal nerves (SLNs), are collectively known as the laryngeal chemoreflex (LCR) and are suspected to be responsible for some cases of the sudden infant death syndrome (SIDS). The LCR is strongly enhanced by mild increases in body temperature in decerebrate piglets, a finding that is of interest because SIDS victims are often found in overheated environments. Because of the experimental advantages of studying reflex development and mechanisms in neonatal rodents, we have developed methods for eliciting laryngeal apnea in anesthetized rat pups and have examined the influence of mild hyperthermia in animals ranging in age from 3 to 21 days. We found that apnea and respiratory disruption, elicited either by intralaryngeal water or by electrical stimulation of the SLN, occurred at all ages studied. Raising body temperature by 2–3°C prolonged the respiratory disturbance in response to either stimulus. This effect of hyperthermia was prominent in the youngest animals and diminished with age. We conclude that many studies of the LCR restricted to larger neonatal animals in the past can be performed in infant rodents using appropriate methods. Moreover, the developmental changes in the LCR and in the thermal modulation of the LCR seem to follow different temporal profiles, implying that distinct neurophysiological processes may mediate the LCR and thermal prolongation of the LCR.
Collapse
|
23
|
Xia L, Damon T, Niblock MM, Bartlett D, Leiter JC. Unilateral microdialysis of gabazine in the dorsal medulla reverses thermal prolongation of the laryngeal chemoreflex in decerebrate piglets. J Appl Physiol (1985) 2007; 103:1864-72. [PMID: 17823299 DOI: 10.1152/japplphysiol.00524.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The laryngeal chemoreflex (LCR) is elicited by water in the larynx and leads to apnea and respiratory disruption in immature animals. The LCR is exaggerated by the elevation of brain temperature within or near the nucleus of the solitary tract (NTS) in decerebrate piglets. Thermal prolongation of reflex apnea elicited by superior laryngeal nerve stimulation is reduced by systemic administration of GABA(A) receptor antagonists. Therefore, we tested the hypothesis that microdialysis within or near the NTS of gabazine, a GABA(A) receptor antagonist, would reverse thermal prolongation of the LCR. We examined this hypothesis in 21 decerebrate piglets (age 3-13 days). We elicited the LCR by injecting 0.1 ml of water into the larynx before and after each piglet's body temperature was elevated by approximately 2.5 degrees C and before and after 2-5 mM gabazine was dialyzed unilaterally and focally in the medulla. Elevated body temperature failed to prolong the LCR in one piglet, which was excluded from analysis. Elevated body temperature prolonged the LCR in all the remaining animals, and dialysis of gabazine into the region near the NTS (n = 10) reversed the thermal prolongation of the LCR even though body temperature remained elevated. Dialysis of gabazine in other medullary sites (n = 10) did not reverse thermal prolongation of the LCR. Gabazine had no consistent effect on baseline respiratory activity during hyperthermia. These findings are consistent with the hypothesis that hyperthermia activates GABAergic mechanisms in or near the NTS that are necessary for the thermal prolongation of the LCR.
Collapse
Affiliation(s)
- Luxi Xia
- Dept. of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
During the last decade, much attention has been paid to the risk factors of sudden infant death syndrome (SIDS). Many researchers have demonstrated that infant-care practices are linked to the risk of SIDS. Prone sleeping, bed sharing, maternal substance abuse, and cigarette smoking have been reported to be significant potentially modifiable risk factors for SIDS. Despite the reports that the incidence of SIDS has decreased by 38% in the United States, it remains the leading cause of death in the first year of life. Deaths resulting from child abuse or neglect inflicted or permitted by their caretakers being second only to SIDS in infant mortalities and some recommendations regarding the differentiation of SIDS and child abuse have generated speculation that some cases of infanticide were misdiagnosed as SIDS. To reach a proper conclusion as to the cause and manner of death of an infant who died suddenly and unexpectedly, investigation must be thorough and professional.
Collapse
Affiliation(s)
- B R Sharma
- Department of Forensic Medicine and Toxicology, Government Medical College and Hospital, Chandigarh, India.
| |
Collapse
|
25
|
Balci Y, Tok M, Kocaturk BK, Yenilmez C, Yirulmaz C. Simultaneous sudden infant death syndrome. J Forensic Leg Med 2007; 14:87-91. [PMID: 17654772 DOI: 10.1016/j.jcfm.2006.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The simultaneous sudden deaths of twins rarely occur and therefore it has received limited attention in the medical literature. When the deaths of the twins meet the defined criteria for sudden infant death syndrome (SIDS) independently and take place within the same 24 h range it can be called as simultaneous SIDS (SSIDS). The case(s): Twin girls (3.5-month-old) were found dead by their mother in their crib, both in supine position. The infants were identical twins and delivered at a hospital by cesarean section. Both infants were healthy and did not have any serious medical history. Two days prior to the incident, the twins had received the second dose of oral polio, DPT and the first dose of hepatitis B vaccines and they had fever on the first day of the vaccination and been given teaspoonful of acetaminophen. Death scene investigation, judicial investigation, parental assessment, macroscopic and microscopic autopsy findings and the toxicological analysis did not yield any specific cause of death. The case(s) were referred to a supreme board composed of multidisciplinary medical professionals at the Institute of Forensic Medicine, Ministry of Justice, in Istanbul. The Board decided that the available data was consistent with SIDS. These SIDS case(s) are presented because twin SIDS are rare and this is the first time that a simultaneous twin SIDS have been reported in Turkey. Simultaneous SIDS cases have many implications regarding definition, diagnosis and medico-legal approach.
