1
|
Echevarria-Lima J, Moles R. Monocyte and Macrophage Functions in Oncogenic Viral Infections. Viruses 2024; 16:1612. [PMID: 39459945 PMCID: PMC11512331 DOI: 10.3390/v16101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Monocytes and macrophages are part of innate immunity and constitute the first line of defense against pathogens. Bone marrow-derived monocytes circulate in the bloodstream for one to three days and then typically migrate into tissues, where they differentiate into macrophages. Circulatory monocytes represent 5% of the nucleated cells in normal adult blood. Following differentiation, macrophages are distributed into various tissues and organs to take residence and maintain body homeostasis. Emerging evidence has highlighted the critical role of monocytes/macrophages in oncogenic viral infections, mainly their crucial functions in viral persistence and disease progression. These findings open opportunities to target innate immunity in the context of oncogenic viruses and to explore their potential as immunotherapies.
Collapse
Affiliation(s)
- Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Ramona Moles
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
2
|
Sato T, Yagishita N, Araya N, Nakashima M, Horibe E, Takahashi K, Kunitomo Y, Nawa Y, Hamaguchi I, Yamano Y. Diagnostic Value of Anti-HTLV-1-Antibody Quantification in Cerebrospinal Fluid for HTLV-1-Associated Myelopathy. Viruses 2024; 16:1581. [PMID: 39459915 PMCID: PMC11512244 DOI: 10.3390/v16101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The diagnostic accuracy of cerebrospinal fluid (CSF) anti-human T-cell leukemia virus type I (HTLV-1) antibody testing for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM) remains unclear. Therefore, we measured the anti-HTLV-1 antibody levels in CSF using various test kits, evaluated the stability of CSF antibodies, and performed a correlation analysis using the particle agglutination (PA) method, as well as a receiver operating characteristic (ROC) analysis between patients with HAM and carriers. The CSF anti-HTLV-1 antibody levels were influenced by freeze-thaw cycles but remained stable when the CSF was refrigerated at 4 °C for up to 48 h. Measurements from 92 patients (69 patients with HAM and 23 carriers) demonstrated a strong correlation (r > 0.9) with the PA method across all six quantifiable test kits. All six test kits, along with CSF neopterin and CXCL10, exhibited areas under the ROC curve greater than 0.9, indicating a high diagnostic performance for HAM. Among these, five test kits, Lumipulse and Lumipulse Presto HTLV-I/II, HISCL-UD (a kit under development), HTLV-Abbott, and Elecsys HTLV-I/II, established a cutoff with 100% sensitivity and maximum specificity, achieving a sensitivity of 100% and a specificity ranging from 43.5% to 56.5%. This cutoff value, in combination with clinical findings, will aid in the accurate diagnosis of HAM.
Collapse
Affiliation(s)
- Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Japan; (T.S.); (N.Y.); (N.A.); (M.N.); (E.H.); (K.T.); (Y.K.)
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki 216-8512, Japan;
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Japan; (T.S.); (N.Y.); (N.A.); (M.N.); (E.H.); (K.T.); (Y.K.)
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Japan; (T.S.); (N.Y.); (N.A.); (M.N.); (E.H.); (K.T.); (Y.K.)
| | - Makoto Nakashima
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Japan; (T.S.); (N.Y.); (N.A.); (M.N.); (E.H.); (K.T.); (Y.K.)
| | - Erika Horibe
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Japan; (T.S.); (N.Y.); (N.A.); (M.N.); (E.H.); (K.T.); (Y.K.)
| | - Katsunori Takahashi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Japan; (T.S.); (N.Y.); (N.A.); (M.N.); (E.H.); (K.T.); (Y.K.)
| | - Yasuo Kunitomo
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Japan; (T.S.); (N.Y.); (N.A.); (M.N.); (E.H.); (K.T.); (Y.K.)
| | - Yukino Nawa
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki 216-8512, Japan;
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
- Department of Clinical Laboratory, Subaru Health Insurance Society Ota Memorial Hospital, Ota 373-8585, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Japan; (T.S.); (N.Y.); (N.A.); (M.N.); (E.H.); (K.T.); (Y.K.)
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| |
Collapse
|
3
|
Mahdifar M, Boostani R, Taylor GP, Rezaee SA, Rafatpanah H. Comprehensive Insight into the Functional Roles of NK and NKT Cells in HTLV-1-Associated Diseases and Asymptomatic Carriers. Mol Neurobiol 2024; 61:7877-7889. [PMID: 38436833 DOI: 10.1007/s12035-024-03999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the first human oncogenic retrovirus to be discovered and causes two major diseases: a progressive neuro-inflammatory disease, termed HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), and an aggressive malignancy of T lymphocytes known as adult T cell leukemia (ATL). Innate and acquired immune responses play pivotal roles in controlling the status of HTLV-1-infected cells and such, the outcome of HTLV-1 infection. Natural killer cells (NKCs) are the effector cells of the innate immune system and are involved in controlling viral infections and several types of cancers. The ability of NKCs to trigger cytotoxicity to provide surveillance against viruses and cancer depends on the balance between the inhibitory and activating signals. In this review, we will discuss NKC function and the alterations in the frequency of these cells in HTLV-1 infection.
Collapse
Affiliation(s)
- Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Graham P Taylor
- Section of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Herrmann D, Meng S, Yang H, Mansky LM, Saad JS. The Assembly of HTLV-1-How Does It Differ from HIV-1? Viruses 2024; 16:1528. [PMID: 39459862 PMCID: PMC11512237 DOI: 10.3390/v16101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviral assembly is a highly coordinated step in the replication cycle. The process is initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of the plasma membrane (PM), where they facilitate the budding and release of immature viral particles. Extensive research over the years has provided crucial insights into the molecular determinants of this assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication are consistent across different retroviruses, comparative studies revealed notable differences in the structure and function of viral components. In this review, we present recent findings on the assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from HIV-1, focusing particularly on the molecular determinants of Gag-PM interactions and CA assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
5
|
Tram J, Marty L, Mourouvin C, Abrantes M, Jaafari I, Césaire R, Hélias P, Barbeau B, Mesnard JM, Baccini V, Chaloin L, Peloponese JMJ. The Oncoprotein Fra-2 Drives the Activation of Human Endogenous Retrovirus Env Expression in Adult T-Cell Leukemia/Lymphoma (ATLL) Patients. Cells 2024; 13:1517. [PMID: 39329701 PMCID: PMC11430398 DOI: 10.3390/cells13181517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are retroviral sequences integrated into 8% of the human genome resulting from ancient exogenous retroviral infections. Unlike endogenous retroviruses of other mammalian species, HERVs are mostly replication and retro-transposition defective, and their transcription is strictly regulated by epigenetic mechanisms in normal cells. A significant addition to the growing body of research reveals that HERVs' aberrant activation is often associated with offsetting diseases like autoimmunity, neurodegenerative diseases, cancers, and chemoresistance. Adult T-cell leukemia/lymphoma (ATLL) is a very aggressive and chemoresistant leukemia caused by the human T-cell leukemia virus type 1 (HTLV-1). The prognosis of ATLL remains poor despite several new agents being approved in the last few years. In the present study, we compare the expression of HERV genes in CD8+-depleted PBMCs from HTLV-1 asymptomatic carriers and patients with acute ATLL. Herein, we show that HERVs are highly upregulated in acute ATLL. Our results further demonstrate that the oncoprotein Fra-2 binds the LTR region and activates the transcription of several HERV families, including HERV-H and HERV-K families. This raises the exciting possibility that upregulated HERV expression could be a key factor in ATLL development and the observed chemoresistance, potentially leading to new therapeutic strategies and significantly impacting the field of oncology and virology.
Collapse
Affiliation(s)
- Julie Tram
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Laetitia Marty
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Célima Mourouvin
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Magali Abrantes
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Ilham Jaafari
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Raymond Césaire
- Centre Hospitalier Universitaire de Martinique, 97261 Fort de France, France
| | - Philippe Hélias
- Département de Radiothérapie-Oncologie-Hématologie, Centre Hospitalier Universitaire de la Guadeloupe, 97110 Pointe à Pitre, France;
| | - Benoit Barbeau
- Département des Sciences Biologiques, Université du Québec à Montréal, SB-R860, Montréal, QC H2X 1Y4, Canada;
| | - Jean-Michel Mesnard
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Véronique Baccini
- Laboratoire d’Hématologie CHU de la Guadeloupe, 97110 Pointe à Pitre Guadeloupe, France;
| | - Laurent Chaloin
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Jean-Marie Jr. Peloponese
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| |
Collapse
|
6
|
Teoh LS, Guiraud V, Ong H, Du Y, Zhao Z, Gautheret-Dejean A, Xu N. A novel high-performance rapid screening test for the detection of total HTLV-I and HTLV-II antibodies in HTLV-I/II infected patients. BMC Infect Dis 2024; 24:860. [PMID: 39187753 PMCID: PMC11346188 DOI: 10.1186/s12879-024-09791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
Rapid diagnosis of human T-cell lymphotropic virus (HTLV) type-I and -II infections are essential for timely and cost-effective disease interventions. MP Diagnostics ASSURE HTLV-I/II Rapid Test was developed for the rapid detection of anti-HTLV-I/II antibodies in patients' serum, plasma, and whole blood specimens. ASSURE HTLV-I/II Rapid Test employed MP Biomedicals' proprietary HTLV-I/II Trifusion recombinant antigen conjugated with gold nanoparticles and HTLV-I / HTLV-II recombinant antigens immobilized on the nitrocellulose membrane to detect total HTLV-I and HTLV-II antibodies. The overall performance of the ASSURE HTLV-I/II Rapid Test was found to be 99.42% sensitivity (95% Confidence Interval, 98.32-99.88%) and 100% specificity (95% Confidence Interval, 99.58-100.00%) in the tested clinical samples, including a total of 518 HTLV-I/II positive specimens (396 HTLV-I infection, 97 HTLV-II infection and 25 HTLV-I/II dual infection) and 872 HTLV negative clinical specimens consisting of 691 healthy donor samples, 116 potentially cross-reactive samples, and 65 samples with interfering substances. The ASSURE HTLV-I/II Rapid Test can effectively be deployed as a screening tool in any prevalence studies, blood banks or organ transplant centres.
Collapse
Affiliation(s)
- Lay Sin Teoh
- Department of Research and Development, MP Biomedicals Asia Pacific Pte Ltd, Singapore, Singapore
| | - Vincent Guiraud
- Laboratoire de Virologie Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France
| | - Haris Ong
- Department of Research and Development, MP Biomedicals Asia Pacific Pte Ltd, Singapore, Singapore
| | - Yang Du
- Department of Research and Development, MP Biomedicals Asia Pacific Pte Ltd, Singapore, Singapore
| | - Zhihai Zhao
- Department of Research and Development, MP Biomedicals Asia Pacific Pte Ltd, Singapore, Singapore.
| | - Agnès Gautheret-Dejean
- Laboratoire de Virologie Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France.
| | - Na Xu
- Department of Research and Development, MP Biomedicals Asia Pacific Pte Ltd, Singapore, Singapore.
| |
Collapse
|
7
|
Shirasawa M, Nakajima R, Zhou Y, Zhao L, Fikriyanti M, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Activation of the CDK7 Gene, Coding for the Catalytic Subunit of the Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK) and General Transcription Factor II H, by the Trans-Activator Protein Tax of Human T-Cell Leukemia Virus Type-1. Genes (Basel) 2024; 15:1080. [PMID: 39202439 PMCID: PMC11353830 DOI: 10.3390/genes15081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL). The trans-activator protein Tax of HTLV-1 plays crucial roles in leukemogenesis by promoting proliferation of virus-infected cells through activation of growth-promoting genes. However, critical target genes are yet to be elucidated. We show here that Tax activates the gene coding for cyclin-dependent kinase 7 (CDK7), the essential component of both CDK-activating kinase (CAK) and general transcription factor TFIIH. CAK and TFIIH play essential roles in cell cycle progression and transcription by activating CDKs and facilitating transcriptional initiation, respectively. Tax induced CDK7 gene expression not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs) along with increased protein expression. Tax stimulated phosphorylation of CDK2 and RNA polymerase II at sites reported to be mediated by CDK7. Tax activated the CDK7 promoter through the NF-κB pathway, which mainly mediates cell growth promotion by Tax. Knockdown of CDK7 expression reduced Tax-mediated induction of target gene expression and cell cycle progression. These results suggest that the CDK7 gene is a crucial target of Tax-mediated trans-activation to promote cell proliferation by activating CDKs and transcription.
Collapse
Affiliation(s)
- Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama 963-8611, Fukushima, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| |
Collapse
|
8
|
Ferreira QR, Novaes AF, Santana CS, Umeda AS, de Souza Nascimento JO, de Freitas Santos JPM, Fernandes LA, Moura MN, Amorim RL, Cavalcanti VN, da Cruz ALB, Barreto FK, Costa DT. Neurological aspects of HTLV-1 infection: symptoms in apparently asymptomatic carriers. J Neurovirol 2024; 30:353-361. [PMID: 38653958 DOI: 10.1007/s13365-024-01197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is classically associated with the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), although the mechanisms of this neurological disorder remain unclear. In addition, some patients who develop "minor" neurological signs that do not meet diagnostic criteria for HAM/TSP are classified as asymptomatic carriers. This study aims to demonstrate the neurological symptoms of Brazilian patients living with HTLV-1 classified as not-HAM.TSP. This observational study evaluated patients treated in an HTLV reference center in Bahia, Brazil, between February 2022 and July 2023. The data were obtained through the analysis of medical records and neurological consultation. Those individuals classified as HAM/ TSP were excluded from this study. 74 patients were submitted to a careful neurological evaluation: 23 HAM/TSP, 22 were classified with intermediate syndrome (IS), and 29 were oligosymptomatic. Self-reported symptoms were significantly more common in the IS group, including urinary symptoms such as nocturia, urgency, incontinence, dysuria, weakness, paresthesia, lumbar pain, xerostomia, and xerophthalmia. Physical examination findings consistent with reduced vibratory and tactile sensitivity were more common in the IS group (p = 0.017 and p = 0.013). Alterations in the V and VIII cranial nerves were present in both groups. HTLV-1 can lead to the development of important neurological signs and symptoms in apparently asymptomatic individuals. This data highlights the need for more research into the neurological aspects of HTLV-1 infection and emphasizes the importance of early diagnosis, treatment, and support for individuals living with this virus.
Collapse
Affiliation(s)
- Qesya Rodrigues Ferreira
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil
| | - Ana Flávia Novaes
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil
| | - Carolina Souza Santana
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil
| | - Arthur Shigueru Umeda
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil
| | | | | | - Larissa Alves Fernandes
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil
| | - Matheus Nascimento Moura
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil
| | - Rebeca Leão Amorim
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil
| | - Vinícius Nogueira Cavalcanti
- Faculdade de Saúde Santo Agostinho - Campus Vitória da Conquista, 45028-100, Vitória da Conquista, Bahia, Brazil
| | - Ariana Leal Borges da Cruz
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil
| | - Fernanda Khouri Barreto
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil.
| | - Davi Tanajura Costa
- Universidade Federal da Bahia - Instituto Multidisciplinar em Saúde, 45029-094, Vitória da Conquista, Bahia, Brazil
| |
Collapse
|
9
|
Edwards RJ, Todd S, Edwards J, Jack N, Boyce G. Prevalence of HTLV-1 and Hepatitis B Surface Antigen (HBsAg) Positivity among MSM Attending a Large HIV Treatment Centre in Trinidad. Viruses 2024; 16:1169. [PMID: 39066331 PMCID: PMC11281644 DOI: 10.3390/v16071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
HIV-1, Hepatitis B and HTLV-1 have similar risk factors and shared routes of transmission and MSM are disproportionately affected by HIV. The aim of the study was to determine the prevalence of HTLV-1 and HBsAg positivity at initial enrolment among MSM attending a large HIV Clinic in Trinidad. Chart reviews were conducted between 2 and 15 January 2024, among self-identified MSM and a comparative group of randomly selected self-identified heterosexual males where sociodemographic, clinical and laboratory data were collected and analysed using SPSS Version 25. During the period April 2002-31 October 2023, in total there were 10,424 patients registered at the clinic, of whom 1255 (12.0%) were self-identified MSM, with an age range of 19-85 years and a median age of 40 years. There were 1822 randomly selected heterosexual males, with an age range of 18-94 years old and a median age of 52 years. Among the MSM, there were 21 (1.67%) patients who were HIV-1/HTLV-1-coinfected, 64 (5.10%) who were HIV-1/HBsAg-coinfected and two (0.16%) who were coinfected with all three viruses (HIV-1/HTLV-1/HBsAg) as compared to 47 ((2.58%) HIV-1/HTLV-1-coinfected (p = 0.12), 69 (3.79%) HIV-1/HBsAg-coinfected (p = 0.10) and three (0.16%) patients coinfected with all three viruses among the heterosexual males. There were no patients with HTLV-1-related diseases among the HIV-1/HTLV-1-coinfected patients and there were no deaths from chronic liver disease in patients coinfected with HIV-1/HBsAg. Despite the availability of an efficacious vaccine, there is a prevalence of hepatitis B of 5.1% among MSM attending the HIV Clinic in Trinidad; therefore, programmes to increase health literacy, screening and immunization are urgently needed.
Collapse
Affiliation(s)
- Robert Jeffrey Edwards
- Medical Research Foundation of Trinidad and Tobago, 7 Queen’s Part E, Port-of-Spain 150123, Trinidad and Tobago
| | | | | | | | | |
Collapse
|
10
|
Gois LL, Ribeiro-Soares B, Regis-Silva CG, Zanette DL, Lisboa R, Nascimento RS, Coutinho Junior R, Galvão-Castro B, Grassi MFR. Imbalanced IL10/TGF-β production by regulatory T-lymphocytes in patients with HTLV-1-associated myelopathy/ tropical spastic paraparesis. BMC Infect Dis 2024; 24:652. [PMID: 38943078 PMCID: PMC11214226 DOI: 10.1186/s12879-024-09494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Human T-cell lymphotropic virus type 1 (HTLV-1), also denominated Human T-cell leukemia virus-1, induces immune activation and secretion of proinflammatory cytokines, especially in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Regulatory T lymphocytes (Tregs) may control of inflammation through the production of regulatory cytokines, including IL10 and TGF-β. In this study we determined the frequencies of CD4 + and CD8 + Tregs in a HAM/TSP population, compared to asymptomatic carriers and uninfected individuals, as well as investigated the profiles of regulatory and inflammatory cytokines. METHODS Asymptomatic HTLV-1 carriers and HAM/TSP patients were matched by sex and age. The frequencies of IL10- and/or TGF-β-producing Tregs were quantified by flow cytometry. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify HTLV-1 proviral load and the mRNA expression of cytokines and cellular receptors in peripheral blood mononuclear cells. RESULTS Total frequencies of CD4 + Tregs, as well as the IL10-producing CD4 + and CD8 + Treg subsets, were statistically higher in patients with HAM/TSP compared to asymptomatic HTLV-1-infected individuals. In addition, a positive correlation was found between the frequency of CD4 + IL10 + Tregs and proviral load in the HAM/TSP patients evaluated. A positive correlation was also observed between gene expression of proinflammatory versus regulatory cytokines only in HAM / TSP group. CONCLUSIONS A higher frequencies of IL10-producing Tregs were identified in patients with HAM/TSP. Imbalanced production of IL10 in relation to TGF-β may contribute to the increased inflammatory response characteristically seen in HAM/TSP patients.
Collapse
Affiliation(s)
- Luana Leandro Gois
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
- Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia (ICS/UFBA), Salvador-Bahia, Brazil
| | - Bárbara Ribeiro-Soares
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Carlos Gustavo Regis-Silva
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Dalila L Zanette
- Laboratório de Ciências e Tecnologias Aplicadas a Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz (ICC/FIOCRUZ-PR), Curitiba-Paraná, Brazil
| | - Raphaella Lisboa
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Regina Santos Nascimento
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Raimundo Coutinho Junior
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Bernardo Galvão-Castro
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Maria Fernanda Rios Grassi
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil.
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil.
| |
Collapse
|
11
|
Tanaka M, Takenouchi N, Arishima S, Matsuzaki T, Nozuma S, Matsuura E, Takashima H, Kubota R. HLA-A*24 Increases the Risk of HTLV-1-Associated Myelopathy despite Reducing HTLV-1 Proviral Load. Int J Mol Sci 2024; 25:6858. [PMID: 38999966 PMCID: PMC11241684 DOI: 10.3390/ijms25136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Increased human T-cell leukemia virus type 1 (HTLV-1) proviral load (PVL) is a significant risk factor for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is controversy surrounding whether HTLV-1-specific cytotoxic T lymphocytes (CTLs) are beneficial or harmful to HAM/TSP patients. Recently, HTLV-1 Tax 301-309 has been identified as an immunodominant epitope restricted to HLA-A*2402. We investigated whether HLA-A*24 reduces HTLV-1 PVL and the risk of HAM/TSP using blood samples from 152 HAM/TSP patients and 155 asymptomatic HTLV-1 carriers. The allele frequency of HLA-A*24 was higher in HAM/TSP patients than in asymptomatic HTLV-1 carriers (72.4% vs. 58.7%, odds ratio 1.84), and HLA-A*24-positive patients showed a 42% reduction in HTLV-1 PVL compared to negative patients. Furthermore, the PVL negatively correlated with the frequency of Tax 301-309-specific CTLs. These findings are opposite to the effects of HLA-A*02, which reduces HTLV-1 PVL and the risk of HAM/TSP. Therefore, we compared the functions of CTLs specific to Tax 11-19 or Tax 301-309, which are immunodominant epitopes restricted to HLA-A*0201 or HLA-A*2402, respectively. The maximum responses of these CTLs were not different in the production of IFN-γ and MIP-1β or in the expression of CD107a-a marker for the degranulation of cytotoxic molecules. However, Tax 301-309-specific CTLs demonstrated 50-fold higher T-cell avidity than Tax 11-19-specific CTLs, suggesting better antigen recognition at low expression levels of the antigens. These findings suggest that HLA-A*24, which induces sensitive HTLV-1-specific CTLs, increases the risk of HAM/TSP despite reducing HTLV-1 PVL.
Collapse
Affiliation(s)
- Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Norihiro Takenouchi
- Department of Microbiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
- Department of Neurology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Shiho Arishima
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
12
|
Nascimento JODS, Alves DL, Novaes AF, Ferreira QR, Andrade FDO, Silva RML, Ribeiro SO, Souza RS, Santos LA, Araújo THA, Campos GB, de Almeida Rego FF, Costa DT, Barreto FK. Epidemiological and clinical profile of HTLV-1 patients: a closer look at a reference center in Bahia, Brazil. Virusdisease 2024; 35:243-249. [PMID: 39071874 PMCID: PMC11269553 DOI: 10.1007/s13337-024-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/12/2024] [Indexed: 07/30/2024] Open
Abstract
The human T-lymphotropic virus type 1 (HTLV-1) affects over 5 million people worldwide and is endemic in Brazil. Though HTLV-1 is a notifiable disease, the last epidemiological report regarding HTLV-1 infection covered the period from 2012 to 2019. To understand the specific challenges and to develop the best strategies for controlling HTLV-1 infection, it is important to know the characteristics of each region providing care to people living with this virus. This descriptive cross-sectional study evaluated patients treated at the HTLV reference center in Vitória da Conquista, Bahia, Brazil, between July 2021 and August 2022. The data were obtained through the analysis of medical records and routine clinical consultations. A total of 67 patients were evaluated, with 79.1% being female, 79.1% identifying as black, indigenous, and people of color, 37.31% being married, 80.6% identifying as heterosexual, and 59.7% reporting inconsistent condom use. Additionally, 37.3% of the patients were diagnosed with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic disease with a considerable effect on the quality of life. Furthermore, 53.7% of the patients had incomplete/complete elementary education, and 52.2% had an income of up to one minimum wage. The data highlight the necessity for more specific public policies (such as health education strategies, aimed at reducing the number of new infections) targeting the described at-risk population.
Collapse
Affiliation(s)
- Jéssica Oliveira de Souza Nascimento
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Block 17, Lot 58, Office 338 - Candeias, Vitória da Conquista, BA CEP: 45.029-094 Brazil
| | - Daniele Leite Alves
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Block 17, Lot 58, Office 338 - Candeias, Vitória da Conquista, BA CEP: 45.029-094 Brazil
- Laboratório Central de Vitória da Conquista, Vitória da Conquista, BA Brazil
| | - Ana Flávia Novaes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Block 17, Lot 58, Office 338 - Candeias, Vitória da Conquista, BA CEP: 45.029-094 Brazil
| | - Qesya Rodrigues Ferreira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Block 17, Lot 58, Office 338 - Candeias, Vitória da Conquista, BA CEP: 45.029-094 Brazil
| | - Felipe de Oliveira Andrade
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Block 17, Lot 58, Office 338 - Candeias, Vitória da Conquista, BA CEP: 45.029-094 Brazil
| | - Roberta Muniz Luz Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Block 17, Lot 58, Office 338 - Candeias, Vitória da Conquista, BA CEP: 45.029-094 Brazil
| | | | | | | | | | - Guilherme Barreto Campos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Block 17, Lot 58, Office 338 - Candeias, Vitória da Conquista, BA CEP: 45.029-094 Brazil
| | | | - Davi Tanajura Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Block 17, Lot 58, Office 338 - Candeias, Vitória da Conquista, BA CEP: 45.029-094 Brazil
| | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Block 17, Lot 58, Office 338 - Candeias, Vitória da Conquista, BA CEP: 45.029-094 Brazil
| |
Collapse
|
13
|
Sánchez-Núñez JP, de-Miguel-Balsa E, Soriano V, Lorenzo-Garrido E, Giménez-Richarte A, Otero-Rodriguez S, Celis-Salinas JC, de-Mendoza C, Casapia-Morales M, Ramos-Rincón JM. Prevalence of HTLV-1/2 infection in pregnant women in Central and South America and the Caribbean: a systematic review and meta-analysis. Int J Infect Dis 2024; 143:107018. [PMID: 38522611 DOI: 10.1016/j.ijid.2024.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Human T-lymphotropic viruses (HTLV)-1 infection is endemic in many countries of Central and South America and Caribbean (CSA&C). Neither screening nor surveillance programs exist for HTLV-1/2 infection among pregnant women in this region. Neither in Western nations with large migrant flows from HTLV-1/2 endemic regions. METHODS Systematic review and meta-analysis of the prevalence of HTLV-1/2 infection among CSA&C pregnant women. We included studies searching EMBASE, PubMed/MEDLINE, Scopus, and Web of Science from inception to February 15, 2023. This systematic review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines. RESULTS We identified a total of 620 studies. Only 41 were finally included in the meta-analysis. Most studies (61.0%) were from Brazil and Peru (14.6%). The total number of participants was 343,707. The pooled prevalence of HTLV-1/2 infection among CSA&C pregnant women was 1.30% (95% CI: 0.96-1.69) using anti-HTLV-1/2 antibody screening tests. There was a high heterogeneity (I2 = 98.6%). Confirmatory tests gave an HTLV-1 infection rate of 1.02% (95% CI: 0.75-1.33). CONCLUSIONS The prevalence of HTLV-1/2 infection among CSA&C pregnant women is 1.3%, most cases being HTLV-1. This rate is greater than for other microbial agents regularly checked as part of antenatal screening (such as HIV, hepatitis B, or syphilis). Thus, HTLV-1/2 antenatal testing should be mandatory among CSA&C pregnant women everywhere.