Collapse
Affiliation(s)
- Yasemin Balci
- Department of Forensic Medicine, Medical Faculty, Osmangazi University, Eskişehir, Turkey.
| | | | | | | | | |
Collapse
|
26
|
Iwase M, Izumizaki M, Miyamoto K, Ishiguro T, Kanamaru M, Homma I. Lack of histamine type-1 receptors impairs the thermal response of respiration during hypoxia in mice (Mus musculus). Comp Biochem Physiol A Mol Integr Physiol 2007; 146:242-51. [PMID: 17218135 DOI: 10.1016/j.cbpa.2006.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/07/2006] [Accepted: 10/15/2006] [Indexed: 11/22/2022]
Abstract
Thermoregulation and the hypoxic ventilatory response are modulated by histamine type-1 (H1) receptors in the brain. In this study, we tested the hypothesis that activation of H1 receptors is required for the thermal control of ventilation during normoxia and hypoxia, using conscious male wild-type and H1 receptor-knockout (H1RKO) mice (Mus musculus). Under normoxic conditions, hyperthermia (39 degrees C) decreased minute ventilation (V (E)) and oxygen consumption [Formula: see text] in both genotypes, suggesting that H1 receptors are not involved in thermal ventilatory control during normoxia. Pa(CO2) was unchanged in both hyperthermia and normothermia, suggesting that the thermal decrease in V (E) is optimized by metabolic demand. Acute hypoxic gas exposure (7% O(2)+3% CO(2) in N(2)) increased, and then decreased, V (E) in wild-type mice; this increase was augmented and sustained by hyperthermia. Hypoxic gas exposure reduced [Formula: see text] and [Formula: see text] in wild-type mice at both body temperatures; the reduced [Formula: see text] during combined hyperthermia and hypoxia was higher than during normothermia and hypoxia. In H1RKO mice, hyperthermia did not augment the V (E) response to hypoxia, and did not affect [Formula: see text] and [Formula: see text] during hypoxia. In conclusion, histamine participates in the thermal increase of ventilation during hypoxia by activating H1 receptors.
Collapse
Affiliation(s)
- Michiko Iwase
- 2nd Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Böhm I, Xia L, Leiter JC, Bartlett D. GABAergic processes mediate thermal prolongation of the laryngeal reflex apnea in decerebrate piglets. Respir Physiol Neurobiol 2006; 156:229-33. [PMID: 17137847 DOI: 10.1016/j.resp.2006.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 10/24/2022]
Abstract
We tested the hypotheses that elevated body temperature would prolong reflex apnea following electrical stimulation of the superior laryngeal nerve (SLN) in decerebrate neonatal piglets and that thermal prolongation of reflex apnea after stimulation of the SLN depended on GABAergic mechanisms. These studies were conducted in 13 decerebrate piglets (age 3-15 days). The SLN was stimulated at approximately 1.5 times the threshold stimulus level for 10 s starting at the beginning of inspiration. We measured the duration of the apnea and respiratory disruption that followed SLN stimulation. Elevating body temperature prolonged the duration of the apnea and respiratory disruption that followed SLN stimulation, and treatment with antagonists of gama-aminobutyric acid A-type (GABAA) receptors reversed the thermal prolongation of reflex apnea and the period of respiratory disruption even though body temperature remained elevated. We conclude that elevated body temperature enhances or amplifies GABAergic mechanisms that prolong the respiratory inhibition following electrical stimulation of the SLN.
Collapse
Affiliation(s)
- Ines Böhm
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, United States
| | | | | | | |
Collapse
|
28
|
Xia L, Damon TA, Leiter JC, Bartlett D. Focal warming in the nucleus of the solitary tract prolongs the laryngeal chemoreflex in decerebrate piglets. J Appl Physiol (1985) 2006; 102:54-62. [PMID: 16959905 DOI: 10.1152/japplphysiol.00720.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The laryngeal chemoreflex (LCR), elicited by a drop of water in the larynx, is exaggerated by mild hyperthermia (body temperature = 40-41 degrees C) in neonatal piglets. We tested the hypothesis that thermal prolongation of the LCR results from heating the nucleus of the solitary tract (NTS), where laryngeal afferents first form synapses in the brain stem. Three- to 13-day-old piglets were decerebrated and vagotomized and studied without anesthesia while paralyzed and ventilated. Phrenic nerve activity and rectal temperature were recorded. A thermode was placed in the medulla, and the brain tissue temperature was recorded with a thermistor approximately 1 mm from the tip of the thermode. When the thermode was inserted into the brain stem, respiratory activity was arrested or greatly distorted in eight animals. However, the thermode was inserted in nine animals without disrupting respiratory activity, and in these animals, warming the medullary thermode (thermistor temperature = 40-41 degrees C) while holding rectal temperature constant reversibly exaggerated the LCR. The caudal raphé was warmed focally by approximately 2 degrees C in four additional animals; this did not alter the duration of the LCR in these animals. Thermodes placed in the NTS did not disrupt respiratory activity, but they did prolong the LCR when warmed. Thermodes that were placed deep to the NTS in the region of the nucleus ambiguus disrupted respiratory activity, which precluded any analysis of the LCR. We conclude that prolongation of the laryngeal chemoreflex by whole body hyperthermia originates from the elevation of brain tissue temperature within in the NTS.