Collapse
|
14
|
Ono M, Satou Y. Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1. DISCOVERY IMMUNOLOGY 2024; 3:kyae006. [PMID: 38863793 PMCID: PMC11165433 DOI: 10.1093/discim/kyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the 'self-reactivity' of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic T cell receptor (TCR)-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus type 1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single-cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Saab L, DiCapua D, Zubair AS. HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP): Case based discussion of risk factors, clinical, and therapeutic considerations. J Neurol Sci 2024; 459:122973. [PMID: 38520941 DOI: 10.1016/j.jns.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
HTLV-1 is a retrovirus virus that infects CD4+ T cells. Most people with HTLV-1 infection remain asymptomatic but some may develop conditions such as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T-cell leukemia/lymphoma. HAM/TSP is characterized by progressive spasticity and weakness of the lower extremities, as well as loss of bladder control and sensory disturbances. The risk of developing HAM/TSP is associated with the duration of infection and the proviral load. There is currently no cure for the disease but medications can help manage symptoms and slow the progression of the disease. This is the case of a 66-year-old female who presented with nonspecific symptoms of weakness and spasticity in a hospital in Connecticut and was subsequently diagnosed with HAM/TSP. The patient's diagnosis highlights the importance of considering diseases previously confined to specific endemic regions in a globalized world where increased emigration and population mixing can occur. Early identification and management of such cases is essential for optimizing patient outcomes and quality of life.
Collapse
Affiliation(s)
- Lea Saab
- Department of Neurology, Yale University School of Medicine, 20 York Street, New Haven, CT, 06510, USA
| | - Daniel DiCapua
- Department of Neurology, Yale University School of Medicine, 20 York Street, New Haven, CT, 06510, USA
| | - Adeel S Zubair
- Department of Neurology, Yale University School of Medicine, 20 York Street, New Haven, CT, 06510, USA.
| |
Collapse
|
16
|
Gutowska A, Sarkis S, Rahman MA, Goldfarbmuren KC, Moles R, Bissa M, Doster M, Washington-Parks R, McKinnon K, Silva de Castro I, Schifanella L, Franchini G, Pise-Masison CA. Complete Rescue of HTLV-1 p12KO Infectivity by Depletion of Monocytes Together with NK and CD8 + T Cells. Pathogens 2024; 13:292. [PMID: 38668247 PMCID: PMC11054408 DOI: 10.3390/pathogens13040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
The transient depletion of monocytes alone prior to exposure of macaques to HTLV-1 enhances both HTLV-1WT (wild type) and HTLV-1p12KO (Orf-1 knockout) infectivity, but seroconversion to either virus is not sustained over time, suggesting a progressive decrease in virus expression. These results raise the hypotheses that either HTLV-1 persistence depends on a monocyte reservoir or monocyte depletion provides a transient immune evasion benefit. To test these hypotheses, we simultaneously depleted NK cells, CD8+ T cells, and monocytes (triple depletion) prior to exposure to HTLV-1WT or HTLV-1p12KO. Remarkably, triple depletion resulted in exacerbation of infection by both viruses and complete rescue of HTLV-1p12KO infectivity. Following triple depletion, we observed rapid and sustained seroconversion, high titers of antibodies against HTLV-1 p24Gag, and frequent detection of viral DNA in the blood and tissues of all animals when compared with depletion of only CD8+ and NK cells, or monocytes alone. The infection of macaques with HTLV-1WT or HTLV-1p12KO was associated with higher plasma levels of IL-10 after 21 weeks, while IL-6, IFN-γ, IL-18, and IL-1β were only elevated in animals infected with HTLV-1WT. The repeat depletion of monocytes, NK, and CD8+ cells seven months following the first exposure to HTLV-1 did not further exacerbate viral replication. These results underscore the contribution of monocytes in orchestrating anti-viral immunity. Indeed, the absence of orf-1 expression was fully compensated by the simultaneous depletion of CD8+ T cells, NK cells, and monocytes, underlining the primary role of orf-1 in hijacking host immunity.
Collapse
Affiliation(s)
- Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Katherine C. Goldfarbmuren
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Melvin Doster
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| |
Collapse
|
17
|
Folgosi VÂ, Konminakis SV, Silva FDD, Leite Junior PD, Haziot MEJ, Oliveira ACP, Smid J, Zrein M, Salvador F, Casseb J. Evaluation of the New Multi-HTLV Serological Assay: Improvement for HTLV-2 Detection. AIDS Res Hum Retroviruses 2024; 40:134-140. [PMID: 37646414 DOI: 10.1089/aid.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Despite the accuracy of confirmatory tests for the diagnosis of human T cell lymphotropic virus (HTLV), inconclusive or false-negative results still occur when diagnosing human T cell lymphotropic virus type 2 (HTLV-2)-positive patients. The goal of this study was to evaluate the sensitivity and accuracy of a confirmatory immunoassay, the Multi-HTLV assay. A total of 246 plasma samples were tested by real-time polymerase chain reaction (qPCR) and used to calculate the sensitivity and typing accuracy of the Multi-HTLV assay. Of the 246 plasma samples, 127 were positive for human T cell lymphotropic virus type 1 (HTLV-1), 112 were positive for HTLV-2, and 7 were positive for both HTLV-1 and HTLV-2. Thereafter, the nonparametric Mann-Whitney U test was used to calculate the concordance between the qPCR test and Multi-HTLV assay in 12 samples with discrepant and inconclusive qPCR results. The Multi-HTLV assay showed high performance in identifying HTLV-1 and HTLV-2 with sensitivities of 97% [95% confidence interval (CI): 0.92-0.98] and 94% (0.87-0.96), respectively. However, due to typing performance (98% for HTLV-1 and 94% for HTLV-2), it had 95% agreement with positive HTLV-1 qPCR results (95% CI: 90.07-97.81) and 86% (78.04-91.01) of HTLV-2 qPCR results were positive. Moreover, this test was able to recognize 80% of indeterminate samples and all HTLV-2 positive samples that showed false-negative qPCR results. Our findings, derived from a substantial number of HTLV-positive samples, underscore the inherent reliability and feasibility of the Multi-HTLV assay, regardless of the molecular testing facilities. Furthermore, the distinctive multiparametric nature of this assay, combined with its straightforward procedural execution, introduces novel perspectives for analyzing specific serological profiles in each patient, as well as the potential for immunological monitoring of disease progression.
Collapse
Affiliation(s)
- Victor Ângelo Folgosi
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology and Immunodeficiencies, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Shirley Vasconcelos Konminakis
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology and Immunodeficiencies, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Felipe Dias da Silva
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology and Immunodeficiencies, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Pedro Domingos Leite Junior
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology and Immunodeficiencies, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | - Jerusa Smid
- Institute of Infectious Diseases Emilio Ribas, São Paulo, Brazil
| | | | | | - Jorge Casseb
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology and Immunodeficiencies, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
18
|
Nagata K, Tezuka K, Kuramitsu M, Fuchi N, Hasegawa Y, Hamaguchi I, Miura K. Establishment of a novel human T-cell leukemia virus type 1 infection model using cell-free virus. J Virol 2024; 98:e0186223. [PMID: 38294250 PMCID: PMC10878273 DOI: 10.1128/jvi.01862-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The primary mode of infection by human T-cell leukemia virus type 1 (HTLV-1) is cell-to-cell transmission during contact between infected cells and target cells. Cell-free HTLV-1 infections are known to be less efficient than infections with other retroviruses, and transmission of free HTLV-1 is considered not to occur in vivo. However, it has been demonstrated that cell-free HTLV-1 virions can infect primary lymphocytes and dendritic cells in vitro, and that virions embedded in biofilms on cell membranes can contribute to transmission. The establishment of an efficient cell-free HTLV-1 infection model would be a useful tool for analyzing the replication process of HTLV-1 and the clonal expansion of infected cells. We first succeeded in obtaining supernatants with high-titer cell-free HTLV-1 using a highly efficient virus-producing cell line. The HTLV-1 virions retained the structural characteristics of retroviruses. Using this cell-free infection model, we confirmed that a variety of cell lines and primary cultured cells can be infected with HTLV-1 and demonstrated that the provirus was randomly integrated into all chromosomes in the target cells. The provirus-integrated cell lines were HTLV-1-productive. Furthermore, we demonstrated for the first time that cell-free HTLV-1 is infectious in vivo using a humanized mouse model. These results indicate that this cell-free infection model recapitulates the HTLV-1 life cycle, including entry, reverse transcription, integration into the host genome, viral replication, and secondary infection. The new cell-free HTLV-1 infection model is promising as a practical resource for studying HTLV-1 infection.IMPORTANCECo-culture of infected and target cells is frequently used for studying HTLV-1 infection. Although this method efficiently infects HTLV-1, the cell mixture is complex, and it is extremely difficult to distinguish donor infected cells from target cells. In contrast, cell-free HTLV-1 infection models allow for more strict experimental conditions. In this study, we established a novel and efficient cell-free HTLV-1 infection model. Using this model, we successfully evaluated the infectivity titers of cell-free HTLV-1 as proviral loads (copies per 100 cells) in various cell lines, primary cultured cells, and a humanized mouse model. Interestingly, the HTLV-1-associated viral biofilms played an important role in enhancing the infectivity of the cell-free infection model. This cell-free HTLV-1 infection model reproduces the replication cycle of HTLV-1 and provides a simple, powerful, and alternative tool for researching HTLV-1 infection.
Collapse
Affiliation(s)
- Koh Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Tezuka
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuri Hasegawa
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
19
|
Nozuma S, Yoshimura A, Pai SC, Chen HJ, Matsuura E, Tanaka M, Kodama D, Dozono M, Matsuzaki T, Takashima H, Yang YC, Kubota R. Geographic characteristics of HTLV-1 molecular subgroups and genetic substitutions in East Asia: Insights from complete genome sequencing of HTLV-1 strains isolated in Taiwan and Japan. PLoS Negl Trop Dis 2024; 18:e0011928. [PMID: 38315729 PMCID: PMC10868808 DOI: 10.1371/journal.pntd.0011928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/15/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Although Japan is a major endemic area for human T-lymphotropic virus type 1 (HTLV-1) and the virus has been well-studied in this region, there is limited research on HTLV-1 in surrounding regions. In this study, we determined the complete genome sequences of HTLV-1 strains isolated from Taiwan and Japan and investigated the geographic characteristics of molecular subgroups and substitution mutations to understand the spread of HTLV-1 and its correlation with human migration. METHODOLOGY/PRINCIPAL FINDINGS The complete genome sequences of 26 HTLV-1 isolates from Taiwan were determined using next-generation sequencing and were compared with those of 211 isolates from Japan in terms of subgroup and genetic mutations. In total, 15/26 (58%) isolates from Taiwan belonged to the transcontinental subgroup and 11/26 (42%) isolates belonged to the Japanese subgroup. The transcontinental subgroup was significantly more prevalent among Taiwanese isolates than Japanese isolates (58% vs 18%, P < 0.0001). The mutation rate for the complete HTLV-1 sequence was as low as 0.2%. On examining individual base substitutions, the G-to-A mutation was predominant. Bayesian phylogenetic tree analysis estimated the time to the most recent common ancestor for the transcontinental and Japanese subgroups to be 28447 years. The transcontinental subgroups from Taiwan and Japan appeared to form clusters according to their respective regions. CONCLUSIONS/SIGNIFICANCE The transcontinental subgroup of HTLV-1 is predominant in Taiwan, while the Japanese subgroup is common in Japan. The difference in subgroup distribution may be attributed to the initial spread of the transcontinental subgroup in East Asia, followed by the influx of the Japanese subgroup.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Shun-Chung Pai
- Division of Quality, Taipei Blood Center, Taipei, Taiwan
| | - Hung-Jen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Daisuke Kodama
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Mika Dozono
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
20
|
Safavi M, Habibian-Sezavar F, Letafati A, Solouki S, Yaslianifard S, Kaboli P, Mohammadzadeh M, Kabir K, Haj MS, Mozhgani SH. Determination of molecular epidemiologic pattern of human T-lymphotropic virus type 1 (HTLV-1) in Alborz province, Iran. Virus Genes 2024:10.1007/s11262-024-02051-0. [PMID: 38273115 DOI: 10.1007/s11262-024-02051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is linked to two debilitating diseases, adult T-cell leukemia/lymphoma (ATLL) and HTLV-1 associated myelopathy tropical spastic paraparesis (HAM/TSP), which are prevalent in various parts of the world, including the Alborz province in Iran. Understanding the prevalence and evolutionary relationships of HTLV-1 infections in these endemic areas is of utmost importance. In the realm of phylogenetic studies, long terminal repeat (LTR) region of HTLV-1 stands out as highly conserved, yet more variable compared to other gene segments. Consequently, it is the primary focus for phylogenetic analyses. Additionally, trans-activator of transcription (Tax), an oncoprotein, holds a pivotal role in the regulation of gene expression. This cross-sectional study delved into the phylogenetic analysis of HTLV-1 among individuals in Alborz province of Iran. To confirm infection, we amplified partial sequence LTR (PLTR) and HTLV-1 bZIP factor (PHBZ). For phylogenetic analysis, we sequenced the full sequence LTR (FLTR) and full Tax sequence (FTax). The FLTR and FTax sequences underwent analysis using BioEdit, and phylogenetic trees were constructed using MEGA-X software. Out of the roughly 15,000 annual blood donors in Alborz, 19 samples tested positive for HTLV-1, indicating a 0.13% HTLV-1 positivity rate among blood donors. Furthermore, the HTLV-1 virus prevalent in the Alborz province belongs to subtype A (cosmopolitan) subgroup A. The findings revealed that while mutations were observed in both the LTR and Tax genes, they were not significant enough to bring about fundamental alterations. Despite positive selection detected in three Alborz isolates, it has not led to mutations affecting Tax function and virulence.
Collapse
Affiliation(s)
- Mahshid Safavi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Fariba Habibian-Sezavar
- Blood Transfusion Research Center, High Institute for Research & Education in Transfusion Medicine, Tehran, Iran
| | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Setayesh Solouki
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran.
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Alborz, Iran.
| | - Parisa Kaboli
- Blood Transfusion Research Center, High Institute for Research & Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Mohammadzadeh
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Kourosh Kabir
- Department of Community Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Mehrdad Sadeghi Haj
- Blood Transfusion Research Center, High Institute for Research & Education in Transfusion Medicine, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Alborz, Iran.
| |
Collapse
|
21
|
Yamada A, Yasunaga J, Liang L, Zhang W, Sunagawa J, Nakaoka S, Iwami S, Kogure Y, Ito Y, Kataoka K, Nakagawa M, Iwanaga M, Utsunomiya A, Koh K, Watanabe T, Nosaka K, Matsuoka M. Anti-HTLV-1 immunity combined with proviral load as predictive biomarkers for adult T-cell leukemia-lymphoma. Cancer Sci 2024; 115:310-320. [PMID: 37950425 PMCID: PMC10823268 DOI: 10.1111/cas.15997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 11/12/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) establishes chronic infection in humans and induces a T-cell malignancy called adult T-cell leukemia-lymphoma (ATL) and several inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Persistent HTLV-1 infection is established under the pressure of host immunity, and therefore the immune response against HTLV-1 is thought to reflect the status of the disease it causes. Indeed, it is known that cellular immunity against viral antigens is suppressed in ATL patients compared to HAM/TSP patients. In this study, we show that profiling the humoral immunity to several HTLV-1 antigens, such as Gag, Env, and Tax, and measuring proviral load are useful tools for classifying disease status and predicting disease development. Using targeted sequencing, we found that several carriers whom this profiling method predicted to be at high risk for developing ATL indeed harbored driver mutations of ATL. The clonality of HTLV-1-infected cells in those carriers was still polyclonal; it is consistent with an early stage of leukemogenesis. Furthermore, this study revealed significance of anti-Gag proteins to predict high risk group in HTLV-1 carriers. Consistent with this finding, anti-Gag cytotoxic T lymphocytes (CTLs) were increased in patients who received hematopoietic stem cell transplantation and achieved remission state, indicating the significance of anti-Gag CTLs for disease control. Our findings suggest that our strategy that combines anti-HTLV-1 antibodies and proviral load may be useful for prediction of the development of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Asami Yamada
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Jun‐ichirou Yasunaga
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Lihan Liang
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Wenyi Zhang
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Junya Sunagawa
- Graduate School of Life ScienceHokkaido UniversitySapporoJapan
| | - Shinji Nakaoka
- Faculty of Advanced Life ScienceHokkaido UniversitySapporoJapan
| | - Shingo Iwami
- Division of Natural Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Yasunori Kogure
- Division of Molecular OncologyNational Cancer Center Research InstituteTokyoJapan
| | - Yuta Ito
- Division of Molecular OncologyNational Cancer Center Research InstituteTokyoJapan
- Division of Clinical Oncology and Hematology, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | - Keisuke Kataoka
- Division of Molecular OncologyNational Cancer Center Research InstituteTokyoJapan
- Division of Hematology, Department of MedicineKeio University School of MedicineTokyoJapan
| | | | - Masako Iwanaga
- Department of Clinical EpidemiologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General HospitalKagoshimaJapan
| | - Ki‐Ryang Koh
- Department of Hematology, Osaka General Hospital of West Japan Railway CompanyOsakaJapan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of MedicineSt Marianna UniversityTokyoJapan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
22
|
Arone C, Martial S, Burlaud-Gaillard J, Thoulouze MI, Roingeard P, Dutartre H, Muriaux D. HTLV-1 biofilm polarization maintained by tetraspanin CD82 is required for efficient viral transmission. mBio 2023; 14:e0132623. [PMID: 37889017 PMCID: PMC10746275 DOI: 10.1128/mbio.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE In the early stages of infection, human T-lymphotropic virus type 1 (HTLV-1) dissemination within its host is believed to rely mostly on cell-to-cell contacts. Past studies unveiled a novel mechanism of HTLV-1 intercellular transmission based on the remodeling of the host-cell extracellular matrix and the generation of cell-surface viral assemblies whose structure, composition, and function resemble bacterial biofilms. These polarized aggregates of infectious virions, identified as viral biofilms, allow the bulk delivery of viruses to target cells and may help to protect virions from immune attacks. However, viral biofilms' molecular and functional description is still in its infancy, although it is crucial to fully decipher retrovirus pathogenesis. Here, we explore the function of cellular tetraspanins (CD9, CD81, CD82) that we detect inside HTLV-1 particles within biofilms. Our results demonstrate specific roles for CD82 in the cell-surface distribution and intercellular transmission of HTLV-1 biofilms, which we document as two essential parameters for efficient viral transmission. At last, our findings indicate that N-glycosylation of cell-surface molecules, including CD82, is required for the polarization of HTLV-1 biofilms and for the efficient transmission of HTLV-1 between T-lymphocytes.
Collapse
Affiliation(s)
- Coline Arone
- Infectious Disease Research Institute of Montpellier (IRIM), UMR CNRS, Montpellier, France
| | - Samuel Martial
- Center for International Research on Infectiology (CIRI), UMR Inserm, Lyon, France
| | | | | | - Philippe Roingeard
- IBiSA Electron Microscopy Platform of Tours University, UMR Inserm, Tours, France
| | - Hélène Dutartre
- Center for International Research on Infectiology (CIRI), UMR Inserm, Lyon, France
| | - Delphine Muriaux
- Infectious Disease Research Institute of Montpellier (IRIM), UMR CNRS, Montpellier, France
| |
Collapse
|
23
|
de-Mendoza C, Pérez L, Rando A, Reina G, Aguilera A, Benito R, Eirós JM, Rodríguez-Avial I, Ortega D, Pozuelo MJ, Pena MJ, Soriano V. HTLV-1-associated myelopathy in Spain. J Clin Virol 2023; 169:105619. [PMID: 38000189 DOI: 10.1016/j.jcv.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/27/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND HTLV-1 infection is a neglected disease. Over 10 million people are infected worldwide, with hot spots of high endemicity across all continents. Roughly 5% of HTLV-1 carriers develop HTLV-1-associated myelopathy (HAM), a progressive subacute neurological disabling disease. METHODS We report the main features of patients diagnosed with HAM up to date in Spain, a non-endemic country with a relatively high migrant flow from Latin America and Equatorial Africa, where HTLV-1 is endemic. RESULTS A total of 451 cases of HTLV-1 had been recorded in Spain until the end of year 2022. HAM had been diagnosed in 58 (12.9%). The current incidence is of 2-3 new cases per year. Women represent 76%. Mean age at diagnosis is 49 years-old. Nearly 60% are Latin Americans. Although sexual transmission is the most likely route of HTLV-1 acquisition, up to 6 individuals had been infected following solid organ transplantation. Rapid onset myelopathy developed in all but one of these transplant recipients from three HTLV-1-positive donors. HTLV-1 subtype 1a transcontinental was the only variant recognized in HAM patients. HTLV-1 proviral load was significantly greater in HAM patients than in asymptomatic HTLV-1 carriers (677 vs 104 HTLV-1 DNA copies/104 PBMC; p = 0.012). Symptom relief medications and physiotherapy have been the only treatment providing some benefit to HAM patients. Neither significant clinical nor virological efficacy was noticed using antiretrovirals in at least 9 HAM patients. Two thirds of HAM patients ended up in a wheelchair and with urinary/fecal sphincter incontinence. CONCLUSION HAM is the most frequent clinical manifestation of HTLV-1 infection in Spain, a non-endemic country. Middle aged women migrants from Latin America are the most frequently affected. Two thirds end up in a wheelchair despite using antiretroviral therapy.
Collapse
Affiliation(s)
- Carmen de-Mendoza
- Puerta de Hierro University Hospital & Research Foundation-IDIPHISA, Madrid, Spain
| | - Leire Pérez
- Gregorio Marañón University Hospital, Madrid, Spain
| | | | | | | | - Rafael Benito
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | | | | | | | - María José Pena
- Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Vicente Soriano
- UNIR Health Sciences School & Medical Center, UNIR-Citei, Madrid, Spain.
| |
Collapse
|
24
|
Maeda Y, Monde K, Terasawa H, Tanaka Y, Sawa T. Interaction of TSG101 with the PTAP Motif in Distinct Locations of Gag Determines the Incorporation of HTLV-1 Env into the Retroviral Virion. Int J Mol Sci 2023; 24:16520. [PMID: 38003710 PMCID: PMC10671467 DOI: 10.3390/ijms242216520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Human T-cell tropic virus type 1 (HTLV-1) is known to be mainly transmitted by cell-to-cell contact due to the lower infectivity of the cell-free virion. However, the reasons why cell-free HTLV-1 infection is poor remain unknown. In this study, we found that the retrovirus pseudotyped with HTLV-1 viral envelope glycoprotein (Env) was infectious when human immunodeficiency virus type 1 (HIV-1) was used to produce the virus. We found that the incorporation of HTLV-1 Env into virus-like particles (VLPs) was low when HTLV-1 Gag was used to produce VLPs, whereas VLPs produced using HIV-1 Gag efficiently incorporated HTLV-1 Env. The production of VLPs using Gag chimeras between HTLV-1 and HIV-1 Gag and deletion mutants of HIV-1 Gag showed that the p6 domain of HIV-1 Gag was responsible for the efficient incorporation of HTLV-1 Env into the VLPs. Further mutagenic analyses of the p6 domain of HIV-1 Gag revealed that the PTAP motif in the p6 domain of HIV-1 Gag facilitates the incorporation of HTLV-1 Env into VLPs. Since the PTAP motif is known to interact with tumor susceptibility gene 101 (TSG101) during the budding process, we evaluated the effect of TSG101 knockdown on the incorporation of HTLV-1 Env into VLPs. We found that TSG101 knockdown suppressed the incorporation of HTLV-1 Env into VLPs and decreased the infectivity of cell-free HIV-1 pseudotyped with HTLV-1 Env. Our results suggest that the interaction of TSG101 with the PTAP motif of the retroviral L domain is involved not only in the budding process but also in the efficient incorporation of HTLV-1 Env into the cell-free virus.
Collapse
Affiliation(s)
- Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.M.); (T.S.)
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.M.); (T.S.)
| | - Hiromi Terasawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.M.); (T.S.)