Collapse
Affiliation(s)
- L Xia
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
29
|
Sneed RC. A Clinical Report of Adverse Health Effects Due to Bed Sharing in Two Children with Spinal Cord Injury and Traumatic Brain Injury. South Med J 2006; 99:1007-12. [PMID: 17004540 DOI: 10.1097/01.smj.0000220843.75686.cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This paper explores the possibility that bed sharing may carry particular risks for children with special healthcare needs (CSHCN). Two cases of CSHCN who may have sustained adverse health effects from bed sharing are described. These two case reports indicate that CSHCN may be particularly susceptible to risks associated with bed sharing. Healthcare providers for CSHCN may need to inquire about patients' sleeping arrangements and, when bed sharing is acknowledged, provide counseling regarding the potential risks and benefits. They may need to monitor more closely for adverse events when bed sharing is a factor and should consider reporting health problems that may have occurred in concurrence with bed sharing.
Collapse
Affiliation(s)
- Raphael C Sneed
- Department of Pediatrics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| |
Collapse
|
30
|
Xia L, Leiter JC, Bartlett D. Laryngeal water receptors are insensitive to body temperature in neonatal piglets. Respir Physiol Neurobiol 2006; 150:82-6. [PMID: 15993656 DOI: 10.1016/j.resp.2005.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 05/13/2005] [Accepted: 05/14/2005] [Indexed: 11/20/2022]
Abstract
Heat stress and the laryngeal chemoreflex (LCR) have both been implicated as possible contributors to the sudden infant death syndrome (SIDS). We recently reported that moderate hyperthermia, induced in decerebrate piglets by external heating, substantially prolonged the LCR elicited by injecting 0.1 ml of water into the larynx through a prepositioned transnasal catheter. To examine the question of whether hyperthermia influences the responses of laryngeal water receptors, we recorded single fiber action potentials in fine strands of the superior laryngeal nerve (SLN) in decerebrate piglets while the larynx was filled with water or isotonic saline. Water receptors, identified by their much brisker response to water than to saline, were studied with body temperature at 37.9+/-0.2 degrees C, after warming the animal to 40.6+/-0.2 degrees C and after cooling back to 37.7+/-0.3 degrees C. The results show no effect of body temperature change, in this range, on the responses of the laryngeal water receptors and thus suggest that the potentiation of the LCR by hyperthermia is mediated by a central action.
Collapse
Affiliation(s)
- L Xia
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
31
|
Mortola JP. Influence of temperature on metabolism and breathing during mammalian ontogenesis. Respir Physiol Neurobiol 2005; 149:155-64. [PMID: 16126013 DOI: 10.1016/j.resp.2005.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/17/2005] [Accepted: 01/24/2005] [Indexed: 11/21/2022]
Abstract
A literature survey of the ventilatory responses to changes in ambient temperature (T) in neonatal mammals reveals that, as in adults, the metabolic response to T is the major determining factor. In fact, the newborn's metabolic response to changes in T determines not only the pulmonary ventilation and the breathing pattern, but also the magnitude of the ventilatory responses to chemical stimuli and the intensity of the pulmonary reflexes at different T. The important difference from the adult is that in many neonatal mammals the control of body temperature (T(b)) is poorly developed. Hence, the metabolic response can be more similar to that of an ectothermic, rather than endothermic, animal, and T(b) can vary substantially with T. When hypoxia occurs in cold, T(b) can decrease greatly, because of the hypoxic drop in the thermoregulatory set-point, and this lowers pulmonary ventilation. Hence, in addition to the metabolic response, also the changes in T(b) are a factor modulating the ventilatory responses to T. Artificial warming of the newborn during hypoxia causes heat-dissipation responses that can be counterproductive. During ontogenesis, with prolonged cold conditions, the sustained alterations in metabolic rate and body growth do not modify the postnatal development of the respiratory control mechanisms. Presumably, this indicates that respiratory regulation develops independently from the individual's metabolic history.
Collapse
Affiliation(s)
- Jacopo P Mortola
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Que., Canada H3G 1Y6.
| |
Collapse
|
32
|
Kahraman L, Thach BT. Inhibitory effects of hyperthermia on mechanisms involved in autoresuscitation from hypoxic apnea in mice: a model for thermal stress causing SIDS. J Appl Physiol (1985) 2005; 97:669-74. [PMID: 15247199 DOI: 10.1152/japplphysiol.00895.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiological mechanisms that might be involved in an association between heat stress and sudden infant death syndrome (SIDS) are obscure. We tested the hypothesis that a combination of acute hypoxia and elevated body temperature (T(B)) might prevent autoresuscitation from hypoxic apnea (AR). We exposed 21-day-old mice (total = 216) to hyperthermia (40.5-43.5 degrees C), hypoxia, or a combination of the two. Neither hyperthermia alone (40.5-42.5 degrees C) nor hypoxia alone was found to be lethal, but the combination produced failure to AR during the first hypoxic exposure with increasing frequency as T(B) increased. The ability to withstand multiple hypoxic exposures was also reduced as T(B) increased. In contrast, heat stress causing moderate T(B) increase (40.5 degrees C) had no effect on survival. Increased T(B) (43.5 degrees C) reduced gasping duration and number of gasps. It increased heart rate during anoxia but did not alter gasping rate. Furthermore, the oxygen-independent increase in heart rate observed before gasping failure was usually delayed until after the last gasp in hyperthermic animals. Mild dehydration occurred during T(B) elevation, but this did not appear to be a primary factor in AR failure. We conclude that a thermal stress, which by itself is nonlethal, frequently prevents AR from hypoxic apnea. This may be due, at least in part, to decreased gasp number and duration as well as to hyperthermia-related asynchrony of reflexes regulating heart and gasping frequencies during attempted AR.