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan;
| | - Tomohiro Sawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.M.); (T.S.)
| |
Collapse
|
25
|
Ji H, Chang L, Yan Y, Sun H, Liu Y, Wang L. Genetic typing and intrafamilial transmission of human T-lymphotropic virus type 1 in non-endemic areas of China. Front Microbiol 2023; 14:1288990. [PMID: 37920260 PMCID: PMC10619906 DOI: 10.3389/fmicb.2023.1288990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
The origin and intrafamilial transmission of Human T-Lymphotropic Virus Type 1 (HTLV-1) in non-endemic populations such as China is still unknown. In this study, donors from blood banks/centers in China (including 28 provinces and Shenzhen city) during 2019 and 2021 were screened for HTLV-1/2 antibody, and all the reactive samples were tested using a line immunoassay (LIA) and quantitative polymerase chain reaction (qPCR). Samples that can be detected using qPCR were amplified and sequenced for the long terminal repeat (LTR) region. The positive donors were contacted to identify their relatives. As a result, 4,451,883 blood donors were totally tested, and 50 of them were confirmed to be HTLV-1/2 positive. Viral LTR sequences genotyped from 26 HTLV-1 carriers demonstrated that all had the HTLV-1a genotype, of which Transcontinental and Japanese subgroups accounted for half each. There were 17 family members of 11 index donors detected, and the HTLV-1 infection rate in the spouses of male index donors (83.3%, 5/6) was significantly higher than that in the husbands of female index donors (0.0%, 0/4). However, 7 children of HTLV-1 positive women were tested and found negative. Therefore, our findings indicated that HTLV-1 is spreading silently from high-endemic to low-endemic areas in China. To prevent further HTLV-1/2 transmission, an efficient HTLV-1/2 screening strategy and counseling of the virus carriers are essential.
Collapse
Affiliation(s)
- Huimin Ji
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yi Liu
- 63750 Military Hospital of the People's Liberation Army, Xi'an, Shaanxi, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
26
|
de Mendoza C, Rando A, Miró E, Pena MJ, Rodríguez-Avial I, Ortega D, González-Praetorius A, Reina G, Pintos I, Pozuelo MJ, Soriano V. Adult T-cell leukemia/lymphoma in HTLV-1 non-endemic regions. J Clin Virol 2023; 167:105578. [PMID: 37660433 DOI: 10.1016/j.jcv.2023.105578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND HTLV-1 infection is a neglected disease, despite producing neurological and lymphoproliferative severe illnesses and affect over 10 million people worldwide. Roughly 5% of HTLV-1 carriers develop Adult T-cell leukemia/lymphoma (ATLL), one of the most aggressive hematological malignancies. METHODS A national HTLV-1 register exists since 1989 in Spain, a non-endemic country with a large migrant flow from Latin America and Equatorial Africa, where HTLV-1 is endemic. The main features of all patients diagnosed with ATLL in Spain up to date are reported. RESULTS A total of 451 cases of HTLV-1 infection had been reported in Spain until the end of year 2022. ATLL had been diagnosed in 35 (7.8%). The current average incidence of ATLL in Spain is of two cases per year. Women represent 57% of ATLL patients. Mean age at diagnosis was 47 years-old. Roughly 57% were Latin Americans and 26% Africans. At diagnosis, the majority presented with acute or lymphoma clinical forms. Survival was shorter than one year in most of them. Mean HTLV-1 proviral load was significantly greater in ATLL patients than in asymptomatic HTLV-1 carriers (2,305 vs 104 copies/104 PBMC). HTLV-1 subtyping in 6 ATLL patients found the 1a transcontinental variant (n = 4) and the Japanese variant (n = 2). All ATLL patients were negative for HIV-1, did not develop HTLV-1-associated myelopathy and were not transplant recipients. CONCLUSION The rate of ATLL is very low in Spain and mostly associated to migrants from HTLV-1 endemic regions. Given the poor clinical outcome of ATLL, HTLV-1 testing should be performed at least once in all migrants coming from HTLV-1 endemic countries and in natives who have lived in or had sex partners from such regions.
Collapse
Affiliation(s)
- Carmen de Mendoza
- Puerta de Hierro University Hospital & Research Foundation-IDIPHISA, Madrid, Spain
| | | | - Elisenda Miró
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - María José Pena
- Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | | | | | | | | | - Ilduara Pintos
- Puerta de Hierro University Hospital & Research Foundation-IDIPHISA, Madrid, Spain
| | | | - Vicente Soriano
- UNIR Health Sciences School & Medical Center, Madrid, Spain.
| |
Collapse
|
27
|
Terada Y, Miyata K, Shoji N, Mochizuki M. Human T-cell Leukemia Virus Type 1 (HTLV-1)-induced Uveitis. Ocul Immunol Inflamm 2023; 31:1416-1424. [PMID: 36803501 DOI: 10.1080/09273948.2023.2175697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a human retrovirus that causes T-cell malignant diseases (adult T-cell leukemia/lymphoma) and HTLV-1-related non-malignant inflammatory diseases, such as HTLV-1 uveitis. Although the symptoms and signs of HTLV-1 uveitis are nonspecific, intermediate uveitis with various degrees of vitreous opacity is the most common clinical presentation. It can occur in one or both eyes and its onset is acute or subacute. Intraocular inflammation can be managed with topical and/or systemic corticosteroids; however, recurrence of uveitis is common. The visual prognosis is generally favorable, but a certain proportion of patients have a poor visual prognosis. Systemic complications of patients with HTLV-1 uveitis include Graves' disease and HTLV-1-associated myelopathy/tropical spastic paraparesis. This review describes the clinical characteristics, diagnosis, ocular manifestations, management, and immunopathogenic mechanisms of HTLV-1 uveitis.
Collapse
Affiliation(s)
| | | | - Nobuyuki Shoji
- Department of Ophthalmology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Manabu Mochizuki
- Miyata Eye Hospital, Miyazaki, Japan
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
28
|
Maseko SB, Brammerloo Y, Van Molle I, Sogues A, Martin C, Gorgulla C, Plant E, Olivet J, Blavier J, Ntombela T, Delvigne F, Arthanari H, El Hajj H, Bazarbachi A, Van Lint C, Salehi-Ashtiani K, Remaut H, Ballet S, Volkov AN, Twizere JC. Identification of small molecule antivirals against HTLV-1 by targeting the hDLG1-Tax-1 protein-protein interaction. Antiviral Res 2023; 217:105675. [PMID: 37481039 DOI: 10.1016/j.antiviral.2023.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the first pathogenic retrovirus discovered in human. Although HTLV-1-induced diseases are well-characterized and linked to the encoded Tax-1 oncoprotein, there is currently no strategy to target Tax-1 functions with small molecules. Here, we analyzed the binding of Tax-1 to the human homolog of the drosophila discs large tumor suppressor (hDLG1/SAP97), a multi-domain scaffolding protein involved in Tax-1-transformation ability. We have solved the structures of the PDZ binding motif (PBM) of Tax-1 in complex with the PDZ1 and PDZ2 domains of hDLG1 and assessed the binding of 10 million molecules by virtual screening. Among the 19 experimentally confirmed compounds, one systematically inhibited the Tax-1-hDLG1 interaction in different biophysical and cellular assays, as well as HTLV-1 cell-to-cell transmission in a T-cell model. Thus, our work demonstrates that interactions involving Tax-1 PDZ-domains are amenable to small-molecule inhibition, which provides a framework for the design of targeted therapies for HTLV-1-induced diseases.
Collapse
Affiliation(s)
- Sibusiso B Maseko
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Yasmine Brammerloo
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Inge Van Molle
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Adrià Sogues
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Julien Olivet
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium; Structural Biology Unit, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research and Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Jeremy Blavier
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | | | - Frank Delvigne
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liege Belgium
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Kourosh Salehi-Ashtiani
- Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math, New York University of Abu Dhabi, Abu Dhabi United Arab Emirates
| | - Han Remaut
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alexander N Volkov
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels Belgium.
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium; TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liege Belgium; Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math, New York University of Abu Dhabi, Abu Dhabi United Arab Emirates.
| |
Collapse
|
29
|
Nunes da Silva A, Araújo THA, Boa-Sorte N, Farias G, Galvão-Barroso AK, de Carvalho A, Vicente AC, Galvão-Castro B, Rios Grassi MF. Epidemiological and molecular evidence of intrafamilial transmission through sexual and vertical routes in Bahia, the state with the highest prevalence of HTLV-1 in Brazil. PLoS Negl Trop Dis 2023; 17:e0011005. [PMID: 37769013 PMCID: PMC10593241 DOI: 10.1371/journal.pntd.0011005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/23/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION Familial clustering of HTLV-1 and related diseases has been reported in Brazil. However, intrafamilial transmission of HTLV-1 based on molecular analysis has been studied only in a few communities of Japanese immigrants and African-Brazilians. OBJECTIVE To investigate the familial clustering of HTLV-1 infection and to determine the likely routes of transmission through epidemiological and genetic analyzes. METHODS Medical records of 1,759 HTLV-1+ patients from de the Center for HTLV in Salvador, Brazil, were evaluated to identify first-degree relatives previously tested for HTLV-1. Familial clustering was assumed if more than one member of the same family was HTLV-1+. LTR regions of HTLV-1 sequences were analyzed for the presence of intrafamilial polymorphisms. Family pedigrees were constructed and analyzed to infer the likely transmission routes of HTLV-1. RESULTS In 154 patients at least one other family member had tested positive for HTLV-1 (a total of 182 first-degree relatives). Of the 91 couples (182 individuals), 51.6% were breastfed, and 67.4% reported never using a condom. Of the 42 mother-child pairs, 23.8% had a child aged 13 years or younger; all mothers reported breastfeeding their babies. Pedigrees of families with 4 or more members suggests that vertical transmission is a likely mode of transmission in three families. Three families may have had both vertical and sexual transmission routes for HTLV-1. The genetic signatures of the LTR region of 8 families revealed 3 families with evidence of vertical transmission, another 3 families (spouses) with sexual transmission, and one family with both transmission routes. HTLV-1 sequences belonged to Cosmopolitan subtype HTLV-1a Transcontinental subgroup A. CONCLUSION Sexual and vertical transmission routes contribute to the intrafamilial spread of HTLV-1 in the state of Bahia.
Collapse
Affiliation(s)
| | | | - Ney Boa-Sorte
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brasil
| | - Giovanne Farias
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brasil
| | | | | | | | - Bernardo Galvão-Castro
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brasil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brasil
| | - Maria Fernanda Rios Grassi
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brasil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brasil
| |
Collapse
|
30
|
Machado NR, Fagundes BO, Fernandes LA, de Oliveira ACP, Nukui Y, Casseb J, Cunha FRM, Nali LHDS, Sanabani SS, Victor JR. Differential modulation of IL-4, IL-10, IL-17, and IFN-γ production mediated by IgG from Human T-lymphotropic virus-1 (HTLV-1) infected patients on healthy peripheral T (CD4+, CD8+, and γδ) and B cells. Front Med (Lausanne) 2023; 10:1239706. [PMID: 37711742 PMCID: PMC10498471 DOI: 10.3389/fmed.2023.1239706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) infected individuals remain as asymptomatic carriers (ACs) or can develop the chronic neurological disorder HTLV-1-associated myelopathy/Tropical Spastic Paraparesis (HAM/TSP) or the adult T-cell leukemia/lymphoma (ATLL), and the immunological mechanisms involved in this pathologies need to be elucidated. Recently, it has been demonstrated that induced or naturally developed IgG repertoires obtained from different groups of donors, grouped by immune status, can modulate human T and B cell functions. Here we aimed to evaluate if the IgG obtained from HTLV-1-infected ACs, HAM/TSP, and ATLL patients can differentially modulate the production of cytokines by human T and B cells. With this purpose, we cultured PBMCs with IgG purified from ACs, HAM/TSP, or ATLL donors and evaluated the frequency and intracellular cytokine production by flow cytometry. Our results indicate that IgG from HAM/TSP patients could induce an augment of IL-17-producing CD4+ T cells, reduce the frequency of IL-4-producing CD4+ T cells, increase IFN-γ-producing CD8+ T cells, and reduce IL-4-producing CD8+ T cells. IgG from ATLL could reduce the frequency of IL-4-producing CD4+ T cells, similarly to IgG from HAM/TSP /TSP, and could reduce the frequency of IFN-γ-producing γδT cells without influence on IL-17- and IL4-producing γδT and could reduce the frequency of IL-10- producing B cells. Finally, IgG from both HAM/TSP and ATLL patients could reduce the frequency of IFN-γ producing B cells. In conclusion, these results suggest that these preparations are active, partly overlapping in their effects, and able to elicit distinct effects on target populations.
Collapse
Affiliation(s)
- Nicolle Rakanidis Machado
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
| | - Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
| | - Lorena Abreu Fernandes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
| | | | - Youko Nukui
- Clinics Hospital, Medical School, São Paulo, Brazil
| | - Jorge Casseb
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
| | | | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-03, Clinics Hospital, University of São Paulo, Medical School, São Paulo, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
- Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
| |
Collapse
|
31
|
Nakamura-Hoshi M, Nomura T, Nishizawa M, Hau TTT, Yamamoto H, Okazaki M, Ishii H, Yonemitsu K, Suzaki Y, Ami Y, Matano T. HTLV-1 Proliferation after CD8 + Cell Depletion by Monoclonal Anti-CD8 Antibody Administration in Latently HTLV-1-Infected Cynomolgus Macaques. Microbiol Spectr 2023; 11:e0151823. [PMID: 37367230 PMCID: PMC10434050 DOI: 10.1128/spectrum.01518-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) induces chronic asymptomatic latent infection with a substantial proviral load but without significant viral replication in vivo. Cumulative studies have indicated involvement of CD8-positive (CD8+) cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. However, whether HTLV-1 expression from latently infected cells in vivo occurs in the absence of CD8+ cells remains unclear. Here, we examined the impact of CD8+ cell depletion by monoclonal anti-CD8 antibody administration on proviral load in HTLV-1-infected cynomolgus macaques. Five cynomolgus macaques were infected with HTLV-1 by inoculation with HTLV-1-producing cells. Administration of monoclonal anti-CD8 antibody in the chronic phase resulted in complete depletion of peripheral CD8+ T cells for approximately 2 months. All five macaques showed an increase in proviral load following CD8+ cell depletion, which peaked just before the reappearance of peripheral CD8+ T cells. Tax-specific CD8+ T-cell responses were detected in these recovered CD8+ T cells. Importantly, anti-HTLV-1 antibodies also increased after CD8+ cell depletion, indicating HTLV-1 antigen expression. These results provide evidence indicating that HTLV-1 can proliferate from the latent phase in the absence of CD8+ cells and suggest that CD8+ cells are responsible for the control of HTLV-1 replication. IMPORTANCE HTLV-1 can cause serious diseases such as adult T-cell leukemia (ATL) in humans after chronic asymptomatic latent infection with substantial proviral load. Proviruses are detectable in peripheral lymphocytes in HTLV-1 carriers, and the association of a higher proviral load with a higher risk of disease progression has been observed. However, neither substantial viral structural protein expression nor viral replication was detectable in vivo. Cumulative studies have indicated involvement of CD8+ cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. In the present study, we showed that CD8+ cell depletion by monoclonal anti-CD8 antibody administration results in HTLV-1 expression and an increase in proviral load in HTLV-1-infected cynomolgus macaques. Our results indicate that HTLV-1 can proliferate in the absence of CD8+ cells, suggesting that CD8+ cells are responsible for the control of HTLV-1 replication. This study provides insights into the mechanism of virus-host immune interaction in latent HTLV-1 infection.
Collapse
Affiliation(s)
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Midori Okazaki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenzo Yonemitsu
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Silva De Castro I, Granato A, Mariante RM, Lima MA, Leite ACC, Espindola ODM, Pise-Masison CA, Franchini G, Linden R, Echevarria-Lima J. HTLV-1 p12 modulates the levels of prion protein (PrP C) in CD4 + T cells. Front Microbiol 2023; 14:1175679. [PMID: 37637115 PMCID: PMC10449582 DOI: 10.3389/fmicb.2023.1175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Infection with human T cell lymphotropic virus type 1 (HTLV-1) is endemic in Brazil and is linked with pro-inflammatory conditions including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neuroinflammatory incapacitating disease that culminates in loss of motor functions. The mechanisms underlying the onset and progression of HAM/TSP are incompletely understood. Previous studies have demonstrated that inflammation and infectious agents can affect the expression of cellular prion protein (PrPC) in immune cells. Methods Here, we investigated whether HTLV-1 infection affected PrPC content in cell lines and primary CD4+cells in vitro using flow cytometry and western blot assays. Results We found that HTLV-1 infection decreased the expression levels of PrPC and HTLV-1 Orf I encoded p12, an endoplasmic reticulum resident protein also known to affect post-transcriptionally cellular proteins such as MHC-class I and the IL-2 receptor. In addition, we observed a reduced percentage of CD4+ T cells from infected individuals expressing PrPC, which was reflected by IFN type II but not IL-17 expression. Discussion These results suggested that PrPC downregulation, linked to both HTLV-1 p12 and IFN-γ expression in CD4+ cells, may play a role in the neuropathogenesis of HTLV-1 infection.
Collapse
Affiliation(s)
- Isabela Silva De Castro
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Alessandra Granato
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Meyer Mariante
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marco Antonio Lima
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Leite
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Otávio de Melo Espindola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Rafael Linden
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Davies NWS, Taylor GP. Targeted immunotherapy for HTLV-1-associated myelopathy: a step in the right direction. Brain 2023; 146:3114-3116. [PMID: 37459435 DOI: 10.1093/brain/awad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
This scientific commentary refers to ‘Long-term safety and efficacy of mogamulizumab (anti-CCR4) for treating virus-associated myelopathy’ by Sato et al. (https://doi.org/10.1093/brain/awad139).
Collapse
Affiliation(s)
- Nicholas W S Davies
- National Centre for Human Retrovirology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, W2 1NY, UK
| | - Graham P Taylor
- National Centre for Human Retrovirology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, W2 1NY, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
34
|
Campos MC, Barbosa IR, Guedes GP, Echevarria A, Echevarria-Lima J, Chaves OA. Novel Zn(II)-complex with hybrid chalcone-thiosemicarbazone ligand: Synthesis, characterization, and inhibitory effect on HTLV-1-infected MT-2 leukemia cells. J Inorg Biochem 2023; 245:112239. [PMID: 37148641 DOI: 10.1016/j.jinorgbio.2023.112239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Chalcone and thiosemicarbazone have attracted attention due to their easy synthetic procedure and high success in the development of antiviral and antitumor, however, there are few biological data on the evaluation of chalcone-thiosemicarbazone hybrids and their complexation with metal ions. In this sense, the present work reports the synthesis and characterization of the hybrid (Z)-2-((E)-3-(4-chlorophenyl)-1-phenylallylidene)hydrazine-1-carbothioamide (CTCl) and its Zn(II)-complex (CTCl-Zn). The compounds were cell-based evaluated in terms of cytotoxicity against human T-cell lymphotropic virus type 1 (HTLV-1) infected leukemia cells (MT-2) and the experimental data were correlated with molecular docking calculations. The ligand and Zn(II)-complex were easily synthesized with a good yield - 57% and 79%, respectively. The dynamic of E/Z isomers with respect to the imine bond configuration of CTCl was evidenced by 1H NMR experiments in DMSO‑d6, while the X-ray diffraction of CTCl-Zn showed that Zn(II) ion is tetracoordinated to two ligands in a bidentate mode and the metal ion lies on an intermediate geometry between the see-saw and trigonal pyramid. The ligand and complex exhibited low toxicity and the Zn(II)-complex is more cytotoxic than the ligand, with the corresponding IC50 value of 30.01 and 47.06 μM. Both compounds had a pro-apoptotic effect without the release of reactive oxygen species (ROS) and they can interact with DNA via minor grooves driven by van der Waals forces.
Collapse
Affiliation(s)
- Maria Clara Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Igor Resendes Barbosa
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Aurea Echevarria
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil.
| | - Juliana Echevarria-Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Otávio Augusto Chaves
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; CQC-IMS, Departamento de Química, Universidade de Coimbra, Rua Larga s/n, Coimbra, Portugal.
| |
Collapse
|
35
|
Nakajima S, Okuma K. Mouse Models for HTLV-1 Infection and Adult T Cell Leukemia. Int J Mol Sci 2023; 24:11737. [PMID: 37511495 PMCID: PMC10380921 DOI: 10.3390/ijms241411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Adult T cell leukemia (ATL) is an aggressive hematologic disease caused by human T cell leukemia virus type 1 (HTLV-1) infection. Various animal models of HTLV-1 infection/ATL have been established to elucidate the pathogenesis of ATL and develop appropriate treatments. For analyses employing murine models, transgenic and immunodeficient mice are used because of the low infectivity of HTLV-1 in mice. Each mouse model has different characteristics that must be considered before use for different HTLV-1 research purposes. HTLV-1 Tax and HBZ transgenic mice spontaneously develop tumors, and the roles of both Tax and HBZ in cell transformation and tumor growth have been established. Severely immunodeficient mice were able to be engrafted with ATL cell lines and have been used in preclinical studies of candidate molecules for the treatment of ATL. HTLV-1-infected humanized mice with an established human immune system are a suitable model to characterize cells in the early stages of HTLV-1 infection. This review outlines the characteristics of mouse models of HTLV-1 infection/ATL and describes progress made in elucidating the pathogenesis of ATL and developing related therapies using these mice.
Collapse
Affiliation(s)
- Shinsuke Nakajima
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
36
|
Koseki A, Araya N, Yamagishi M, Yamauchi J, Yagishita N, Takao N, Takahashi K, Kunitomo Y, Honma D, Araki K, Uchimaru K, Sato T, Yamano Y. EZH1/2 dual inhibitors suppress HTLV-1-infected cell proliferation and hyperimmune response in HTLV-1-associated myelopathy. Front Microbiol 2023; 14:1175762. [PMID: 37378292 PMCID: PMC10291084 DOI: 10.3389/fmicb.2023.1175762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) causes HTLV-1-associated myelopathy (HAM), adult T-cell leukemia/lymphoma (ATL), HTLV-1-associated uveitis, and pulmonary diseases. Although both HAM and ATL show proliferation of infected cells, their pathogeneses are quite different. In particular, the pathogenesis of HAM is characterized by hyperimmune responses to HTLV-1-infected cells. Recently, we demonstrated the overexpression of histone methyltransferase EZH2 in ATL cells and the cytotoxic effects of EZH2 inhibitors and EZH1/2 dual inhibitors on these cells. However, these phenomena have never been studied in HAM. Furthermore, what effect these agents have on the hyperimmune response seen in HAM is completely unknown. Methods In this study, we investigated histone methyltransferase expression levels in infected cell populations (CD4+ and CD4+CCR4+ cells) from patients with HAM using microarray and RT-qPCR analyses. Next, using an assay system that utilizes the spontaneous proliferation characteristic of peripheral blood mononuclear cells derived from patients with HAM (HAM-PBMCs), we investigated the effects of EZH2 selective inhibitors (GSK126 and tazemetostat) and EZH1/2 dual inhibitors (OR-S1 and valemetostat, also known as DS-3201), particularly on cell proliferation rate, cytokine production, and HTLV-1 proviral load. We also examined the effect of EZH1/2 inhibitors on the proliferation of HTLV-1-infected cell lines (HCT-4 and HCT-5) derived from patients with HAM. Results We found elevated expression of EZH2 in CD4+ and CD4+CCR4+ cells from patients with HAM. EZH2 selective inhibitors and EZH1/2 inhibitors significantly inhibited spontaneous proliferation of HAM-PBMC in a concentration-dependent manner. The effect was greater with EZH1/2 inhibitors. EZH1/2 inhibitors also reduced the frequencies of Ki67+ CD4+ T cells and Ki67+ CD8+ T cells. Furthermore, they reduced HTLV-1 proviral loads and increased IL-10 levels in culture supernatants but did not alter IFN-γ and TNF-α levels. These agents also caused a concentration-dependent inhibition of the proliferation of HTLV-1-infected cell lines derived from patients with HAM and increased annexin-V(+)7-aminoactinomycin D(-) early apoptotic cells. Conclusion This study showed that EZH1/2 inhibitors suppress HTLV-1-infected cell proliferation through apoptosis and the hyperimmune response in HAM. This indicates that EZH1/2 inhibitors may be effective in treating HAM.