Collapse
Affiliation(s)
- Levent Kahraman
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid, Campus Box 8208, St. Louis, MO 63110, USA
| | | |
Collapse
|
33
|
Curran AK, Xia L, Leiter JC, Bartlett D. Elevated body temperature enhances the laryngeal chemoreflex in decerebrate piglets. J Appl Physiol (1985) 2004; 98:780-6. [PMID: 15542573 DOI: 10.1152/japplphysiol.00906.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia and reflex apnea may both contribute to sudden infant death syndrome (SIDS). Therefore, we investigated the effect of increased body temperature on the inhibition of breathing produced by water injected into the larynx, which elicits the laryngeal chemoreflex (LCR). We studied decerebrated, vagotomized, neonatal piglets aged 3-15 days. Blood pressure, end-tidal CO(2), body temperature, and phrenic nerve activity were recorded. To elicit the LCR, we infused 0.1 ml of distilled water through a polyethylene tube passed through the nose and positioned just rostral to the larynx. Three to five LCR trials were performed with the piglet at normal body temperature. The animal's core body temperature was raised by approximately 2.5 degrees C, and three to five LCR trials were performed before the animal was cooled, and three to five LCR trials were repeated. The respiratory inhibition associated with the LCR was substantially prolonged when body temperature was elevated. Thus elevated body temperature may contribute to the pathogenesis of SIDS by increasing the inhibitory effects of the LCR.
Collapse
Affiliation(s)
- A K Curran
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
34
|
Mortola JP. Implications of hypoxic hypometabolism during mammalian ontogenesis. Respir Physiol Neurobiol 2004; 141:345-56. [PMID: 15288604 DOI: 10.1016/j.resp.2004.01.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2004] [Indexed: 11/18/2022]
Abstract
During hypoxia, many newborn mammals, including the human infant, decrease metabolic rate, therefore adopting a strategy common to many living creatures of all classes, but usually not adopted by adult humans and other large mammals. In acute hypoxic conditions, hypometabolism largely consists in actively dropping mechanisms of thermoregulation. One implication is a decrease in body temperature. This is a safety mechanism, which favours hypoxic survival. Indeed, artificial warming during hypoxia can be counterproductive. Because carbon dioxide is an important stimulus for pulmonary ventilation, the drop in its metabolic production may tilt the balance of ventilatory control in favor of respiratory inhibition. Some experimental data support this view. In conditions of sustained hypoxia, the newborn's hypometabolism also results from a depression of tissue growth and differentiation. Some organs are affected more than others. To what extent the blunted organ growth will be compatible with survival depends not only on the severity and duration of hypoxia, but also on the timing of its occurrence during development. Upon termination of hypoxia, the newborn's metabolic rate recovers and growth resumes at higher rate. Even if body weight may be completely regained, alterations in the respiratory mechanical properties and in aspects of ventilatory control can persist into adulthood, a phenomenon not seen when the hypoxia was experienced at later stages of development. Some of the long-term respiratory effects of neonatal hypoxia are reminiscent of those observed in adult animals and humans native and living in high altitude regions.
Collapse
Affiliation(s)
- Jacopo P Mortola
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Que., Canada H3G 1Y6.
| |
Collapse
|
35
|
Iwase M, Izumizaki M, Kanamaru M, Homma I. Effects of Hyperthermia on Ventilation and Metabolism during Hypoxia in Conscious Mice. ACTA ACUST UNITED AC 2004; 54:53-9. [PMID: 15040849 DOI: 10.2170/jjphysiol.54.53] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hyperthermia and hypoxia influence ventilation and metabolism; however, their synergistic effects remain unanswered. We hypothesized that an enhancement of ventilation induced by hyperthermia is competitive with hypoxic hypometabolism. We then examined the relationship of body temperature, hypoxia, and respiration in conscious mice, measuring minute ventilation (VE), aerobic metabolism, and arterial blood gases. All parameters were measured at two different body temperatures (BTs), approximately 37 degrees C (normothermia) and 39 degrees C (hyperthermia), under both normoxia (room air inhalation) and hypoxia (7% O2 inhalation). Under normoxia, VE and O2 consumption (VO2) were lower at hyperthermia than at normothermia, and the VE-VO2 ratio remained constant. PaCO2 values were normal at both BTs under normoxia. Hypoxic gas inhalation increased VE, which reached a peak in 2 min, then decreased at both BTs. VE remained at a higher level during hyperthermia than during normothermia throughout the 10 min experiment. VO2 decreased during hypoxia at both BTs. Hypoxia increased the VE-VO2 ratio because of relatively high VE with respect to the decreased VO2, which means hyperventilation. At hypoxia under hyperthermia, serious hyperventilation occurred with a further increase in VE. The augmented ventilation may be due to the thermal stimulus and a lowered thermoregulatory set point for hypoxia. Thus hyperthermia reduces ventilation and metabolism to maintain normocapnia; as a result, thermogenesis is reduced under normoxia. Hyperthermia augments hyperventilation induced by hypoxia, leading to severe hypoxic hypocapnia. Thermal stimuli may impair the adjustment of ventilation and metabolism when O2 is limited.