Collapse
Affiliation(s)
- Akihito Koseki
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Neurology, Yaizu City Hospital, Yaizu, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Takao
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Katsunori Takahashi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasuo Kunitomo
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Daisuke Honma
- Oncology Research Laboratories, Daiichi Sankyo, Co., Ltd., Tokyo, Japan
| | - Kazushi Araki
- Early Clinical Development Department, Daiichi Sankyo, Co., Ltd., Tokyo, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoo Sato
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
37
|
Petrillo N, Dinh K, Vogt KA, Ma S. Catalytic Mechanism of Human T-Cell Leukemia Virus Type 1 Protease Investigated by Combined QM/MM Molecular Dynamics Simulations. J Chem Inf Model 2023. [PMID: 37289654 DOI: 10.1021/acs.jcim.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations were performed to investigate the catalytic mechanism of human T-cell leukemia virus type 1 (HTLV-1) protease, a retroviral aspartic protease that is a potential therapeutic target for curing HTLV-1-associated diseases. To elucidate the proteolytic cleavage mechanism, we determined the two-dimensional free energy surfaces of the HTLV-1 protease-catalyzed reactions through various possible pathways. The free energy simulations suggest that the catalytic reactions of the HTLV-1 protease occur in the following sequential steps: (1) a proton is transferred from the lytic water to Asp32', followed by the nucleophilic addition of the resulting hydroxyl to the carbonyl carbon of the scissile bond, forming a tetrahedral oxyanion intermediate, and (2) a proton is transferred from Asp32 to the peptide nitrogen of the scissile bond, leading to the spontaneous breakage of the scissile bond. The rate-limiting step of this catalytic process is the proton transfer from Asp32 to the peptide nitrogen of the scissile bond, with a free energy of activation of 21.1 kcal/mol. This free energy barrier is close to the experimentally determined free energy of activation (16.3 kcal/mol) calculated from the measured catalytic rate constant (kcat). This mechanistic study provides detailed dynamic and structural information that will facilitate the design of mechanism-based inhibitors for the treatment of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Natalie Petrillo
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Kim Dinh
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Kimberly A Vogt
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| |
Collapse
|
38
|
Gong Z, Yan Z, Liu W, Luo B. Oncogenic viruses and host lipid metabolism: a new perspective. J Gen Virol 2023; 104. [PMID: 37279154 DOI: 10.1099/jgv.0.001861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
As noncellular organisms, viruses do not have their own metabolism and rely on the metabolism of host cells to provide energy and metabolic substances for their life cycles. Increasing evidence suggests that host cells infected with oncogenic viruses have dramatically altered metabolic requirements and that oncogenic viruses produce substances used for viral replication and virion production by altering host cell metabolism. We focused on the processes by which oncogenic viruses manipulate host lipid metabolism and the lipid metabolism disorders that occur in oncogenic virus-associated diseases. A deeper understanding of viral infections that cause changes in host lipid metabolism could help with the development of new antiviral agents as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Zhiyong Yan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
39
|
Mohanty S, Harhaj EW. Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion. Pathogens 2023; 12:pathogens12050735. [PMID: 37242405 DOI: 10.3390/pathogens12050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10-20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections. The HTLV-1 replication cycle provides ligands, mainly nucleic acids (RNA, RNA/DNA intermediates, ssDNA intermediates, and dsDNA), that are sensed by different pattern recognition receptors (PRRs) to trigger immune responses. However, the mechanisms of innate immune detection and immune responses to HTLV-1 infection are not well understood. In this review, we highlight the functional roles of different immune sensors in recognizing HTLV-1 infection in multiple cell types and the antiviral roles of host restriction factors in limiting persistent infection of HTLV-1. We also provide a comprehensive overview of intricate strategies employed by HTLV-1 to subvert the host innate immune response that may contribute to the development of HTLV-1-associated diseases. A more detailed understanding of HTLV-1-host pathogen interactions may inform novel strategies for HTLV-1 antivirals, vaccines, and treatments for ATLL or HAM/TSP.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
40
|
Schor D, Porto LC, Roma EH, Castro-Alves J, Villela AP, Araújo AQC, Glória Bonecini-Almeida M. Putative role of HLA polymorphism among a Brazilian HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) population. Sci Rep 2023; 13:7659. [PMID: 37169817 PMCID: PMC10173239 DOI: 10.1038/s41598-023-34757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Around ten million people are infected with HTLV-1 worldwide, and 1-4% develop HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), characterized by an important degeneration of the spinal cord, which can lead to death. Distinct HLA alleles have been associated with either HAM/TSP susceptibility or protection. However, these HLA alleles set may change according to the population studied. Brazil is the second country in the number of HTLV-1-infected people and there are few reports addressing the HLA influence on HTLV-1 infection as well as on disease outcome. The objective of this study was to evaluate the influence of HLA alleles as a risk factor for HAM/TSP and the proviral load (PVL) levels, clinical progression, and death outcomes in an admixed Brazilian population. The HLA-A, -B, -C, and -DRB1 were genotyped in 375 unrelated HTLV-1-infected individuals divided into asymptomatic carriers (AC) (n = 165) and HAM/TSP (n = 210) in a longitudinal cohort from 8 to 22 years of follow-up. Because locus B deviated from Hardy-Weinberg Equilibrium for the study groups, the results represented for HLA-B alleles were inconclusive. The alleles HLA-A*68 and -C*07 were related to HAM/TSP risk in multivariate analysis. The alleles HLA-A*33, and -A*36 were associated with protection against disease progression in HAM/TSP patients, while -C*12, -C*14, and -DRB1*08 were associated with increased risk of death. In the AC group, the presence of, -C*06 and -DRB1*15 alleles influenced an increased PVL, in an adjusted linear regression model, while -A*30, -A*34, -C*06, -C*17 and -DRB1*09 alleles were associated with increased PVL in HAM/TSP group compared to HAM/TSP individuals not carrying these alleles. All these alleles were also related to increased PVL associated with clinical progression outcome. Increased PVL associated with the death outcome was linked to the presence of HLA-A*30. PVL has been associated with HLA, and several alleles were related in AC and HAM/TSP patients with or without interacting with clinical progression outcomes. Understanding the prognostic value of HLA in HAM/TSP pathogenesis can provide important biomarkers tools to improve clinical management and contribute to the discovery of new therapeutic interventions.
Collapse
Affiliation(s)
- Doris Schor
- Laboratório de Imunologia e Imunogenética em Doenças Infecciosas, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Luís Cristóvão Porto
- Laboratório de Histocompatibilidade e Criopreservação, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20950-000, Brazil
| | - Eric Henrique Roma
- Laboratório de Imunologia e Imunogenética em Doenças Infecciosas, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Julio Castro-Alves
- Plataforma de Pesquisa Clínica, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Anna Paula Villela
- Laboratório de Histocompatibilidade e Criopreservação, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20950-000, Brazil
| | - Abelardo Q C Araújo
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Maria Glória Bonecini-Almeida
- Laboratório de Imunologia e Imunogenética em Doenças Infecciosas, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
41
|
Kamrani M, Rad NN, Zemorshidi F, Khadem-Rezaiyan M. Prevalence of sexual dysfunction in HTLV-1 patients without spastic paraparesis and the association with psychiatric symptoms. Indian J Psychiatry 2023; 65:565-571. [PMID: 37397840 PMCID: PMC10309255 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_388_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/31/2023] [Accepted: 04/09/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The findings of previous studies are inconclusive in terms of psychological abnormalities and sexual function in asymptomatic human lymphotropic virus type 1 (HTLV-1) carriers. Aim This study aimed to evaluate the prevalence of sexual dysfunction and its relationship with psychological abnormalities in asymptomatic HTLV-1 carriers. Materials and Methods This cross-sectional study was conducted on asymptomatic HTLV-1 patients who were referred to the Neurology Clinic of a tertiary hospital in Mashhad, Iran. Patients with spastic paraparesis, leukemia, and uveitis, and those with an expanded disability status scale (EDSS) score higher than 2 were excluded. Sexual function in male and female subjects was evaluated using the brief male sexual function inventory (BMSFI) and female sexual dysfunction index (FSFI) questionnaires, respectively. The severity of psychological symptoms was evaluated in all patients using the symptom checklist-90-revised (SCL-90-R) questionnaire. Results A total of 117 patients (61 males and 56 females) with a mean age of 35.3 ± 6.3 years were evaluated. Overall, 50.9% of males had a high and 39.3% of females had a good sexual function. Both male and female patients with poor sexual function were older and had more children compared to those with good sexual function (P < 0.05). There was no significant difference in the distribution pattern of SCL-90 domains between patients with high and low to moderate sexual function among male patients (P > 0.05). Depression, hostility, interpersonal sensitivity, paranoid ideation, and psychological abnormality were significantly more prevalent in female patients with poor sexual function compared to those with good sexual function (P < 0.05). Conclusion The prevalence of psychological abnormalities was high in female with sexual dysfunction and these disorders might have a negative effect on various dimensions of sexual function.
Collapse
Affiliation(s)
- Maedeh Kamrani
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Niazi Rad
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Zemorshidi
- Department of Neurology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khadem-Rezaiyan
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Matsuura E, Nozuma S, Dozono M, Kodama D, Tanaka M, Kubota R, Takashima H. Iliopsoas Muscle Weakness as a Key Diagnostic Marker in HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Pathogens 2023; 12:pathogens12040592. [PMID: 37111478 PMCID: PMC10143214 DOI: 10.3390/pathogens12040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Human T-cell leukemia virus-1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a slowly progressive neurological disease that arises from HTLV-1 infection. Pathologically, the condition is characterized by diffuse myelitis, which is most evident in the thoracic spinal cord. Clinical manifestations of the infectious disease, HAM/TSP, are empirically known to include weakness of the proximal muscles of the lower extremities and atrophy of the paraspinal muscles, which is characteristic of the distribution of disturbed muscles usually seen in muscular diseases, except that the upper extremities are almost normal. This unique clinical presentation is useful information for physicians and physical therapists involved in diagnosing and rehabilitating patients with HAM/TSP, as well as critical information for understanding the pathogenesis of HAM/TSP. However, the precise pattern of muscle involvement in this condition has yet to be reported. The purpose of this study was to identify the muscles affected by HAM/TSP in order to understand the pathogenesis of HAM/TSP as well as to aid in the diagnosis and rehabilitation of HAM/TSP. A retrospective review of medical records was conducted on 101 consecutively admitted patients with HAM/TSP at Kagoshima University Hospital. Among 101 patients with HAM/TSP, all but three had muscle weakness in the lower extremities. Specifically, the hamstrings and iliopsoas muscle were the most frequently affected in over 90% of the patients. Manual muscle testing (MMT) revealed that the iliopsoas was the weakest of the muscles assessed, a consistent feature from the early to advanced stages of the disease. Our findings demonstrate a unique distribution of muscle weakness in HAM/TSP, with the proximal muscles of the lower extremities, particularly the iliopsoas muscle, being the most frequently and severely affected.
Collapse
Affiliation(s)
- Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Mika Dozono
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Daisuke Kodama
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8520, Japan
| | - Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8520, Japan
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| |
Collapse
|
43
|
Nozuma S, Matsuura E, Tanaka M, Kodama D, Matsuzaki T, Yoshimura A, Sakiyama Y, Nakahata S, Morishita K, Enose-Akahata Y, Jacoboson S, Kubota R, Takashima H. Identification and tracking of HTLV-1-infected T cell clones in virus-associated neurologic disease. JCI Insight 2023; 8:167422. [PMID: 37036006 PMCID: PMC10132145 DOI: 10.1172/jci.insight.167422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Human T lymphotropic virus type 1-assoicated (HTLV-1-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory disease caused by the persistent proliferation of HTLV-1-infected T cells. Here, we performed a T cell receptor (TCR) repertoire analysis focused on HTLV-1-infected cells to identify and track the infected T cell clones that are preserved in patients with HAM/TSP and migrate to the CNS. TCRβ repertoire analysis revealed higher clonal expansion in HTLV-1-infected cells compared with noninfected cells from patients with HAM/TSP and asymptomatic carriers (ACs). TCR clonality in HTLV-1-infected cells was similar in patients with HAM/TSP and ACs. Longitudinal analysis showed that the TCR repertoire signature in HTLV-1-infected cells remained stable, and highly expanded infected clones were preserved within each patient with HAM/TSP over years. Expanded HTLV-1-infected clones revealed different distributions between cerebrospinal fluid (CSF) and peripheral blood and were enriched in the CSF of patients with HAM/TSP. Cluster analysis showed similarity in TCRβ sequences in HTLV-1-infected cells, suggesting that they proliferate after common antigen stimulation. Our results indicate that exploring TCR repertoires of HTLV-1-infected cells can elucidate individual clonal dynamics and identify potential pathogenic clones expanded in the CNS.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Daisuke Kodama
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Morishita
- Project for Advanced Medical Research and Development, Project Research Division, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Steven Jacoboson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
44
|
Itabashi K, Miyazawa T, Uchimaru K. How Can We Prevent Mother-to-Child Transmission of HTLV-1? Int J Mol Sci 2023; 24:ijms24086961. [PMID: 37108125 PMCID: PMC10138424 DOI: 10.3390/ijms24086961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The perception of human T-cell leukemia virus type 1 (HTlV-1) infection as a "silent disease" has recently given way to concern that its presence may be having a variety of effects. HTLV-1 is known to cause adult T-cell leukemia (ATL), an aggressive cancer of peripheral CD4 T cells; however, it is also responsible for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Most patients develop ATL as a result of HTLV-1 mother-to-child transmission. The primary route of mother-to-child transmission is through the mother's milk. In the absence of effective drug therapy, total artificial nutrition such as exclusive formula feeding is a reliable means of preventing mother-to-child transmission after birth, except for a small percentage of prenatal infections. A recent study found that the rate of mother-to-child transmission with short-term breastfeeding (within 90 days) did not exceed that of total artificial nutrition. Because these preventive measures are in exchange for the benefits of breastfeeding, clinical applications of antiretroviral drugs and immunotherapy with vaccines and neutralizing antibodies are urgently needed.
Collapse
Affiliation(s)
- Kazuo Itabashi
- Aiseikai-Memorial Ibaraki Welfare and Medical Center, Ibaraki 3100836, Japan
| | - Tokuo Miyazawa
- Department of Pediatrics, Showa University School of Medicine, Tokyo 1428666, Japan
| | - Kaoru Uchimaru
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
45
|
Landim C, Dias CMCC, Nascimento C, Goes ALB, Araújo THA, Ribeiro A, Oliveira FTD, Castro-Lima H, Boa-Sorte N, Galvão-Castro B. Impaired flexibility in patients with tropical spastic paraparesis/HTLV-associated myelopathy: evaluation via pendulum fleximeter. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:271-283. [PMID: 37059437 PMCID: PMC10104761 DOI: 10.1055/s-0043-1764417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Flexibility is crucial to the harmonious execution of joint movements. While skeletal muscle dysfunction in patients with HTLV-1 can interfere with mobility, it is unclear whether these patients experience reduced flexibility. OBJECTIVE To evaluate the differences in flexibility between HTLV-1-infected individuals with and without myelopathy compared with uninfected controls. We also investigated whether age, sex, body mass index (BMI), physical activity level, or lower back pain influence flexibility in HTLV-1-infected individuals. METHODS The sample consisted of 56 adults, of which 15 did not have HTLV-1, 15 had HTLV-1 without myelopathy, and 26 had TSP/HAM. Their flexibility was assessed using the sit-and-reach test and a pendulum fleximeter. RESULTS No differences in flexibility were observed between the groups with and without myelopathy and controls without HTLV-1 infection using the sit-and-reach test. The pendulum fleximeter results of individuals with TSP/HAM presented the lowest flexibility among the groups with respect to trunk flexion, hip flexion and extension, knee flexion, and ankle dorsiflexion, even after adjusting for age, sex, BMI, level of physical activity, and lower back pain using multiple linear regression models. Additionally, HTLV-1-infected individuals without myelopathy demonstrated reduced flexibility in movements: knee flexion, dorsiflexion, and ankle plantar flexion. CONCLUSIONS Individuals with TSP/HAM demonstrated reduced flexibility in most of the movements evaluated by the pendulum fleximeter. Additionally, HTLV-1-infected individuals without myelopathy demonstrated reduced knee and ankle flexibility, potentially representing a marker of myelopathic development.
Collapse
Affiliation(s)
- Caroline Landim
- Escola Bahiana de Medicina e Saúde Pública, Salvador BA, Brazil
| | | | | | | | | | - Adriele Ribeiro
- Escola Bahiana de Medicina e Saúde Pública, Salvador BA, Brazil
| | | | | | - Ney Boa-Sorte
- Escola Bahiana de Medicina e Saúde Pública, Salvador BA, Brazil
- Universidade Federal da Bahia, Salvador BA, Brazil
| | - Bernardo Galvão-Castro
- Escola Bahiana de Medicina e Saúde Pública, Salvador BA, Brazil
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Laboratório Avançado de Saúde Pública, Salvador BA, Brazil
| |
Collapse
|
46
|
Ernzen K, Melvin C, Yu L, Phelps C, Niewiesk S, Green PL, Panfil AR. The PRMT5 inhibitor EPZ015666 is effective against HTLV-1-transformed T-cell lines in vitro and in vivo. Front Microbiol 2023; 14:1101544. [PMID: 36819050 PMCID: PMC9932813 DOI: 10.3389/fmicb.2023.1101544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the infectious cause of adult T-cell leukemia/lymphoma (ATL), an extremely aggressive and fatal malignancy of CD4+ T-cells. Due to the chemotherapy-resistance of ATL and the absence of long-term therapy regimens currently available for ATL patients, there is an urgent need to characterize novel therapeutic targets against this disease. Protein arginine methyltransferase 5 (PRMT5) is a type II PRMT enzyme that is directly involved in the pathogenesis of multiple different lymphomas through the transcriptional regulation of relevant oncogenes. Recently, our group identified that PRMT5 is overexpressed in HTLV-1-transformed T-cell lines, during the HTLV-1-mediated T-cell immortalization process, and in ATL patient samples. The objective of this study was to determine the importance of PRMT5 on HTLV-1 infected cell viability, T-cell transformation, and ultimately disease induction. Inhibition of PRMT5 enzymatic activity with a commercially available small molecule inhibitor (EPZ015666) resulted in selective in vitro toxicity of actively proliferating and transformed T-cells. EPZ015666-treatment resulted in a dose-dependent increase in apoptosis in HTLV-1-transformed and ATL-derived cell lines compared to uninfected Jurkat T-cells. Using a co-culture model of infection and immortalization, we found that EPZ015666 is capable of blocking HTLV-1-mediated T-cell immortalization in vitro, indicating that PRMT5 enzymatic activity is essential for the HTLV-1 T-cell transformation process. Administration of EPZ015666 in both NSG xenograft and HTLV-1-infected humanized immune system (HIS) mice significantly improved survival outcomes. The cumulative findings of this study demonstrate that the epigenetic regulator PRMT5 is critical for the survival, transformation, and pathogenesis of HTLV-1, illustrating the value of this cellular enzyme as a potential therapeutic target for the treatment of ATL.
Collapse
Affiliation(s)
- Kyle Ernzen
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Corrine Melvin
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Lianbo Yu
- Department of Biomedical Informatics, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Cameron Phelps
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Patrick L. Green
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
47
|
Polakowski N, Sarker MAK, Hoang K, Boateng G, Rushing AW, Kendle W, Pique C, Green PL, Panfil AR, Lemasson I. HBZ upregulates myoferlin expression to facilitate HTLV-1 infection. PLoS Pathog 2023; 19:e1011202. [PMID: 36827461 PMCID: PMC9994761 DOI: 10.1371/journal.ppat.1011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4+ T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse. In this study we show that HBZ additionally enhances HTLV-1 infection by activating expression of myoferlin (MyoF), which functions in membrane fusion and repair and vesicle transport. Results from ChIP assays and quantitative reverse transcriptase PCR indicate that HBZ forms a complex with c-Jun or JunB at two enhancer sites within the MYOF gene and activates transcription through recruitment of the coactivator p300/CBP. In HTLV-1-infected T-cells, specific inhibition of MyoF using the drug, WJ460, or shRNA-mediated knockdown of MyoF reduced infection efficiency. This effect was associated with a decrease in cell adhesion and an intracellular reduction in the abundance of HTLV-1 envelope (Env) surface unit (SU) and transmembrane domain (TM). Lysosomal protease inhibitors partially restored SU levels in WJ460-treated cells, and SU localization to LAMP-2 sites was increased by MyoF knockdown, suggesting that MyoF restricts SU trafficking to lysosomes for degradation. Consistent with these effects, less SU was associated with cell-free virus particles. Together, these data suggest that MyoF contributes to HTLV-1 infection through modulation of Env trafficking and cell adhesion.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Md Abu Kawsar Sarker
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Kimson Hoang
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Georgina Boateng
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Amanda W. Rushing
- Catawba College, Department of Biology, Salisbury, North Carolina, United States of America
| | - Wesley Kendle
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick L. Green
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amanda R. Panfil
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Isabelle Lemasson
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
48
|
Hasegawa A, Murata M, Fujikawa T, Katagiri K, Nagano Y, Masuda T, Kuramitsu M, Nakajima S, Fujisawa JI, Okuma K, Grover P, Kidiga M, Akari H, Kannagi M. Vaccination with short-term-cultured autologous PBMCs efficiently activated STLV-1-specific CTLs in naturally STLV-1-infected Japanese monkeys with impaired CTL responses. PLoS Pathog 2023; 19:e1011104. [PMID: 36730466 PMCID: PMC9928132 DOI: 10.1371/journal.ppat.1011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
A small proportion of human T-cell leukemia virus type-1 (HTLV-1)-infected individuals develop adult T-cell leukemia/lymphoma, a chemotherapy-resistant lymphoproliferative disease with a poor prognosis. HTLV-1-specific cytotoxic T lymphocytes (CTLs), potential anti-tumor/virus effectors, are impaired in adult T-cell leukemia/lymphoma patients. Here, using Japanese monkeys naturally infected with simian T-cell leukemia/T-lymphotropic virus type-1 (STLV-1) as a model, we demonstrate that short-term-cultured autologous peripheral blood mononuclear cells (PBMCs) can serve as a therapeutic vaccine to activate such CTLs. In a screening test, STLV-1-specific CTL activity was detectable in 8/10 naturally STLV-1-infected monkeys. We conducted a vaccine study in the remaining two monkeys with impaired CTL responses. The short-term-cultured PBMCs of these monkeys spontaneously expressed viral antigens, in a similar way to PBMCs from human HTLV-1 carriers. The first monkey was subcutaneously inoculated with three-day-cultured and mitomycin C (MMC)-treated autologous PBMCs, and then boosted with MMC-treated autologous STLV-1-infected cell line cells. The second monkey was inoculated with autologous PBMC-vaccine alone twice. In addition, a third monkey that originally showed a weak STLV-1-specific CTL response was inoculated with similar autologous PBMC-vaccines. In all three vaccinated monkeys, marked activation of STLV-1-specific CTLs and a mild reduction in the STLV-1 proviral load were observed. Follow-up analyses on the two monkeys vaccinated with PBMCs alone indicated that STLV-1-specific CTL responses peaked at 3-4 months after vaccination, and then diminished but remained detectable for more than one year. The significant reduction in the proviral load and the control of viral expression were associated with CTL activation but also diminished 6 and 12 months after vaccination, respectively, suggesting the requirement for a booster. The vaccine-induced CTLs in these monkeys recognized epitopes in the STLV-1 Tax and/or Envelope proteins, and efficiently killed autologous STLV-1-infected cells in vitro. These findings indicated that the autologous PBMC-based vaccine could induce functional STLV-1-specific CTLs in vivo.
Collapse
Affiliation(s)
- Atsuhiko Hasegawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Cancer Cell Biology Laboratory, Department of Cancer Biology, Clinical Research Institute, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Megumi Murata
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Tomoka Fujikawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Katagiri
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiko Nagano
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Masuda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Madoka Kuramitsu
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Poonam Grover
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Maureen Kidiga
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Hirofumi Akari
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Mari Kannagi
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
49
|
Rocamonde B, Hasan U, Mathieu C, Dutartre H. Viral-induced neuroinflammation: Different mechanisms converging to similar exacerbated glial responses. Front Neurosci 2023; 17:1108212. [PMID: 36937670 PMCID: PMC10017484 DOI: 10.3389/fnins.2023.1108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
There is increasing evidence that viral infections are the source/origin of various types of encephalitis, encephalomyelitis, and other neurological and cognitive disorders. While the involvement of certain viruses, such as the Nipah virus and measles virus, is known, the mechanisms of neural invasion and the factors that trigger intense immune reactions are not fully understood. Based on recent publications, this review discusses the role of the immune response, interactions between viruses and glial cells, and cytokine mediators in the development of inflammatory diseases in the central nervous system. It also highlights the significant gaps in knowledge regarding these mechanisms.
Collapse
Affiliation(s)
- Brenda Rocamonde
- Centre International de Recherche en Infectiologie, Équipe d’Oncogenèse Rétrovirale, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
- *Correspondence: Brenda Rocamonde,
| | - Uzma Hasan
- Centre International de Recherche en Infectiologie, Team Enveloped Viruses, Vectors and Immunotherapy INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- The Lyon Immunotherapy for Cancer Laboratory (LICL), Centre de Recherche en Cancérologie de Lyon (CRCL, UMR INSERM 1052 – CNRS 5286) Centre Léon Bérard, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie Équipe Neuro-Invasion, Tropism and Viral Encephalitis, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Cyrille Mathieu,
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Équipe d’Oncogenèse Rétrovirale, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
- Hélène Dutartre,
| |
Collapse
|
50
|
Nozuma S, Matsuura E, Tashiro Y, Nagata R, Ando M, Hiramatsu Y, Higuchi Y, Sakiyama Y, Hashiguchi A, Michizono K, Higashi K, Matsuzaki T, Kodama D, Tanaka M, Yamano Y, Moritoyo T, Kubota R, Takashima H. Efficacy of l-Arginine treatment in patients with HTLV-1-associated neurological disease. Ann Clin Transl Neurol 2022; 10:237-245. [PMID: 36547017 PMCID: PMC9930431 DOI: 10.1002/acn3.51715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE HTLV-1 infection causes HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), resulting in loss of motor function. In this Phase 2 trial, we assessed the efficacy and safety of l-arginine in patients with HAM/TSP. METHODS This open-label, single-arm, Phase 2 study enrolled patients diagnosed with HAM/TSP. Patients received l-arginine at a dose of 20 g orally for 1 week and were followed-up for 3 weeks. The primary endpoint was change in walking speed in the 10-m walk test (10MWT). The main secondary endpoints were change in Timed Up and Go Test (TUGT) time, improvement in inflammatory markers in cerebrospinal fluid (CSF), safety, and tolerability. RESULTS The study enrolled 20 patients (13 [65%] female) with a mean age of 67.8 years (95% CI 62.3 to 73.3). Although the primary endpoint, the changes in 10MWT time between baseline (Day 0) and Day 7, did not reach statistical significance (mean percent change in time -3.5%, 95% CI -10.8% to 3.7%; P = 0.32), a significant improvement was detected between baseline and Day 14 (-9.4%, 95% CI -16.6% to -2.2%; P = 0.01). Significant improvements were also observed in selected secondary endpoints, including in TUGT time (-9.1%, 95% CI -15.5% to -2.7%; P < 0.01), and in neopterin concentration in CSF (-2.1 pmol/mL, 95% CI -3.8 to -0.5; P = 0.01). Adverse events were infrequent, mild, and resolved rapidly. INTERPRETATION l-arginine therapy improved motor function and decreased CSF inflammatory markers. l-arginine thus represents a promising therapeutic option for patients with HAM/TSP. TRIAL REGISTRATION NUMBER UMIN000023854.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Eiji Matsuura
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yuichi Tashiro
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Ryusei Nagata
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Masahiro Ando
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yu Hiramatsu
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yujiro Higuchi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yusuke Sakiyama
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Akihiro Hashiguchi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Kumiko Michizono
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Keiko Higashi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus InfectionKagoshima UniversityKagoshimaJapan
| | - Daisuke Kodama
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus InfectionKagoshima UniversityKagoshimaJapan
| | - Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus InfectionKagoshima UniversityKagoshimaJapan
| | - Yoshihisa Yamano
- Division of Neurology, Department of Internal MedicineSt. Marianna University School of MedicineKawasakiJapan
| | - Takashi Moritoyo
- Clinical Research Promotion CenterThe University of Tokyo HospitalBunkyo‐kuJapan
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus InfectionKagoshima UniversityKagoshimaJapan
| | - Hiroshi Takashima
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| |
Collapse
|