Collapse
Affiliation(s)
- Michiko Iwase
- 2nd Department of Physiology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555 Japan.
| | | | | | | |
Collapse
|
36
|
Stanton AN. Sudden unexpected death in infancy associated with maltreatment: evidence from long term follow up of siblings. Arch Dis Child 2003; 88:699-701. [PMID: 12876167 PMCID: PMC1719606 DOI: 10.1136/adc.88.8.699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To identify any association between sudden unexpected death in infancy (SUDI) and maltreatment within local families. METHODS Retrospective enquiry and subsequent follow up of all siblings and later births within the families. Full investigation of the circumstances of all unexpected deaths. SETTING Scarborough and Bridlington Health Districts and Trusts, North and East Yorkshire. SUBJECTS All local families losing a baby from SUDI, 1982-96. Follow up to end of 2000. MAIN OUTCOME MEASURES Court judgements and the objective decisions of legally constituted Social Services Case Conferences to place siblings on the Child Protection Register (CPR), or provide equivalent safeguards. RESULTS Sixty nine families had 72 unexpected deaths; three families had two deaths, with two families raising maltreatment issues. Three families had other children subsequently put on the CPR, all identifiable as likely problems of maltreatment at the time of the single SUDI. In 64/69 families, no child protection issues were formally raised at the time of the SUDI; 41/64 of these families already had 63 children. Four families were lost to follow up after the SUDI; 52/60 of the remaining families have had 93 more children without objective evidence of maltreatment. CONCLUSIONS The association of SUDI and maltreatment within families was at the lower end of previous estimates, 3-10%. Child protection intervention is rarely needed, but investigation and follow up for maltreatment is mandatory where apparent life threatening episodes are reported with a second baby, and after a recurrence of apparent SUDI.
Collapse
Affiliation(s)
- A N Stanton
- Scarborough Hospital, Woodlands Drive, Scarborough, North Yorkshire YO12 6QL, UK.
| |
Collapse
|
37
|
Scher MS, Steppe DA, Salerno DG, Beggarly ME, Banks DL. Temperature differences during sleep between fullterm and preterm neonates at matched post-conceptional ages. Clin Neurophysiol 2003; 114:17-22. [PMID: 12495759 DOI: 10.1016/s1388-2457(02)00319-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Altered physiologic behaviors during sleep have been described for healthy preterm neonates at post-conceptional fullterm ages. These differences may reflect brain dysmaturity as a result of conditions of prematurity. The present study examines if differences in state-specific temperature changes exist in a healthy preterm cohort as another expression of brain dysmaturity. METHODS Rectal and skin temperatures during sleep state transitions are reported in 59 asymptomatic post-conceptional age term infants, comparing 25 full term and 34 preterm infants. Three-hour 24-channel electroencephalogram (EEG)-sleep studies were recorded for each child. One of 4 sleep states were assigned for each of 7339 min, based on both cerebral and non-cerebral measures. For each study, average rectal and skin temperatures for each sleep state were calculated. Repeated measures MANOVA were performed using 4 explanatory variables, average skin and rectal temperatures and variance of rectal and skin temperatures, comparing preterm/fullterm status and 4 sleep states. RESULTS Rectal temperature differences between neonatal cohorts during specific sleep states were noted: F=8.58, P<0.0001. Significant differences were noted for both average and variance of rectal temperatures during all 4 sleep states with higher temperatures in the preterm group. For all neonates, both skin and rectal temperature differences were also noted among sleep states (F=4.22, P<0.0004). Differences were specifically noted between two specific EEG segments, mixed frequency active sleep and tracé alternant quiet sleep (P<0.0004). CONCLUSIONS In summary, significant differences in temperatures were noted across sleep state transitions for two neonatal cohorts, with higher average rectal temperatures in the preterm cohort. These findings highlight an altered measure of brain function during sleep in preterm infants affecting temperature regulation. This altered physiologic behavior reflects adaptation of the infant's brain function to conditions of prematurity which may contribute to vulnerabilities at older ages.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Developmental Neurophysiology Laboratories, Rainbow Babies and Children's Hospital, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106-6090, USA.
| | | | | | | | | |
Collapse
|
38
|
Sleep and sudden infant death syndrome. Sleep 2003. [DOI: 10.1007/978-1-4615-0217-3_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Bach V, Telliez F, Libert JP. The interaction between sleep and thermoregulation in adults and neonates. Sleep Med Rev 2002; 6:481-92. [PMID: 12505480 DOI: 10.1053/smrv.2001.0177] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interaction between sleep and thermoregulation leads to different thermoregulatory responses depending on the sleep stage and alterations in sleep when in a cool or warm environment. In the human adult, differences in thermoregulatory efficiency during rapid eye movement (REM) sleep and slow wave sleep (SWS) are less pronounced compared to other mammals: although thermoregulatory processes persist in REM sleep, they are less efficient than during SWS. Cold and warm loads disturb the efficiency and structure of sleep. The duration of REM sleep and (to a lesser extent) of SWS decreases. In contrast, pre-sleep warm loads enhance SWS and improve sleep continuity. This procedure may promote and maintain sleep in depressed patients, whose sleep and body temperature rhythms are modified. In contrast to adults, homeothermic processes in neonates are maintained or even enhanced during active sleep (AS) when compared to quiet sleep (QS). Sleeping in a cool environment increases the duration of AS at the expense of QS. As a result, the thermoregulatory function overcomes the need to conserve energy that would otherwise lead to increased QS. An interaction between sleep, respiration, and thermoregulation may be involved in Sudden Infant Death Syndrome: an alteration in the thermal balance may perhaps induce respiration instability, especially during AS.
Collapse
Affiliation(s)
- Veronique Bach
- Unité de Recherches sur les Adaptations Physiologiques et Comportementales, Faculté de Médecine, Université de Picardie Jules Verne, 3 rue des Louvels, F- 80 036 Amiens, France.
| | | | | |
Collapse
|
40
|
Russell MJ, Vink R. Increased facial temperature as an early warning in Sudden Infant Death Syndrome. Med Hypotheses 2001; 57:61-3. [PMID: 11421627 DOI: 10.1054/mehy.2000.1405] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The promotion of supine sleeping position in young infants has resulted in significant declines in the incidence of Sudden Infant Death Syndrome although little is understood in terms of mechanisms. We hypothesize that supine sleeping position promotes appropriate thermal regulation via the face and head which is the major source of infant heat loss. By facilitating temperature regulation, the supine position ensures that the centre for thermoregulation in the hypothalamus does not become dysfunctional due to local temperature fluctuations. Because these hypothalamic, thermoregulatory neurones are synaptically linked to those regulating respiration in the medulla, adequate temperature control by the infant maintains normal respiration. In contrast, an increase in face and head temperature over and above core temperature would suggest thermoregulatory stress and an increased likelihood of respiratory apnoea.
Collapse
Affiliation(s)
- M J Russell
- Department of Physiology and Pharmacology, James Cook University, Townsville, Queensland, Australia
| | | |
Collapse
|
41
|
Abstract
Sudden infant death syndrome (SIDS) accounts for the largest number of deaths during the first year of life in developed countries. The possible causes of SIDS are numerous and, to date, there is no adequate unifying pathological explanation for SIDS. Epidemiological studies have played a key role in identifying risk factors, knowledge of which has underpinned successful preventive programmes. This review critically assesses information on the main risk factors and causal hypotheses put forward for SIDS, focusing on research published since 1994. The overall picture that emerges from this review is that affected infants are not completely normal in development, but possess some inherent weakness, which may only become obvious when the infant is subjected to stress. Initially there may be some minor impairment or delay in development of respiratory, cardiovascular or neuromuscular function. None of these is likely to be sufficient, in isolation, to cause death and, provided the infant survives the first year of life, may no longer be of any significance. However, when a compromised infant is confronted with one or more stressful situations, several of which are now clearly identified as risk factors, and from which the majority of infants would normally escape, the combination may prove fatal.
Collapse
Affiliation(s)
- F M Sullivan
- Division of Pharmacology and Toxicology, United Medical School, University of London, UK.
| | | |
Collapse
|
42
|
Guntheroth WG, Spiers PS. Thermal stress in sudden infant death: Is there an ambiguity with the rebreathing hypothesis? Pediatrics 2001; 107:693-8. [PMID: 11335746 DOI: 10.1542/peds.107.4.693] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To assess the role of thermal stress in the cause of sudden infant death syndrome (SIDS), and to compare risk factors with those of rebreathing. METHODOLOGY Analysis of publications concerning the epidemiology and physiology of thermal stress in SIDS. RESULTS A strong association between thermal regulation and ventilatory control was found, specifically for prolonged apnea. Infections, excessive room heat and insulation, and prone sleeping produce significantly increased odds ratios for SIDS. Although some of the risk factors for rebreathing could be explained by the effects of thermal stress, several factors for thermal stress could not reasonably be explained by the rebreathing hypothesis. CONCLUSIONS Although the risk of thermal stress is widely accepted abroad, it has received relatively little attention in the United States. The incidence of SIDS in the United States can likely be further reduced by educating the public against the dangers of overheating, as an integral part of the back-to-sleep campaign.
Collapse
Affiliation(s)
- W G Guntheroth
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98195-6320, USA.
| | | |
Collapse
|
43
|
Koehler SA, Ladham S, Shakir A, Wecht CH. Simultaneous sudden infant death syndrome: a proposed definition and worldwide review of cases. Am J Forensic Med Pathol 2001; 22:23-32. [PMID: 11444657 DOI: 10.1097/00000433-200103000-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epidemiologic studies of sudden infant death syndrome (SIDS), the leading cause of death of infants during the postperinatal period (7-365 days), have mainly focused on the deaths of single infants. Simultaneous sudden infant death syndrome (SSIDS), the death of a pair of twins occurring at the same time, has received limited attention within the medical community. To the authors' knowledge, this article is the first to describe the 41 SSIDS cases cited in the world literature from 1900 to 1998 by the location of death, a summary of the circumstances surrounding the deaths, and evaluation of these cases in terms of a proposed definition of SSIDS. This evaluation critiques whether the 41 pairs of SSIDS cases adhere to a newly proposed definition of SSIDS. Twin infant deaths must meet all three criteria to be considered SSIDS. The study found that only 12 pairs of twins met all three criteria (29.2%), nine pairs met two criteria (21.9%), alternative cause of death was offered in five pairs of twins (12.1%) and in the remaining 15 pairs (36.6%), only limited information was available; therefore, no conclusions could be reached.
Collapse
Affiliation(s)
- S A Koehler
- Graduate Program of Forensic Epidemiology, School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
44
|
Ladham S, Koehler SA, Shakir A, Wecht CH. Simultaneous sudden infant death syndrome: a case report. Am J Forensic Med Pathol 2001; 22:33-7. [PMID: 11444658 DOI: 10.1097/00000433-200103000-00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The first reported case of simultaneous sudden infant death syndrome (SSIDS) in Allegheny County, Pennsylvania, occurred on February 27, 1998. Two-month-old black fraternal twin girls were both found dead in their crib at the same time. After an in-depth death scene investigation, police investigation, toxicologic analysis, and complete autopsies, a specific cause of death could not be identified. The deaths of the two girls were therefore ruled simultaneous sudden infant death syndrome.
Collapse
Affiliation(s)
- S Ladham
- Allegheny County Coroner's Office, Forensic Pathology Laboratory, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
45
|
Summers AM, Summers CW, Drucker DB, Hajeer AH, Barson A, Hutchinson IV. Association of IL-10 genotype with sudden infant death syndrome. Hum Immunol 2000; 61:1270-3. [PMID: 11163082 DOI: 10.1016/s0198-8859(00)00183-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sudden infant death syndrome (SIDS) is a major cause of infant death of unknown etiology. We propose that SIDS results from a genetically determined imbalance in the production of inflammatory and anti-inflammatory cytokines in response to the infant's microbial flora. We were especially interested to know the relationship between SIDS and genetically determined higher or lower production of IL-10, an anti-inflammatory cytokine. Biallelic polymorphisms in the promoter region of the IL-10 gene associated with higher or lower production of IL-10 were determined in a SIDS and in a control group using a sequence-specific oligonucleotide approach. One particular allele of the IL-10 gene, the IL-10-592*A allele, was significantly associated with SIDS. Indeed, 70% of the SIDS babies carried the IL-10-592*A allele (p = 0.007 compared with control). In addition, there was a significant reduction in the frequency of homozygosity for the allele IL-10-592*C (p = 0.001 compared with control). Carrying the A allele (either A/A or A/C) had an odds ratio of 3.3 (95% confidence interval 1.4-8.0). In the same patients there was no association with other IL-10 gene polymorphisms nor with other cytokine (TNF-alpha, TGF-beta 1) genotypes, emphasizing the particular relationship between SIDS and the IL-10-592*A allele.
Collapse
Affiliation(s)
- A M Summers
- School of Biological Sciences, University of Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Gunn AJ, Gunn TR, Mitchell EA. CLINICAL REVIEW ARTICLE: Is changing the sleep environment enough? Current recommendations for SIDS. Sleep Med Rev 2000; 4:453-69. [PMID: 17210277 DOI: 10.1053/smrv.2000.0119] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sudden infant death syndrome (SIDS or cot death) was the major cause of post-neonatal infant death in many countries in the late 1970s and 1980s. There is now very strong evidence that public intervention campaigns targeting the prone sleeping position, which had been identified by epidemiological studies as a major risk factor, were followed by substantial falls in the rate of SIDS. In the present review we discuss the evidence on which current recommendations for the prevention of SIDS are based. The prone sleeping position is now clearly causally associated with SIDS. Further reductions in SIDS may be produced by recommending the back sleeping position as opposed to the side position. Maternal smoking in pregnancy and bed sharing by infants of mothers who smoke are also strongly associated with SIDS, but have been harder to influence. Paternal smoking has also been implicated, although the magnitude of the reported risk is small. Finally, breastfeeding, pacifier use and having the infant sharing the parents bedroom, but not the bed, may also reduce risk. Continued reductions in SIDS mortality will require innovative public health education to target these major risk factors, while building on the "back to sleep" approach.
Collapse
Affiliation(s)
- A J Gunn
- Department of Paediatrics, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
47
|
Hauck FR, Hunt CE. Sudden infant death syndrome in 2000. CURRENT PROBLEMS IN PEDIATRICS 2000; 30:237-61. [PMID: 11041024 DOI: 10.1067/mpp.2000.109512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- F R Hauck
- Department of Family Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | | |
Collapse
|
48
|
du Boulay G, Lawton M, Wallis A. Selective brain cooling in animals: internal carotid's significance for sudden infant death syndrome. ACTA ACUST UNITED AC 2000. [DOI: 10.1046/j.1467-0658.2000.00016.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Cameron YL, Merazzi D, Mortola JP. Variability of the breathing pattern in newborn rats: effects of ambient temperature in normoxia or hypoxia. Pediatr Res 2000; 47:813-8. [PMID: 10832743 DOI: 10.1203/00006450-200006000-00022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We hypothesized that the inter-breath variability of the breathing pattern in newborn rats varied with temperature and oxygenation. Breathing pattern was recorded in 4-day-old rats by airflow plethysmography, during normoxia in warm (control) and cold conditions, or during hypoxia (inspired O2 = 10%) in warm or cold conditions, each lasting 15 min. The warm phase (36 degrees C) either preceded or followed the cold (24 degrees C). Time-domain analysis was applied to 500 continuous breaths recorded toward the end of each phase. All parameters describing the breathing pattern (instantaneous ventilation, tidal volume, and inspiratory and expiratory time) had lower variability when the condition differed from control i.e. in cold or hypoxia, with no correlation with the absolute level of ventilation. The difference in variability between warm-normoxia and the other conditions was reduced when cold preceded the warm phase. Gaseous metabolism was increased in cold because of thermogenesis. When the cold preceded the warm phase the increased thermogenesis partly persisted into the warm phase, raising the metabolic level. We conclude that the variability of the breathing pattern in newborn rats 1) does not depend on the absolute level of ventilation, and 2) is reduced by the increased chemical stimuli occurring during cold-hypermetabolism or hypoxia. In normoxia in warm condition metabolic and chemical stimuli are low, and the variability is the highest. The results are in agreement with the clinical observations of a higher incidence of apneic episodes in infants during warm conditions.
Collapse
Affiliation(s)
- Y L Cameron
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
50
|
Frøen JF, Akre H, Stray-Pedersen B, Saugstad OD. Adverse effects of nicotine and interleukin-1beta on autoresuscitation after apnea in piglets: implications for sudden infant death syndrome. Pediatrics 2000; 105:E52. [PMID: 10742373 DOI: 10.1542/peds.105.4.e52] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Maternal cigarette smoking is established as a major dose-dependent risk factor for sudden infant death syndrome (SIDS). Both prenatal and postnatal exposures to constituents of tobacco smoke are associated with SIDS, but no mechanism of death attributable to nicotine has been found. Breastfeeding gives a substantial increase in absorbed nicotine compared with only environmental tobacco smoke when the mother smokes, because the milk:plasma concentration ratio of nicotine is 2.9 in smoking mothers. Furthermore, many SIDS victims have a slight infection and a triggered immune system before their death, thus experiencing a release of cytokines like interleukin-1beta (IL-1beta) that may depress respiration. Because apneas in infancy are associated with SIDS, we have tested the hypothesis that postnatal exposure to tobacco constituents and infections might adversely affect an infant's ability to cope with an apneic episode. This is performed by investigating the acute effects of nicotine and IL-1beta on apnea by laryngeal reflex stimulation and on the subsequent autoresuscitation. DESIGN Thirty 1-week-old piglets (+/-1 day) were sedated with azaperone. A tracheal and an arterial catheter were inserted during a short halothane anesthesia. The piglets were allowed a 30-minute stabilization period before baseline values were recorded and they were randomized to 4 pretreatment groups (avoiding siblings in the same group): 1) immediate infusion of 10 pmol IL-1beta intravenously/kg (IL-1beta group; n = 8); 2) slow infusion of 5 microg nicotine intravenously/kg 5 minutes later (NIC group; n = 8); 3) both IL-1beta and NIC combined (NIC + IL-1beta group; n = 6); or 4) placebo by infusion of 1 ml .9% NaCl (CTR group; n = 8). Fifteen minutes later, apnea was induced by insufflation of .1 ml of acidified saline (pH = 2) in the subglottic space 5 times with 5-minute intervals, and variables of respiration, heart rate, blood pressure, and blood gases were recorded. RESULTS Stimulation of the laryngeal chemoreflex by insufflation of acidified saline in the subglottic space produced apneas, primarily of central origin. This was followed by a decrease in heart rate, a fall in blood pressure, swallowing, occasional coughs, and finally autoresuscitation with gasping followed by rapid increase in heart rate, rise in blood pressure, and (in the CTR group) an increase of respiratory rate. Piglets pretreated with nicotine had more spontaneous apneas, and repeated spontaneous apneas caused an inability to perform a compensatory increase of the respiratory rate after induced apnea. This resulted in a lower SaO(2) than did CTR at 2 minutes after apnea (data shown as median [interquartile range]: 91% [91-94] vs 97% [94-98]). The pretreatment with IL-1beta caused prolonged apneas in piglets and an inability to hyperventilate causing a postapneic respiratory rate similar to the NIC. When nicotine and IL-1beta were combined, additive adverse effects on respiratory control and autoresuscitation compared with CTR were observed: NIC + IL-1beta had significantly more spontaneous apneas the last 5 minutes before induction of apnea (2 [.3-3] vs 0 [0-0]). Apneas were prolonged (46 seconds [39-51] vs 26 seconds [22-31]) and followed by far more spontaneous apneas the following 5 minutes (6.6 [4.0-7.9] vs.5 [.2- .9]). Instead of normal hyperventilation after apnea, a dramatic decrease in respiratory rate was seen (at 20 seconds: -45% [-28 to -53] vs +29% [+24-+50], and at 60 seconds: -27% [-23 to -32] vs +3% [-2-+6), leading to SaO(2) below 90% 3 minutes after end of apnea: 89% (87-93) versus 97% (95-98). These prolonged adverse effects on ventilation were reflected in lowered PaO(2), elevated PaCO(2) and lowered pH 2 minutes, and even 5 minutes, after induction of apnea. CONCLUSIONS Nicotine interferes with normal autoresuscitation after apnea when given in doses within the range of what the child of a smoking mother could receive through environmental t
Collapse
Affiliation(s)
- J F Frøen
- Department of Pediatric Research, Institute of Surgical Research, The National Hospital, University of Oslo.
| | | | | | | |
Collapse
|